Site Loader

Содержание

Схемотехника блоков питания персональных компьютеров. Часть 2.

Высокочастотный преобразователь (инвертор)

В первой части нашего рассказа о схемотехнике блоков питания персональных компьютеров мы познакомились со схемой входного сетевого выпрямителя и фильтра. Давайте продолжим изучение компьютерного блока питания. Здесь мы разберёмся в том, как работает высокочастотный преобразователь – инвертор.

Постоянное напряжение 310 вольт, снимаемое с сетевого выпрямителя, подаётся на высокочастотный преобразователь. Высокочастотный преобразователь — это двухтактный инвертор, выполненный по схеме полумоста. Преобразователь работает на частоте в десятки килогерц и нагружен на высокочастотный силовой трансформатор.

Частота преобразования выбирается порядка 18 – 50 КГц, что подразумевает маленькие размеры силового трансформатора и небольшие величины ёмкостей конденсаторов фильтров. Один из плюсов импульсного блока питания является высокий КПД, достигающий 80% и экономичность, поскольку блок потребляет энергию только в то время, когда один из транзисторов преобразователя открыт.

Когда он закрыт, энергию на нагрузку отдаёт конденсатор фильтра вторичной цепи.

Управление полумостовым инвертором осуществляется ШИМ-контроллером (Узел управления). Об узле управления блоком питания будет рассказано в следующей части.

Итак, высокочастотный преобразователь работает следующим образом: на него приходит постоянное напряжение 310 вольт с сетевого выпрямителя и конденсаторов фильтра. Одновременно в базовые цепи мощных транзисторов подаются прямоугольные импульсы положительной полярности и с частотой следования допустим 20 кГц. С этой частотой транзисторы как ключевые элементы открываются и закрываются.

На первичной обмотке трансформатора Т2 присутствует импульсное высокое напряжение с той же частотой 20 кГц. Трансформатор, естественно, понижающий и на его вторичных обмотках, которых несколько, формируются все необходимые для работы компьютера питающие напряжения, после этого все напряжения выпрямляются, фильтруются и подаются на системную плату.

Мощные ключевые транзисторы инвертора являются своеобразными «мускулами» блока питания. Именно через ключевые транзисторы инвертора «прокачивается» вся мощность, которая потребляется компьютером. Ключевые транзисторы устанавливаются на радиатор для принудительного охлаждения во время работы, а сам радиатор обдувается вентилятором.

В качестве ключевых транзисторов инвертора могут применяться как биполярные, так и полевые MOSFET транзисторы. Обычно же используются биполярные транзисторы.

Взглянем на схему. На ней изображена часть схемы ИБП марки GT-150W.

Биполярные транзисторы VT1 и VT2 поочерёдно открываются с частотой в десятки килогерц. Трансформатор T2 — импульсный силовой трансформатор. Он же обеспечивает гальваническую развязку от электросети. Импульсный силовой трансформатор заметно выделяется на фоне других трансформаторов, установленных на печатной плате. Найти его не сложно.

Со вторичных обмоток трансформатора T2 снимается пониженное переменное напряжение. На схеме показаны элементы одного из выходных выпрямителей +12 вольт (VD6, VD7, L1, C5). Электролитические конденсаторы C6, C7 — это конденсаторы сетевого фильтра и выпрямителя, речь о котором шла в первой части.

Трансформатор T1 — согласующий. Он является промежуточным звеном между микросхемой ШИМ-контроллера и мощными ключевыми транзисторами VT1, VT2. Габариты его заметно меньше, чем у трансформатора T2. Диоды VD4 и VD5 предохраняют мощные транзисторы от напряжения обратной полярности. У мощных полевых транзисторов эти диоды, как правило, уже встроены, поэтому на печатной плате диоды VD4, VD5 можно и не обнаружить. Так же защитные диоды встраивают в некоторые мощные биполярные транзисторы. Всё зависит от марки транзистора.

Схема запуска.

Узел управления инвертора питается выходным напряжением блока, но в момент включения все напряжения отсутствуют. Начальный запуск может осуществляться разными способами. Рассмотрим более подробно схему запуска инвертора, которая «заводит» мощный каскад инвертора.

После включения блока питания на базы транзисторов VT1, VT2 подаётся напряжение через делитель, выполненный на резисторах R3 — R6. При этом транзисторы «приоткрываются». При этом ещё начинается заряд конденсатора C4. Ток заряда конденсатора C4 проходя через часть вторичной обмотки (II) трансформатора T1 наводит в ней (обмотке II) и обмотке III напряжение. Это напряжение открывает один из транзисторов (VT1 или VT2). Какой именно из транзисторов откроется зависит от характеристик элементов каскада.

В результате открытия одного из ключевых транзисторов во вторичной обмотке трансформатора T2 появляется импульс тока, который проходит через один из диодов (VD6 или VD7) и заряжает конденсатор C3. Напряжения на C3 достаточно для питания узла управления в момент пуска инвертора. Далее в работу включается узел управления, который и начинает управлять транзисторами VT1 и VT2 в штатном режиме.

Вот так хитроумно реализована схема запуска инвертора.

В мощном каскаде наиболее частой неисправностью является выход из строя транзисторов, поскольку они работают в достаточно тяжёлом тепловом режиме. Ну, и, конечно, слабое звено это электролитические конденсаторы, которые со временем «высыхают» и теряют ёмкость. Также элктролиты выходят из строя из-за превышения рабочего напряжения.

НазадДалее

Главная &raquo Мастерская &raquo Текущая страница

 

Справочные данные (datasheets) на транзисторы, применяемые в компьютерных блоках питания ATX и AT = Электроника и Медтехника

Тип Структура Параметры Рис.
Аналоги
2SC3150 Si-N S-L;900/800V;3A;40W;15MHz 17j BUT11A, BUV46A, 2SC3490, 2SC3491
2SC3457 Si-N S-L;1100/800V;3A;50W; 17j MJE8502, MJE8503, 2SC3050
2SC3751 Si-N S-L;1100/800V;1,5A;25W; 17j 2SC4231
2SC3866 Si-N S-L;900/800V;3A;40W; 17j iso 2SC3559; 2SC4303
2SC3979 Si-N S-L;900/800V;3A;40W; 17j iso BUT11AF, 2SC3752, 2SC4234, 2SC4304
2SC4020 Si-N S-Reg;900/800V;3A;50W; 17j BUT11A, BUV46A, 2SC3150, 2SC3490
2SC4231 Si-N S-L;1200/800V;2A;30W; 15c BU505F, 2SC4234, (MJE 8500, 2SC3178)
2SC4234 Si-N S-L;1200/800V;3A;45W; 15c BU505F, (MJE8502, 2SC3050)
2SC5353 Si-N S-L;900/800V;3A;25W; 17j 2SC3559; 2SC4303
KSC5027
Si-N
S-L;1100/800V;1,5A;25W; 17j BV-1 501, BUL213, MJE8502, 2SC3050, 2SC3457
2SK2545 MOS-N-FET-e V-MOS;600V;6A;Iso;40W; 17c 2SK1118, 2SK1637, 2SK2097, 2SK2045
2SK3067 MOS-N-FET-e V-MOS;600V;2A;25W; 17c BUK445-600, 2SK1758, 2SK1953, 2SK2324
SSS2N60A
MOS-N-FET-e
V-MOS;600V;1,3A;23W; 17c SPU02N60P, BUK445-600, 2SK1758, 2SK1953, 2SK2043
2SC2625 Si-N S-L;450/400V;10A;80W; 18j 2SC2541, 2SC2740, 2SC2789, 2SC4138
2SC4106 Si-N S-L;500/400V;7A;50W; 17j MJE13006, 2SC3170, 2SC4055, 2SC4055
2SC4242
Si-N
S-L;450/400V;7A;40W;1/3µS 17j MJE13006, 2SC3170, 2SC4055, 2SC4106
2SC5763 Si-N S-Reg;700/400V;7A;55W; 17j BUF644, BUL57, BUT54, BUT56(A)
MJE13007 Si-N S-L;700/400V;8A;80W;>4MHz 17j BUF644, BUT54, BUT56(A), BUV56(A)
MJE13009 Si-N S-L;700/400V;12A;100W;>4MHz 17j BUF654
TFK617 (BUF640) Si-N S-L;850/400V;6A;70W; 17j BUT11(A), BUT18(A), BUV46(A)
2SK1940 MOS-N-FET-e V-MOS;600V;12A;125W; 18c BUZ334, 2SK1723, 2SK1968, 2SK2699
2SK2082 MOS-N-FET-e V-MOS;900V;9A;150W; 18c 2SK1796, 2SK1933, 2SK2488, 2SK2676
2SK2607 MOS-N-FET-e V-MOS;800V;9A;150W; 18c 2SK1796, 2SK1933, 2SK2078, 2SK2477
2SK2611 MOS-N-FET-e V-MOS;900V;9A;150W; 18c 2SK1796, 2SK1933, 2SK2488, 2SK2676
2SK2648 MOS-N-FET-e V-MOS;800V;9A;150W; 18c 2SK1796, 2SK1933, 2SK2477, 2SK2488
STW12NK90Z MOS-N-FET-e V-MOS;900V;11A;230W; 18c
FQP9N50 MOS-N-FET-e V-MOS, 500V, 9A, 147W, 17c
IRFP450 MOS-N-FET-e V-MOS, 500V, 14A, 190W, 18c BUK638-500, BUZ338, 2SK1678
SPP11N60C3 MOS-N-FET-e V-MOS, 600V, 11A, 125W, 17c 2SK2866
2SK1388 MOS-N-FET-e V-MOS;30V;35A;60W; 17c BUK555-50
FDP7030BL MOS-N-FET-e V-MOS;LogL;30V;60A;60W; 17c
P45N03L MOS-N-FET-e V-MOS;20V;45A;65W; 17b
SSM40N03P MOS-N-FET-e V-MOS;LogL;30V;40A;50W; 17c
STP3020L MOS-N-FET-e V-MOS;LogL;30V;40A;80W; 17c BUZ102AL, 2SK1542
STP40NE03L MOS-N-FET-e V-MOS;LogL;30V;40A;80W; 17c BUZ102AL, 2SK1542
STP40NF03L MOS-N-FET-e V-MOS;LogL;30V;40A;70W; 17c
2SC945 Si-N Uni;60V;0,1A;0,25W;250MHz 7c STC945, BC174, BC182, BC190, BC546, 2SD767
PN2222 Si-N Uni;60/30V;0,6A;0,625W;300MHz 7e KSP2222
2SA733P Si-P Uni;60V;0,1A;0,25W;180MHz 7c BC212, BC257, BC307, BC557
2SA928 Si-P HF;20V;1A;0,25W 7c BC636, BC638, 2SB909, 2SB1116
2SA1015 Si-P Uni;50V;0,15A;0,4W;>80MHz 7c BC212, BC257, BC307, BC557
2SB772 Si-P NF/S-L;lo-sat;40V;3A;10W;80MHz 7c, 14h BD786, MJE250..254, 2SB744(A)
Сокращение Полное название
АКФМ Активный корректор фактора мощности
ШИМ Широтно — импульсный модулятор

РЕМОНТ БП ПК — НИЗКОВОЛЬТНЫЕ ЦЕПИ

Итак, продолжаем цикл статей от Elwo.ru, посвященных ремонту блоков питания АТХ. В этой статье мы разберем, в основном низковольтные и выходные цепи блока питания, а также снова коснемся проблем с высоковольтной частью. Итак, у нас есть ШИМ контроллер, их бывает несколько распространенных моделей микросхем, применяемых в блоках питания АТХ, это и широко распространенная TL494, и другие подобные ей микросхемы, по типу работы.

Так например выглядит ШИМ контроллер брендовых блоков питания Powerman. А вот так он обозначается на схеме:

Выделено красным. Рядом с  выводами 8 и 9 мы видим надписи OP1 и OP2. C чем же они соединены? Посмотрев на схему блока питания, вот она целиком, она кликабельна:

Мы видим, что эти два выводы, соединены с базами двух транзисторов, также помеченных на схеме OP1 и OP2. В их обвязке мы видим, также ставшие стандартными в подобных схемах, защитные диоды, между коллектором и эмиттером. Они защищают наши транзисторы от импульсов, выбросов, которые бывают при работе на индуктивную нагрузку, какой у нас и являются обмотки трансформатора Т2.

Эти транзисторы называются транзисторами раскачки, почему же они так называются? А потому что силовые транзисторы, выделенные синим, мы не можем подключить, по соображениям схемотехники напрямую, на выхода ШИМ контроллера, и нам удобнее управлять нашими высоковольтными ключами, Q3 и Q4, через эти своего рода промежуточные транзисторы. Второй причиной является то, что силовые транзисторы, ключи, часто пробиваются высоким напряжением, бывает что и на базу, и все 3 вывода оказываются у нас, пусть и на очень короткое время, пока не сгорит предохранитель, под высоким напряжением. Нежный ШИМ контроллер этого очень не любит), и сразу откажется работать. Все необходимые данные, а также его распиновку и назначение выводов, мы как обычно, находим в даташите:

А ШИМ контроллер, если требуется его замена, у него будет необходимо подбирать впоследствии номиналы обвязки, это не так легко сделать, потребуются измерения, поэтому мы и имеем такое решение. Как уже было сказано в предыдущих статьях, если у нас летят высковольтные ключевые транзисторы, не пытайтесь найдя транзистор в КЗ, коротком замыкании, сразу же заменив транзистор, включать в сеть, не проверив его обвязку, те детали, которые обеспечивают его работу, и находятся на схеме рядом с ним. Или вы рискуете попасть на покупку нового транзистора, а цены на них сейчас в радиомагазинах, отнюдь не радуют. Итак, вернемся к нашим низковольтным цепям. Если у нас блок питания пытается стартовать, кулер дергается, пытается раскрутиться, но не может и останавливается, значит у нас срабатывает защита блока питания, и проблему нужно искать в низковольтной части, возможно и в выходных цепях блока питания, после силового трансформатора. Посмотрите на следующий рисунок:

Здесь мы видим два алюминиевых радиатора, на них, на одном из них, обычно всегда ближнем к “бочонкам”, электролитическим конденсаторам, расположены высоковольтные транзисторы, ключи, которыми и управляют наши транзисторы раскачки, и мосфет или обычный биполярный транзистор. Все они находятся под высоким напряжением, ни в коем случае не касайтесь их руками, при проведении измерений на “горячую”, во включенном блоке питания, это опасно для жизни! Это касается и самих больших “бочонков” электролитических конденсаторов, они сохраняют заряд еще какое-то время и после выключения, несмотря на то, что в их цепях и установлены резисторы, для их разряжения. На втором же радиаторе, дальнем от “бочонков”, мы видим вот такие штуки, как на фото, внешне порой ничем не отличающиеся от мощных ключей – транзисторов, но это абсолютно другие детали.

Это диодная сборка Шоттки, или два мощных импульсных диода, которые соединены катодами. Что мы и видим на нанесенном обозначении, на корпусе диода. Диоды Шоттки ни в коем случае нельзя менять, на обычные выпрямительные диоды, даже подходящие по току, они не предназначены для работы в таких цепях, и будут сильно греться.

На схеме у нас их три, и находятся они, как уже можно было догадаться, даже не глядя на схему, по цепям +3.3 вольта, +5 Вольт, и +12 Вольт, иначе говоря по всем выходным цепям, способным выдавать болшие токи, кроме маломощных -5 и -12 вольт. Итак, посмотрим на схему, с вторичных обмоток силового трансформатора, напряжение идет на аноды диодной сборки. Как нам известно любой диод, в том числе и Шоттки, мы можем проверить мультиметром, в режиме звуковой прозвонки. С диодами Шоттки значения будут правда не 500-600, как обычно бывает при проверке выпрямительных диодов, а порядка 200, потому что у них меньшее падение напряжения. К чему это рассказываю? Посмотрите внимательно на схему, на все аноды диодных сборок, параллельно им подключены вторичные обмотки выходного трансформатора. Что это значит? А это значит что оба крайних  вывода, аноды, у нас будут звониться на звуковой прозвонке, или на измерении сопротивления, как низкоомное сопротивление, и это ничуть не означает, что диодная сборка у нас пробита, между анодами. В чем мы и можем убедиться, прозвонив диоды сборки по отдельности, в режиме звуковой прозвонки. Куда же идут выхода с диодных сборок?

На дроссель, и затем на фильтры. Те самые конденсаторы 2200-3300 мкФ, которые у нас любят так часто дуться), и в результате наш блок питания не стартует, или работает не стабильно. На схеме конденсаторы фильтров выделены синим. И наконец после этих фильтров, напряжение приходит уже на наш разъем 20-24 Pin, Молексы и все остальные разъемы. А теперь, в качестве бонуса, я расскажу о поломке блока питания которая встречается редко, но тем не менее, как оказалось, все же бывает. Включаю блок питания, как обычно, клавишным выключателем на задней стенке, замыкаю PS-ON на GND, и ничего не происходит… Вскрываю крышку, предохранитель не почерневший, проволочку видно, звоню для большей уверенности, все звонится. Звоню диодный мост, мосфет, выходные транзисторы, Y- конденсаторы, большой красный конденсатор, на 250 вольт, и остальные подобные. Все в идеале. Они все показаны на рисунке:

Тут приходит в голову мысль, прозвонить термистор, который с виду кажется в норме, эта деталь защищает диодный мост от бросков тока, и ставится последовательно с предохранителем, а точнее сразу после него. На схеме выделено фиолетовым. Не путайте с Y — конденсаторами, выделено синим, внешне они немного похожи.

Пытаюсь его слегка отогнуть, и он отгибается, вернее его большая часть), а одна нога остается висящей в воздухе. В течение последующих двух минут, выпаиваю термистор с донора, впаиваю в схему, все работает, тесты проходит, все в идеале. И убеждаюсь в справедливости поговорки, что ремонт техники, состоит на 95% в диагностике неисправности… Хотя один или два электролитических конденсатора, я предварительно все же вроде бы заменил тогда. Вот так термистор выглядит на плате, обычно он находится рядом с предохранителем.

После ремонта 5-10 блоков, все последующие, за исключением конечно тяжелых случаев, а они бывают и у меня, обычно ремонтируются по ставшей уже отработанной схеме. Большую часть распространенных простых поломок, которые случаются у блоков питания АТХ мы разобрали, и которые можно устранить в домашних условиях, без применения осциллографа, или других дорогих приборов. Которых обычно и не бывает в мастерской у домашнего мастера, мы разобрали в этой, и предыдущих статьях. Для проведения большинства ремонтов, нам достаточно было обычного мультиметра, и еще также очень желателен для облегчения работы ESR метр. Без которого, впрочем, вполне можно обойтись, если знать схемотехнику блоков питания АТХ, и менять все электролитические конденсаторы на новые в проблемном узле. 

Кстати, насчет конденсаторов, настоятельно рекомендую менять электролитические конденсаторы, на другие только с обозначением 105С, на корпусе. Конденсаторы на которых написано 85С, даже новые, и подобные, имеющие низкую, предельно допустимую температуру работы, недолго прослужат в закрытом корпусе, и замена на них допустима только на время тестирования.

Всем удачных ремонтов, специально для «Электрические схемы» — AKV.

Вторая жизнь БП — Рождённый с паяльником — LiveJournal

Люди, разбирающиеся в железе, при сборке компьютера в первую очередь заботятся о надежности системы, покупая хорошее, проверенное железо, однако они часто забывают едва ли не о главном ее элементе, от которого зависит не только безглючность машины, но и ее работоспособность вообще — о блоке питания. Абсолютное большинство блоков питания, продаваемых на нашем рынке (в том числе идущих вместе с корпусами), имеет ярко выраженное китайское происхождение, причем в худшем смысле этого слова. При этом по-настоящему качественные устройства у нас распространены слабо, и особой популярностью не пользуются, так как их цена как минимум раз в пять больше, чем у китайского барахла. Несведущий в этих делах человек не будет покупать корпус за 100 баксов, если можно купить такой же с виду за 30. Результатом такого выбора становятся полностью выгоревшие компьютеры и потерянная информация.

В чем разница

Разница между дешевым и качественным блоками питания просто огромна. Основные отличия заключаются в некачественных радиоэлементах, непродуманных конструкциях и зверской экономии недобросовестных производителей на всем, чем только можно. Основной причиной выхода из строя таких БП (вместе со всей начинкой компа) является отсутствие защиты, либо ее несрабатывание, тем не менее, большинство таких блоков вполне можно довести до ума. В качестве примера подобного барахла можно привести блоки фирмы JNC, которые из-за конструктивных недоработок сгорают после полугода работы. А контакты разъема АТХ последних ради экономии делаются из жести для консервных банок (без преувеличения) в результате чего, из-за неплотного соединения происходит подгорание выводов на матери.

Важные замечания

Предупреждаю сразу, ремонт импульсного блока питания — занятие достаточно опасное и не для кривых рук, так как БП находится под напряжением 220 вольт, поэтому первое правило — это собственная безопасность, все нужно делать очень аккуратно и внимательно. Метод ремонта тоже нужно выбирать из соображений безопасности. Если блок просто выключился и не включается, то можно, вынув из корпуса печатную плату и включив ее в 220, искать причину неисправности прямо «на ходу». Если же сгорание БП произошло в сопровождении крутых спецэффектов, типа фейерверка и дыма, то включать его ни в коем случае нельзя — нужно разбирать блок и искать причину поломки и возможного короткого замыкания. Хочется отметить, что для ремонта технически сложных устройств, таких как компьютерные блоки питания, необходимо уметь читать принципиальные схемы, или как минимум знать обозначения деталей, применяемых в оных, иначе будет очень сложно разобраться, что откуда и куда на плате идет.

Ремонт

Выкрутив блок питания из корпуса, нужно его аккуратно открыть и осмотреть печатную плату на предмет повреждений. Сначала рассмотрим вариант, когда видимых повреждений нет. Находим место заведения 220 вольт на печатную плату и начинаем двигаться по цепочке. Первым делом нужно проверить предохранитель, он всегда установлен на входе 220 вольт, первым в цепи. Некоторые производители, например Thermaltake, их здорово маскируют, поэтому он может иметь очень необычный вид. Чтобы быть уверенным, что это именно предохранитель нужно обратить внимание на маркировку на печатной плате: рядом с ним должна быть метка -1. Бывает, что предохранитель сгорает от кратковременных перегрузок. Если он сгорел, а такого же нет, можно прямо к нему припаять тонкую проволоку-волосок, вынутую из обычного провода. После этого включаем блок в сеть, и далее возможно три варианта:
1. предохранитель не сгорает, БП включается и работает;
2. предохранитель сгорает снова;
3. предохранитель не сгорает, но БП не включается.
В первом случае все просто: нужно найти (купить) и поставить новый предохранитель. Если же предохранитель опять сгорел, это означает, что в цепи присутствует короткое замыкание, его причины нужно искать в первичных цепях БП (выпрямители, генератор и т.д.). В том случае, если новый предохранитель не сгорает, но блок не работает, скорее всего, присутствует неисправность во вторичных цепях (ШИМ, дежурное питание). Рассмотрим случай, когда в цепи присутствует короткое замыкание и предохранитель сгорает.

Диодный мост

Первым делом посмотрим на схему. После предохранителя идет фильтр (или не идет — зависит от качества БП), в нем замыкания весьма маловероятны. За ним находится выпрямитель тока. Это либо диодная сборка, либо 4 диода, стоящие рядом друг с другом, и два больших конденсатора (бочки). Для проверки выпрямителя нужно прозвонить цепь до диодной сборки и после нее. Отсутствие замыкания после выпрямителя однозначно указывает на пробой диодов. Если за диодным мостиком также имеет место замыкание, то придется действовать методом «научного тыка» (при условии, что нет явных погорелостей, следов вытекшего электролита и т.д.). Сначала придется проверить диодный мост. Если он выполнен в виде отдельной сборки, его нужно просто аккуратно выпаять и протестировать уже разделенную цепь на печатной плате. В том случае, если выпрямитель выполнен из отдельных диодов, вполне возможно проверить его, не выпаивая их все из платы. Достаточно прозвонить каждый из них на короткое замыкание в обоих направлениях, и выпаивать только подозреваемые в неисправности. Исправный диод должен иметь сопротивление в прямом направлении около 600 Ом и в обратном — порядка 1.3 МОм.
Предположим, тебе повезло, и единственной неисправностью блока питания является пробитый выпрямитель. В этом случае всего лишь нужно заменить сборку (или отдельные диоды). Кстати, все они взаимозаменяемы, поэтому можно вынуть их из другого старого блока питания.

Кондеры

Если проверка диодного моста не дала результатов, идем дальше. Частыми виновниками короткого замыкания являются электролитические конденсаторы, находящиеся возле выпрямителя. Основной причиной неисправности является их высыхание и несоответствие номиналов конденсаторов фактическим характеристикам сети. Сильное влияние оказывает очень жесткий температурный режим, а кроме того, чаще всего конденсаторы рассчитаны на напряжение 200 вольт и имеют недостаточную емкость. Все это приводит к короткому замыканию в конденсаторе и сгоранию блока. Одним из признаков неисправного конденсатора является вытекший электролит, при этом не обязательно произойдет замыкание, просто кондер сильно теряет свою емкость, что плохо сказывается на работе устройства. При прозвонке конденсаторов надо учитывать такую тонкость: пока конденсатор разряжен, он имеет маленькое сопротивление, поэтому первую секунду мультиметр будет пищать, как при коротком замыкании, после чего писк исчезнет. То есть в кратковременном попискивании ничего криминального нет — так и должно быть. Менять эти кондеры лучше всего на новые, а не вытащенные из другого БП. Подбирать новые надо с таким расчетом, чтобы был запас по напряжению, то есть как минимум 250 вольт, а емкость составляла от 470 до 680 мФ.

Высоковольтные транзисторы

роли виновников замыкания также могут выступить высоковольтные транзисторы, которые установлены на радиаторах внутри блока питания. Наиболее частой причиной их перегорания служит перегрев из-за некачественного охлаждения. Большинство производителей экономят на площади радиаторов, естественно, на качестве работы элементов и сроке их службы это отражается весьма плохо. К тому же многие производители грешат установкой заведомо низкокачественных радиоэлементов — ясно, что такое устройство долго не проживет. В большинстве случаев транзисторы можно проверять, не отпаивая. Тестировать их нужно не только на замыкание, но и на внутренний обрыв, поэтому необходимо найти в Интернете информацию по установленным у тебя транзюкам, чтобы определить тип транзистора и разводку его ножек. Эту информацию можно выловить как на разнообразных форумах, посвященных ремонту, так и на сайтах производителей. Протестировать транзистор можно следующим несложным способом: Как известно, у обычного транзистора три ножки — это база, коллектор и эмиттер. Исправный транзистор должен звониться от базы к эмиттеру и коллектору, между последними двумя он звониться не должен. В зависимости типа перехода (прп или рпр) может меняться полярность прозвонки. Сопротивление, так же как и с диодами, в одну сторону составляет несколько сотен Ом, в обратную — больше 1 МОм. Если есть другой блок питания, рабочие транзюки можно выдрать из него, предварительно убедившись в совместимости (подробные datasheets по всем транзисторам лежат в инете). У большинства сих представителей электронного мира есть наши ане логи.
Кроме транзисторов на радиаторах стоят диодные сборки (или спаянные диоды), инфу по ним можно найти в тех же истоичниках.
Дежурное питание и POWER GOOD Теперь рассмотрим другую ситуацию: предохранитель не сгорает, все элементы, упомянутые выше, исправны, но устройство не запускается. Немного отойдем от темы и вспомним, как работает блок питания стандарта АТХ. В ждущем режиме (именно в нем находится «выключенный» компьютер) БП все равно работает. Он обеспечивает дежурное питание для материнской платы, чтобы ты мог включить или отключить компьютер кнопкой, по таймеру или при помощи какого-либо устройства. «Дежурка» представляет собой 5 вольт, которые постоянно (пока компьютер включен в электрическую сеть) подаются на материнскую плату. Когда включаешь компьютер, материнская плата формирует сигнал PS_ON и запускает блок питания. В процессе запуска системы проходит проверка всех питающих напряжений и формируется сигнал POWER GOOD. В том случае, если по каким-либо причинам напряжение сильно завышено или занижено, этот сигнал не формируется и система не стартует. Впрочем, как уже упоминалось выше, во многих NONAME блоках питания защита отсутствует напрочь, что пагубно сказывается на всем компьютере.
Итак, первым делом нужно проверить наличие 5 вольт на контактах +5VSB и PS_ON. Если на каком-то из этих контактов напряжения нет или оно сильно отличается от номинала, это указывает на неисправности либо в цепи вспомогательного преобразователя (если нет +5 vsb), либо на неисправность ШИМ контроллера или его обвязки (неработоспособность PS_ON).

ШИМ

Типовая схема блока питания построена на основе ШИМ-контроллера 11494. Он выступает в роли стабилизатора и регулятора напряжения. К сожалению, точная диагностика этого узла без осциллографа невозможна, поэтому приведем самый простой способ проверки этой микросхемы. Но с помощью этого способа можно выявить только на 100% неисправную микросхему, и прохождение этого теста не дает гарантии ее исправности. Суть способа заключается в проверке внутреннего стабилизатора микросхемы. Этот метод годится для модели t!494 и ее полных аналогов. При отключенном от сети блоке питания нужно подать на 12-ю ножку микросхемы постоянное напряжение от +9 до +12 вольт, при этом подсоединив «минус» к 7-ой ножке, после чего необходимо замерить напряжение на 14-й ножке — оно должно быть равно 5 вольтам. Если напряжение сильно отклонено (±0.5 В), это свидетельствует о неисправности внутреннего стабилизатора микросхемы. Данный элемент лучше купить новый.
По поводу ремонта дежурного питания что-либо конкретное посоветовать трудно
— может сгореть все. что угодно, но это компенсируется довольно простым устройством данной части. Будет вполне достаточно полазить по форумам по данной тематике, чтобы найти причину неисправности и метод ее устранения.

Вывод

Ремонт компьютерного блока питания нельзя назвать простым делом, тем не менее, в 70% случаев его можно осуществить в домашних условиях, без специального оборудования. В этом деле очень сильно помогает информация, имеющаяся в больших количествах на просторах Интернета. И помни, главное
— не сделать хуже (читай «не доломать»), поэтому производить все манипуляции с блоком надо, предварительно хорошо обдумав свои действия, не спеша и аккуратно.

Переделка БП

В последнее время умами пользователей завладела идея бесшумного компьютера. Для ее реализации уже придумана куча разнообразных устройств, от корпуса, представляющего собой большой радиатор, до водного охлаждения. Единственная часть компьютера, которой разработчики не уделили внимания, — это блок питания. В нем до сих пор есть так нелюбимый многими ценителями тишины вентилятор. Особенно актуальна эта проблема для тех, у кого дома стоят практически никогда не выключаемые компьютеры (например, мелкие сервера в домашних сетях). Но, тем не менее, выход из этой ситуации есть, и достаточно простой по своей идее, хотя не такой уж и простой в реализации.

Теория

В компьютерном блоке питания не так много элементов, существенно разогревающихся в процессе работы. Фактически, это только немногочисленные силовые транзисторы и диодные сборки.

Идея заключается в вынесении этих элементов за пределы корпуса блока питания и установки оных на отдельные массивные радиаторы, рассчитанные на пассивное охлаждение (то есть без дополнительного обдува вентилятором). Основной сложностью данной процедуры является надежная изоляция высоковольтных транзисторов и закрепление всей конструкции на задней стенке компьютера. В качестве эксперимента мы решили модифицировать 235-ваттный блок питания небольшого FTP-cepвера. В качестве радиатора для пересадки греющихся элементов был взят радиатор от слогового Celeron’а.

Практика

Первым делом БП аккуратно разобрали. Далее из него была извлечена печатная плата, с которой мы сняли все элементы, находящиеся на крупных радиаторах (перепутать их невозможно). После извлечения из печатной платы все детали были промаркированы (чтобы не перепутать) и сняты со старых радиаторов. Если не пометить элементы, можно перепутать их местами и устроить красивый фейерверк. На место транзисторов на печатной плате были посажены длинные куски проводов и пропущены в отверстие, где некогда стоял кулер. В процессе откручивания транзисторов от радиаторов нужно быть осторожным, чтобы не повредить и не растерять детали крепежа, так как они понадобятся в дальнейшем. Обязательно обрати внимание на способ крепления транзисторов к радиатору! Суть в том, что транзистор обязательно должен быть изолирован от радиатора. Для этого под ним находится прокладка наподобие термоскотча (только не липкая), а в отверстие для крепления вставлена специальная пластиковая шайба, чтобы исключить электрический контакт с радиатором, поэтому на новый радиатор их нужно устанавливать точно так же, причем так, чтобы исключить случайный контакт с другими металлическими частями. На контактах этих транзисторов напряжение составляет порядка 300 вольт. Как ты понимаешь, шутить с ними не стоит.
После установки на радиатор (надо признать, что выбранный радиатор далек от идеала, но со своими функциями, как выяснилось, справляется прекрасно) все контакты были тщательнейшим образом заизолированы при помощи хлорвиниловых трубочек. Как крепить такую конструкцию к корпусу — дело вкуса, самое главное продумать систему таким образом, чтобы исключить случайное короткое замыкание. Лучше закрепить радиатор так, чтобы между ним и корпусом компьютера не было электрического контакта. Несмотря на внешнюю «дохлость» радиатора, ходовые испытания показали отличный результат. В режиме ожидания температура радиатора не поднялась выше 34 градусов, в режиме интенсивной работы (перекачка большого объема данных) максимальная температура составила 47 градусов. Для любопытных, конфигурация сервера: Celeron 433/128RAM/HDD Quantum 30 Gb/ GF2MX 32 Mb/net/CD 40x/ floppy/modem 33600.

Вывод

Данный эксперимент показал, что безвентиляторный блок питания можно сделать без особых проблем, и откровенно говоря, удивляет тот факт, что такой «моддинг» блока питания до сих пор не имеет широкого распространения. Для того чтобы переделать подобным образом современный блок питания на 300-400 ватт, такого хилого радиатора не достаточно — нужны соответствующие серьезные радиаторы, которые без принудительного обдува смогут обеспечить теплоотвод с мощных транзисторов. Ну и конечно нельзя не сказать про гробовую тишину, с которой работает такой компьютер. Если бы не тихое жужжание винчестера и подмигивание индикаторов, можно подумать, что он вообще выключен.

Источник: по материалам периодического издания «Железо»

Взято отсюда http://www.all-win.ru/articles293.html
По наводке kyzia

Простой метод выбора ключевых транзисторов для импульсных источников питания


На фотке — метод «ошибок трудных». Шурик, это не наш метод!
При проектировании или сборке по готовой схеме ИИП одним из острых вопросов является выбор ключей. И если по остальным деталям можно как-то подстроиться (мотать трансформатор в 2 провода вместо 1, если не хватает сечения или ставить два конденсатора параллельно вместо одного, если не хватает емкости и т.д.), то с ключами не так-то всё и просто. Неправильный выбор ведет к большому БУМУ (вспоминая знаменитый фильм Люка Бессона: «Бада-бум!») из-за теплового или электрического пробоя. И здесь тоже не всё просто. Электрический пробой произойдет сразу (или почти сразу), а вот тепловой можно ждать долго, и случится он в самый неподходящий ответственный момент.

В первый раз я задался вопросом выбора ключей около 8 лет назад. Куда же я пошел первым делом? В интернет, естественно, ага. В общем и целом могу теперь сказать так: зря я это сделал. Вопрос выбора ключей для импульсной техники в интернете оброс кучей недостоверных фактов, мифов и неправильными интерпретациями графиков в даташитах.
Мой способ выбора ключей тоже неидеальный и неполный. Однако в подавляющем большинстве случаев в радиолюбительской практике его окажется достаточно и даже за глаза, сами рады не будете.
Начнем!

Содержание / Contents

Создайте тему на любом форуме, связанным с радиоэлектроникой, с вопросом: «Как выбрать ключи в ИИП?».
Ответы будут самые разнообразные: от «выбирай ключи по напряжению и максимальному току» до «выбирай ключи по графику Maximum Safe Operating Area». Сюда входят все вариации типа «выбирай на ток вдвое больше максимального тока первичной обмотки» до «надо чтобы мощность, выделяемая при падении напряжения на сопротивлении открытого перехода, была меньше максимальной рассеиваемой мощности корпуса».

Вот весь этот бред читают новички и далее «делятся опытом» с другими. Жуть, да и только.
Вот, к примеру, знаменитый график Maximum Safe Operating Area (оно же ОБР, область безопасной работы) для ключа IRFS840B:


Посмотрите на него внимательно. Посмотрите, какие оси создают этот график. Посмотрели? Больше никогда не смотрите в его сторону.
На этот график призывают смотреть люди, пришедшие из аналоговой линейной техники, линейных усилителей или линейных стабилизаторов.

Чем может быть полезен этого график для разработки импульсных преобразователей или импульсных же усилителей (они же D-класс или цифровые)? Ничем.
А, ну не совсем так: этот напоминание о том, что у полевых транзисторов отсутствует вторичный пробой и что транзистор может быть пробит как при превышении максимального рабочего напряжения, так и при превышении максимального тока через него.
Много это нам дало? Не-а, вообще ничего, это всё в начале даташита указывается словами.

Надо сказать честно, что тот график в отдельных даташитах действительно вводит в заблуждение неподготовленного человека, ибо иногда к таким графикам идет ещё один, указывающий зависимость выхода за ОБР от частоты работы транзистора. Но это всё для линейной техники, для тех ситуаций, когда есть недооткрытое или недозакрытое состояние транзисторов, когда есть некие переходные процессы.

Мы же собираемся делать технику, которая использует только 2 состояния транзистора: полностью открытое и полностью закрытое, никаких средних значений. Исходя из того, что график ОБР нам лишний раз напоминает: вторичного пробоя у полевых транзисторов нет. Следовательно, изначально нас сдерживают только 2 параметра: максимальная рабочая температура кристалла Tj, указывающая на то, когда начнется тепловой пробой, и максимальное рабочее напряжение исток-сток Vdss, определяющее, когда начнется электрический пробой.
Косвенно удерживает параметр ток стока Id, который влияет на нагрев кристалла.

Теперь, попробуем разобраться с вопросом подбора транзистора. С вопросом максимального напряжение ни у кого не должно возникнуть сомнений. Просто для страховки берем ключ на 200 Вольт больше, чем максимальное действующее напряжение в схеме. Например, в ИИП я советую 600-вольтовые ключи, не ниже.

Вопрос в том, что делать с температурой. Она таки считается! Для теплового расчета надо всего лишь узнать, сколько Ватт потерь получится при работе ключа и как сильно надо его охладить, чтобы не случилось теплового пробоя.
Если результат меньше Tj, то использовать такой транзистор можно. Если больше, увы и ах, но надо выбирать дальше.

Из чего состоит нагревание? Для начала из статических потерь, связанных с сопротивлением перехода Rds on, которое влияет на падение напряжения на переходе, в зависимости от протекающего через ключ тока. Это падение напряжение вызывает выделение мощности на кристалле и нагрев транзистора в открытом состоянии. Считается как произведение квадрата среднего тока импульса Iимп на сопротивление перехода Rds on и коэффициента заполнения Кзап. Последний показывает, какую часть времени транзистор открыт.

В большинстве радиолюбительских конструкции мостовых и полумостовых преобразователей и усилителей Кзап не выше 0.45, а дальнейшее увеличение его не приводит ни к чему особенно хорошему, кроме сильной боли в голове или ж
Так, ладно, со статическими потерями разобрались.

Теперь динамические потери. Эти потери — основная проблема в преобразователях на полевых транзисторах с жесткой коммутацией ключей. Они возникают в момент включения и выключения ключа. Так сказать, потери на переходных процессах. И чем выше частота преобразования, тем выше динамические потери. А ниже делать частоту тоже не хочется, ведь тогда вырастают размеры трансформатора.

Есть резонансные или квазирезонансные схемы, позволяющие значительно снизить динамические потери, но это уже сложная техника, к которой никак не подходит выражение «простой расчет».

Итак, динамические потери состоят из потерь при включении и потерь при выключении. Считается как произведение тока в начале (Ir) или конце (If) импульса, напряжения питания (Uпит) и времени нарастания (Tr) или спада (Tf), разделенное на двойной период импульса. Хочу сразу заметить: отдельно считаются потери при включении и отдельно при выключении, а потом суммируются.

Теперь охлаждение. Основная проблема охлаждения — тепловое сопротивление между разными материалами. У транзистора таких мест 2: между кристаллом и корпусом транзистора, а так же между корпусом транзистора и радиатором. Эти значения табличные и не требующие вычислений. Первое значение берется из даташита на транзистор. Второе тоже можно взять оттуда, если оно там имеется. Если нет, то берётся усредненное значение.

Итак, потери подсчитаны, пора применять в деле. Первым делом, складываем потери динамические и статические, получаем общие потери — это сколько Ватт надо отвести от кристалла.

Затем складываем тепловые сопротивления.

Теперь умножаем общие потери на тепловое сопротивление. Получившийся результат — та температура, которую нужно «сдувать» с радиатора. Вычтем из ожидаемой рабочей температуры получившуюся, и на выходе нас ждет ожидаемая температура радиатора.
Именно по ней можно оценить, подходит или нет транзистор.

Как? Очень просто. Ожидаемая температура радиатора не может быть ниже температуры окружающей среды при естественном охлаждении. То есть, если у вас получился результат +24°, а на улице +32° то всё, кранты! Транзисторы ждёт тепловой пробой, потому как никакой супервентилятор не сможет охладить радиатор до 24 градусов, если температура воздуха выше. Совсем печально, если результат получился отрицательным. Если у вас нет фреоновой или азотной системы охлаждения, лучше выбрать другой транзистор.

Разумеется, в деле, подобном этому, есть свои тонкости и особенности. В целом, можно это охарактеризовать выражением «не доводи до крайностей», которое весьма полно объясняет чего нельзя делать, чтобы не бабахнуло.

В первую очередь это касается температур. Tj — это максимальная рабочая температура кристалла транзистора, фактически потолок его работоспособности. Было бы как минимум нелепо использовать это значение при расчете. Никогда не загоняйте параметры в угол, всегда оставляйте место для маневра.

Я, к примеру, использую в расчёте температуру на 5-10° ниже, и обзываю ее «Температура ожидаемая» — Tож.. Так как наиболее часто Tj указывается в районе 125° Цельсия, я использую в расчете 115-120°.

Далее, температуру окружающей среды для оценки тоже не следует брать наобум. Есть утвержденные ГОСТы, хотя можно просто принять для средней полосы +35° и +45° для южных регионов. Это для того, чтобы в набитом людьми помещении летом техника не сгорела синим пламенем. Ну и для случаев колебания температур.
Для работы на открытом воздухе под солнцепеком есть еще более жесткие условия, но это уже за рамками радиолюбительства.

Далее о напряжениях. Всегда стоит сделать запас прочности по допустимому напряжению. Опять-таки, в даташите параметр Vdss — предельный. И подбор транзистора строго под выпрямленное напряжение сети может сыграть злую шутку. Посчитаем: при напряжении в сети 220 Вольт на выходе мостового выпрямителя будет 310 Вольт. Однако в реальности в сети редко бывает 220 Вольт, и скачки до 20%, увы, обыденное явление. И что же будет, если напряжение в сети увеличится на эти 20%? На выходе выпрямителя будет уже 378 Вольт. Добавим сюда шум от сварочника и, вуаля, 400-вольтовый ключ искрится и взрывается.

Мне довелось отремонтировать очень много усилителей, в которых многочисленные дядюшки Ляо экономили на транзисторах. Не делайте так, разочарований будет куда больше экономии.

Как-то блуждая по просторам интернета, я наткнулся на аппноут IR, рекомендовавший выбирать ключи с запасом в 200 — 250 Вольт от максимального напряжения в схеме. Увы, этот аппноут я не сохранил, а затем найти его не смог. У кого-то есть сомнения, что он вообще существует, но сама рекомендация звучит достаточно трезво, пусть и относительно недёшево.

Теперь о сопротивлении перехода. В открытом состоянии идеальный ключ должен пропускать весь ток без потерь. Увы, живём мы в неидеальном мире. В настолько неидеальном, что маркетологи с удовольствием этим пользуются. Открывая даташит любого полевого транзистора можно увидеть маленькую характеристику Rds on, написанную большим шрифтом. Так вот: это сопротивление перехода при некоей „комнатной“ температуре в 20-25 градусов. Для того же IRFS840B указывается 0,8 Ома.

Это всё красиво только на словах, на деле кристалл в процессе работы будет нагреваться, что неизбежно приведет к увеличению сопротивления открытого перехода. Об этом мало кто помнит, но именно на это надо опираться, при выборе подходящего транзистора.
Чаще всего в даташитах не указывают эти печальные цифры, а лишь приводят график температурного коэффициента сопротивления ТКС, вот он для выбранного нами транзистора:


Как видно на графике, при нагревании сопротивление открытого перехода быстро увеличивается, и для рекомендованных мною максимальных рабочих 120° ТКС открытого канала уже составляет 2,1 Ома, а значит из приятных 0,8 Ом уже получаются малоприятные 1,68 Ома. Печаль, да и только, но с этим надо считаться.

Ну и последняя из тонкостей. Обязательно учитывайте крайние характеристики транзистора. В таблицах даташита всегда указывается три значения: минимальное, типичное и максимальное (или лучшее, типичное и худшее). Это касается практически всего. Например, время открытия и время закрытия. Причем с маркетинговой точки зрения делается упор именно на типичное время открытия и закрытия. Так, например, для IRFS840B типичное время нарастания составляет 65 нс, что и пишется всюду, хотя отдельные экземпляры доходят до 140 нс, что более чем в 2 раза дольше! Соответственно, для расчета необходимо использовать именно худшее значение, если нет желания отбирать транзисторы для конструкции.

Для выбора ключевого транзистора необходимо:
  1. Всегда помнить о неидеальности условий окружающей среды
  2. Использовать в расчете параметры наихудших экземпляров
  3. Всегда оставлять запас и место для маневров
  4. Иметь ввиду тепловые изменения параметров
  5. Не давать кристаллу перегреваться
  6. Не допускать перенапряжения из-за плохой сети

Все остальное считается и выбирается.

И вот здесь у меня для вас есть бонус. Так как я всё же ленив, то сделал таблицу в Excel, которая сама всё посчитает. Остается только сделать вывод о пригодности или непригодности транзистора.

▼ thermal_calc.zip  2.33 Kb ⇣ 232
Краткая инструкция по использованию: редактируются только желтые ячейки, данные вписываются исходя из проектируемой конструкции (частота преобразования, напряжение питания, коэффициент заполнения) и из даташита на транзистор (все остальное).
В зеленых ячейках получаем результаты. Как интерпретировать, читайте выше.

Для преобразователей с жесткой коммутацией ключей (традиционные) ток в начале импульса (Ir) и ток в конце импульса (If) равны среднему току импульса.

Для нетрадиционных вариантов типа резонансных ZVC и прочих — согласно расчету, вплоть до 0.
Для примера, в таблицу уже внесены данные на полюбившийся IRFS840B, в полумостовом преобразователе с жесткой коммутацией ключей со средним током первичной обмотки 2А.

Очень надеюсь, что этот маленький опус поможет выбрать транзисторы правильно и при этом не убить нервы.
Всем удачи! Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

 

случаи из практики, полезности. Поиск в БП неисправных электролитических конденсаторов

О поломках в блоке питания говорит не только невозможность его включить. Запах горелой изоляции или другие посторонние запахи от системного блока, внезапное выключение компьютера и посторонние шумы указывают на поломки блока питания.

Наиболее простой вариант диагностики поломок такого типа – включение устройства с заведомо исправным компонентом. Остальные методы предполагают умение пользоваться мультиметром, а для ремонта – ещё и владение паяльником и умение читать принципиальные схемы.

То есть, самостоятельный ремонт БП – удел радиолюбителей, которые не понаслышке знакомы с конденсаторами, диодными мостами и трансформаторами. Но даже в таком случае ремонт оправдан не всегда. Стоимость некоторых компонентов выше цены самого блока. Естественно, в ремонте в мастерской придётся заплатить ещё и за работу мастера.

Наиболее распространённые причины поломок

Конструкция БП с точки зрение электротехники довольно проста, и вывести её из строя могут не так много факторов. Рассмотрим наиболее распространённые из них:

  1. Перепады напряжения в электросети повреждают первичные цепи питания. Без периодического обслуживания рабочие параметры компонентов меняются, и они хуже противостоят даже незначительным перепадам напряжения.
  2. Низкое качество комплектующих и производства. Относительно простая конструкция блока питания проста в изготовлении. Это открывает возможности для производителей бросовых БП по минимальным ценам. В таких изделиях используются некалиброванные транзисторы, а конструкторы пренебрегают узлами защиты. Поэтому лучше покупать продукцию подороже от холь сколько-нибудь известных производителей.
  3. Перегрузки по мощности часто случается, когда аппаратное улучшение компьютера производится непрофессионалами. Совокупная мощность всех компонентов системы превышает рабочий параметр БП, и он выходит из строя.
  4. Обилие грязи и пыли в корпусе блока питания. Вместе с профилактическим обслуживанием системы охлаждения следует проводить и чистку блока питания от пыли. Её избыток может приводить к коротким замыканиям и перегревам. А радиотехнические компоненты, используемые в БП, при нарушении температурного режима меняют свои характеристики.

Более того, при повышении рабочей температуры падает номинальная мощность блока питания и он становится более уязвим как к передам приходящего напряжения, так и к перегрузке по сумме мощностей устройств-потребителей.

Поэтому вместе с регулярным обслуживанием следует оставлять небольшой запас по мощности БП.

Самостоятельный ремонт

Некоторые поломки БП все же можно устранить без специальных знаний и навыков. Но для этого всё равно понадобятся хотя бы паяльник, тестер, изолента и канцелярский нож. При ремонте и диагностике следует соблюдать предельную осторожность, чтоб случайно не получить поражение током.

Ситуация один

Когда БП не включается, а выходного напряжения (меряется между любым черным и зелёным проводом) нет совсем, то следует проверить конденсаторы (1) и транзисторы первичной цепи (2). Первые могут быть вздутыми, а вторые – пробитыми. Также следует проверить предохранители (3).

Ситуация два

В случае затруднений с определением неисправности следует проверить напряжение на конденсаторах узла выпрямителя. В рабочем состоянии оно составляет 310 В, а если его нет, то нужно проверить все компоненты выпрямителя.

Ситуация три

Не крутится вентилятор. Если его ось не забита грязью и смазана, то следует проверить напряжение питания, которое должно составлять 12 В. Отсутствие напряжения, скорее всего, указывает на поломки в диодной сборке выпрямителя. Проверять исправность компонентов следует, только выпаяв их из платы.

РЕМОНТ БП ATX

Возможно некоторые заметят, что в большинстве случаев БП ATX проще и дешевле выкинуть и купить новый за 20 – 30уе, а не ремонтировать испорченный, но это будет верно лишь в некоторых случаях. Очень часто сгорает копеечная деталь на пол доллара, и найти и заменить её дело пары часов. Недавно сидел и смотрел по компьютеру фильм «Ипман» и чувствую – воняет палёным. Сначала думал что-то на кухне пригорело, но когда комп вырубился на самом интересном месте понял – это был БП. Сомнения окончательно рассеялись лишь только прикоснулся к задней стенке БП ATX – сковородка!

Раскручиваю, отсоединяю, вытаскиваю и вижу слегка обуглившийся участок платы у мощных 30-ти амперных выпрямительных диодов. Прозвонка подтвердила – вылетел один из них. Иду на базар, покупаю новый, впаиваю, включаю – всё работает. Только кулер не крутится, настолько пылью забился, от того и диоды перегрелись. Так что делаем два вывода: Надо чистить вентиляторы и компьютерный БП таки имеет в некоторых случаях смысл ремонтировать.

Во время ремонта следует включать блок питания ATX в сеть 220В через разделительный трансформатор изготовленный из двух ТС-180 (ТС-160). Питание на сеть первого, анодную обмотку на аналогичную анодную второго и сеть второго на БП. Мощность такого источника вполне достаточна для безопасного ремонта. популярных моделей БП АТХ и с описанием принципа действия блоков питания смотрим на сайте.

Итак, сгорел БП ATX, а начит приступаем к ремонту. Прежде всего конечно проверяем внутренний плавкий предохранитель. Открыв корпус, его можно заменить, но в большинстве случаев замена ничего не даст — если не устранена основная неисправность, перегорит и новый предохранитель. Перегорание предохранителя может свидетельствовать о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

Высоковольтные конденсаторы. Для проверки их надо выпаивать из платы, чтоб испытать на ток утечки. Конденсатор проверяют мультиметром в режиме омметра. Сопротивление должно плавно увеличиваться. Скорость увеличения сопротивления зависит от ёмкости конденсатора. Чем больше ёмкость, тем медленнее увеличивается сопротивление. Но можно не выпаивая их, проверить на короткое замыкание. Неэлектролиты особого смысла проверять нет – эти конденсаторы очень редко выходят из строя.

Трансформатор нужно проверить на сопротивление обмоток и на пробой между ними. Проверка всех диодов. Падение напряжения должно быть от 0,05 до 0,7 В. Если падение – ноль, выпаиваем диод одной ногой и проверяем. Если всё равно ноль, значит он пробит.

Осматриваем БП, обращая внимание на поврежденные, потемневшие или сгоревшие детали. Проверяем сопротивление термистора, оно должно быть не более 10 Ом. Ключевые транзисторы проверяем мультиметром по падению напряжения на переходах б-к и б-э в обоих направлениях. В исправном биполярном транзисторе переходы должны звониться как диоды. Силовые транзисторы, типа D209 можно заменить на MJE13009. Выходные диодные сборки по каналам +3.3В, +5В заменимы на STPS4045, MBR20100. Проверяем выходные электролитические конденсаторы. Измеряем выходное сопротивление между общим проводом и выходами блока питания +5В и +12В. должно быть в районе 100-30 Ом, по каналу +3.3В — около 5-20 Ом.


Берём лампочку накаливания на 100 Ватт и впаиваем в разрыв сетевого провода. Если при включении БП в сеть лампа вспыхивает и гаснет — все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверить схему дежурного режима. Измеряем напряжение дежурного источника, нагруженного на лампочку 6В 1А. Проверка микросхемы TL494. На выводе 12 у неё должно быть 12-30V. Если нет проблема с дежурным источником, если есть — проверяем напряжение на выводе 14 TL494 — должно быть +5В. Проверяем напряжение на выводе 4 при замыкании PS ON на землю. До замыкания должно быть порядка 3-5В, после – 0В. Отсутствует? Меняем микросхему. В качестве нагрузки БП следует использовать мощные галогенные лампы на 12В. Между выводом PS ON и GND подключаем кнопку для включения блока питания.

Источник питания ATX имеет встроенные регулировки напряжения, которое калибруется и устанавливается при изготовлении. Через какое-то время параметры некоторых узлов могут измениться, тогда изменятся и выходные напряжения. Если дело обстоит именно так, можно настройкой снова установить правильные значения напряжений. Надо найти для каждого напряжения свой подстроечный резистор, а затем измерять выходное напряжение, по очереди изменяя положение органов управления каждого подстроечного устройства, пока не увидите изменение напряжения. Если вы изменяете положение органов управления подстроечного устройства, а наблюдаемое вами напряжение не изменяется, восстановите положение в исходную позицию.

по ремонту компьютерных блоков питания.

Напряжение +5VSB, вырабатываемое этим источником, поступает на разъём блока питания для материнской платы (фиолетовый провод, 9-й контакт 20-ти контактного разъема ATX). Используется для питания материнской платы, USB (не всегда), а также для питания всей остальной начинки БП. Существуют различные способы реализации данного узла БП: на дискретных элементах или интегральных микросхемах.

РАССМОТРИМ РАЗЛИЧНЫЕ СХЕМЫ ИСТОЧНИКОВ ДЕЖУРНОГО НАПРЯЖЕНИЯ:

БЛОКИНГ-ГЕНЕРАТОР

Источник дежурного напряжения чаще всего выполняется в виде однотактного импульсного преобразователя по известной схеме блокинг-генератора. Основой данного способа реализации источника является усилитель с положительной обратной связью.

На рис. 1, в качестве примера, представлена схема источника дежурного напряжения БП MaxUs PM-230W. Питается данный источник через токоограничительный резистор R45 от 310 вольт, прямо с диодного моста. Имеет свой, импульсный трансформатор Т3 с четырьмя обмотками:

  • две первичные: основная и вспомогательная обмотка (для обратной связи).
  • две вторичные: с первой снимается напряжение от 15 до 20 вольт для питания начинки БП, а со второй — напряжение для выхода +5VSB.

Напряжением первой вторичной обмотки запитывается ШИМ-контроллер TL494 (через резистор небольшого номинала — около 22Ω). Со второй запитана материнская плата, мышь, USB. После подачи на базу транзистора Q5 начального смещения при помощи резистора R48, благодаря цепочке положительной обратной связи на элементах R51 и C28, схема переходит в автоколебательный режим. В данной схеме частота работы преобразователя определяется, в основном, параметрами трансформатора T3, конденсатора C28 и резистора начального смещения R48. Для контроля уровня выходного напряжения есть цепь отрицательной обратной связи. Если отрицательное напряжение со вспомогательной обмотки Т3 после выпрямителя на элементах D29 и С27 превышает напряжение стабилизации стабилитрона ZD1(16V), оно подается на базу транзистора Q5, тем самым запрещая работу преобразователя. Резистор R56 номиналом 0.5Ω в эмиттерной цепи Q5 является датчиком тока. Если ток, протекающий через транзистор Q5, превышает допустимый, то напряжение, поступающее через резистор R54 на базу Q9, открывает его, тем самым закрывая Q5. Цепь R47, С29 служит для защиты Q5 от выбросов напряжения.

Рис. 1 — схема источника дежурного напряжения БП MaxUs PM-230W.

Выходное напряжение источника +5VSB формируется интегральным стабилизатором U2(PJ7805, LM7805). С одной из вторичных обмоток Т3 напряжение в 10V после выпрямителя на D31 и фильтра на С31 поступает на вход интегрального стабилизатора U2. Напряжение с другой вторичной обмотки Т3 после выпрямления D32 и фильтрации C13 питает ШИМ-контроллер (TL494).

Существует еще один вариант реализации данного источника, но уже на одном транзисторе. В качестве примера на рис. 2 представлена схема источника дежурного напряжения БП Codegen (шасси: CG-07А, CG-11).



Рис. 2 — схема источника дежурного напряжения БП Codegen (шасси: CG-07А, CG-11).

В данной схеме отсутствует второй транзистор и резистор датчика тока. Другие номиналы элементов: резистора начального смещения (R81), цепи обратной связи (R82, C15). Цепь отрицательной обратной связи работает так же, как в предыдущей схеме. Если отрицательное напряжение со вспомогательной обмотки Т3 после выпрямителя на элементах D6, С12 превышает напряжение стабилизации стабилитрона ZD27(6V), оно подается на базу транзистора Q16, тем самым запрещая работу преобразователя. Выходные цепи реализованны так же, как и в предыдущей схеме.

На рисунке 3 представлена схема источника дежурного напряжения БП IW-ISP300A3-1. Отметим, что данная схема имеет весьма сильное сходство со схемой дежурного режима БП IW-P300A2-0, за исключением некоторых мелочей. Таким образом, все сказанное ниже будет в большенстве своем справедливо для обоих схем. Итак, мы имеем силовой ключ Q10 и каскад обратной связи собранный на Q9, U4, а так же использующий ресурсы ШИМ SG6105D (встоенный управляемый прецизионный шунт TL431).



Рис. 3 — схема источника дежурного напряжения БП IW-ISP300A3-1.

Принцип работы:

Резисторы R47 и R48 подают начальное смещение на Q10, запуская схему в автоколебательный режим работы. При этом, во избежании пробоя Q10, фиксируется максимальное напряжение на его затворе, при помощи стабилитрона D23(18В). Данная схема имеет отрицательную обратную связь по току. Максимальный ток через силовой транзистор Q10 ограничивают токовые резисторы R62 и R62A. Напряжение с этих резисторов через R60 подается на базу Q9 и по достижению максимального тока Q9 открывается, тем самым закрывая Q10 и останавливая дальнейший рост тока. Отрицательная обратная связь по напряжению реализована следующим образом: Во время работы напряжение, формируемое дополнительной обмоткой Т3, выпрямляется D22 и фильтруется С34. При увеличении выходного напряжения свыше 5В на 13 ножке U3 достигается напряжение срабатывания встроенной TL431(2,5В), формируемое делителем на элементах R58 и R59. Происходит шунтирование катода диода оптопары U4 на землю и через него начинает протикать ток по цепи +5VSB, диод U4, R56, TL431. Транзистор оптопары открывается, шунтируя напряжение обратной связи (сформированное на С34) на базу транзистора Q9. Транзистор открывается, закрывая Q10 и запрещая генерацию.

Следует отметить, что с целью максимально понизить себестоимость БП (это относится ко всем схемам БП, но в большей степени ко второй), фирмы-производители часто устанавливают в источнике дежурного напряжения малогабаритные компоненты, работающие на пределе, а зачастую — и с превышением своих электрических характеристик. В связи с этим, после непродолжительного времени работы эти элементы выходят из строя.

ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Источник дежурного напряжения также может быть реализован на различных микросхемах. Рассмотрим несколько примеров релизации:

Пример 1 — TOPSwitch

На рисунке 4 представлена схема дежурного источника питания, в основе которой лежит ИМС компании Power Integrations, Inc. — так называемый TOPSwitch. Это первое поколение данных ИМС.

Микросхема имеет на борту следующие узлы:

  • Высоковольтный N-канальный КМОП-транзистор с открытым стоком;
  • Драйвер управления этим транзистором;
  • ШИМ-контроллер с внутренним генератором на 100кГц;
  • Высоковольтная цепь начального смещения;
  • Усилитель ошибки/регулируемый шунт;
  • различные цепи защиты.


Рис. 4 — Схема источника дежурного напряжения БП Delta Electronics DPS-260-2A.

По сути, это преобразователь, имеющий собственные цепи запуска и линейную зависимость скважности выходных импульсов от входного тока обратной связи.

Напряжение на ножке CONTROL является питающим либо заданием с цепей обратной связи. Разделение сигнала обратной связи от цепей контроля питанием происходит с использованием внутренних цепей ИМС и внешнего конденсатора С51, стоящего непосредственно возле ИМС.

В начальный момент времени внутренний высоковольтный источник тока коммутируется между ножками CONTROL и DRAIN. Питая ИМС, он также через R51 заряжает внешний конденсатор C51. При достижении напряжения 5.7V на конденсаторе, источник тока отключается, активируя ШИМ и схему управления силовым ключем. ШИМ-контроллер запускается в работу с минимальной скважностью выходных импульсов. Происходит разряд С51. В процессе разряда происходит увеличение скважности выходных импульсов и, соответственно, выходного напряжения. С дополнительной обмотки Т2 приходит напряжение ООС (отрицательной обратной связи). Минуя выпрямитель и фильтр на элементах D50 и С50, оно подается на стабилитрон ZD3. ООС реализованна таким образом, что в момент, когда выходное напряжение превышает допустимое, напряжение ООС достигает напряжения пробоя ZD3 и происходит заряд С51 по цепи D50-ZD3-D10-C51. Впоследствии происходит снижение скважности и выходного напряжения на вторичных обмотках.

Пример 2 — ICE2A0565Z

На рисунке 5 изображена схема дежурного источника на базе ИМС ICE2A0565Z. ICE2A0565Z — это второе поколение ИМС серии CoolSET компании Infineon Technologies AG. Данная микросхема имеет следующие характеристики:

  • 650(В) силовой транзистор с открытым стоком
  • Частота преобразователя 100(кГц)
  • Скважность до 72%
  • Защита от перегрева с автоматическим перезапуском
  • Защита от перегрузки и обрыва обратной связи
  • Защита от превышения напряжения
  • Регулируемый режим мягкого запуска
  • Регулирование пиковых значений тока внешним резистором

Диапазон питания данной ИМС от 8,5 до 21(В). Питается микросхема параметрическим стабилизатором на элементах: R52, R60, C7, C32, ZD2 (14V). Когда напряжение питания (Vcc) достигает порога в 13,5(В), происходит запуск внутренней цепи смещения и узла управления питанием (далее УУП). После этого УУП генерирует напряжение 6,5(В) для питания внутренних цепей, а так же все необходимые опорные напряжения. Разрешение на запуск ШИМ дают несколько узлов ИМС:

  • Узел защиты
  • Узел мягкого запуска
  • Узел ограничения тока
  • Узел режима тока


Рис. 5 — Схема источника дежурного напряжения БП Power Man IP-P350AJ2-0.

Первые три, так или иначе являются схемами защиты, а последний является основным регулировочным узлом ИМС. К нему и подводятся сигналы обратной связи (ОС) по напряжению и току. Резистор R73 установленный на ножке Isense задает максимальный ток для силового ключа. Снимаемое с него напряжение является заданием для регулирования выходного напряжения, а также для узла токовой защиты.

ПРИНЦИП РЕГУЛИРОВАНИЯ.

Во время работы напряжение с резистора R73 является функцией тока, текущего через силовой транзистор. Данное напряжение поступает на схему гашения переднего фронта в течении 220 нс. Это делается для исключения влияния выбросов тока на точность регулирования. Далее из этого напряжения формируется пилообразное напряжение, амплитуда которого прямо пропорциональна величине входного напряжения с R73, и подается на неинвертирующий вход компаратора ШИМ. С входа FB(2 нога) на инвертирующий вход компаратора ШИМ подается сигнал обратной связи по напряжению. Далее, сравнивая оба этих напряжения, этим компаратором осуществляется принцип вертикального регулирования ШИМ. Обратная связь формируется U5(TL431) и PC3(817). Резистивным делителем R57, R70 формируется напряжение для управляющего контакта U5. При увеличении этого напряжения выше 2,5(В) происходит замыкание катода диода оптопары PC3 на землю. Через него начинает протекать ток по цепи: D17, R53, PC3. Транзистор оптопары открывается и через него начинает течь ток по цепи: Rfb(внутренний резистор подтяжки к Uпит(6,5В)), R74, PC3. Напряжение на второй ноге ИМС уменьшается, уменьшая тем самым скважность выходных импульсов и, соответственно, выходное напряжение. При понижении выходного напряжения величина напряжения ОС на второй ноге ИМС растет, тем самым, увеличивая скважность и стремясь поддержать выходное напряжение на заданном уровне. При увеличении нагрузки в выходной цепи происходит и соответствующее ей изменение тока в первичной цепи. Повышается величина напряжения, снимаемого с резистора R73. Это в свою очередь приводит к увеличению амплитуды пилы на компараторе ШИМ и увеличению скважности выходных импульсов.

ПОДРОБНЕЕ О ЗАЩИТАХ ИМС.

  • Токовая защита.

При превышении напряжения ОС по току величины равной Vcsth(1В) происходит незамедлительное отключение силового ключа.

  • Напряжение питания.

ИМС начинает работу при достижении порога в 13,5(В) и выключается при понижении менее чем до 8,5(В). При резком скачке напряжения питания (включение) до порога в 16,5(В) срабатывает защита от перенапряжения с последующим отключением работы ИМС.

  • Обратная связь.

При превышении сигнала ОС по напряжению уровня в 4,8(В) происходит закрытие схемы управления силового ключа и прекращение генерации. Обрыв ОС приводит к тем же последствиям в течение 5мкс.

  • 186949 просмотров

Блок питания (БП) компьютера представляет собой сложное электронное устройство, которое обеспечивает питанием все устройства компьютера. Как правило, блок питания имеет несколько разъемов питания с различными выходными напряжениями, предназначенных для питания тех или иных устройств.

Проверка работоспособности блока питания

Выполнить предварительную проверку блока питания можно без специальных приборов и без разборки самого блока питания. Суть проверки заключается в проверке системы запуска блока питания, а также проверке устройств компьютера на возможное короткое замыкание.

Отсоедините все разъемы питания от всех устройств системного блока. Для отсоединения разъема питания материнской платы необходимо его сначала расфиксировать. Теперь произведите ручной запуск блока питания. Для этого необходимо замкнуть проволокой или канцелярской скрепкой два вывода на разъеме питания материнской платы (обычно это зеленый провод и любой черный , реже вместо зеленого может быть провод серого цвета). Если на разъеме имеется маркировка выводов, то замыкать следует вывод Power ON и GND .

После этого должно произойти включение блока питания, проверить которое можно по вращению кулера системы охлаждения БП. Если же включение БП не произошло, то он неисправен и его дальнейший ремонт следует доверить специалисту.

Однако успешное включение БП еще не гарантирует, что он работает стабильно. В таком случае, в первую очередь, необходимо проверить устройства системного блока (ПК) на возможное короткое замыкание.

Подключите к разъему питанию сначала материнскую плату и включите БП, если он запустился, то материнская плата исправна. Теперь выключите БП и отключите шнур питания. Это необходимо, чтобы гарантировать повторный запуск БП вручную.

Теперь подключите последовательно другие устройства компьютера (жесткий диск, дисковод и т.п.) и включайте БП. Если вы не выявите неисправность, то следующим шагом будет проверка самого блока питания. Ну, а если при подключении одного из устройств, блок питания не запустился, то вероятнее всего в этом устройстве в цепи питания произошло короткое замыкание.

Блок питания может успешно работать, а выходное напряжение быть заниженным или завышенным, что приведет к нестабильности работы компьютера. Определить это можно, воспользовавшись мультиметром (цифровым вольтметром) и измерить выходное напряжение на разъемах питания. На мультиметре переключите рукоятку в положение измерения постоянного напряжения (DCV ) с пределом измерения 20В .

Подключите черный щуп мультиметра к черному проводу БП это у нас земля, а вторым (красным) касайтесь до соответствующего вывода разъема блока питания, то есть ко всем остальным.

Выходные напряжения БП должны находиться в допустимых пределах:
Для напряжения питания +3,3В (оранжевый провод ) допустимое отклонение напряжения не должно превышать 5% или от +3,14В до +3,46В.

Для напряжения питания +5В (красный и синий провода ) допустимое отклонение напряжения не должно превышать 5% или от +4,75В до +5,25В.

Для напряжения питания +12В (желтый провод ) допустимое отклонение напряжения не должно превышать 5% или от +11,4В до +12,6В.

Для напряжения питания -12В (голубой провод ) допустимое отклонение напряжения не должно превышать 10% или от -10,8В до -13,2В.

Лучше всего измерения производить под нагрузкой, т.е. при включенном компьютере.

Поиск неисправности блока питания

Перед началом поиска неисправности БП его необходимо снять с компьютера. Положите корпус компьютера на бок и отвинтите все четыре винта крепления БП. Аккуратно извлеките его из корпуса, чтобы не повредить другие устройства компьютера и разберите, сняв кожух. После этого удалите всю скопившуюся внутри пыль с помощью пылесоса.

Замена предохранителя

Все блоки питания имеют схожую конструкцию и функциональную схему. На входе каждого БП имеется плавкий предохранитель, который впаян в печатную плату, но есть и БП на которых установлены посадочные гнезда, для удобства замены предохранителя. Его то и надо проверить в первую очередь.

Перегоревшая нить предохранителя свидетельствует либо о коротком замыкании либо о работе БП под высокой нагрузкой. Замените его аналогичным с тем же током срабатывания или чуть большим током (например, если у вас установлен предохранитель на 5 А, то его можно заменить на 5,5-6 А – не более!). Но, ни в коем случае нельзя устанавливать предохранитель с меньшим током срабатывания – он тут же перегорит.

Если все таки вы столкнулись с предохранителем, который впаян в печатную плату. В таком случае вы можете установить обычный подходящий по току предохранитель, припаяв к его торцам небольшую медную проволочку диаметром 0,5-1 мм, которая будет выполнять роль ножки.

В схеме БП после предохранителя установлен сетевой фильтр, построенный на высокочастотном импульсном трансформаторе, диодном мостике и электролитических конденсаторах.

Хочу сразу предупредить уважаемые читатели Вас о том, что если Вы разберете свой БП и там не окажется элементов сетевого фильтра, значит Вам установили в ПК дешевый и некачественный БП и выглядеть это будет примерно так.

Также в силовой цепи блока питания устанавливаются транзисторы на радиаторах, обычно их всего два. После чего идет контур формирования напряжения и его стабилизации.

После разборки произведите внешний осмотр БП, на нем не должно быть вздувшихся конденсаторов, подгоревших радиоэлементов, оторванных или отпаявшихся проводков, плохой пайки, оборванных дорожек на печатной плате и других повреждений, а также отсутствующих радиоэлементов.

Наиболее часто причиной выхода из строя блока питания становится обычный перегрев. Связано это может быть с пылью, которая скапливается внутри или с неисправностью системы охлаждения. Поэтому своевременно проводите чистку, как блока питания, так и всего компьютера от пыли, а также производите периодическое смазывание вентиляторов охлаждения.

Замена электролитических конденсаторов

Вздувшиеся электролитические конденсаторы обнаружить очень просто, они имеют выпуклость в верхней части. Нередко из них вытекает электролит, о чем говорит характерный потек на печатной плате. Такие конденсаторы должны быть заменены на аналогичные по емкости и напряжению питания.

При этом допускается замена конденсаторов той же емкости на конденсаторы аналогичные по емкости, но с большим работающим напряжением. Главное в таком случае, чтобы габарит конденсатора позволил его разместить на печатной плате.

Также важно при замене электролитических конденсаторов соблюдать полярность. Если же вздувшихся конденсаторов очень много, то их замена не приведет к восстановлению работоспособности БП, причина, скорее всего, в другом.

Также не стоит менять обуглившийся резистор или транзистор новыми, причина таких неисправностей заключается обычно в других радиоэлементах или узлах схемы, так что без специальных навыков и приборов обнаружить самостоятельно причину будет проблематично. В таком случае Вам прямая дорога в сервис.

Причиной неисправности довольно часто становятся силовые цепи – это транзисторы, установленные на радиаторах, фильтр и конденсаторы. Проверить их можно с помощью специальных приборов или воспользовавшись омметром. Но для этого их обязательно необходимо выпаять.

Также выйти из строя может диодный мост (четыре выпрямительных диода или диодная сборка) этот элемент можно проверить без выпаивания из печатной платы, используйте для этого омметр или мультиметр с функцией проверки диода (предел измерения омметра – 2000Ом). При подключении прибора к диоду в одном положении он должен показать сопротивление (около 500Ом), а при инверсном подключении – сопротивление должно быть максимальным (стремиться к бесконечности).

Конденсаторы также проверяются омметром, при подключении которого не должно быть обрывов и коротких замыканий. А вот при проверке фильтра омметр должен показывать минимальное сопротивление. При выявлении неисправного элемента его следует заменить на аналогичный. Не следует использовать для замены вышедших из строя радиоэлементов отечественные аналоги.

Если вам удалось отыскать неисправность и успешно устранить ее, то после включения БП сразу проверьте уровень всех выходных напряжений и только после этого производите установку его в компьютер. Если Вы не смогли самостоятельно починить свой БП, то не расстраивайтесь, вероятно, причина его неисправности заключается в схеме формирования питающего напряжения или в других узлах, выявить которую самостоятельно и без специальных приборов будет очень сложно. Также такой ремонт может быть экономически нецелесообразным.

Видео:

Всем пока и до новых встреч.

Ремонт Блока Питания ATX персонального компьютера.


Выполнение данных работ требуют знания и соблюдения норм техники безопасности при работе с силовыми цепями, имеющими потенциалы опасные для жизни человека.


· Большинство цепей БП находятся под напряжением сети, перед поиском неисправности отключите БП от сети и разрядите высоковольтные конденсаторы в фильтре!
· Для того чтобы обезопасить себя от поражения электрическим током при отладке и тестировании рекомендуется подключать ремонтируемый блок в сеть через разделительный трансформатор.
· Чтобы исключить порчу силовых транзисторов ремонтируемый БП рекомендуется включать через лампу 220V-60W(100W), которую можно подключить вместо сетевого предохранителя или в разрыв питающего шнура.
Желательно также зашунтировать цепи +310V резистором 75-100 кОм мощностью 2W – при выключении у вас будут быстрее разряжаться входные конденсаторы.
Когда плата вынута из блока, проверьте, нет ли под ней металлических предметов.
На радиаторах силовых транзисторов может присутствовать более 300V, поэтому ни в коем случае не трогайте руками плату и не касайтесь радиаторов во время работы блока, а после выключения подождите, пока разрядятся конденсаторы.
Обратите внимание, что на корпус БП земля с платы подаётся через проводники отверстий для крепежных винтов. При измерении напряжений в высоковольтной части блока (на силовых транзисторах, в дежурке) за «общий» провод принимается минус диодного моста и входных конденсаторов.
Все измерения в высоковольтной части производятся относительно этого провода.

Внутреннее устройство блока питания ATX PC.
Блок питания формата ATX в большинстве случаев использует двухтактный полумостовой инвертор, работающий на частоте в несколько десятков килогерц. Инвертор состоит из генератора импульсов с промежуточным каскадом усиления мощности и мощного выходного каскада, нагруженного на высокочастотный силовой трансформатор.
Выходные напряжения получают с помощью выпрямителей, подключенных к вторичным обмоткам этого трансформатора. Стабилизация напряжений производится с помощью широтно-импульсной модуляции (ШИМ) импульсов, генерируемых инвертором, обычно это один или два выходных канала, как правило, +5V и +12V.

Широко распространённая схема импульсного источника питания состоит из следующих частей:
Входного фильтра, предотвращающего распространение импульсных помех в питающую сеть. Также, входной фильтр предотвращает повреждение входного выпрямительного моста током заряда электролитических конденсаторов при включении БП в электрическую сеть.
Входного выпрямительного моста, преобразующего переменное напряжение в постоянное пульсирующее.
Фильтра, сглаживающего пульсации выпрямленного напряжения
Полумостового преобразователя на транзисторах
Цепей управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений.
Импульсного высокочастотного трансформатора, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
Выходные выпрямители. Положительные и отрицательные напряжения (5V и 12V) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, по цепи 5V используют диоды Шоттки, обладающие малым прямым падением напряжения.
Дросселя выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор снизит напряжение по другим цепям. Цепь обратной связи обнаружит снижение выходных цепей, увеличит общую подачу энергии, и восстановит требуемые значения напряжений.
Выходных фильтрующих конденсаторов. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрирует импульсы, тем самым получая необходимые значения напряжений, которые значительно ниже напряжений с выхода трансформатора
Цепи обратной связи, которая поддерживает стабильное напряжение на выходе блока питания.
Отдельного маломощного блока питания +5 Вольт дежурного режима на дискретных элементах или TOPSwitch. Данный источник питания выполнен в виде обратноходового преобразователя.

Сетевой выпрямитель.
Как правило, этот узел выполняют по схеме, показанной на рисунке, различия лишь в типе выпрямительного моста VD1 и в количестве защитных и предохранительных элементов.

Контакты выключателя S1 (разомкнутые) соответствует питанию блока от сети 220…230V, выпрямитель — мостовой, напряжение на его выходе (конденсаторы С4, С5) близко к амплитуде сетевого.
Резисторы R1, R4 и R5 предназначены для разрядки конденсаторов выпрямителя после его отключения от сети, кроме того они выравнивают напряжения на конденсаторах С4 и С5. Терморезистор R2 с отрицательным температурным коэффициентом ограничивает амплитуду броска тока зарядки конденсаторов С4, С5 только в момент включения блока.
Варистор R3 защищает от выбросов сетевого напряжения максимальной амплитуды.
Конденсаторы С1-СЗ и дроссель L1 образуют фильтр, защищающий компьютер от проникновения помех из сети, а сеть — от помех, создаваемых самим компьютером.

Мощный каскад инвертора.
Импульсы, сформированные узлом управления, через трансформатор Т1 поступают на базы транзисторов VT1 и VT2, поочередно открывая их. Диоды VD4, VD5 защищают транзисторы от напряжения обратной полярности. Выходные напряжения получают выпрямляя снятые с вторичных обмоток трансформатора Т2. Один из выпрямителей (VD6, VD7 с фильтром L1C5) показан на схеме выше.
Большинство мощных каскадов БП отличаются лишь типом транзисторов, которые могут быть, например, полевыми или содержать встроенные защитные диоды. Существует несколько вариантов исполнения базовых цепей (для биполярных) или цепей затвора (для полевых транзисторов) с разным числом, номиналами и схемами включения элементов. Например, резисторы R4, R6 могут быть подключены непосредственно к базам соответствующих транзисторов.


На рисунке показана часть схемы БП, где в рабочем режиме узел управления инвертором питают выходным напряжением БП, но в момент включения оно отсутствует.
Один из основных способов получить необходимое для пуска инвертора напряжение питания в представленной на рисунке схеме выглядит так:
Сразу после включения блока выпрямленное сетевое напряжение поступает через резистивный делитель R3-R6 в базовые цепи транзисторов VT1 и VT2, приоткрывая их, причем диоды VD1 и VD2 предотвращают шунтирование участков база-эмиттер транзисторов обмотками II и III трансформатора Т1.
В это же время происходит зарядка конденсаторов С4, С6 и С7, причем ток зарядки конденсатора С4, протекая по обмотке I трансформатора Т2 и по части обмотки II трансформатора Т1, наводит в обмотках II и III напряжение, открывающее один из транзисторов и закрывающее другой.
Какой из транзисторов закроется, а какой — откроется, зависит от асимметрии характеристик элементов каскада.
В результате действия положительной ОС процесс протекает лавинообразно, а наведенный в обмотке II трансформатора Т2 импульс через один из диодов VD6, VD7, резистор R9 и диод VD3 заряжает конденсатор СЗ до напряжения, достаточного для начала работы узла управления. В дальнейшем он питается по той же цепи, а выпрямленное диодами VD6, VD7 напряжение после сглаживания фильтром L1C5 поступает на выход +12V БП.
Данный вариант цепей начального запуска может, отличается тем, что напряжение на делитель, аналогичный R3-R6, подают от отдельного однополупериодного выпрямителя сетевого напряжения с конденсатором фильтра небольшой емкости. В результате транзисторы инвертора приоткрываются раньше, чем зарядятся конденсаторы фильтра основного выпрямителя (С6, С7, см. рис.), что обеспечивает более уверенный запуск.

Выходные выпрямители.
На рисунке показана типовая схема четырехканального выпрямительного узла БП. Чтобы не нарушать симметрии перемагничивания магнитопровода силового трансформатора выпрямители строят только по двухполупериодным схемам, причем мостовые выпрямители, для которых характерны повышенные потери, почти не применяют.
Главная особенность выпрямителей в БП — сглаживающие фильтры, начинающиеся с индуктивности (дросселя).


Напряжение на выходе выпрямителя с подобным фильтром зависит не только от амплитуды, но и от скважности (отношения длительности к периоду повторения) поступающих на вход импульсов.
Это дает возможность стабилизировать выходное напряжение, изменяя скважность входного напряжения.
Применяемые во многих других случаях выпрямители с фильтрами, начинающимися с конденсатора, подобным свойством не обладают. Процесс изменения скважности импульсов обычно называют ШИМ — широтно-импульсной модуляцией.
Так как амплитуда импульсов, пропорциональная напряжению в питающей сети, на входах всех имеющихся в блоке выпрямителей изменяется по одинаковому закону, стабилизация с помощью ШИМ одного из выходных напряжений стабилизирует и все остальные.
Чтобы усилить этот эффект, дроссели фильтров L1.1-L1.4 всех выпрямителей намотаны на общем магнитопроводе. Магнитная связь между ними дополнительно синхронизирует происходящие в выпрямителях процессы. Для правильной работы выпрямителя с L-фильтром необходимо, чтобы ток его нагрузки превышал некоторое минимальное значение, зависящее от индуктивности дросселя фильтра и частоты импульсов. Эту начальную нагрузку создают резисторы R4-R7, подключенные параллельно выходным конденсаторам С5-С8.
Они же служат для ускорения разрядки конденсаторов после выключения БП.
Для устранения опасных выбросов напряжения, возникающих в обмотках трансформатора на фронтах импульсов, предусмотрены демпфирующие цепи R1C2, R2C3.

Узел управления.
Большинство блоков построены на базе микросхемы ШИМ контроллера TL494CN или ее модификаций IR3M02, uА494, КА7500, МВ3759 и т.д., TL594 — аналог TL494 с улучшенной точностью усилителей ошибки и компаратора.
Основная часть схемы и элементы внутреннего устройства упомянутой микросхемы показаны на рисунке.


Микросхема TL494/5 включает в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5V и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) V. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%. Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя.
Частота генератора пилообразного напряжения G1, определяется номиналами внешних компонентов R8 и СЗ подключенных к 5-му и 6-му выводам и обычно выбирается равной примерно 60 кГц.
Напряжение с генератора пилообразного напряжения G1 поступает на два компаратора A3 и А4, выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ-НЕ D5 и D6 подают на выходные транзисторы микросхемы V3, V4.
Импульсы с выхода элемента D1 поступают также на вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана логическая «1» или он, как в данном случае, оставлен свободным, импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором.
Если микросхему TL494 применяют в однотактном преобразователе напряжения, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.
Элемент А1 — усилитель сигнала ошибки в контуре стабилизации выходного напряжения БП. Это напряжение (в данном случае +5V) через резистивный делитель R1R2 поступает на один из входов усилителя. На втором его входе — образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R3-R5.
Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Так как выходное напряжение БП зависит от скважности (см. выше), в замкнутой системе автоматически поддерживается его равенство образцовому с учетом коэффициента деления R1 и R2. Цепь R7C2 необходима для устойчивости стабилизатора. Второй усилитель А2 в данном случае отключен подачей соответствующих напряжений на его входы и в работе не участвует.
Функция компаратора A3 — это гарантировать наличие паузы между импульсами на выходе элемента D1, даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания A3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GV1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение БП падает.
Это свойство используют для плавного пуска БП. Дело в том, что в начальный момент работы блока конденсаторы фильтров его выпрямителей полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск инвертора сразу же «на полную мощность» приведет к большой перегрузке транзисторов мощного каскада, что может привести к выходу их из строя. Цепь C1R6 обеспечивает плавный, без перегрузок, пуск инвертора.
В первый после включения момент конденсатор С1 разряжен, а напряжение на выводе 4 DA1 близко к +5V, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С1 через резистор R6 напряжение на выводе 4 уменьшается, а с ним и длительность паузы.
Одновременно растет выходное напряжение БП. Так продолжается, пока напряжение не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь. Дальнейшая зарядка конденсатора С1 на процессы в БП не влияет. Так как перед каждым включением БП конденсатор С1 должен быть полностью разряжен, во многих случаях предусматривают цепи его принудительной разрядки (на рисунке не показаны).

Промежуточный каскад.
Задача этого каскада — усиление импульсов перед их подачей на мощные транзисторы. Иногда промежуточный каскад отсутствует как самостоятельный узел, входя в состав микросхемы задающего генератора.

На рисунке показана схема такого каскада.
Если же мощности транзисторов микросхемы TL494CN недостаточно для непосредственного управления выходным каскадом инвертора, применяют схему, подобную приведенной на рис. 4.


Рис.4.

Половины обмотки I трансформатора Т1 служат коллекторными нагрузками транзисторов VT1 и VT2, поочередно открываемых импульсами, поступающими от микросхемы DA1. Резистор R5 ограничивает коллекторный ток транзисторов приблизительно до 20 мА.
С помощью диодов VD1, VD2 и конденсатора С1 на эмиттерах транзисторов VT1 и VT2 поддерживают необходимое для их надежного закрывания напряжение +1,6V.
Диоды VD4 и VD5 демпфируют колебания, возникающие в моменты переключения транзисторов в контуре, образованном индуктивностью обмотки I трансформатора Т1 и ее собственной емкостью.
Диод VD3 закрывается, если выброс напряжения на среднем выводе обмотки I превышает напряжение питания каскада.
Еще один вариант схемы промежуточного каскада показан на рис. 5.


Рис.5.

В данном случае выходные транзисторы микросхемы DA1 включены по схеме с общим коллектором.
Конденсаторы С1 и С2 — форсирующие. Обмотка I трансформатора Т1 не имеет среднего вывода, здесь в зависимости от того, какой из транзисторов VT1, VT2 в данный момент открыт, цепь обмотки замыкается на источник питания через резистор R7 или R8, подключенный к коллектору закрытого транзистора.


Визуальный осмотр блока.
Снимаем крышку и начинаем осмотр с целью выявить явно неисправные детали, например: изменившие свой цвет, подгоревшие, или имеющие трещины на корпусе, также обращаем внимание на качество пайки выводов.

1. Предохранитель , как правило, стеклянный и его перегорание хорошо заметно, но если он обтянут термоусадкой или керамический – тогда проверяем его омметром. Перегорание предохранителя свидетельствует о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.
2. Диоды или диодная сборка входного выпрямителя, проверяем на обрыв и короткое замыкание каждый диод. При обнаружении пробоя хотя бы одного диода рекомендуется проверить входные электролитические конденсаторы, и силовые транзисторы, т.к. велика вероятность их неисправности. Маломощные двухамперные диоды, которые часто встречающиеся в дешевых блоках, рекомендуется заменить на более мощные, в зависимости от мощности БП диоды должны быть рассчитаны на ток 4…8 Ампер.
3. Входные электролитические конденсаторы , проверяем внешним осмотром (на вздутие), также желательно проверить емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%.
4. Варисторы , стоящие параллельно конденсаторам и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).
5. Ключевые (силовые) транзисторы . Проверяем мультиметром падение напряжения на переходах «база-коллектор» и «база-эмиттер» в обоих направлениях, в исправном биполярном транзисторе переходы должны вести себя как диоды. После этого проверяем отсутствие пробоя в переходе «коллектор-эмиттер» При обнаружении неисправности транзистора необходимо проверить всю его «обвязку»: диоды, резисторы и электролитические конденсаторы. Конденсаторы, стоящие в цепи базы лучше заменить новыми большей емкости, например: вместо 2.2х50V ставим 4,7х50V. Также желательно зашунтировать их керамическими конденсаторами емкостью 1.0…2.2 мкФ.
6. Выходные диодные сборки , проверяем мультиметром, наиболее частая неисправность — пробой. Замену лучше ставить в корпусе ТО-247. Обычно для блоков 300-350W диодные сборки на 30А, типа MBR3045 или аналогичные.
7. Выходные электролитические конденсаторы . Неисправность проявляется в виде вздутия, следов коричневого налета или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, 2200…4700 мкФ, рабочая температура — 105° С. Желательно серии LowESR.

Проверка блока:
БП ATX имеют вход дистанционного управления (PS-ОN), при соединении которого с общим проводом (СОМ) включенный в сеть блок начинает работать. Если цепь PS-ON — COM разорвана, напряжения на выходах БП (за исключением дежурных +5V в цепи +5VSB) отсутствуют.
Основные цепи блока питания формата АТХ сосредоточены в разъеме, показанном на рисунке.
Вид со стороны гнезд розетки:

Для того чтобы локализовать неисправность, подключаем БП к сети и пробуем его запустить:
1. Нет дежурного напряжения – проблема с дежуркой, либо КЗ в силовой части,
2. Есть дежурка, но нет запуска, то проблема с раскачкой или ШИМ.
3. БП уходит в защиту тогда чаще всего — проблема в выходных цепях: конденсаторах либо диодных сборках.

Завышенное напряжение дежурки в 90% — вздутые конденсаторы, и часто — убитый ШИМ.
Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме, и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, часто ШИМ в этом случае тоже умирает, так что проверяем микросхему.

Проверка высоковольтной части блока на короткое замыкание.
Берём лампочку от 60 до 100W и подключаем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока лампа вспыхивает и гаснет — все в порядке, короткого замыкания в высоковольтной части нет.
Если при включении блока лампа зажигается и не гаснет — в высоковольтной части блока есть короткое замыкание.

Для обнаружения и устранения замыкания делаем следующее:
1. Выпаиваем транзисторы (силовые и дежурки) и включаем БП через лампу без замыкания PS-ON.
2. Если лампа горит — ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V.
3. Если короткого нет — запаиваем транзистор дежурки и повторяем процедуру включения.
4. Если короткое есть — ищем неисправность в дежурке.

Проверка схемы дежурного режима:
Источник питания дежурного режима служит для питания микросхемы ШИМ контроллера БП, и узлов дежурного режима системной платы ПК. Чаще всего выполняется в виде однотактного импульсного преобразователя по схеме блокинг-генератора, со стабилизацией выходного напряжения с помощью обратной связи с применением оптопары.


В первую очередь проверяем ключевой транзистор и всю его обвязку резисторы, стабилитроны, диоды. Далее проверяем стабилитрон, стоящий в базовой цепи (цепь затвора) транзистора, в схемах на биполярных транзисторах номинал от 6V до 6.8V, на полевых, как правило, 18V. Если всё в норме, обращаем внимание на резистор (порядка 4,7 Ом) питания обмотки трансформатора дежурного режима от +310V часто перегорает как предохранитель, но бывает, сгорает и трансформатор дежурки и оттуда, же 150~450kом на базу ключевого транзистора дежурного режима — смещение на запуск. Резисторы часто уходят в обрыв от токовой перегрузки. Замеряем сопротивление первичной обмотки дежурного транса — должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность) — меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (короткозамкнутые витки).
Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.


Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в «дежурке» на новый, припаиваем параллельно ему керамический или пленочный конденсатор 0.15…1.0 мкФ (доработка для предотвращения его «высыхания»). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый) вешаем нагрузку в виде лампочки 0.3Ах6.3V, включаем блок в сеть и проверяем выходные напряжения дежурки.
На выходе должно быть +12…30V и +5V, если напряжения в норме — запаиваем резистор на место.

Проверка дежурки под нагрузкой:
Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до 2А, если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации.
На выходе блока при нормальной работе блока формируется сигнал «PG» или «PW-OK» (Power OK) (серый провод) высокого уровня (от +3,5 до +5V), который свидетельствует, что все выходные напряжения находятся в допустимых пределах.
На «материнской» плате компьютера этот сигнал участвует в формировании сигнала системного сброса Reset. После включения БП уровень сигнала «PG» (PW-OK) некоторое время остается низким, запрещая работу процессора, пока в цепях питания не завершатся переходные процессы.
При отключении сетевого напряжения или внезапно возникшей неисправности БП логический уровень сигнала «PG» (PW-OK) изменяется прежде, чем выходные напряжения блока упадут ниже допустимых значений. Это вызывает остановку процессора, предотвращая искажение данных, хранящихся в памяти, и другие необратимые операции.

Проверка резисторов.
Резисторы, потемневшие от перегрева номинал которых еще можно прочитать, лучше сразу заменить новыми с отклонением от оригинала не более +/-5%.
В случае, когда номинал резистора не читается или маркировка осыпалась, измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности — резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания, либо изучение типовой схемы включения.

Проверка диодов.
Если ваш мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7V. Если падение — ноль или около того (до 0,005) – выпаиваем сборку и проверяем. Если показания те же – диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка 1 — 2 кОм, а обычный кремниевый — порядка 3 — 6 кОм. В обратном направлении сопротивление будет равно бесконечности.

Проверка микросхемы ШИМ TL494 и аналогов типа КА7500.
1. Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
2. Если нет — проверяйте дежурку. Есть — проверяем напряжение на 14 ноге — должно быть +5V (+/-5%).
3. Если нет — меняем микросхему. Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю.
До замыкания должно быть порядка 3…5V, после — около 0.
4. Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется — то уже сидит на земле).
Таким образом, временно отключаем защиту МС по току.
5. Замыкаем PS-ON на землю и осциллографом смотрим импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
6. Если импульсов на 8 или 11 ногах нет или ШИМ греется – меняем микросхему.
7. Если картинка красивая – ШИМ и каскад раскачки можно считать живым.
8. Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку) – обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50V, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.


Транзисторы

Iпр имп.max, мкА

Iобр. max, мкА

Uобр. имп. max, В

Uпр max, В (при Iпр, А)

fр, кГц (при Iпр, А)

tвос. обр. max, нс

12CTQ040 (2Шотки)

(диод Шотки)

Управление вентилятором блока питания компьютера

Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.

Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.

Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.

В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.

Недавно зашёл в гости к знакомому, а он сидит и разбирает старые блоки питания от компьютеров – хочет посмотреть, что там у них внутри. Руки по локоть грязные, пыль столбом стоит, но при этом стол аккуратно застелен газеткой. Похоже, что этот день закончится генеральной уборкой кабинета …

Я появился как раз в тот момент, когда «вскрытие показало», что использовать трансформаторы для аккумуляторной «зарядки» не получится. И весь интерес сразу переключился на вентиляторы с платой управления и, естественно, тут же возник вопрос «а нельзя ли это куда-нибудь применить?» Ну, положим, применить-то можно, а для чего? Цель какая.

Посидели немного, попили кофе, обсудили варианты применения. В общем, сошлись на том, что я забираю вентиляторы для экспериментов, а там видно будет.

В долгий ящик это дело откладывать не стал, вечером занялся проверкой.

Платы управления разные (маркировка GDP-002 94V-0 на рис.1 и 3BS00195 на рис.2), но, судя по тому, что обе собраны на одинаковых микросхемах LM358, имеют по 2 транзистора (один NPN структуры, другой PNP) и по 2 питающих провода, то схемы не должны сильно отличаться. Правда, у одной есть терморезистор, а у другой его нет – из платы просто торчит жёлтый провод, обозначенный как «ОРР» (возможно, он когда-то шёл к терморезистору). Выводы питания тоже подписаны, но с ними можно и по цвету разобраться (чёрный – «минус», другой – «плюс»).

Сначала к лабораторному блоку питания была подключена плата с терморезистором. Вентилятор начал вращаться примерно при 10 В, шума почти нет, скорость вращения небольшая, поток воздуха слабый. При 12 В обороты увеличились ненамного, шум оставался примерно таким же. При проверке напряжения питания двигателя тестер показал 5 В.

Затем к терморезистору было поднесён горячий паяльник. Через несколько секунд обороты вентилятора резко увеличились и он заметно зашумел – напряжение на двигателе стало почти 12 В. При удаления паяльника и спустя 20-30 секунд, обороты резко падают до минимального значения. Получается, что у этой схемы нет плавной регулировки оборотов.

Далее к блоку питания была подключена другая плата. Вентилятор запустился при 5,5 В, скорость вращения небольшая, шума нет. При питании 12 В обороты увеличились ненамного, шум слабый, напряжение на проводах вентилятора 5 В.

При замыкании желтого проводника на «минус» питания схемы ничего не происходит, а замыкание на «плюс» заставляет запускаться вентилятор на максимальных оборотах (напряжение на двигателе около 12 В).

Для проверки возможности плавной регулировки оборотов, жёлтый провод был подпаян к движку переменного резистора сопротивлением 10 кОм, а его крайние выводы к «минусу» и к «плюсу» питания (рис.3). При напряжении на движке около +8,0 В двигатель начинает увеличивать обороты и уже при +8,5 В достигает максимума.

С этой платы была срисована схема (рис.4). На месте резистора R2 стоит стабилитрон на такое же напряжение, как и ZD1 (6,2 В).

Принцип работы схемы несложен – пока напряжения на инверсных входах компараторов ниже напряжений на их прямых входах, компараторы имеют «высокий уровень» на выходах и это держит транзистор Q1 в закрытом состоянии, а Q2 в открытом. В коллекторе Q2 стоит резистор такого сопротивления, что при распределении потенциалов между резистором и двигателем, на последнем «падает» 5 В. Это напряжение является опорным для компаратора ОР1.1. При повышении входного напряжения (точка «ОРР») до уровня, когда потенциал на инверсном входе ОР1.1 становится больше уровня на его прямом входе, он должен переключиться «в ноль» и открыть транзистор Q1, но этого не происходит, так как при открывании Q1 тут же повышается уровень опорного напряжения и возникает некоторое неустойчивое состояние с приоткрытым транзистором.

Для визуализации происходящих процессов были сняты напряжения в некоторых точках схемы (применялась программа SpectraPLUS и звуковая карта с открытыми входами, сигналы брались через делители на 10).

На рисунке 5 на верхнем графике показано изменение напряжения в точке «ОРР» с +7,5 В до +10 В, «полочкой» длительностью около 10 секунд и последующим спадом, а в правом канале – соответствующее по времени напряжение на двигателе вентилятора (выводы «CN1»). На рисунке 6 более подробно «увеличен по времени» участок длительностью около 20 секунд, начиная с 9 секунды записи и на нём видно, насколько рост выходного напряжения не пропорционален росту входного сигнала.

На рисунке 7 показано соответствие уровня на выходе компаратора ОР1.1 (верхний график) к уровню на выходе «CN1». Первые 2,5 секунды – плата управления обесточена, затем на неё подаётся питание и напряжение в точке «ОРР» начинает плавно увеличиваться (не показано). Примерно на 12 секунде компаратор ОР1.1 начинает срабатывать (понижается уровень постоянного напряжения и размытая линия на нём говорит о наличии пульсаций), напряжение на выходе «CN1» в этот момент растёт и на 17 секунде компаратор срабатывает уже полностью.

При проверке плат на лабораторном источнике питания выяснилось, что их режимы работы несколько меняются в зависимости от изменения питающего напряжения, т.е. «плавает» порог срабатывания.

Обе платы управления имеют небольшой выходной ток – на максимальном выходном напряжении он ограничен параметрами транзисторов PNP структуры, на минимальном – сопротивлениями резисторов в делителе напряжении. Судить о возможной нагрузке можно по тому, что на плате 3BS00195 установлен транзистор 2SA1270 (30 В; 0,5 А; 0,5 Вт), а на плате GDP-002 94V-0 стоит 2SB1116 (50 В; 1 А; 0,75 Вт).

Если немного изменить схему, показанную на рисунке 4 (применить большее напряжение питания, увеличить сопротивление резистора R9 и заменить стабилитроны на меньшее напряжение стабилизации), то можно расширить границы выходных напряжений. Такой вариант с пределами +2,6…+20 В был проверен, но он оказался плох тем, что при некоторых средних выходных напряжениях транзистор Q1 начинает достаточно сильно греться, так как на нём выделяется повышенная мощность. Здесь требуется его замена на более мощный (возможно, что и с радиатором).

Итак, с принципом работы плат управления более-менее понятно – одна, с маркировкой 3BS00195, имеет дискретный режим работы с получением на выходе минимального или максимального напряжения, а вторая, с маркировкой GDP-002 94V-0, имеет возможность для плавной регулировки, но управляющее напряжение находится на относительно небольшом участке возможных значений. Впрочем, этот участок можно сместить, изменив сопротивления резисторов R11 и R10, напряжения стабилизации стабилитронов и сопротивление R9.

Несложно превратить схему в простой «выключатель», подающий напряжение в нагрузку или снимающий его. Для этого достаточно убрать транзистор Q2 и правый вывод резистора R5 припаять к VCC (+12 В). Теперь компаратор ОР1.1 будет срабатывать при напряжении +6,2 В на его инверсном входе.

Что ж, теперь самое время подумать, куда их можно применить.

И, естественно, первое, что приходит на ум – это использовать их по прямому назначению – терморегулирование. Например, можно включать и выключать «вытяжку» в теплице или оранжерее.

Вторая мысль – используя фотодатчик и светодиодную ленту, можно управлять освещением (входной двери, коридора, просто вечернее или ночное дежурное освещение) (рис.8).

Можно использовать как сигнализатор чего либо. Если уменьшить минимальное выходное напряжение (или перевести в компараторный режим) и управлять схемой от контактных датчиков, то при подключении на выход звукового оповещателя «Иволга» (ток потребления 30 мА) может получиться простейшая охранная сигнализация для гаража или подворья (рис.9). Или, допустим, сигнализатор переполнения ёмкости с жидкостью.

Конечно, последние варианты сигнализаций можно собрать и без применения платы управления, а использовать только БП, контакты и оповещатель, но так ведь интересней!

И напоследок был проверен вариант «светомузыки-мигалки». Плата переведена в режим «компаратор» с порогом срабатывания около 0,6 В (рис.10, красным крестом показаны детали, которые следует удалить и место разрыва соединения, правый вывод R5 подключен к плюсовой шине питания). Сигнал управления формировался RC фильтром низкой частоты и выпрямлялся с удвоением (элементы, помеченные штрихом «`»). Источником сигнала был ЦАП с выходным напряжением около 1…2 В. Светодиод HL1 – отрезок светодиодной ленты с напряжением питания 12 В. Схема получилась, конечно, грубая – без компрессора или автоматической регулировки уровня, но принцип рабочий – НЧ сигналы отрабатывает хорошо (в приложении к тексту есть ссылка на видео файл с работой «светомузыки-мигалки» (mp4, 19 MB), но без музыкальный ряда (Ночной Патруль – Одиночество 1999 год)).

В общем, сразу так всего и не придумаешь. Пойду, порадую товарища.

Андрей Гольцов, г. Искитим

Недавно зашёл в гости к знакомому, а он сидит и разбирает старые блоки питания от компьютеров – хочет посмотреть, что там у них внутри. Руки по локоть грязные, пыль столбом стоит, но при этом стол аккуратно застелен газеткой. Похоже, что этот день закончится генеральной уборкой кабинета …

Я появился как раз в тот момент, когда «вскрытие показало», что использовать трансформаторы для аккумуляторной «зарядки» не получится. И весь интерес сразу переключился на вентиляторы с платой управления и, естественно, тут же возник вопрос «а нельзя ли это куда-нибудь применить?» Ну, положим, применить-то можно, а для чего? Цель какая.

Посидели немного, попили кофе, обсудили варианты применения. В общем, сошлись на том, что я забираю вентиляторы для экспериментов, а там видно будет.

В долгий ящик это дело откладывать не стал, вечером занялся проверкой.

Платы управления разные (маркировка GDP-002 94V-0 на рис.1 и 3BS00195 на рис.2), но, судя по тому, что обе собраны на одинаковых микросхемах LM358, имеют по 2 транзистора (один NPN структуры, другой PNP) и по 2 питающих провода, то схемы не должны сильно отличаться. Правда, у одной есть терморезистор, а у другой его нет – из платы просто торчит жёлтый провод, обозначенный как «ОРР» (возможно, он когда-то шёл к терморезистору). Выводы питания тоже подписаны, но с ними можно и по цвету разобраться (чёрный – «минус», другой – «плюс»).

Сначала к лабораторному блоку питания была подключена плата с терморезистором. Вентилятор начал вращаться примерно при 10 В, шума почти нет, скорость вращения небольшая, поток воздуха слабый. При 12 В обороты увеличились ненамного, шум оставался примерно таким же. При проверке напряжения питания двигателя тестер показал 5 В.

Затем к терморезистору было поднесён горячий паяльник. Через несколько секунд обороты вентилятора резко увеличились и он заметно зашумел – напряжение на двигателе стало почти 12 В. При удаления паяльника и спустя 20-30 секунд, обороты резко падают до минимального значения. Получается, что у этой схемы нет плавной регулировки оборотов.

Далее к блоку питания была подключена другая плата. Вентилятор запустился при 5,5 В, скорость вращения небольшая, шума нет. При питании 12 В обороты увеличились ненамного, шум слабый, напряжение на проводах вентилятора 5 В.

При замыкании желтого проводника на «минус» питания схемы ничего не происходит, а замыкание на «плюс» заставляет запускаться вентилятор на максимальных оборотах (напряжение на двигателе около 12 В).

Для проверки возможности плавной регулировки оборотов, жёлтый провод был подпаян к движку переменного резистора сопротивлением 10 кОм, а его крайние выводы к «минусу» и к «плюсу» питания (рис.3). При напряжении на движке около +8,0 В двигатель начинает увеличивать обороты и уже при +8,5 В достигает максимума.

С этой платы была срисована схема (рис.4). На месте резистора R2 стоит стабилитрон на такое же напряжение, как и ZD1 (6,2 В).

Принцип работы схемы несложен – пока напряжения на инверсных входах компараторов ниже напряжений на их прямых входах, компараторы имеют «высокий уровень» на выходах и это держит транзистор Q1 в закрытом состоянии, а Q2 в открытом. В коллекторе Q2 стоит резистор такого сопротивления, что при распределении потенциалов между резистором и двигателем, на последнем «падает» 5 В. Это напряжение является опорным для компаратора ОР1.1. При повышении входного напряжения (точка «ОРР») до уровня, когда потенциал на инверсном входе ОР1.1 становится больше уровня на его прямом входе, он должен переключиться «в ноль» и открыть транзистор Q1, но этого не происходит, так как при открывании Q1 тут же повышается уровень опорного напряжения и возникает некоторое неустойчивое состояние с приоткрытым транзистором.

Для визуализации происходящих процессов были сняты напряжения в некоторых точках схемы (применялась программа SpectraPLUS и звуковая карта с открытыми входами, сигналы брались через делители на 10).

На рисунке 5 на верхнем графике показано изменение напряжения в точке «ОРР» с +7,5 В до +10 В, «полочкой» длительностью около 10 секунд и последующим спадом, а в правом канале – соответствующее по времени напряжение на двигателе вентилятора (выводы «CN1»). На рисунке 6 более подробно «увеличен по времени» участок длительностью около 20 секунд, начиная с 9 секунды записи и на нём видно, насколько рост выходного напряжения не пропорционален росту входного сигнала.

На рисунке 7 показано соответствие уровня на выходе компаратора ОР1.1 (верхний график) к уровню на выходе «CN1». Первые 2,5 секунды – плата управления обесточена, затем на неё подаётся питание и напряжение в точке «ОРР» начинает плавно увеличиваться (не показано). Примерно на 12 секунде компаратор ОР1.1 начинает срабатывать (понижается уровень постоянного напряжения и размытая линия на нём говорит о наличии пульсаций), напряжение на выходе «CN1» в этот момент растёт и на 17 секунде компаратор срабатывает уже полностью.

При проверке плат на лабораторном источнике питания выяснилось, что их режимы работы несколько меняются в зависимости от изменения питающего напряжения, т.е. «плавает» порог срабатывания.

Обе платы управления имеют небольшой выходной ток – на максимальном выходном напряжении он ограничен параметрами транзисторов PNP структуры, на минимальном – сопротивлениями резисторов в делителе напряжении. Судить о возможной нагрузке можно по тому, что на плате 3BS00195 установлен транзистор 2SA1270 (30 В; 0,5 А; 0,5 Вт), а на плате GDP-002 94V-0 стоит 2SB1116 (50 В; 1 А; 0,75 Вт).

Если немного изменить схему, показанную на рисунке 4 (применить большее напряжение питания, увеличить сопротивление резистора R9 и заменить стабилитроны на меньшее напряжение стабилизации), то можно расширить границы выходных напряжений. Такой вариант с пределами +2,6…+20 В был проверен, но он оказался плох тем, что при некоторых средних выходных напряжениях транзистор Q1 начинает достаточно сильно греться, так как на нём выделяется повышенная мощность. Здесь требуется его замена на более мощный (возможно, что и с радиатором).

Итак, с принципом работы плат управления более-менее понятно – одна, с маркировкой 3BS00195, имеет дискретный режим работы с получением на выходе минимального или максимального напряжения, а вторая, с маркировкой GDP-002 94V-0, имеет возможность для плавной регулировки, но управляющее напряжение находится на относительно небольшом участке возможных значений. Впрочем, этот участок можно сместить, изменив сопротивления резисторов R11 и R10, напряжения стабилизации стабилитронов и сопротивление R9.

Несложно превратить схему в простой «выключатель», подающий напряжение в нагрузку или снимающий его. Для этого достаточно убрать транзистор Q2 и правый вывод резистора R5 припаять к VCC (+12 В). Теперь компаратор ОР1.1 будет срабатывать при напряжении +6,2 В на его инверсном входе.

Что ж, теперь самое время подумать, куда их можно применить.

И, естественно, первое, что приходит на ум – это использовать их по прямому назначению – терморегулирование. Например, можно включать и выключать «вытяжку» в теплице или оранжерее.

Вторая мысль – используя фотодатчик и светодиодную ленту, можно управлять освещением (входной двери, коридора, просто вечернее или ночное дежурное освещение) (рис.8).

Можно использовать как сигнализатор чего либо. Если уменьшить минимальное выходное напряжение (или перевести в компараторный режим) и управлять схемой от контактных датчиков, то при подключении на выход звукового оповещателя «Иволга» (ток потребления 30 мА) может получиться простейшая охранная сигнализация для гаража или подворья (рис.9). Или, допустим, сигнализатор переполнения ёмкости с жидкостью.

Конечно, последние варианты сигнализаций можно собрать и без применения платы управления, а использовать только БП, контакты и оповещатель, но так ведь интересней!

И напоследок был проверен вариант «светомузыки-мигалки». Плата переведена в режим «компаратор» с порогом срабатывания около 0,6 В (рис.10, красным крестом показаны детали, которые следует удалить и место разрыва соединения, правый вывод R5 подключен к плюсовой шине питания). Сигнал управления формировался RC фильтром низкой частоты и выпрямлялся с удвоением (элементы, помеченные штрихом «`»). Источником сигнала был ЦАП с выходным напряжением около 1…2 В. Светодиод HL1 – отрезок светодиодной ленты с напряжением питания 12 В. Схема получилась, конечно, грубая – без компрессора или автоматической регулировки уровня, но принцип рабочий – НЧ сигналы отрабатывает хорошо (в приложении к тексту есть ссылка на видео файл с работой «светомузыки-мигалки» (mp4, 19 MB), но без музыкальный ряда (Ночной Патруль – Одиночество 1999 год)).

В общем, сразу так всего и не придумаешь. Пойду, порадую товарища.

Андрей Гольцов, г. Искитим

PSU 101: резисторы, транзисторы и диоды

Резисторы, транзисторы и диоды

Резисторы

Резисторы — это наиболее часто используемые электронные компоненты. Их роль — просто ограничить прохождение электрического тока, когда это необходимо, и убедиться, что на компонент подается правильное напряжение. Измеряем сопротивление в Омах. Однако, поскольку ом представляет собой очень маленькое сопротивление, в большинстве случаев вы увидите сопротивление, измеренное в кОм (1000 Ом) или МОм (1000000 Ом) .

Изображение 1 из 2

Изображение 2 из 2

Когда мы объединяем несколько резисторов последовательно, мы просто складываем их сопротивление (уравнение 1 ниже). Одинаковый ток протекает через все последовательно включенные резисторы, но на каждом резисторе наблюдается некоторое падение напряжения.

(1) R series = R1 + R2 + R3…

Когда мы объединяем несколько резисторов параллельно, мы уменьшаем общее сопротивление (уравнение 2). Кроме того, когда в цепи имеется несколько ветвей сопротивления, ток, протекающий в каждую из них, обратно пропорционален сопротивлению ветви.

(2) R параллельно = 1 / (1 / R1 + 1 / R2 + 1 / R3…)

Раз уж мы зашли так далеко, мы должны упомянуть закон Ома: напряжение равно току, умноженному на сопротивление ( уравнение 3). Другой не менее известный закон — это закон Джоуля (уравнение 4), который устанавливает связь мощности (P) с напряжением (V) и током (I).

(3) V = I x R

(4) P = V x I = (I x R) x I = I 2 XR

Транзисторы

Транзистор считается крупнейшее открытие или нововведение 20 -го века.Действительно, в настоящее время внутри каждого электронного устройства вы обнаружите, что транзисторы работают легко и надежно. Двумя наиболее распространенными типами транзисторов являются транзисторы с биполярным переходом (BJT), которые можно разделить на транзисторы NPN и PNP, и полевые транзисторы (FET). Подобно BJT, полевые транзисторы бывают N-канального и P-канального типов. Двумя основными типами полевых транзисторов являются полевые МОП-транзисторы (полевые транзисторы из оксида металла и полупроводника) и полевые транзисторы (полевые транзисторы с переходом).

Транзистор имеет три вывода: исток, затвор и сток.Чтобы объяснить его работу, мы будем использовать простую парадигму. Представьте трубу, соединяющую источник воды с канализацией. Клапан (шибер) регулирует поток воды, будучи полностью закрытым, частично открытым или полностью открытым. То же самое и с транзистором. Подавая напряжение или ток (в зависимости от типа транзистора) на затвор, мы можем управлять током, протекающим от истока к стоку. В NPN-транзисторах исток, затвор и сток называются соответственно коллектором, базой и эмиттером. Две основные роли транзисторов — усиление слабых сигналов и переключение.

Изображение 1 из 2

Изображение 2 из 2

В блоках питания в основном используются полевые транзисторы NPN в преобразователе APFC и в качестве основных переключателей. Для дальнейшего повышения эффективности они также используются во вторичной обмотке для выпрямления выходов постоянного тока (синхронная конструкция).

Диоды

Диод можно рассматривать как односторонний клапан. Когда к нему прикладывается напряжение, он позволяет току течь в одном направлении, но не в другом. Этот процесс иногда также называют процессом исправления.Один конец диода называется анодом, а другой — катодом. Большинство диодов позволяют току свободно течь от анода к катоду. Когда через диод начинает течь ток, на нем наблюдается постоянное падение напряжения. Для большинства диодов это падение напряжения составляет примерно 0,7 В.

Все диоды имеют номинальный ток, который указывает максимальный прямой ток, который они могут выдержать. Кроме того, рейтинг пикового обратного напряжения (PIV) отображает максимальное обратное напряжение, с которым диод может справиться до того, как он сломается.Теперь, если вы хотите узнать, правильно ли работает диод, все, что вам нужно сделать, это измерить его мультиметром, используя шкалу Ом. В одном направлении диод должен иметь низкое сопротивление (прямое смещение), а в противоположном направлении вы увидите высокое сопротивление (обратное смещение).

Изображение 1 из 2

Изображение 2 из 2

Диоды имеют множество применений. К наиболее распространенным из них относятся регулировка напряжения, выпрямление переменного тока (мостовые выпрямители), светодиодные приложения, защита от перенапряжения и многое другое.Во многих блоках питания, помимо обычных диодов, мы почти всегда находим мостовые выпрямители (четыре диода в мостовой схеме, обеспечивающие двухполупериодное выпрямление входящего сигнала переменного тока) и диоды с барьером Шоттки (SBR). SBR используются в секции APFC (повышающие диоды) и иногда для процесса выпрямления выходов постоянного тока на вторичной стороне. Диоды Шоттки — это специальные диоды с меньшим прямым падением напряжения, чем обычные диоды. Однако в высокоэффективных блоках питания они полностью заменены полевыми транзисторами, которые рассеивают меньше энергии.Но бывают также случаи, когда SBR работают вместе с полевым транзистором, заменяющим его внутренний диод, обеспечивая повышенную эффективность, поскольку фактическое регулирование по-прежнему осуществляется полевым транзистором.

Коммутаторы

— простой транзистор для коммутации блока питания компьютера

Я изучаю простые схемы транзисторов и был сбит с толку простейшими транзисторами. Я поставил задачу использовать транзистор для включения блока питания компьютера ATX. Принцип заключается в том, что источник питания имеет провод, подтянутый к 5 В, который при заземлении вызывает включение источника питания.

Тестирование с помощью амперметра

показывает, что ток в заземленной цепи составляет 333 мкА, поэтому я решил, что практически любой транзистор может справиться с требуемой работой. Выбрав почти наугад из пакета транзисторов, я выбрал блок BC549B и нашел его техническое описание. Оказалось, что он отлично справляется с этим током, поэтому я решил создать небольшую схему, которая подключила провод 5 В к коллектору, а провод заземления к эмиттеру.

От отдельного источника питания я использовал питание 2 В на базу сначала через большой резистор (147 кОм), при этом земля отдельного источника питания была соединена с эмиттером транзистора / землей источника питания ATX.

Первое наблюдение интересно и неожиданно. Во-первых, с базой, отключенной от второго источника питания и заземленной на ноль, провод 5 В сохранял полное напряжение. С плавающей базой напряжение 5 В снизилось примерно до 2,5 В. Есть ли этому очевидное объяснение?

Теперь, когда подключенный источник питания выдает фактическое значение 2,87 В, напряжение на проводе 5 В снизилось до 446 мВ. Постепенно повышая входное напряжение до 12,3 В, провод 5 В подтягивался до 128 мВ от земли.Глядя на входные токи к базе в зависимости от тока коллектора, ток коллектора асимптотически увеличивался до значения, казалось бы, ниже требуемого тока 333 мкА (около 325 мкА). Я решил, что в этой конфигурации резистор базы был слишком большим и начал снижать его значение. . У меня сейчас 661 Ом, с полными 12,3 В я подтягиваю провод 5 В до 30 мВ. Даже в этом случае я не вижу включения питания. Я бы подумал, что это ниже порога переключения источника питания, я ошибаюсь?

Еще одно странное поведение заключается в том, что при подключенном источнике питания ATX, если я мгновенно принудительно замкну клеммы коллектора и эмиттера, чтобы принудительно включить питание, цепь, кажется, включится сама, и питание останется включенным, пока я не отключу один провод от цепи.Почему это могло быть?

Наконец, я просто использую неадекватный транзистор для работы или есть какая-то невозможность, с которой я борюсь?

смоделировать эту схему — Схема создана с помощью CircuitLab

Внутри вашего блока питания

Первоначально опубликовано в Атомарный: вычисления максимальной мощности.
Последнее изменение 03 декабря 2011 г.

Оригинал Блок питания IBM PC Единица (PSU) имела совокупный рейтинг выпуска 63.5 Вт.

Теперь это просто найти блоки питания для ПК, которые могут обеспечить почти в девять раз большую мощность.

Тем не менее, по сути, последние 550-ваттные блоки питания EPS12V очень похожи друг на друга. к старым агрегатам. Они дешевле, они менее темпераментны, они излучают меньше радиошумов и некоторые из них на лот красивее, но они получают работа выполняется в основном так же.

Простейший источник питания переменного тока. (AC) и выводит низковольтный постоянный ток (DC) «линейного» типа, состоящий из трансформатора, выпрямителя и некоторых конденсаторов, а также дополнительного регулятора если вы не хотите, чтобы его выходное напряжение сильно зависело от нагрузки.Линейные блоки питания при этом большие, тяжелые и неэффективные; около четырех десятых мощности попадание в один уходит как тепло, а не как полезный продукт. Запустите 300-ваттный стек ПК от линейного питания и от 200 ватт придется избавиться тепла только от источника питания.

Чтобы избежать этого, блоки питания ПК коммутируемый, или «switchmode», конструкции. Импульсные блоки питания обеспечивают КПД 85% или выше. Выдача 300 Вт, трата 50 или меньше.

Компоненты импульсного блока питания, которые позволяют ему делать то, что он делает, являются металлооксидными. Полупроводниковые полевые транзисторы или МОП-транзисторы.Транзисторы твердые переключатели состояния, которые могут работать намного быстрее, чем любой механический переключатель; вот почему процессоры сделаны из транзисторов, а не реле. МОП-транзисторы — это мощные транзисторы; они могут переключать большой ток. Этот делает их полезными для преобразования энергии.

Сетевой переменный ток «выпрямляется» в постоянный ток после того, как он поступает в блок питания ПК, а затем преобразуется снова в переменный ток, с гораздо более высокой частотой, чем исходные 50 или 60 Гц (в зависимости от вашей местной электросети).Устройство, которое это делает, — «измельчитель». инвертор, наверное, с выходной частотой около 25 килогерц.

Прерыватель использует полевые МОП-транзисторы для регулярного прерывания входного постоянного тока, давая выходной сигнал, который чередуется между нулевым и полным входным напряжением. Более поздним компонентам в БП можно, так или иначе, отдать половину входное напряжение как их потенциал «земли». Это делает вывод чоппер работает, что касается остальной части блока питания, как и обычные переменный ток плюс-минус-плюс-минус.


Этот искусно изогнутый блок питания AOpen, демонстрирующий три основных компонента — главный трансформатор в желтой упаковке, полевые МОП-транзисторы инвертора и регулятора и их алюминиевые радиаторы и большие цилиндрические сглаживающие конденсаторы.

Блоку питания требуется высокочастотный переменный ток, потому что следующий компонент в цепочке трансформатор, и чем выше частота переменного тока, тем меньше трансформатор нужно использовать для заданного уровня мощности.

Даже в БП на 500 Вт будет главный трансформатор, который только размером с детский кулак. Если этот трансформатор должен работать на частоте сети, это будет многокилограммовый кусок, который заполнит большую часть корпуса блока питания ATX сам по себе.

Трансформатор также обеспечивает изоляцию — он отключает выходные шины БП от сети. Это компонент, который в основном отвечает за предотвращение если что-то пойдет не так, на ваш компьютер подается сетевое напряжение.

Трансформатор имеет пару ответвлений — один на чуть больше пять вольт, а один — чуть больше 12. У некоторых БП есть отвод для Шина 3,3 В тоже, но большинство просто регулируют часть шины 5 В до сделать 3.3. Рельсы 5V и 12V также регулируются, чтобы опустить их близко к их указанным напряжениям.

Это регулирование осуществляется большим количеством полевых МОП-транзисторов, которые здесь используются в качестве «импульсных регуляторов».

Импульсные регуляторы фактически не изменяют проходящее напряжение их.Они просто очень быстро включают и выключают. Подача импульсного регулятора 20 вольт и попросите у него 10 вольт, и он быстро подаст импульс на его выходе так что половину времени его выход составляет 20 вольт, а половину времени — нуль. Сделайте это достаточно быстро и подключите конденсатор к выходу. чтобы сгладить его, и вы получите чистые десять вольт, даже не просто выбросить ватты как тепло.

Линейные регуляторы, напротив, работают как магически изменяемые резисторы; они проще и дешевле, но, как и линейные блоки питания, тратят впустую много энергии в виде тепла.

Импульсные регуляторы и прерыватели также не эффективны на 100%, что Вот почему блоки питания имеют внутри массивные алюминиевые радиаторы. Внизу каждого радиатора находится набор полевых МОП-транзисторов.

Рельсы и рейтинги


Последние блоки питания имеют больше контактов на штекерах, но рельсы одинаковы.

Различные выходы напряжения блока питания часто называют «шинами».Три основных шины питания для современного блока питания: + 3,3 В, + 5 В и + 12 В; между их, они будут составлять почти всю его мощность. Следующий по величине номинальной шиной будет шина + 5VSB (резервная), которая остается включенной всякий раз, когда блок питания питается от сети; вот что позволяет вашему компьютеру включаться в ответ к активности в локальной сети или нажмите клавишу пробела. + 5VSB будет составлять только несколько процентов от общего рейтинга, тем не менее, и отрицательные шины (-5V и -12V, которые редко используются для чего-либо на современных ПК) будет составлять даже меньше.

Потому что практически каждый блок питания создает выходное напряжение 3,3 В за счет понижения его шина 5 В, 3,3 В и 5 В обычно имеют общий рейтинг. 3.3V может иметь 26 ампер, скажем, (85,8 Вт; для постоянного тока всегда ватт). точно равно вольт, умноженному на ампер), а 5 В может иметь номинальную мощность 28 ампер (140 Вт), но их вместе может хватить только на 200 Вт. Только ты сможешь для максимальной нагрузки на шину 3,3 В, если вы просите 22,8 А или меньше, от 5В.

Поскольку все силовые шины в конечном итоге идут от одного трансформатора, есть также общая максимальная мощность для 3,3, 5 и 12 В вместе взятых. Продолжая приведенный выше пример, 12 В может быть достаточно для 30 А (360 Вт), но мощность всех трех шин вместе может быть не более 450 Вт.

В реальном мире очень высокие характеристики блока питания редко имеют значение. Если ты не работают гигантские массивы дисков, большое охлаждение Пельтье установки и / или удивительно разогнанный процессор, качественный блок питания 350 Вт должен быть больше чем хватит для любой системы.Однако дополнительная емкость не повредит; компьютер которому нужен только блок питания мощностью 300 Вт, он не потребляет больше энергии, если вы дадите ему 600 Вт один.

По мере приближения источников питания к пределу — и наклейка со спецификациями на сторона может быть немного оптимистичный о мощности, которую фактически может обеспечить данный блок питания — они обычно теряют рельс Напряжение. Большинство ПК вполне довольны входным напряжением, которое немного не соответствует спецификации. — 10%, скажем, — но когда входное напряжение проседает намного больше, компьютер может стать ненадежным.

Напряжение на рейке также может измениться, когда что-то выходит из строя с блоком питания. Провисание напряжение может раздражать, но может быть намного хуже, если напряжение падает вверх . Чтобы предотвратить это, блоки питания обычно имеют схему «лома», которая контролирует выход 5 В и, если он превышает примерно 6,5 В, замыкает вход блока питания, чтобы перегореть предохранитель (отсюда и название — это как уронить ломом через два проводника для преднамеренного отключения выключателя). Блок питания, который перегорел предохранитель, который мгновенно перегорает и следующий предохранитель, который вы вставили в него, может делать это по уважительной причине.

Если вы хотите увидеть, что делают рельсы вашего блока питания, вы можете проверить их с помощью утилиты системного мониторинга по вашему выбору (Материнская плата Монитор, скажем), пока вы запускаете софт. Обычно это дает довольно точный числа напряжений, и всегда полезно, если все, что вы хотите сделать, это посмотреть, напряжение сильно падает, когда вы что-то делаете, но вы не должны полагаться на эти показания полностью. Они во власти микросхемы мониторинга оборудования на материнской плате, и может быть неточным или даже существенно измениться при обновлении BIOS.

Напряжения, отображаемые в меню «Состояние ПК» в программе настройки BIOS. происходят из того же источника и не более точны — и вы не можете запустить ПО при их проверке.

Следовательно, чтобы получить действительно точные цифры, вам необходимо подключить вольтметр. — или, желательно, несколько из них, или модный мультиметр с несколькими входами, чтобы вы может контролировать несколько рельсов одновременно.


Переключите одиночный зеленый провод разъема ATX (контакт 14) на массу и вы можете контролировать напряжение блока питания на тестовом стенде — но это вам ничего не говорит о нагруженном напряжении.Выход этого блока питания был подправили, насколько это возможно.

Из БП на каждую рейку выходит по несколько проводов, а это не независимо от того, какой из них вы отслеживаете. Выберите наиболее удобный вариант. Это просто следить за + 5V (красные провода) и + 12V (желтые провода), если он у вас есть запасной разъем питания привода, в который можно вставить измерительные щупы. + 3,3 В (оранжевые провода) сложнее. Если у вашего блока питания есть шестиконтактный штекер AUX, вы не используется (вы, вероятно, не будете; разъемы AUX обычно видны только на серверные платы), затем скрепка воткнулась в одну из клемм с оранжевым проводом. на этой вилке предоставит вам место для наблюдения за 3.3В. В противном случае вы необходимо снять немного изоляции на оранжевом цвете одного из основных разъемов ATX. провода и подключить там.

Обратите внимание, что указанные выше цвета проводов учитываются только в том случае, если у вас есть стандартный источник питания. Если ваш компьютер является проприетарной машиной — в частности, Dell — все ставки на расположение и цвет проводов отключены. Стандартные блоки питания могут можно использовать в таких компьютерах, но только если переставить штепсельную проводку.

Также обратите внимание, что если у вас нет пластикового корпуса ПК и / или связки эффектные лакированные компоненты, которые не контактируют друг с другом во-вторых, корпус компьютера и блок питания должны быть заземлены.Это означает, что ваши отрицательные соединения мультиметра могут подключаться к любой части. металлоконструкций шасси; вам не нужно втиснуть отрицательные зонды в разъемы питания привода тоже.

Дополнительная литература

Вот главу, посвященную источникам питания, из старого издания Обновление и Ремонт ПК.

Apple не произвела революцию в источниках питания; новых транзисторов сделал

Новая биография Стив Джобс содержит замечательное заявление о блоке питания Apple II и его разработчике Роде Холте: [1]
Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах.Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла. «Этот импульсный источник питания был столь же революционным, как и материнская плата Apple II», — сказал позже Джобс. «Род не получил большого признания за это в учебниках истории, но он должен. Каждый компьютер теперь использует импульсные блоки питания, и все они копируют дизайн Рода Холта».
Мне показалось удивительным то, что в компьютерах теперь используются блоки питания, основанные на дизайне Apple II, поэтому я провел небольшое расследование.Оказывается, блок питания Apple не был революционным ни в концепции использования импульсного блока питания для компьютеров, ни в особой конструкции блока питания. Современные компьютерные блоки питания совершенно разные и не копируют дизайн Рода Холта. Оказывается, Стив Джобс делал свое обычное заявление о том, что все воруют революционные технологии Apple, что полностью противоречит действительности.

История импульсных блоков питания оказывается довольно интересной.Хотя большинство людей рассматривают блок питания как скучную металлическую коробку, на самом деле за этим стоит много технологических разработок. Фактически произошла революция в источниках питания в конце 1960-х — середине 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания, но это произошло за несколько лет до выхода Apple II в 1977 году. для этой революции следует перейти к достижениям в полупроводниковой технологии, в частности, к усовершенствованию переключающих транзисторов, а затем и к инновационным ИС для управления импульсными источниками питания.[2]

Некоторые сведения об источниках питания

В стандартном настольном компьютере источник питания преобразует сетевое напряжение переменного тока в постоянное, обеспечивая несколько тщательно регулируемых низких напряжений при высоких токах. Источники питания могут быть построены различными способами, но линейные и импульсные источники питания — это два метода, относящиеся к этому обсуждению. (См. Примечания для получения дополнительной информации об устаревших технологиях, таких как большие механические мотор-генераторные системы [3] и феррорезонансные трансформаторы [4] [5].)

Типичный линейный источник питания использует громоздкий силовой трансформатор для преобразования 120 В переменного тока в низкое напряжение переменного тока, преобразует его в постоянное напряжение низкого напряжения с помощью диодного моста, а затем использует линейный регулятор для понижения напряжения до желаемого уровня.Линейный стабилизатор — это недорогой, простой в использовании компонент на основе транзистора, который преобразует избыточное напряжение в отходящее тепло для получения стабильного выходного сигнала. Линейные источники питания почти несложно спроектировать и изготовить. [6] Однако одним большим недостатком является то, что они обычно расходуют около 50-65% энергии в виде тепла [7], часто требуя больших металлических радиаторов или вентиляторов для отвода тепла. Второй недостаток — они большие и тяжелые. С другой стороны, компоненты (кроме трансформатора) в линейных источниках питания должны работать только с низким напряжением, а выход очень стабильный и бесшумный.

Импульсный источник питания работает по совершенно другому принципу: быстрое включение и выключение питания, а не превращение избыточной мощности в тепло. В импульсном источнике питания входная линия переменного тока преобразуется в высоковольтный постоянный ток, а затем источник питания включает и выключает постоянный ток тысячи раз в секунду, тщательно контролируя время переключения, чтобы выходное напряжение в среднем составляло желаемое значение. Теоретически энергия не расходуется зря, хотя на практике КПД составляет 80% -90%.Импульсные источники питания намного эффективнее, выделяют гораздо меньше тепла и намного меньше и легче линейных источников питания. Основным недостатком импульсного источника питания является то, что он значительно сложнее, чем линейный источник питания, и его гораздо труднее спроектировать [8]. Кроме того, он предъявляет гораздо более высокие требования к компонентам, требуя транзисторов, которые могут эффективно включаться и выключаться на высокой скорости при большой мощности. Переключатели, катушки индуктивности и конденсаторы в импульсном источнике питания могут быть расположены в нескольких различных схемах (или топологиях) с такими названиями, как понижающий, повышающий, обратный, прямой, двухтактный, полуволновой и полноволновой.[9]

История импульсных источников питания до 1977 года

Принципы импульсных источников питания были известны с 1930-х годов [6] и строились из дискретных компонентов в 1950-х. [10] В 1958 году в компьютере IBM 704 использовался примитивный импульсный стабилизатор на основе электронных ламп. [11] Компания Pioneer Magnetics начала производство импульсных источников питания в 1958 году [12] (а спустя десятилетия внесла ключевое новшество в блоки питания для ПК [13]). Компания General Electric опубликовала первый проект импульсного источника питания в 1959 году.[14] В 1960-х годах аэрокосмическая промышленность и НАСА [15] были основной движущей силой развития импульсных источников питания, поскольку преимущества небольшого размера и высокой эффективности компенсировали высокую стоимость. [16] Например, НАСА использовало переключатели питания для спутников [17] [18], таких как Telstar в 1962 году. [19]

Компьютерная промышленность начала использовать импульсные блоки питания в конце 1960-х годов, и их популярность постоянно росла. Примеры включают миникомпьютер PDP-11/20 в 1969 году [20] Honeywell h416R в 1970 году [21] и миникомпьютер Hewlett-Packard 2100A в 1971 году.[22] [23] К 1971 году компании, использующие импульсные регуляторы, «читали как« Кто есть кто »компьютерной индустрии: IBM, Honeywell, Univac, DEC, Burroughs и RCA, и это лишь некоторые из них» [21]. В 1974 году HP использовала импульсный источник питания для миникомпьютера 21MX, [24] Data General для Nova 2/4, [25] Texas Instruments для 960B, [26] и Interdata для своих мини-компьютеров. [27] В 1975 году HP использовала автономный импульсный источник питания в терминале с дисплеем HP2640A, [28] Matsushita для своего миникомпьютера управления трафиком [29] и IBM для своего подобного пишущей машинке Selectric Composer [29] и портативного компьютера IBM 5100. .[30] К 1976 году Data General использовала импульсные блоки питания для половины своих систем, Hitachi и Ferranti использовали их [29], настольный компьютер Hewlett-Packard 9825A [31] и калькулятор 9815A [32] использовали их, а decsystem 20 [33] — большой импульсный блок питания. К 1976 году в жилых комнатах появились импульсные источники питания, питающие цветные телевизионные приемники. [34] [35]

Импульсные блоки питания также стали популярными продуктами для производителей блоков питания, начиная с конца 1960-х годов.В 1967 году RO Associates представила первый импульсный источник питания 20 кГц [36], который, как они утверждают, также был первым коммерчески успешным импульсным источником питания [37]. NEMIC начала разработку стандартизированных импульсных источников питания в Японии в 1970 году [38]. К 1972 году большинство производителей блоков питания предлагали импульсные блоки питания или собирались их предложить. [5] [39] [40] [41] [42] HP продала линейку импульсных источников питания мощностью 300 Вт в 1973 году [43] и компактный импульсный источник питания мощностью 500 Вт [44] и импульсный источник питания мощностью 110 Вт [45] в 1975 году.К 1975 году импульсные блоки питания составляли 8% рынка блоков питания и быстро росли благодаря улучшенным компонентам и желанию использовать блоки питания меньшего размера для таких продуктов, как микрокомпьютеры. [46]

Импульсные источники питания были представлены в журналах по электронике той эпохи, как в рекламных объявлениях, так и в статьях. Electronic Design рекомендовали импульсные источники питания в 1964 году для повышения эффективности [47]. На обложке журнала Electronics World от октября 1971 года был представлен импульсный блок питания мощностью 500 Вт и статья «Блок питания импульсного регулятора».В длинной статье о блоках питания в Computer Design в 1972 году подробно обсуждались импульсные источники питания и растущее использование импульсных источников питания в компьютерах, хотя в ней упоминается, что некоторые компании все еще скептически относились к импульсным источникам питания [5]. В 1973 г. в журнале Electronic Engineering была опубликована подробная статья «Импульсные источники питания: зачем и как» [42]. В 1976 году обложка журнала Electronic Design [48] была озаглавлена ​​«Внезапно переключиться стало проще», описывая новые ИС контроллера импульсного источника питания, Электроника опубликовала длинную статью об импульсных источниках питания, [29] Powertec разместила двухстраничную рекламу преимуществ своих импульсных источников питания с крылатой фразой «Большой переключатель — это переключатели» [49], а журнал Byte объявил о импульсных источниках питания Boschert для микрокомпьютеров.[50]

Ключевым разработчиком импульсных блоков питания был Роберт Бошерт, который бросил свою работу и в 1970 году начал собирать блоки питания на своем кухонном столе [51]. Он сосредоточился на упрощении импульсных источников питания, чтобы сделать их экономически выгодными по сравнению с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров [51] [52], за которым последовала недорогая коммутация мощностью 80 Вт. Электроснабжение в 1976 г. [50] К 1977 году Boschert Inc выросла до компании с 650 сотрудниками [51], которая производила блоки питания для спутников и истребителей F-14 [53], а затем блоки питания для таких компаний, как HP [54] и Sun.Люди часто думают, что настоящее время — уникальное время для технологических стартапов, но Бошерт показывает, что стартапы на кухонном столе происходили даже 40 лет назад.

Развитие импульсных источников питания в 1970-х годах было в значительной степени обусловлено новыми компонентами. [55] Номинальное напряжение переключаемых транзисторов часто было ограничивающим фактором [5], поэтому появление в конце 1960-х — начале 1970-х годов высокоэффективных, высокоскоростных и мощных транзисторов по низкой цене значительно увеличило популярность импульсных источников питания.[5] [6] [21] [16] Технология транзисторов развивалась так быстро, что коммерческий блок питания мощностью 500 Вт, изображенный на обложке журнала Electronics World в 1971 году, не мог быть построен с транзисторами всего 18 месяцев назад [21]. Как только силовые транзисторы смогут выдерживать сотни вольт, источники питания смогут отказаться от тяжелого силового трансформатора с частотой 60 Гц и работать в автономном режиме непосредственно от сетевого напряжения. Более высокие скорости переключения транзисторов позволили использовать более эффективные и гораздо меньшие блоки питания. Введение интегральных схем для управления импульсными источниками питания в 1976 году широко рассматривается как начало эры импульсных источников питания за счет их радикального упрощения.[10] [56]

К началу 1970-х годов стало ясно, что происходит революция. Производитель блоков питания Уолт Хиршберг заявил в 1973 году, что «революция в конструкции блоков питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен» [57]. В 1977 году во влиятельной книге по источникам питания говорилось, что « считалось, что импульсные регуляторы совершают революцию в отрасли электроснабжения »[58].

Apple II и его блок питания

Персональный компьютер Apple II был представлен в 1977 году.Одной из его особенностей был компактный импульсный блок питания без вентилятора, который обеспечивал мощность 38 Вт при 5, 12, -5 и -12 вольт. Блок питания Холта Apple II имеет очень простую конструкцию с автономной топологией обратноходового преобразователя. [59]

Стив Джобс сказал, что теперь каждый компьютер копирует революционный дизайн Рода Холта [1]. Но революционен ли этот дизайн? Был ли он сорван с любого другого компьютера?

Как показано выше, импульсные блоки питания использовались на многих компьютерах к моменту выпуска Apple II.Конструкция не является особенно революционной, поскольку аналогичные простые автономные обратноходовые преобразователи продавались Boschert [50] [60] и другими компаниями. В долгосрочной перспективе создание схемы управления из дискретных компонентов, как это сделала Apple, было тупиковой технологией, поскольку будущее импульсных источников питания было за ИС контроллеров ШИМ [2]. Удивительно, что Apple продолжала использовать дискретные генераторы в источниках питания даже через Macintosh Classic, так как контроллеры IC были представлены в 1975 году. [48] Apple действительно перешла на контроллеры IC, например, в Performa [61] и iMac.[62]

Блок питания, который Род Холт разработал для Apple, был достаточно инновационным, чтобы получить патент [63], поэтому я подробно изучил патент, чтобы увидеть, есть ли какие-нибудь менее очевидные революционные особенности. В патенте описаны два механизма защиты источника питания от неисправностей. Первый (пункт 1) — это механизм безопасного запуска генератора через вход переменного тока. Второй механизм (пункт 8) возвращает избыточную энергию от трансформатора к источнику питания (особенно при отсутствии нагрузки) через зажимную обмотку на трансформаторе и диод.

Это блок питания AA11040-B для Apple II Plus. [59] Питание переменного тока поступает слева, фильтруется, проходит через большой переключающий транзистор к обратноходовому трансформатору в середине, выпрямляется диодами справа (на радиаторах), а затем фильтруется конденсаторами справа. Схема управления находится внизу. Фотография использована с разрешения kjfloop, Copyright 2007.

Механизм запуска переменного тока не использовался Apple II, [59] но использовался Apple II Plus, [64] Apple III, [65] Lisa, [66] Macintosh, [67] и Mac 128K через Classic.[68] Я не смог найти никаких источников питания сторонних производителей, которые использовали бы этот механизм, [69] кроме блока питания телевизора 1978 года, [70] и он стал устаревшим контроллерами IC, так что этот механизм, похоже, не оказал никакого влияния на компьютерный блок питания.

Второй механизм в патенте Холта, зажимная обмотка и диод для возврата мощности в обратном преобразователе, использовался в различных источниках питания до середины 1980-х годов, а затем исчез. Некоторые примеры — источник питания Boschert OL25 (1978), [60] Apple III (1980), [65] Документация Apple по источникам питания (1982 г.), [59] Жесткий диск Tandy (1982 г.), [71] Тэнди 2000 (1983), [72] [73] Яблочная Лиза (1983), [66] Apple Macintosh (1984 г.), [67] Commodore Model B128 (1984), [74] Тэнди 6000 (1985), [75] а также От Mac Plus (1986) до Mac Classic (1990).[68] Эта обмотка с обратным зажимом, по-видимому, была популярна в Motorola в 1980-х годах, она фигурирует в техническом описании микросхемы контроллера MC34060 [76], руководстве разработчика 1983 года [77] (где обмотка описывалась как обычная, но необязательная) и в примечании к применению 1984 года. . [78]

Является ли этот обратный зажим намоткой на инновации Холта, которые сорвали другие компании? Я так и думал, пока не нашел книгу по источникам питания 1976 года, в которой подробно описывалась эта обмотка [35], которая испортила мой рассказ. (Также обратите внимание, что в прямых преобразователях (в отличие от обратных преобразователей) эта зажимная обмотка использовалась еще в 1956 году [79] [80] [81], поэтому ее применение в обратном преобразователе в любом случае не кажется большим скачком. .)

Одним из озадачивающих аспектов обсуждения источников питания в книге Стива Джобса [1] является утверждение, что источник питания Apple II «похож на те, что используются в осциллографах», поскольку осциллографы — это всего лишь одно небольшое применение для переключения источников питания. Это заявление, по-видимому, возникло из-за того, что Холт ранее разработал импульсный источник питания для осциллографов [82], но другого соединения между источником питания Apple и источниками питания осциллографов нет.

Наибольшее влияние Apple II на индустрию блоков питания оказала Astec — гонконгская компания, производившая блоки питания.До появления Apple II Astec была малоизвестным производителем импульсных инверторов постоянного и переменного тока. Но к 1982 году Astec стала ведущим в мире производителем импульсных источников питания, почти полностью опираясь на бизнес Apple, и удерживала первое место в течение ряда лет. [83] [84] В 1999 году Astec была приобретена компанией Emerson [85], которая в настоящее время является второй по величине компанией в области энергоснабжения после Delta Electronics. [86]

Малоизвестный факт об источнике питания Apple II заключается в том, что он был первоначально собран калифорнийскими домохозяйками среднего класса как сдельная.[83] Однако по мере роста спроса строительство источника питания было передано Astec, хотя оно стоило на 7 долларов больше. К 1983 году Astec производила 30 000 блоков питания Apple в месяц. [83]

Блоки питания post-Apple

В 1981 году был выпущен IBM PC, который оказал долгосрочное влияние на конструкции блоков питания компьютеров. Блоки питания для оригинального ПК IBM 5150 производились компаниями Astec и Zenith. [83] В этом источнике питания мощностью 63,5 Вт используется обратная схема, управляемая микросхемой контроллера источника питания NE5560.[87]

Я буду подробно сравнивать блок питания для ПК IBM 5150 с блоком питания Apple II, чтобы показать их общие черты и различия. Оба они представляют собой автономные источники питания с обратным ходом и несколькими выходами, но это почти все, что у них общего. Несмотря на то, что в блоке питания ПК используется контроллер IC, а в Apple II используются дискретные компоненты, в блоке питания ПК используется примерно в два раза больше компонентов, чем в блоке питания Apple II. В то время как в блоке питания Apple II используется генератор переменной частоты, построенный на транзисторах, в блоке питания ПК используется генератор ШИМ фиксированной частоты, обеспечиваемый микросхемой контроллера NE5560.В ПК используются оптоизоляторы для обеспечения обратной связи по напряжению с контроллером, а в Apple II используется небольшой трансформатор. Apple II напрямую управляет силовым транзистором, в то время как ПК использует управляющий трансформатор. ПК проверяет все четыре выхода мощности на соответствие нижнему и верхнему пределам напряжения, чтобы убедиться, что питание хорошее, и выключает контроллер, если какое-либо напряжение выходит за пределы спецификации. Apple II вместо этого использует лом SCR на выходе 12 В, если это напряжение слишком высокое. В то время как трансформатор обратного хода ПК имеет одну первичную обмотку, Apple II использует дополнительную первичную обмотку зажима для возврата мощности, а также другую первичную обмотку для обратной связи.ПК обеспечивает линейное регулирование от источников питания 12 В и -5 В, а Apple II — нет. В ПК используется вентилятор, а в Apple II — нет. Понятно, что блок питания IBM 5150 не «сдирает» конструкцию блоков питания Apple II, поскольку между ними почти нет ничего общего. А позже конструкции блоков питания стали еще более разными.

Блок питания IBM PC AT стал де-факто стандартом для блоков питания компьютеров. В 1995 году Intel представила спецификацию материнской платы ATX [88], а блок питания ATX (вместе с вариантами) стал стандартом для блоков питания настольных компьютеров, при этом компоненты и конструкции часто ориентированы именно на рынок ATX.[89]

Компьютерные системы питания стали более сложными с появлением в 1995 году модуля регулятора напряжения (VRM) для Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем источник питания мог обеспечить напрямую. Для обеспечения этого питания Intel представила VRM — импульсный стабилизатор постоянного тока, установленный рядом с процессором, который снижает напряжение с 12 вольт от источника питания до низкого напряжения, используемого процессором [90]. (Если вы разгоняете свой компьютер, именно VRM позволяет поднять напряжение.) Кроме того, видеокарты могут иметь собственный VRM для питания высокопроизводительного графического чипа. Быстрому процессору может потребоваться 130 Вт от VRM. Сравнение этого с половиной ватта мощности, используемой процессором Apple II 6502 [91], показывает огромный рост энергопотребления современных процессоров. Один только современный процессорный чип может использовать более чем в два раза мощность всего компьютера IBM 5150 или в три раза больше, чем Apple II.

Поразительный рост компьютерной индустрии привел к тому, что потребление энергии компьютерами стало причиной беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.[92] В США сертификация Energy Star и 80 PLUS [93] подталкивает производителей к производству более эффективных «зеленых» источников питания. Эти источники питания обеспечивают большую эффективность с помощью различных методов: более эффективное резервное питание, более эффективные схемы запуска, резонансные схемы (также известные как мягкое переключение и ZCT или ZVT), которые снижают потери мощности в переключающих транзисторах за счет отсутствия питания протекает через них, когда они выключаются, и схемы «активного зажима» для замены переключающих диодов более эффективными транзисторными схемами.[94] Усовершенствования в технологии MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности. [92]

Источники питания могут более эффективно использовать мощность сети переменного тока с помощью метода коррекции коэффициента мощности (PFC). [95] Активная коррекция коэффициента мощности добавляет еще одну схему переключения перед основной схемой источника питания. Специальная микросхема контроллера PFC переключает его с частотой до 250 кГц, аккуратно извлекая ровное количество энергии из источника питания для создания высокого напряжения постоянного тока, которое затем подается в обычную схему импульсного источника питания.[13] [96] PFC также иллюстрирует, как блоки питания превратились в товар с очень тонкой маржой, где доллар — это большие деньги. Активная коррекция коэффициента мощности считается особенностью высокопроизводительных источников питания, но ее фактическая стоимость составляет всего около 1,50 доллара США [97].

На протяжении многих лет для блоков питания IBM PC использовалось множество различных микросхем контроллеров, конструкций и топологий, как для поддержки различных уровней мощности, так и для использования преимуществ новых технологий. [98] Микросхемы контроллеров, такие как NE5560 и SG3524, были популярны в ранних ПК IBM.[99] Микросхема TL494 стала очень популярной в конфигурации полумоста, [99] самой популярной конструкции в 1990-х. [100] Серия UC3842 также была популярна для конфигураций прямого преобразователя. [99] Стремление к повышению эффективности сделало двойные прямые преобразователи более популярными [101], а коррекция коэффициента мощности (PFC) сделала контроллер CM6800 очень популярным [102], поскольку одна микросхема управляет обеими цепями. В последнее время стали более распространены прямые преобразователи, которые генерируют только 12 В, с использованием преобразователей постоянного тока для получения очень стабильных 3.Выходы 3 В и 5 В. [94] Более подробную информацию о современных источниках питания можно получить из многих источников. [103] [104] [98] [105]

В этом типичном блоке питания XT мощностью 150 Вт используется популярная полумостовая конструкция. Фильтр переменного тока на входе справа. Слева от него находится схема управления / драйвера: микросхема TL494 вверху управляет маленьким желтым приводным трансформатором внизу, который управляет двумя переключающими транзисторами на радиаторах внизу. Слева от него находится больший желтый главный трансформатор с вторичными диодами и регулятором на радиаторах и выходной фильтром слева.Этот полумостовой блок питания полностью отличается от конструкции Apple II с обратным ходом. Право на фотографию принадлежит larrymoencurly, использовано с разрешения.

Современные компьютеры содержат удивительный набор импульсных источников питания и регуляторов. Современный источник питания может содержать переключающую схему PFC, переключающий обратноходовой источник питания для резервного питания, переключающий прямой преобразователь для выработки 12 вольт, переключающий преобразователь постоянного тока в постоянный для выработки 5 вольт и переключающий преобразователь постоянного тока в постоянный для выработки 3 .3 вольта, [94] поэтому блок питания ATX можно рассматривать как пять различных импульсных блоков питания в одной коробке. Кроме того, на материнской плате есть импульсный регулятор VRM для питания процессора, а на видеокарте есть еще один VRM, всего семь коммутируемых источников питания в типичном настольном компьютере.

Технология импульсных источников питания продолжает развиваться. Одно из разработок — цифровое управление и цифровое управление питанием. [106] Вместо использования аналоговых схем управления микросхемы цифрового контроллера оцифровывают управляющие входы и используют программные алгоритмы для управления выходами.Таким образом, проектирование контроллера источника питания становится вопросом программирования в такой же степени, как и проектирования аппаратного обеспечения. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и ведения журнала. Хотя сейчас эти цифровые технологии в основном используются для серверов, я ожидаю, что в конечном итоге они перейдут на настольные компьютеры.

Подводя итог, можно сказать, что исходный блок питания для ПК IBM 5150 почти во всех отношениях отличался от блока питания Apple II, за исключением того, что оба блока питания были обратноходовыми.Более современные блоки питания не имеют ничего общего с Apple II. Абсурдно утверждать, что блоки питания копируют дизайн Apple.

Известные конструкторы импульсных источников питания

Стив Джобс сказал, что Род Холт должен быть более известен тем, что разработал блок питания для Apple II: «Род не получил большого признания за это в учебниках истории, но он должен» [1]. Но даже в лучшем случае разработчики блоков питания не известны за пределами очень небольшого сообщества. Роберт Бошерт был занесен в Зал славы электронной инженерии Electronic Design в 2009 году за работу в области энергоснабжения.[51] Роберт Маммано получил награду за заслуги перед компанией Power Electronics Technology в 2005 году за начало производства ИС для контроллеров с ШИМ [10]. В 2008 году Руди Севернс получил награду за заслуги перед Power Electronics Technology за свои инновации в импульсных источниках питания. [107] Но никто из этих людей даже не известен в Википедии. Другим крупным новаторам в этой области уделяется еще меньше внимания. [108] Я неоднократно сталкивался с работой Эллиота Джозефсона, который проектировал спутниковые системы питания в начале 1960-х годов [18], имеет множество патентов на источники питания, включая Tandy 6000 [75], и даже номер его патента напечатан на Apple II Plus. и платы источника питания Osborne 1 [59], но он, похоже, полностью не распознан.

Ирония в комментарии Стива Джобса о том, что Род Холт не заслуживает особой похвалы, заключается в том, что работа Рода Холта описана в десятках книг и статей об Apple, от Revenge of the Nerds, в 1982 [109] до лучших работ 2011 года. продавая биографию Стива Джобса, что делает Рода Холта самым известным дизайнером блоков питания за всю историю.

Заключение

Источники питания — это не скучные металлические коробки, как думает большинство людей; у них много интересной истории, во многом обусловленной усовершенствованием транзисторов, которые сделали импульсные источники питания практичными для компьютеров в начале 1970-х годов.Совсем недавно стандарты эффективности, такие как 80 PLUS, вынудили источники питания стать более эффективными, что привело к появлению новых конструкций. Apple II продавал огромное количество импульсных блоков питания, но его конструкция блока питания была технологическим тупиком, который не был «сорван» другими компьютерами.

Если вас интересуют блоки питания, вам также может понравиться моя статья «Крошечный, дешевый и опасный: внутри (поддельного) зарядного устройства для iPhone».

Примечания и ссылки

Я потратил слишком много времени на изучение источников питания, анализ схем и копание в старых журналах по электронике.Вот мои заметки и ссылки на случай, если они кому-то пригодятся. Мне было бы интересно услышать от разработчиков источников питания, которые имели непосредственный опыт разработки источников питания в 1970-х и 1980-х годах.

[1] Стив Джобс , Уолтер Исааксон, 2011. Дизайн блока питания Рода Холта для Apple II обсуждается на странице 74. Обратите внимание, что описание импульсного блока питания в этой книге довольно искажено.

[2] ШИМ: от одного чипа к гигантской отрасли, Джин Хефтман, Power Electronics Technology, стр 48-53, октябрь 2005 г.

[3] Предварительное планирование площадки: компьютер Cray-1 (1975) В Cray-1 использовались два мотор-генератора мощностью 200 л.с. (150 кВт) для преобразования входного переменного тока 250 А 460 В в регулируемую мощность 208 В, 400 Гц; каждый мотор-генератор был примерно 3900 фунтов. Мощность 208 В, 400 Гц подавалась на 36 отдельных источников питания, в которых использовались двенадцатифазные трансформаторы, но не было внутренних регуляторов. Эти блоки питания образуют 12 верстаков вокруг компьютера Cray. Фотографии силовых компонентов Cray можно найти в Справочном руководстве по аппаратному обеспечению Cray-1 серии S (1981).Эта высокочастотная схема двигатель-генератор может показаться странной, но в IBM 370 использовалась аналогичная установка, см. Объявление: IBM System / 370 Model 145.

[4] Во многих более крупных компьютерах для регулирования использовались феррорезонансные трансформаторы. Например, в блоке питания компьютера IBM 1401 использовался феррорезонансный регулятор мощностью 1250 Вт, см. Справочное руководство, 1401 Data Processing System (1961), стр. 13. В HP 3000 Series 64/68/70 также использовались феррорезонансные трансформаторы, см. Руководство по установке компьютеров Series 64/68/70 (1986), стр. 2-3.DEC использовала феррорезонансные и линейные источники питания почти исключительно в начале 1970-х годов, в том числе для PDP-8 / A (рисунок в «Выбор источника питания вырисовывается в сложных конструкциях», Electronics , Oct 1976, volume 49, p111).

[5] «Источники питания для компьютеров и периферийных устройств», Computer Design , июль 1972 г., стр. 55-65. В этой длинной статье о блоках питания много говорится об импульсных блоках питания. Он описывает понижающую (последовательную), повышающую (шунтирующую), двухтактную (инверторную) и полную мостовую топологии.В статье говорится, что номинальное напряжение переключающего транзистора является ограничивающим параметром во многих приложениях, но «высоковольтные высокоскоростные транзисторы становятся все более доступными по низкой цене, что является важным фактором более широкого использования источников импульсных стабилизаторов». В нем делается вывод, что «Доступность высоковольтных, мощных переключающих транзисторов по умеренным ценам дает дополнительный импульс использованию высокоэффективных импульсных обычных [sic] источников питания. В этом году ожидается существенное увеличение их использования.»

В статье также говорится: «Одной из наиболее спорных тем является продолжающаяся дискуссия о ценности импульсных источников питания для компьютерных приложений в сравнении с обычными последовательными транзисторными регуляторами». Это подтверждается некоторыми комментариями поставщиков. Одним из скептиков была компания Elexon Power Systems, которая «не считает импульсные регуляторы« ответом ». Они планируют раскрыть совершенно новый подход к источникам питания в ближайшем будущем ». Другой был Modular Power Inc, который «не рекомендовал переключать регуляторы, за исключением случаев, когда малый размер, легкий вес и высокая эффективность являются основными соображениями, как в портативном и бортовом оборудовании.«Sola Basic Industries» заявила, что «их инженеры очень скептически относятся к долговременной надежности импульсных регуляторов в практических конструкциях массового производства и прогнозируют проблемы с отказом транзисторов».

Раздел статьи, посвященный комментариям производителей, дает представление о технологиях в отрасли электроснабжения в 1972 году: Hewlett Packard »указывает, что на сегодняшний день большое влияние оказывает доступность высокоскоростных, сильноточных и недорогих транзисторов, чему способствует нынешняя тенденция к импульсным стабилизаторам.Компания широко использует переключатели в полном спектре конструкций с высокой мощностью ». Lambda Electronics «широко использует импульсные регуляторы на выходную мощность более 100 Вт», которые предназначены для предотвращения охлаждения вентилятором. Компания Analog Devices предложила прецизионные расходные материалы, в которых для повышения эффективности используются методы переключения. RO Associates «считает, что рост числа импульсных источников питания является серьезным изменением в области проектирования источников питания». Они предлагали миниатюрные источники на 20 кГц и недорогие источники на 60 кГц. Sola Basic Industries »предсказывает, что производители миникомпьютеров будут использовать больше бестрансформаторных импульсных регуляторов в 1972 году для повышения эффективности и уменьшения размера и веса.» Trio Laboratories «указывает на то, что производители компьютеров и периферийных устройств обращаются к переходным типам, потому что цены сейчас более конкурентоспособны, а приложения требуют меньшего размера».

[6] Практическая конструкция импульсного источника питания, Марти Браун, 1990, стр. 17.

[7] См. Раздел комментариев для подробного обсуждения эффективности линейного источника питания.

[8] Справочник по источникам питания , Марти Браун, 2001. На странице 5 обсуждается относительное время разработки для различных технологий питания: линейный регулятор занимает 1 неделю общего времени разработки, а импульсный стабилизатор с ШИМ требует 8 человеко-месяцев.

[9] Сводка различных топологий находится в обзорах SMPS и топологиях источников питания. Подробности см. В Microchip AN 1114: Топологии SMPS и Топологии импульсных источников питания

[10] Лауреат премии за выслугу лет Роберт Маммано, Power Electronics Technology , сентябрь 2005 г., стр. 48-51. В этой статье Silicon General SG1524 (1975) описывается как ИС, открывшая эру импульсных регуляторов и импульсных источников питания.

[11] Справочное руководство по проектированию заказчиков IBM: Блок питания 736, Блок питания 741, Блок распределения питания 746 (1958), стр. 60-17.Блок питания для компьютера 704 состоит из трех шкафов размером с холодильник, заполненных электронными лампами, предохранителями, реле, механическими таймерами и трансформаторами, потребляющими мощность 90,8 кВА. Он использовал несколько методов регулирования, включая трансформаторы с насыщаемым реактором и опорное напряжение на основе термисторов. Выходы постоянного тока регулировались переключающим механизмом тиратрона с частотой 60 Гц. Тиратроны — это переключающие вакуумные лампы, которые управляют выходным напряжением (подобно триакам в обычном диммерном переключателе). Это можно рассматривать как импульсный источник питания (см. Источники питания, импульсные регуляторы, инверторы и преобразователи , Irving Gottlieb, pp 186-188).

[12] В своей рекламе Pioneer Magnetics заявляет, что они разработали свой первый импульсный источник питания в 1958 году. Например, см. Electronic Design , V27, p216.

[13] Источник питания с коэффициентом мощности Unity, патент 4677366. Pioneer Magnetics подала этот патент в 1986 году на активную коррекцию коэффициента мощности. См. Также статью Pioneer Magnetics «Почему PFC? страница.

[14] Один из первых импульсных источников питания был описан в «Транзисторный преобразователь-усилитель мощности», Д. А. Пейнтер, General Electric Co., Solid-State Circuits Conference , 1959, p90-91. Также см. Соответствующий патент 1960 г. 3067378 «Транзисторный преобразователь».

[15] Исследование бездиссипативных преобразователей постоянного тока в постоянный, Центр космических полетов Годдарда, 1964. Этот обзор транзисторных преобразователей постоянного тока показывает около 20 различных схем переключения, известных в начале 1960-х годов. Обратный преобразователь заметно отсутствует. Многие другие отчеты НАСА о преобразователях энергии за этот период доступны на сервере технических отчетов НАСА.

[16] Подробная история импульсных источников питания представлена ​​в S.J. M.Phil Уоткинса. дипломная работа Автоматическое тестирование импульсных источников питания, в главе История и развитие импульсных источников питания до 1987 г.

[17] История развития импульсных источников питания, TDK Power Electronics World. Это дает очень краткую историю импульсных источников питания. В TDK также есть удивительно подробное обсуждение импульсных источников питания в комической форме: TDK Power Electronics World.

[18] «Спутниковый источник питания с регулируемой шириной импульса», Электроника , февраль 1962 г., стр. 47-49. В этой статье Эллиота Джозефсона из Lockheed описывается ШИМ-преобразователь постоянного тока с постоянной частотой для спутников. См. Также патент 3219907 Устройство преобразования мощности.

[19] Система энергоснабжения космического корабля, Telstar, 1963. Спутник Telstar получал энергию от солнечных батарей, сохраняя энергию в никель-кадмиевых батареях. Эффективность была критической для спутника, поэтому использовался импульсный стабилизатор напряжения постоянного тока с понижающим преобразователем, преобразующим переменное напряжение батареи в стабильное -16 В постоянного тока при мощности до 32 Вт при КПД до 92%.Поскольку спутнику требовался широкий диапазон напряжений, до 1770 вольт для усилителя RF, были использованы дополнительные преобразователи. Регулируемый постоянный ток преобразовывался в переменный, подавался на трансформаторы и выпрямлялся для получения необходимых напряжений.

[20] В некоторых моделях PDP, таких как PDP-11/20, использовался источник питания H720 (см. Руководство по PDP, 1969). Этот источник питания подробно описан в Руководстве по блоку питания и монтажной коробке H720 (1970). В источнике питания весом 25 фунтов используется силовой трансформатор для генерации 25 В постоянного тока, а затем импульсные регуляторы (понижающий преобразователь) для генерации 230 Вт регулируемого напряжения +5 и -15 вольт.Поскольку транзисторы той эпохи не могли работать с высоким напряжением, напряжение постоянного тока пришлось снизить до 25 вольт с помощью большого силового трансформатора.

[21] «Источник питания импульсного регулятора», Electronics World v86 October 1971, p43-47. Эта длинная статья об импульсных источниках питания была размещена на обложке журнала Electronics World . Статью стоит поискать хотя бы для изображения импульсного источника питания самолета F-111, которое выглядит настолько сложным, что я почти ожидал, что он посадит самолет.Импульсные источники питания, обсуждаемые в этой статье, сочетают в себе импульсный инвертор постоянного и переменного тока с трансформатором для изоляции с отдельным понижающим или повышающим импульсным стабилизатором. В результате в статье утверждается, что импульсные блоки питания всегда будут дороже линейных блоков питания из-за двух каскадов. Однако современные блоки питания сочетают в себе оба этапа. В статье рассматриваются различные источники питания, в том числе импульсный блок питания мощностью 250 Вт, используемый в Honeywell h416R. В статье говорится, что импульсные блоки питания для стабилизаторов достигли совершеннолетия благодаря новым достижениям в области быстродействующих и мощных транзисторов.На обложке изображен импульсный блок питания мощностью 500 Вт, который, согласно статье, не мог быть построен с транзисторами, доступными всего полтора года назад.

[22] Источник питания Bantam для миникомпьютера, Hewlett-Packard Journal , октябрь 1971 г. Подробная информация о схемах в патенте «Высокоэффективный источник питания» 3,852,655. Это автономный источник питания мощностью 492 Вт, использующий инверторы, за которыми следуют импульсные стабилизаторы на 20 В.

[23] HP2100A был представлен в 1971 году с импульсным источником питания (см. Основные характеристики HP2100A).Утверждается, что это первый импульсный источник питания в миникомпьютере 25 лет работы в режиме реального времени, но PDP-11/20 был раньше.

[24] Компьютерная система питания для тяжелых условий эксплуатации, стр. 21, Hewlett-Packard Journal , октябрь 1974 г. В миникомпьютере 21MX использовался автономный переключающий пререгулятор мощностью 300 Вт для выработки регулируемого 160 В постоянного тока, который подавался на переключающие преобразователи постоянного тока в постоянный.

[25] Общее техническое руководство по данным Nova 2, 1974. В Nova 2/4 использовался импульсный стабилизатор для генерации 5 В и 15 В, в то время как в более крупном 2/10 использовался трансформатор постоянного напряжения.В руководстве говорится: «При более высоких потерях тока, связанных с компьютером, потери [от линейных регуляторов] могут стать чрезмерными, и по этой причине часто используется импульсный стабилизатор, как в NOVA 2/4».

[26] Модель 960B / 980B для обслуживания компьютеров Модель: источник питания В блоке питания миникомпьютера Texas Instruments 960B использовался импульсный стабилизатор для источника питания 5 В мощностью 150 Вт и линейные регуляторы для других напряжений. Импульсный стабилизатор состоит из двух параллельных понижающих преобразователей, работающих на частоте 60 кГц и использующих переключающие транзисторы 2N5302 NPN (введены в 1969 году).Поскольку транзисторы рассчитаны на максимальное напряжение 60 В, в блоке питания используется трансформатор для понижения напряжения до 35 В, которое подается на регулятор.

[27] Руководство по эксплуатации импульсных регулируемых источников питания M49-024 и M49-026, Interdata, 1974. Эти автономные полумостовые источники питания обеспечивали мощность 120 Вт или 250 Вт и использовались миникомпьютерами Interdata. В генераторе переключения используются микросхемы таймера 555 и 556.

[28] Блок питания 2640A, Hewlett-Packard Journal , июнь 1975 г., стр. 15.«Импульсный источник питания был выбран из-за его эффективности и занимаемой площади». Также техническая информация о терминале данных. Другой интересный момент — его корпус, отлитый из структурной пены (p23), который очень похож на формованный из пенопласта корпус Apple II (см. Стр. 73 из Steve Jobs ) и несколькими годами ранее.

[29] «В сложных конструкциях большое значение имеет выбор источников питания», Электроника , октябрь 1976 г., том 49. p107-114. В этой длинной статье подробно рассматриваются источники питания, включая импульсные источники питания.Обратите внимание, что Selectric Composer сильно отличается от популярной пишущей машинки Selectric.

[30] Информационное руководство по обслуживанию портативного компьютера IBM 5100. IBM 5100 был портативным компьютером весом 50 фунтов, который использовал BASIC и APL, а также включал монитор и ленточный накопитель. Блок питания описан на стр. 4-61 как небольшой, высокомощный, высокочастотный импульсный импульсный стабилизатор, обеспечивающий 5 В, -5 В, 8,5 В, 12 В и -12 В.

[31] Настольный компьютер HP 9825A 1976 года использовал импульсный стабилизатор для источника питания 5 В.Он также использовал формованный корпус из пеноматериала, предшествующий Apple II; см. 98925A Product Design, Hewlett-Packard Journal , июнь 1976 г., стр. 5.

[32] Калькулятор среднего уровня обеспечивает большую мощность при меньших затратах, В журнале Hewlett-Packard Journal , июнь 1976 г. обсуждается импульсный источник питания 5 В, используемый в калькуляторе 9815A.

[33] Блок питания DEC H7420 описан в Decsystem 20 Power Supply System Description (1976). Он содержит 5 импульсных регуляторов для обеспечения нескольких напряжений и обеспечивает мощность около 700 Вт.В источнике питания используется большой трансформатор для снижения линейного напряжения до 25 В постоянного тока, которое передается на отдельные импульсные регуляторы, которые используют понижающую топологию для получения желаемого напряжения (+5, -5, +15 или +20).

Миникомпьютер decsystem 20 представлял собой большую систему, состоящую из трех шкафов размером с холодильник. Потребовалось внушительное трехфазное питание мощностью 21,6 кВт, которое регулируется комбинацией импульсных и линейных регуляторов. Он содержал семь источников питания H7420 и около 33 отдельных импульсных регуляторов, а также линейный стабилизатор для ЦП, который использовал -12 В постоянного тока при 490 А.

[34] Импульсные источники питания для телевизионных приемников стали набирать обороты примерно в 1975–1976 годах. Philips представила TDA2640 для телевизионных импульсных источников питания в 1975 году. Philips опубликовала книгу Импульсные источники питания в телевизионных приемниках в 1976 году. Одним из недостатков все более широкого использования импульсных источников питания в телевизорах было то, что они вызывали помехи. с любительским радио, как обсуждалось в Wireless World, v82, p52, 1976.

[35] «Электронное управление мощностью и цифровые методы», Texas Instruments, 1976.В этой книге подробно рассматриваются импульсные источники питания.

В главе IV «Системы инвертора / преобразователя» описан простой источник обратноходового питания мощностью 120 Вт, использующий силовой транзистор BUY70B, управляемый тиристором. Следует отметить, что в этой схеме используется дополнительная первичная обмотка с диодом для возврата неиспользованной энергии источнику.

В главе V «Импульсные источники питания» описывается конструкция импульсного источника питания 5 В 800 Вт на основе автономного импульсного шунтирующего регулятора, за которым следует преобразователь постоянного тока в постоянный.Он также описывает довольно простой обратноходовой источник питания с несколькими выходами, управляемый SN76549, разработанный для цветного телевидения с большим экраном.

[36] Основные этапы развития силовой электроники, Ассоциация производителей источников энергии.

[37] В 1967 году RO Associates представила первый успешный импульсный источник питания, импульсный источник питания 20 кГц, 50 Вт, модель 210 (см. «RO сначала в импульсные источники питания», Electronic Business , Volume 9, 1983, p36 К 1976 году они претендовали на лидерство в производстве импульсных блоков питания.В их патенте 1969 года 3564384 «Высокоэффективный источник питания» описан полумостовой импульсный источник питания, который удивительно похож на источники питания ATX, популярные в 1990-х годах, за исключением схем усилителя, управляющих ШИМ, а не повсеместной микросхемы контроллера TL494.

[38] Компания Nippon Electronic Memory Industry Co (NEMIC, которая в итоге стала частью TDK-Lambda) начала разработку стандартизированных импульсных источников питания в 1970 году. История корпорации ТДК-Лямбда.

[39] «Я прогнозирую, что большинство компаний, после нескольких неудачных попыток в области источников питания, к концу 1972 года предложат ряд импульсных источников питания с приемлемыми характеристиками и ограничениями радиопомех.», стр. 46, Электронная инженерия , том 44, 1972.

[40] Производитель блоков питания Coutant построил блок питания под названием Minic, используя «относительно новую технику импульсного стабилизатора». Инструментальная практика для управления технологическими процессами и автоматизации , Том 25, стр. 471, 1971.

[41] «Импульсные источники питания выходят на рынок», стр. 71, Electronics & Power , февраль 1972 г. Первый «бестрансформаторный» импульсный источник питания появился на рынке Великобритании в 1972 году, APT SSU1050, который представлял собой регулируемый импульсный источник питания мощностью 500 Вт с использованием полумостовой топологии.Этот 70-фунтовый блок питания считался легким по сравнению с линейными блоками питания.

[42] В этой статье подробно рассказывается о импульсных источниках питания и описываются преимущества автономных источников питания. В нем описан миниатюрный импульсный источник питания полумоста MG5-20, созданный Advance Electronics. В статье говорится: «Широкое применение микроэлектронных устройств подчеркнуло огромное количество обычных источников питания. Переключающие преобразователи теперь стали жизнеспособными и предлагают заметную экономию в объеме и весе.» «Импульсные источники питания: почему и как», Малкольм Берчалл, технический директор, подразделение источников питания, Advance Electronics Ltd. Electronic Engineering , Volume 45, Sept 1973, p73-75.

[43] Высокоэффективные модульные источники питания с использованием импульсных регуляторов, Hewlett-Packard Journal , декабрь 1973 г., стр. 15-20. Серия 62600 обеспечивает мощность 300 Вт при использовании автономного импульсного источника питания с полумостовой топологией. Ключевым моментом было внедрение транзисторов на 400 В, 5 А с субмикросекундным временем переключения.«Полный импульсный регулируемый источник питания мощностью 300 Вт едва ли больше, чем просто силовой трансформатор эквивалентного источника с последовательным регулированием, и он весит меньше — 14,5 фунтов против 18 фунтов трансформатора».

[44] Сильноточный источник питания для систем, в которых широко используется 5-вольтовая ИС-логика, Hewlett-Packard Journal , апрель 1975 г., стр. 14-19. Импульсный источник питания 62605M мощностью 500 Вт для OEM-производителей, размер и вес которых составляет 1/3 и 1/5 от линейных источников питания. Использует автономную полумостовую топологию.

[45] Модульные источники питания: модели 63005C и 63315D: в этом источнике питания мощностью 110 Вт и 5 В используется топология автономного прямого преобразователя и конвекционное охлаждение без вентилятора.

[46] «Проникновение коммутационных источников питания на рынок источников питания в США вырастет с 8% в 1975 году до 19% к 1980 году. Это растущее проникновение соответствует мировой тенденции и представляет собой очень высокие темпы роста». Для такого прогнозируемого роста было указано несколько причин, в том числе «доступность более качественных компонентов, снижение […] общей стоимости и появление более мелких продуктов (таких как микрокомпьютеры), которые делают желательными меньшие блоки питания». Электроника, Том 49. 1976. Стр. 112, врезка «Что насчет будущего?»

[47] Сеймур Левин, «Импульсные регуляторы питания для повышения эффективности».»Electronic Design, 22 июня 1964 года. В этой статье описывается, как импульсные регуляторы могут повысить эффективность с менее чем 40 процентов до более чем 90 процентов при значительной экономии размера, веса и стоимости.

[48] На обложке журнала Electronic Design 13 от 21 июня 1976 г. написано: «Внезапно переключение стало проще. Импульсные источники питания могут быть разработаны с использованием на 20-50 дискретных компонентов меньше, чем раньше. Одна ИС выполняет все функции управления, необходимые для двухтактный выходной дизайн.ИС называется регулирующим широтно-импульсным модулятором. Чтобы узнать, предпочитаете ли вы переключение, перейдите на страницу 125. «На странице 125 есть статья« Управление импульсным источником питания с помощью одной схемы LSI », в которой описаны ИС импульсных источников питания SG1524 и TL497.

[49] В 1976 году Powertec разместила двухстраничную рекламу, описывающую преимущества импульсных источников питания, под названием «Большой переход к коммутаторам». В этой рекламе описывались преимущества блоков питания: с удвоенной эффективностью они выделяли 1/9 тепла.Они имели 1/4 размера и веса. Это обеспечило повышенную надежность, работало в условиях обесточивания и могло выдерживать гораздо более длительные перебои в подаче электроэнергии. Powertec продала линейку импульсных блоков питания мощностью до 800 Вт. Они предложили импульсные источники питания для систем с дополнительной памятью, компьютерных мэйнфреймов, телефонных систем, дисплеев, настольных приборов и систем сбора данных. Страницы 130-131, Электроника в49, 1976.

[50] Byte magazine, p100 В июне 1976 года был анонсирован новый импульсный источник питания Boschert OL80, обеспечивающий 80 Вт при двухфунтовом блоке питания по сравнению с 16 фунтами для менее мощного линейного блока питания.Это также было объявлено в Microcomputer Digest, февраль 1976 г., стр. 12.

[51] Роберт Бошерт: человек многих шляп меняет мир источников питания: он начал продавать импульсные источники питания в 1974 году, сосредоточившись на том, чтобы сделать импульсные источники питания простыми и недорогими. В заголовке говорится, что «Роберт Бошерт изобрел импульсный источник питания», что должно быть ошибкой редактора. В статье более обоснованно утверждается, что Бошерт изобрел недорогие импульсные источники питания для массового использования. В 1974 году он произвел в больших объемах недорогой импульсный источник питания.

[52] Руководство по техническому обслуживанию коммуникационного терминала Diablo Systems HyTerm модели 1610/1620 показаны двухтактный источник питания Boschert 1976 года и полумостовой источник питания LH Research 1979 года.

[53] Опыт Boschert с F-14 и спутниками рекламировался в рекламе Electronic Design , V25, 1977, где также упоминалось серийное производство для Diablo и Qume.

[54] Необычный импульсный источник питания использовался в компьютере HP 1000 A600 (см. Техническую и справочную документацию) (1983).Источник питания 440 Вт обеспечивал стандартные выходы 5 В, 12 В и -12 В, а также выход переменного тока 25 кГц 39 В, который использовался для распределения мощности на другие карты в системе, где она регулировалась. В автономном двухтактном источнике питания, разработанном Boschert, использовалась специальная микросхема HP IC, чем-то напоминающая TL494.

[55] В 1971 году для поддержки автономных импульсных источников питания были представлены многочисленные линейки переключающих транзисторов 450 В, такие как серия SVT450, серия 40850 — 4085 от RCA и серия 700V SVT7000.

[56] ШИМ: от одного чипа к гигантской отрасли, Power Electronics Technology , октябрь 2005 г. В этой статье описывается история создания ИС управления источником питания, от SG1524 в 1975 году до отрасли с многомиллиардными оборотами.

[57] «Революция в конструкции источников питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен», — Вальтер Хиршберг, ACDC Electronics Inc., Калифорния. «Новые компоненты вызывают революцию в источниках питания», p49, Canadian Electronics Engineering , v 17, 1973.

[58] Импульсный и линейный источник питания, конструкция преобразователя мощности , Pressman 1977 «Импульсные регуляторы, которые совершают революцию в отрасли электроснабжения из-за их низких внутренних потерь, небольшого размера, веса и стоимости, конкурентоспособной по сравнению с традиционными последовательными или линейными источниками питания».

[59] Несколько источников питания Apple описаны в документе Apple Products Information Pkg: Astec Power Supplies (1982). Источник питания Apple II Astec AA11040 — это простой дискретный источник питания с обратным ходом и несколькими выходами.В нем используется переключающий транзистор 2SC1358. Выход 5 В сравнивается с стабилитроном и обратной связью управления и изолируется через трансформатор с двумя первичными обмотками и одной вторичной. В нем используется зажимная обмотка обратного диода.

AA11040-B (1980) имеет существенные модификации схемы обратной связи и управления. В нем используется переключающий транзистор 2SC1875 и источник опорного напряжения TL431. AA11040-B, по-видимому, использовался для Apple II + и Apple IIe (см. Форум hardwaresecrets.com).Шелкография на печатной плате источника питания говорит о том, что она защищена патентом 4323961, который, как оказалось, является «автономным источником питания постоянного тока с обратным ходом», разработанным Эллиотом Джозефсоном и переданным Astec. Схема в этом патенте в основном представляет собой немного упрощенный AA11040-B. Изолирующий трансформатор обратной связи имеет одну первичную и две вторичные обмотки, противоположные AA11040. Этот патент также напечатан на плате блока питания Osborne 1 (см. Разборку Osborne 1), которая также использует 2SC1875.

В Apple III Astec AA11190 используется фиксирующая обмотка обратного диода, но не схема запуска переменного тока Холта.Используется переключающий транзистор 2SC1358; схема обратной связи / управления очень похожа на AA11040-B. В источнике питания дисковода Apple III Profile AA11770 использовались фиксирующая обмотка обратноходового диода, переключающий транзистор 2SC1875; опять же, схема обратной связи / управления очень похожа на AA11040-B. AA11771 аналогичен, но добавляет еще один TL431 для выхода AC ON.

Интересно, что в этом документе Apple перепечатывает десять страниц «Руководства по источникам питания постоянного тока» HP (версия 1978 года, используемая Apple), чтобы предоставить справочную информацию о импульсных источниках питания.

[60] Обратные преобразователи: твердотельное решение для недорогого импульсного источника питания, Electronics , декабрь 1978 г. В этой статье Роберта Бошерта описывается источник питания Boschert OL25, который представляет собой очень простой дискретно-компонентный источник обратноходового питания мощностью 25 Вт с 4 выходами. Он включает в себя зажимную обмотку обратного диода. Он использует источник опорного напряжения TL430 и оптоизолятор для обратной связи с выхода 5 В. В нем используется переключающий транзистор MJE13004.

[61] В Macintosh Performa 6320 использовалась микросхема контроллера SMPS AS3842, как видно на этом рисунке.AS3842 — это версия контроллера тока UC3842 от Astec, который был очень популярен для прямых преобразователей.

[62] Детали источника питания для iMac найти сложно, и используются разные источники питания, но, если собрать воедино различные источники, iMac G5, похоже, использует контроллер PFC TDA4863, пять силовых МОП-транзисторов 20N60C3, ШИМ-контроллер SG3845, напряжение TL431. ссылки и контроль мощности с помощью WT7515 и LM339. Также используется 5-контактный встроенный коммутатор TOP245, вероятно, для питания в режиме ожидания.

[63] Источник питания постоянного тока, №4130862. который был подан в феврале 1978 г. и выдан в декабре 1978 г. Блок питания, указанный в патенте, имеет некоторые существенные отличия от блока питания Apple II, созданного Astec. Большая часть управляющей логики находится на первичной стороне в патенте и вторичной стороне в фактическом источнике питания. Кроме того, в патенте обратная связь является оптической, и в ее источнике питания используется трансформатор. Блок питания Apple II не использует обратную связь по переменному току, описанную в патенте.

[64] Подробное обсуждение блока питания Apple II Plus можно найти на сайте applefritter.com. В описании источник питания ошибочно называется топологией прямого преобразователя, но это топология обратного хода. Неудобно, что это обсуждение не соответствует схемам блока питания Apple II Plus, которые я нашел. Заметные различия: в схеме используется трансформатор для обеспечения обратной связи, в то время как в обсуждении используется оптоизолятор. Кроме того, обсуждаемый источник питания использует вход переменного тока для запуска колебаний транзистора, а схема — нет.

[65] Apple III (1982 г.). Этот блок питания Apple III (050-0057-A) практически полностью отличается от блока питания Apple III AA11190. Это дискретный источник питания обратного хода с переключающим транзистором MJ8503, управляемым тиристором, зажимной обмоткой обратного хода и 4 выходами. Он использует схему запуска переменного тока Холта. Обратная связь переключения контролирует выход -5 В с операционным усилителем 741 и подключается через трансформатор. Он использует линейный регулятор на выходе -5 В.

[66] Яблочная Лиза (1983).Еще один дискретный источник питания с обратным ходом, но значительно более сложный, чем Apple II, с такими функциями, как резервное питание, дистанционное включение через симистор и выход +33 В. Для переключения в нем используется силовой транзистор MJ8505 NPN, управляемый тиристором. Он использует схему запуска переменного тока Холта. Обратная связь по переключению контролирует напряжение + 5 В (по сравнению с линейно регулируемым выходом -5 В) и подключается через трансформатор.

[67] Блок питания Macintosh. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта.В нем используется переключающий транзистор 2SC2335, управляемый дискретным генератором. Коммутационная обратная связь контролирует выход +12 В с помощью стабилитронов и операционного усилителя LM324 и подключается через оптоизолятор.

[68] Схема Mac 128K, Обсуждение Mac Plus. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта. В нем используется переключающий транзистор 2SC2810, управляемый дискретными компонентами. Обратная связь по переключению контролирует выход 12 В и подключается через оптоизолятор.Интересно, что в этом документе утверждается, что блок питания, как известно, был склонен к сбоям из-за того, что в нем не использовался вентилятор. Блок питания Mac Classic выглядит идентичным.

[69] TEAM ST-230WHF 230 Вт импульсный источник питания. Эта схема — единственный компьютерный блок питания стороннего производителя, который я обнаружил, который подает необработанный переменный ток в схему привода (см. R2), но я уверен, что это всего лишь ошибка чертежа. R2 должен подключаться к выходу диодного моста, а не к входу. Сравните с R3 в почти идентичной схеме привода в этом блоке питания ATX.

[70] Микропроцессоры и микрокомпьютеры и импульсные источники питания , Брайан Норрис, Texas Instruments, McGraw-Hill Company, 1978 г. В этой книге описываются импульсные источники питания для телевизоров, которые используют сигнал переменного тока для запуска колебаний.

[71] Блок питания жесткого диска Tandy (Astec AA11101). В этом обратноходовом источнике питания мощностью 180 Вт используется обмотка с зажимом диода. В нем используется переключающий транзистор 2SC1325A. В осцилляторе используются дискретные компоненты. Обратная связь от шины 5 В сравнивается с опорным напряжением TL431, а обратная связь использует трансформатор для изоляции.

[72] Блок питания Tandy 2000 (1983 г.). Этот источник питания с обратным ходом мощностью 95 Вт использует микросхему контроллера MC34060, переключающий транзистор MJE12005 и имеет обмотку фиксатора обратного хода. Он использует MC3425 для контроля напряжения, имеет линейный регулятор для выхода -12 В и обеспечивает обратную связь на основе выхода 5 В по сравнению с опорным сигналом TL431, проходящим через оптоизолятор. На выходе 12 В используется стабилизатор магнитного усилителя.

[73] В «Искусстве электроники» подробно обсуждается блок питания Tandy 2000 (стр. 362).

[74] Модель Commodore B128. В этом источнике питания обратного хода используется обмотка с зажимом диода. В нем используется переключающий транзистор MJE8501, управляемый дискретными компонентами, а обратная связь переключения контролирует выход 5 В с помощью опорного сигнала TL430 и изолирующего трансформатора. Выходы 12 В и -12 В используют линейные регуляторы.

[75] Tandy 6000 (Astec AA11082). В этом блоке питания с обратным ходом мощностью 140 Вт используется обмотка с зажимом диода. Схема представляет собой довольно сложную дискретную схему, поскольку в ней используется повышающая схема, описанная в патенте Astec 4326244, также разработанном Эллиотом Джозефсоном.В нем используется переключающий транзистор 2SC1325A. У него немного необычный выход 24 В. Один выход 12 В линейно регулируется LM317, а выход -12 В управляется линейным регулятором MC7912, но другой выход 12 В не имеет дополнительной регулировки. Обратная связь осуществляется с выхода 5 В с использованием источника напряжения TL431 и развязывающего трансформатора. Здесь есть красивая фотография блока питания.

[76] Документация на микросхему контроллера MC34060 (1982 г.).

[77] Руководство разработчика по переключению цепей и компонентов источника питания, The Switchmode Guide , Motorola Semiconductors Inc., Паб. № SG79, 1983. R J. Haver. Для обратного преобразователя фиксирующая обмотка описывается как дополнительная, но «обычно присутствует, чтобы позволить энергии, накопленной в реактивном сопротивлении утечки, безопасно вернуться в линию, вместо того, чтобы лавина переключающего транзистора».

[78] «Обеспечение надежной работы силовых полевых МОП-транзисторов», примечание к приложению Motorola 929, (1984) показывает источник питания с обратным ходом, использующий MC34060 с фиксирующей обмоткой и диодом. Его можно скачать с datasheets.org.uk.

[79] Для получения дополнительной информации о форвард-конвертерах см. История прямого преобразователя, Switching Power Magazine , vol.1, No. 1, pp. 20-22, июл 2000 г.

[80] Первый импульсный преобразователь с диодной обмоткой был запатентован в 1956 году компанией Philips, патент 2,920,259 «Преобразователь постоянного тока».

[81] Другим патентом, показывающим обмотку с возвратной энергией с диодом, является патент Hewlett-Packard от 1967 года 3313998. Импульсно-регуляторный источник питания с цепью возврата энергии

[82] Маленькое королевство: частная история Apple Computer Майкл Мориц (1984) говорит, что Холт проработал в компании на Среднем Западе почти десять лет и помог спроектировать недорогой осциллограф (стр. 164).Стив Джобс, «Путешествие — награда», Джеффри Янг, 1988 г., утверждает, что Холт разработал импульсный источник питания для осциллографа за десять лет до прихода в Apple (стр. 118). Учитывая состояние импульсных источников питания в то время, это почти наверняка ошибка.

[83] «Коммутационные блоки растут в чреве компьютеров», Электронный бизнес , том 9, июнь 1983 г., стр. 120-126. В этой статье подробно описывается бизнес-сторона импульсных источников питания. В то время как Astec была ведущим производителем импульсных блоков питания, Lambda была ведущим производителем блоков питания переменного и постоянного тока, поскольку продавала большие количества как линейных, так и импульсных источников питания.

[84] «Стандарты: переключение вовремя для поставок», Electronic Business Today , vol 11, p74, 1985. В этой статье говорится, что Astec является ведущим в мире производителем блоков питания и лидером в области импульсных блоков питания. Astec выросла почти исключительно на поставках блоков питания Apple. В этой статье также упоминаются компании-поставщики электроэнергии из «большой пятерки»: ACDC, Astec, Boschert, Lambda и Power One.

[85] Astec становится 100% дочерней компанией Emerson Electric, Business Wire , 7 апреля 1999 г.

[86] Отраслевой отчет о крупнейших энергоснабжающих компаниях по состоянию на 2011 год — Power Electronics Industry News, v 189, март 2011 г., консультанты по микротехнике. Также, Энергетическая промышленность продолжает марш к консолидации, Power Electronics Technology, май 2007 обсуждает различные консолидации.

[87] Документация SAMS по фотофакту для IBM 5150 содержит подробную схему источника питания.

[88] В Википедии представлен обзор стандарта ATX. Официальная спецификация ATX находится в формфакторах.орг.

[89] ON Semiconductor имеет эталонные образцы блоков питания ATX, как и Fairchild. Некоторые ИС, разработанные специально для приложений ATX, — это SG6105 Power Supply Supervisor + Regulator + PWM, NCP1910 High Performance Combo Controller for ATX Power Supplies, ISL6506 Multiple Linear Power Controller with ACPI Control Interfaces, и SPX1580 Ultra Low Dropout Voltage Regulator.

[90] Корпорация Intel представила рекомендацию о коммутационном преобразователе постоянного тока рядом с процессором в документе Intel AP-523 Pentium Pro Processor Power Distribution Guidelines, в котором приведены подробные спецификации модуля регулятора напряжения (VRM).Подробная информация об образце VRM приведена в разделе «Заправка мегапроцессора — обзор конструкции преобразователя постоянного тока в постоянный ток» с использованием UC3886 и UC3910. Более свежие спецификации VRM содержатся в Рекомендациях по проектированию Intel Voltage Regulator Module (VRM) и Enterprise Voltage Regulator-Down (EVRD) 11 (2009).

[91] В таблице данных микропроцессоров R650X и R651X указано типичное значение рассеиваемой мощности 500 мВт.

[92] Технологии преобразования энергии для компьютерных, сетевых и телекоммуникационных систем питания — прошлое, настоящее и будущее, М.М. Йованович, Лаборатория силовой электроники Delta, Международная конференция по преобразованию энергии и приводам (IPCDC), Санкт-Петербург, Россия, 8-9 июня 2011 г.

[93] Программа 80 Plus описана в разделе «Сертифицированные источники питания и производители 80 PLUS», где описаны различные уровни 80 PLUS: бронзовый, серебряный, золотой, платиновый и титановый. Базовый уровень требует КПД не менее 80% при различных нагрузках, а более высокие уровни требуют все более высокого КПД. Первые блоки питания 80 PLUS вышли в 2005 году.

[94] Несколько случайных примеров источников питания, которые сначала генерируют всего 12 В и используют преобразователи постоянного тока для генерации выходных сигналов 5 В и 3,3 В: Эталонный дизайн высокоэффективного блока питания ATX 255 Вт от ON Semiconductor (80 Plus Silver), NZXT HALE82 power обзор блока питания, обзор блока питания SilverStone Nightjar.

[95] Источники питания используют только часть электроэнергии, подаваемой по линиям электропередач; это дает им плохой «коэффициент мощности», который тратит энергию и увеличивает нагрузку на нижние линии.Вы можете ожидать, что эта проблема возникает из-за быстрого включения и выключения импульсных источников питания. Однако плохой коэффициент мощности на самом деле происходит из-за начального выпрямления переменного и постоянного тока, которое использует только пики входного переменного напряжения.

[96] Основы коррекции коэффициента мощности (PFC), инструкция по применению 42047, Fairchild Semiconductor, 2004.

[97] Правильный выбор размеров и разработка эффективных источников питания утверждает, что активная коррекция коэффициента мощности добавляет около 1,50 доллара к стоимости источника питания мощностью 400 Вт, активный фиксатор добавляет 75 центов, а синхронное выпрямление добавляет 75 центов.

[98] Многие источники схем электроснабжения доступны в Интернете. Некоторые андизм danyk.wz.cz, а также smps.us. Несколько сайтов, которые предоставляют загрузку схем источников питания, — это eserviceinfo.com и elektrotany.com.

[99] Информацию о типовой конструкции блока питания ПК см. В FAQ по SMPS. В разделах «Описание Боба» и «Комментарии Стива» обсуждаются типичные блоки питания для ПК на 200 Вт, использующие микросхему TL494 и конструкцию полумоста.

[100] В тезисе 1991 г. говорится, что TL494 все еще использовался в большинстве импульсных блоков питания ПК (по состоянию на 1991 г.).Разработка импульсного источника питания 100 кГц (1991 г.). Мыс Техникон Тезисы и диссертации. Документ 138.

[101] Введение в двухтранзисторную прямую топологию для источников питания с эффективностью 80 PLUS, EE Times, 2007.

[102] hardwaresecrets.com заявляет, что CM6800 является самым популярным контроллером PFC / PWM. Это замена ML4800 и ML4824. CM6802 — более «зеленый» контроллер в том же семействе.

[103] Анатомия импульсных источников питания, Габриэль Торрес, Hardware Secrets, 2006.В этом учебном пособии очень подробно описывается работа и внутреннее устройство блоков питания ПК с подробными изображениями реальных внутренних устройств блока питания. Если вы хотите точно знать, что делает каждый конденсатор и транзистор в блоке питания, прочтите эту статью.

[104] Презентация блока питания ON Semiconductor’s Inside представляет собой подробное математическое руководство по работе современных блоков питания.

[105] Справочное руководство по источнику питания SWITCHMODE, ON Semiconductor. Это руководство содержит большое количество информации об источниках питания, топологиях и многих примерах реализации.

[106] Некоторые ссылки на цифровое управление питанием: «Дизайнеры обсуждают достоинства цифрового управления питанием», EE Times , декабрь 2006 г. Глобальный рынок ИС для цифрового управления питанием к 2017 году достигнет 1,0 миллиарда долларов. Системный контроллер цифровой ШИМ TI UCD9248. Эталонная схема цифрового питания переменного / постоянного тока с универсальным входом и коррекцией коэффициента мощности, EDN , апрель 2009 г.

[107] Руди Севернс, лауреат премии за выслугу лет, Power Electronics Technology , сентябрь 2008 г., стр. 40-43.

[108] Куда ушли все гуру ?, Power Electronics Technology , 2007. В этой статье обсуждается вклад многих новаторов в области источников питания, включая Сола Гиндоффа, Дика Вайза, Уолта Хиршберга, Роберта Окада, Роберта Бошерта, Стива Голдмана, Аллена Розенштейна, Уолли Херсома , Фил Кётч, Яг Чопра, Уолли Херсом, Патрицио Винчиарелли и Марти Шлехт.

[109] История разработки Холтом источника питания для Apple II впервые появилась в статье Пола Чотти Revenge of the Nerds (не имеющей отношения к фильму) в журнале California в 1982 году.

История импульсных источников питания (SMPS).

Новости XP

Источники питания — как далеко мы зашли?

Недавно я обедал с клиентом, с которым мы работали с конца 1990-х годов. Мы увидели много изменений за это время, и, когда подошел основной курс, мы начали говорить о том, как технологии источников питания развивались за эти годы.Это было наиболее заметно в областях эффективности и удельной мощности.

Первым блоком, который он разработал с использованием XP Power, был блок питания 3 x 5 дюймов 40 Вт. В то время это могло считаться революционным, но если учесть, что в его последнем продукте использовался блок 350 Вт в том же пространстве, становится ясно, как далеко мы зашли

Технологический прогресс

Я провел небольшое исследование по этому поводу после нашего рабочего обеда, и, насколько я могу судить, самые первые импульсные блоки питания были разработаны IBM в 1958 году.Они были основаны на ламповой технологии. Примерно в то же время корпорация General Motors подала несколько патентов на «транзисторные колебания».

Благодаря такому технологическому прогрессу дизайнеры внезапно получили возможность выбирать из множества компонентов и множества производителей, предоставляя им беспрецедентное количество вариантов и потенциально новаторский дизайн.

В центре внимания этого интенсивного периода разработки был традиционный линейный регулятор — самые светлые умы пытались выяснить, как они могут заменить устаревший трансформатор и резистивный метод изменения входного напряжения более эффективной конструкцией.

Идея, на которую они приземлились, заключалась в использовании транзистора для прерывания входного напряжения со средним значением, меньшим, чем исходное входное (у нас есть фантастический магазин технических статей здесь, на сайте, если вы хотите более подробное описание работы SMPS) .

Обладая более высокой эффективностью и меньшим количеством магнитных материалов, новая технология была меньше, легче и выделяла меньше тепла. Как и в случае с современными изобретениями с такими характеристиками, это решение 1950-х годов было чрезвычайно привлекательным для предприятий в самых разных секторах — от электроники до аэрокосмической и коммуникаций до вычислительной техники, было множество первых последователей, каждый из которых пытался наилучшим образом использовать этот новый источник питания. технология.

Расчетная мощность

В течение следующих нескольких лет появилось множество патентов и разработок, многие из которых мы используем до сих пор. В 1972 году компания Hewlett Packard применила импульсный источник питания в своем первом карманном калькуляторе. В 1976 году был подан первый патент, использующий термин импульсный источник питания (SMPS).

Калькулятор

HP на самом деле был компьютером, хотя и в несколько другом формате, чем мы его знаем сегодня. Тогда оригинальный дизайн весил более 40 фунтов. SMPS использовался в конструкции для экономии места и веса, что стало первым шагом на пути к сверхтонким и невероятно легким компьютерам, ноутбукам и планшетам, которые мы используем сегодня.Точно так же производители аэрокосмической отрасли, размышляя о том, как они могут сэкономить вес и место, также начали искать нестандартные импульсные источники питания для создания гораздо более эффективных конструкций.

Охлаждение в 70-х и 80-х годах

1970-е были напряженным десятилетием, когда был сделан первый прорыв, и инновации продолжались в очень приличных темпах. Несколько компаний в Великобритании, США и Японии начали продавать стандартные блоки питания. На сегодняшний день существует около десятка компаний, которые утверждают, что первыми успешно разработали и выпустили на рынок импульсные источники питания, поэтому мы не будем туда идти!

В журналах по электронике того времени были статьи и реклама SMPS.Лидером в то время была американская корпорация Boschert Inc., основанная в Калифорнии. Он заменил источники питания линейных принтеров на модели с переключателем. Эта компания выросла до более чем 1000 человек, предлагая широкий ассортимент продукции: блоки питания с открытой рамой, корпусные и модульные блоки питания. В конце концов в середине 80-х он был приобретен Computer Products Inc.

Apple Computers впервые представила импульсный источник питания для компьютеров Apple II в 1970-х годах. Эта небольшая, высокоэффективная технология означала, что Apple могла создать меньший и легкий компьютер без охлаждающего вентилятора.

Этот тип конструкции с конвекционным охлаждением был уникальным в то время. Технология зажила собственной жизнью и использовалась в десятках потребительских приложений. Блоки питания IBM PC также перешли в режим переключения, хотя и с охлаждающими вентиляторами, аналогичными тем, которые они сегодня используют в блоках питания в стиле ATX.

В конце 1980-х и начале 1990-х годов мы были ошеломлены, когда стали доступны стандартные блоки питания 3 x 5 дюймов с входом с автоматическим переключением диапазона, который определял, подключен ли он к 120 В переменного тока или 230 В переменного тока, и соответствующим образом настраивал.Эти продукты имели мощность от 25 до 40 Вт, или от 1,66 до 2,66 Вт / дюйм2

Встряска ЕС

По мере того, как на рынок выходило все больше и больше компаний, появились некоторые свободные отраслевые стандарты в отношении общих размеров, таких как 3×5 ”. Плотность мощности начала улучшаться по мере развития магнетизма, переключающих транзисторов и контроллеров. Эти изменения позволили повысить эффективность и повысить удельную мощность.

К началу 90-х годов W / In2, доступный из разных источников, увеличился более чем вдвое.

ЕС вступил в силу с новым законодательством и общесоюзными директивами, что означает, что больше внимания уделяется эмиссии ЭМС и коэффициенту мощности источников питания. По сути, по мере того, как эту технологию использовалось все больше и больше продуктов, возникала необходимость контролировать электрические помехи. Свою роль также сыграли проблемы с определением размеров проводников, необходимых для подачи энергии туда, где она была необходима в сети.

Законодательство ЕС было особенно разрушительным для рынка SMPS, поскольку технология коммутации намного шумнее, чем линейные источники питания.Также потребовались дополнительные схемы для придания формы сигнала входного тока синусоидальной форме — это позволило им удовлетворить требования к коэффициенту мощности и предотвратить появление избыточных гармоник, вызывающих проблемы с сетевым питанием.

Сегодняшнее меню

Итак, где мы находимся сегодня с точки зрения удельной мощности? Итак, покупатель, с которым я обедал, только что одобрил наш последний блок питания 3×5 дюймов мощностью 350 Вт с удельной мощностью 23 Вт / дюйм2. Это более чем в 10 раз превышает мощность первого блока питания, который он купил у меня.

Интересно то, что благодаря коммерциализации технологии, большим объемам и дешевизне азиатского производства, этот продукт доступен по очень той же цене, что и более ранние блоки мощностью 40 Вт.

KEPCO, INC .: ТЕКУЩИЕ — ТОМ. 7, № 1

КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ИСТОЧНИКА ПИТАНИЯ

Выступление Фрэнка Тойча, менеджера по продажам, на праздновании 50-летия Kepco

Индустрия источников питания восходит к началу 1920-х годов, когда впервые были разработаны примитивные устройства, служившие в качестве устройств для удаления батарей типа «B» для питания радиоприемников как на коммерческом, так и на потребительском рынках.

Рынок отдельных источников питания испарился примерно в 1929 году, когда большинство производимых радиоприемников имели встроенный источник питания. Потребность в автономных источниках питания оставалась относительно небольшой в 1930-х и 1940-х годах. Доминирующей технологией того периода были линейные регуляторы на электронных лампах.

Источники питания использовали вакуумные лампы как для элементов питания, так и для элементов управления. Обычно для получения стабильного опорного сигнала использовалась лампа стабилизатора напряжения (VR), предшественница сегодняшних стабилитронов.Управление в значительной степени ограничивалось ручным вращением ручек. В те дни мы не слишком заботились о расточительстве. В нормальных условиях электронные лампы сильно нагреваются — и, если только пластина ламп не светится красным или стекло не начинает плавиться, это никого не беспокоит.

Модель 700 Питание вакуумной трубки
Источник питания, 0-350 В, 0-750 мА

В середине 1940-х годов три компании открыли магазины в относительно малоизвестном районе Куинса, штат Нью-Йорк. Этими компаниями, которые в конечном итоге стали лидерами отрасли, были Lambda, Sorenson и Kepco.Хотя все три компании существуют сегодня, только Kepco сохраняет свою независимость и первоначальное владение и продолжает работать в Квинсе, штат Нью-Йорк.

Ранний логотип Kepco Laboratories

Важной вехой в отрасли стали 1950-е годы, когда полупроводники были впервые применены в конструкции источников питания. По мере того, как на рынке распространялись полупроводниковые конструкции (транзисторы заменяли лампы), проблемы рассеивания тепла и тепла преобладали в мышлении разработчиков источников питания. германиевые транзисторы не обладали способностью светиться в темноте, как и лампы, они просто плавились и гасли.Разработчикам этих продуктов внезапно пришлось серьезно отнестись к своей термодинамике.

Kepco Type SC, первый «транзисторный» источник питания

Продукты, использующие транзисторы, были ограничены низковольтными моделями со скромными уровнями мощности или гибридными конструкциями, в которых использовались полупроводники в цепи управления и вакуумные лампы в силовом каскаде, чтобы сделать возможными продукты с более высоким напряжением. В 1950-х и начале 1960-х годов источники питания, использующие технологию Mag-Amp, удовлетворяли требованиям приложений, требующих значительно большей мощности.

Kepco Type KM, конструкция Mag-Amp

В это же время появилась концепция первых дистанционно программируемых источников питания. Пионером в этой области был доктор Кеннет Купферберг, один из основателей Kepco, которому за свою карьеру было присвоено 14 патентов.

В 60-е годы мир все еще оставался аналоговым. Компьютеры все еще находились на ранней стадии развития. Большая дискуссия была сосредоточена на аналоговых вычислениях [управление операционными усилителями для моделирования и моделирования] и этой странной концепции, называемой цифровыми вычислениями.В то время линейные последовательные источники питания рассматривались скорее как усилители мощности, чем как источник питания. Эта концепция усилителя использовала высокий коэффициент усиления и линейность транзисторов и позволила создать операционные усилители большой мощности. Как операционные усилители, они были созданы для масштабирования, суммирования, интеграции или управления сигналами. Для этого производились блоки питания, обеспечивающие доступ ко всем узлам управления. Элементы управления как вводом, так и обратной связью могут быть удалены и заменены пользователем, чтобы разрешить манипулирование выводом для удовлетворения многих разнообразных приложений.

В 1960-е годы также были представлены истинно биполярные (четырехквадрантные) блоки источника / поглотителя и концепция феррорезонанса для коррекции колебаний напряжения источника в высоконадежном корпусе с малым количеством деталей.

Модель противовыбросового превентора Kepco с биполярным 4-квадрантным питанием
(см. Технические характеристики противовыбросового превентора)

В 1970-х годах энергетический кризис, охвативший весь индустриальный мир, предоставил импульсным источникам питания возможность вновь выйти на поверхность и занять значительную позицию на рынке электроники.

Проектирование и производство импульсных источников питания восходит как минимум к 1950-м годам. В то время эта продукция производилась в огромных количествах, в основном для замены вибраторов. В те дни вибраторы преобразовывали 12 В автомобиля в постоянный ток высокого напряжения путем механического переключения (первый импульсный источник питания)! Позже для электрического переключения стали использовать германиевые транзисторы.

Основная проблема, которая препятствовала развитию и более широкому использованию этой топологии, заключалась в ее относительно низком частотном диапазоне (в пределах среднего звукового спектра), из-за которого эти продукты раздражающе свистели.

Большим прорывом в 1970-х годах стала разработка феррита с низкими потерями (материал сердечника трансформатора) в сочетании с легкодоступными высокоскоростными кремниевыми транзисторами, которые сделали возможной практическую реальность высокочастотных продуктов, которые могли работать на частотах выше 20 кГц, где они были неслышимы.

В течение этого же десятилетия линейный источник питания с высоким коэффициентом усиления был усовершенствован благодаря новому уровню интеллекта — способности выполнять команды с главного компьютера по стандартной коммуникационной шине.

Цифровое управление вживлялось в переднюю часть линейных источников питания. Самые первые интерфейсы состояли из цепей резисторов, которые были параллельны герконовым реле для создания управления BCD Digital. Затем последовало цифро-аналоговое преобразование [ЦАП] для управления напряжением, и, наконец, в середине десятилетия промышленность источников питания приняла стандарт измерительной шины, представленный компанией Hewlett Packard как HPIB. Он был принят Институтом инженеров по электротехнике и электронике как IEEE-488, а позже переименован в GPIB производителями приборов.До этого отраслевого стандарта промышленность была ограничена последовательной шиной RS232, которая была очень медленной и ограничивалась относительно ограниченными расстояниями между контроллером и прибором.

В Европе это известно как шина IEC.

В 1980-е годы на рынок вышло много новых начинающих компаний, производящих переключаемые продукты. Многие из этих новых компаний базировались в Азиатско-Тихоокеанском регионе, сначала в Японии, а затем переместились в Тайвань и Гонконг.

За это десятилетие качество и рабочие характеристики коммутаторов существенно улучшились.Рабочие частоты также увеличились с диапазона 25-50 кГц до 100 кГц и даже до 1 мегагерца, поскольку полевые транзисторы заменили биполярные транзисторы.

Сейчас мы находимся более чем на полпути в 1990-е годы, и мы уже испытали множество изменений. Например, эта отрасль, движимая требованиями рынка, создала коммутационные устройства, которые работают на все более высоких частотах и ​​построены с использованием технологии поверхностного монтажа (SMT), что существенно снижает их физический размер.Мы видели те же самые продукты, предлагающие такие функции, как вход с широким диапазоном , для согласования с источниками напряжения по всему миру, коррекция активного коэффициента мощности, для минимизации гармонических искажений в линиях электропередач и принудительное разделение тока, для обеспечения этих продуктов с возможность отказоустойчивой работы.

Kepco Model HSP, резервирование N + 1 с горячей заменой
(см. Технические характеристики HSP)

В современных отказоустойчивых энергосистемах обычно используется метод, известный как параллельное резервирование N + 1.Преимущество этого метода перед традиционной схемой параллельного подключения заключается в возможности распределения мощности (разделения тока) и минимизации нагрузки на отдельные блоки. Популярность подхода к системе с резервированием N + 1 с разделением тока возросла настолько быстро, что он стал фактическим стандартом в отрасли.

Kepco Model VXI-27, интерфейс VXI
управляет до 27 удаленными источниками питания

(см. Спецификации VXI-27)

Еще одна тенденция, вызывающая повышенный интерес, — это тенденция, которую иногда называют стабилизацией в точке использования; распределение мощности при некотором промежуточном напряжении (48 В, 150 В, 400 В).Этот метод также известен как «распределенная мощность». Он основан на использовании большого источника питания для преобразования переменного тока из сети в постоянный ток, который затем, в свою очередь, питает любой из ряда преобразователей постоянного тока в постоянный ток меньшей мощности, размещенных непосредственно в точке нагрузки. Этот метод распределения мощности позволил снизить количество проводов в системе, что привело к более управляемым размерам жгутов, что упростило сборку продуктов и уменьшило их общий размер.

Источники питания для КИП теперь взаимодействуют с IEEE 488.2, поддерживают VXI и поддерживают различные архитектуры программных панелей.

Что нас ждет на горизонте следующего этапа эволюции источников питания — оставайтесь с нами!


Свет: источник энергии


Вакуумные лампы, транзисторы и схемы (о боже!)

В электронных лампах первого поколения компьютеров временная или рабочая память обеспечивалась акустическими линиями задержки.Эти линии задержки использовали время распространения звука через среду, такую ​​как жидкая ртуть, или через провод для кратковременного хранения данных. По трубке посылается серия акустических импульсов; через некоторое время, когда импульс достиг конца трубки, схема обнаружила, представляет ли импульс 1 или 0 (двоичная система) и заставил генератор повторно послать импульс.

Следующее поколение компьютеров — это транзисторный компьютер.Транзистор — это полупроводник устройство, используемое для усиления или переключения электронных сигналов. Напряжение или ток, приложенные к одной паре выводов транзистора, изменяют ток, протекающий через другую пару выводов. Поскольку выходная мощность может быть намного больше, чем входная мощность, транзистор обеспечивает усиление. сигнала. По сравнению с электронными лампами транзисторы имеют много преимуществ. Транзисторы меньше по размеру, потребляют меньше энергии, более надежны, имеют более длительный срок службы и выделяют меньше тепла.Транзисторные компьютеры также содержали десятки тысяч двоичных логических схем в компактном пространстве.

Третье поколение компьютеров — это схемотехника. Использование схем стал более простым способом управления регулированием мощности. Каждая цепь создает путь для прохождения электричества и регулирует напряжение и сопротивление. Схемы компьютеров позволили интегрировать более доступные памяти: RAM и CAM.Они также учитывали многопроцессорность, жесткие диски с данными и основные процессоры. Электронные компьютеры потребляют меньше энергии, они более компактны и надежны, менее дороги и легко воспроизводятся. Последние 45 лет были составлены схемотехническими компьютерами и усовершенствованиями этих компьютеров. Тем не менее, электронные схемы не идеальны, и новые изобретательские технологии возьмут верх.

Солнечная энергия ярче нашего дня

Солнечная энергия — это производство электричества из солнечного света.Солнечная энергия сегодня осуществляется с помощью двух различных подходов: фотоэлектрической и концентрированной солнечной энергии. Фотогальваника (PV) представляют собой массивы ячеек, содержащих материалы которые преобразуют солнечное излучение в постоянный ток. Материалы в массиве вызывают фотоэлектрический эффект. который производит напряжение. Концентрация солнечной энергии (CSP) использует линзы или зеркала для фокусировки большой площади солнечного света на меньшей площади.Солнечный свет обычно фокусируется на кипячении воды, которая затем используется для выработки энергии.

Фотонные компьютеры и световые технологии

Фотонные компьютеры, также известные как оптические компьютеры, используют световые лучи вместо электрических токов для питания компьютеров.По этой технологии углеводородный краситель замораживается в кристаллической смеси. Два лазера разной частоты фокусируются на каждой отдельной молекуле одновременно. Свет одного лазера поглощается красителем, в то время как другой лазер выделяет поглощенный свет в виде энергии. Конструктивная интерференция между лазерами заставляет свет становиться ярче, увеличивая энергию и эффективно создавая транзистор.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.