Site Loader

Содержание

Схемы зарядных устройств и выпрямителей для аккумуляторов

Наиболее выгодными и удобными источниками питания карманных приемников являются герметизированные никель-кадмиевые аккумуляторы, которые отличаются высокой удельной емкостью, большой механической прочностью, малым внутренним сопротивлением и, самое главное, возможностью многократного их применения после соответствующей зарядки. Они выдерживают большое число циклов заряд-разрядов, что обеспечивает большой срок службы.

Заряжать аккумуляторы можно от любого источника постоянного тока, обеспечивающего нормальный зарядный ток. Чтобы не испортить аккумуляторы при заряде, необходимо строго соблюдать полярность включения и не превышать зарядный ток, указанный в таблице, в противном случае отдельные аккумуляторные элементы разрушатся (могут взорваться). Не рекомендуется также разряжать аккумулятор до напряжения ниже 1 в (на элемент).

Таблица

Схема простого зарядного устройства

Простейшая схема выпрямительного устройства для зарядки аккумуляторной батареи от сети переменного тока приведена на рис. 1. Как видно из рисунка, в качестве вентиля использован диод Д1, который пропускает ток только в прямом направлении.

При подключении к выпрямителю переменного напряжения через диод, а следовательно, и через аккумулятор Ак будут протекать отдельные импульсы электрического тока одного направления. Такой ток называется пульсирующим.

Рис. 1. Схема бестрансформаторного зарядного устройства для аккумуляторов 7Д-0,1.

Резисторы R1, R2 служат для ограничения величины зарядного тока до требуемой величины. На рис. 1 приведены сопротивления резисторов для зарядки аккумуляторов типа 7Д-0,1.

Переключатель В1 позволяет включать выпрямитель для работы от сети переменного тока напряжением 127 или 220 в. Выпрямители, предназначенные для зарядки аккумуляторов, называют зарядными устройствами (ЗУ).

Недостатком приведенной схемы является наличие гасящих резисторов, на которых бесполезно рассеивается мощность. Нагрев резисторов приводит к повышению температуры корпуса, в котором обычно монтируется ЗУ, а это резко снижает величину допустимого обратного напряжения диода и может привести к выходу его из строя.

Зарядное устройство с конденсатором

Наибольшее распространение находят зарядные устройства, в которых в качестве ограничительного сопротивления используется безваттное сопротивление —  конденсатор постоянной емкости (рис 2).

Работает такое ЗУ следующим образом. Во время одного полупериода переменного напряжения, когда на гнезде 1 питающей сети получается положительная полярность, а на гнезде 2 отрицательная, через диод Д1 проходит ток, заряжающий конденсатор С1.

Рис. 2. Схема бестрансформаторного зарядного устройства с конденсатором для аккумуляторов.

При этом правая обкладка конденсатора С1 оказывается заряженной положительно. В следующий полупериод, когда полярность напряжения на гнездах 1— 2 изменится, происходит перезарядка конденсатора С1 и через диод Д2 и аккумулятор пройдет импульс тока, величина которого зависит (при данных напряжениях сети и аккумулятора) от емкости конденсатора С1.

Таким образом, изменяя емкость этого конденсатора, можно изменять величину зарядного тока. Рабочее напряжение конденсатора С1 должно быть не менее 350 и 600 в для сети 127 и 220 в соответственно.

Конденсатор С1 должен быть обязательно бумажным. Необходимую емкость обычно получают путем параллельного соединения нескольких конденсаторов с различными номиналами.

Зарядное устройство с диодным мостом

На рис. 3 представлен другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0.1 в приемнике «Селга». В этом устройстве выпрямительная часть собрана по обычной мостовой схеме па диодах Д1— Д4.

Для получения необходимого зарядного тока используются конденсаторы С1, С2 типа МБМ, сравнительно небольшой емкости, что является преимуществом этой схемы по сравнению с предыдущей.

Рис. 3. Другой вариант ЗУ, которое используется для зарядки аккумулятора типа 7Д-0,1.

При напряжении сети 127 в, переключателем В1 оба конденсатора соединяют параллельно. Резистор R1 ограничивает максимальную величину импульса тока.

Резистор R2 служит для разрядки конденсаторов после отключения ЗУ от сети. (R2 — 470 ком).

Выпрямитель для зарядки аккумуляторов

Для зарядки аккумуляторов напряжением 2,5 или 3,75 а можно воспользоваться схемой ЗУ, приведенной на рис. 4. Подобным устройством снабжены приемники «Космос».

По этой же схеме смонтированы и ЗУ приемников «Рубин», «Сюрприз» и др. Сопротивление резисторов R3, R2 выбирают равными: 620 ом — для зарядки аккумуляторов типа 2Д— 0,1. 3 ком — для аккумуляторов типа 2Д— 0,06 и 1,6 ком — для аккумуляторов типа ЗД— 0,1.

Рис. 4. Схема для зарядки аккумуляторов напряжением 2,5 или 3,75.

Выпрямитель собран по двухполупериодной схеме на диодах Д1, Д2 Функции гасящих резисторов выполняют конденсаторы С1, С2, соединенные последовательно.

При работе ЗУ от сети напряжением 127 а, конденсатор С1 замыкается переключателем В1. Такая схема переключения позволяет использовать конденсаторы с меньшим рабочим напряжением.

Резисторы R2, R3 и R1 имеют то же назначение, что и соответствующие резисторы R1 и R2 в схеме рис. 3 .

Зарядно-питающий блок

На рис. 5 приведена схема зарядно-питающего блока, основной частью которого является выпрямитель со стабилизацией выходного напряжения. С помощью ручного регулятора выходное напряжение может быть установлено в пределах 1— 14 а при токе нагрузки до 300 ма.

Выпрямитель собран по двухполупериодной мостовой схеме на диодах Д1— Д4. Выпрямленное напряжение поступает на вход транзисторного стабилизатора, смонтированного на составном транзисторе Т1.Т2 и стабилитроне Д5, создающем опорное напряжение на базе транзистора Т1 Напряжение на выходе такого стабилизатора (гнездах Гн1, Гн2) близко к опорному, поэтому если его изменять с помощью потенциометра R1 будет изменяться и напряжение на нагрузке.

Подобная схема стабилизатора позволяет получить стабилизированное напряжение с малым внутренним сопротивлением источника питания и с малым коэффициентом пульсаций, что обеспечивает высокое качество звучания транзисторного приемника при питании его от сети.

При использовании блока для зарядки аккумуляторов переключатель В1 устанавливается в положение 1. Аккумулятор присоединяют к гнездам Гн3, Гн4. Сопротивление резистора R4 зависит от типа аккумулятора, используемого в приемнике, и подбирается опытным путем.

Чтобы ослабить помехи, проникающие из сети в цепи приемника, между обмотками / и // трансформатора Тр1 имеется электростатический экран, а каждая из секций Іа, 1б заблокирована конденсаторами С1, С2.

Трансформатор Тр1 выполнен на сердечнике УШ16, толщина набора 32 мм. Обмотка /а содержит 1270 витков провода ПЭВ-1 0,15; обмотка 1б — 930 витков провода ПЭВ-1, 0,12.

Электростатический экран имеет один слой провода ПЭВ-1 0,12. Обмотка П содержит 160—170 витков провода ПЭВ-1 0,47. В качестве изоляционных прокладок между обмотками и электростатическим экраном используют тонкую вощенную бумагу (1— 2 слоя).

Практически при изготовлении такого блока можно использовать любой трансформатор питания, у которого оставляют только сетевую обмотку, а число витков обмотки накала увеличивают в 2,5— 3 раза.

В блоке можно использовать транзисторы П13—П16, МП39—МП42, МП104— МП 106 (Т1), П201—П203, П213, П214 (Т2), диоды Д7, Д226, конденсаторы К50— 6, резисторы МЛТ, СП и др.

Рис. 5. Схема зарядно-питающего блока.

Конструктивное оформление устройства может быть самым различным. Если все детали исправны и при монтаже не допущено ошибок, оно сразу начинает работать. После включения в сеть, переключатель В1 устанавливают в положение 2 и измеряют напряжение на гнездах Гн1, Гн2.

При вращении ручки потенциометра R1 по часовой стрелке выходное напряжение должно плавно изменяться от нуля до значения, соответствующего напряжению стабилизации стабилитрона.

Затем включают миллиамперметр последовательно со стабилитроном (в точку «а») и подбирают сопротивление резистора R2 так, чтобы при отсутствии нагрузки ток через стабилитрон был равен .15— 20 ма. На этом налаживание заканчивается.

Для удобства работы шкалу потенциометра R1 желательно проградуировать в вольтах.

Подобный зарядно-питающий блок представляет интерес для радиолюбителей, занимающихся конструированием различной транзисторной аппаратуры В том случае, если от блока требуется получить фиксированное напряжение 6, 9, 12 а, нужно потенциометр R1 из схемы исключить и базу транзистора Т1 присоединить к верхнему (по схеме) концу резистора R2.

Для получения напряжения порядка 6 а надо использовать стабилитрон типа КС156А, 9 в — Д809, 12 а— Д813. После установки нужного стабилитрона, резистором R2 устанавливают необходимый ток стабилизации: порядка 20— 25 ма для стабилитрона Д809, 14— 16 ма для стабилитрона Д813 н 45— 50 ма для стабилитрона КС156А.

Источник: С. Л. Матлин — Радиосхемы (пособие для радиокружков), 1974г.

Автоотключение любого ЗУ автомобиля при завершении зарядки, схема

Всем привет, сегодня рассмотрим несколько универсальных схем, которые позволят отключить зарядное устройство при полной зарядке аккумулятора, иными словами внедрением этих схем можно построить автоматическое зарядное устройство или доработать функцию автоотключения промышленной зарядки.

Сразу хочу пояснить один момент, если зарядное устройство работает по принципу стабильный ток — стабильное напряжение, то нет смысла использовать функцию автоотключения, поскольку естественным образом по мере заряда батареи ток в цепи будет падать и в конце заряда он равен нулю.Схемы, которые мы сегодня рассмотрим, предназначены для работы с автомобильными свинцово — кислотными аккумуляторами, хотя они могут работать с любыми зарядными устройствами, без всякой переделки последних.

Начнём с простых схем…

Первый вариант построен всего на одном транзисторе, переключающим элементом в схеме является реле с напряжением катушки 12 вольт.

Использованы те контакты, которые замкнуты без подачи питания на реле

Резистивный делитель или переменный резистор, задает нужное напряжение, смещение на базе транзистора, тот срабатывая подаёт питание на обмотку реле, вследствие чего реле включается размыкая контакт, который в состоянии покоя был замкнут и через который протекал ток заряда.Используя подстроечный резистор мы можем выставить то напряжение при котором сработает транзистор.

Для настройки схемы удобно использовать регулируемый источник питания, на котором нужно выставить напряжение около 13.5-13.7 вольт, что равноценно напряжению полностью заряженного автомобильного аккумулятора.

Затем медленно вращая подстроечный резистор добиваемся срабатывания транзистора, а следовательно и реле при выставленном напряжении.Теперь проверяем схему еще раз, допустим в начале заряда напряжение на аккумуляторе 12 вольт, по мере заряда оно увеличивается и по достижению порога 13.5 вольт реле срабатывает, отключив зарядное устройство от сети.

Кстати, можно подключить реле следующим образом, в этом случае зарядка не отключается от сети, а просто пропадает выходное напряжение и процесс заряда прекратиться, в этом случае контакты реле должны быть рассчитаны на токи в полтора раза больше максимального выходного тока зарядного устройства.

Транзистор буквально любой обратной проводимости, советую взять транзисторы средней мощности наподобие BD139, диоды в эмиттерной цепи транзистора тоже особо не критичны, ток потребления схемы всего 10-20 миллиампер, но схема имеет несколько недостатков.

Например, низкая помехоустойчивость, из-за которых возможно ложное срабатывание реле и невысокая точность работы, из-за отсутствия источника опорного напряжения и прочих стабилизирующих узлов.

Добавив в базовую цепь ключа стабилитрон, мы решим указанные проблемы и появится возможность довольно точно выставить нужное напряжение срабатывания.

Для настройки советую использовать многооборотный подстроечный резистор. Диод VD1 защищает транзистор от самоиндукции в случае размыкания реле.

Настраиваем схему точно так, как в первом варианте, лампочка имитирует процесс заряда и подключена вместо аккумулятора, при превышении определенного порога, реле срабатывает и лампа потухает.

Вторая схема построена на базе любого таймера NE555, этот вариант похож на предыдущие, микросхема NE555 в своей конструкции содержит два компаратора, пониженное опорное напряжение формирует стабилитрон, порог срабатывания устанавливается подстроечным резистором, как только напряжение на батарее будет равна пороговому, на выходе таймера получим высокий уровень, вследствие чего сработает транзистор.

В этом варианте использовать те контакты реле, которые находятся в разомкнутом состоянии без подачи питания. Во время настройки точку «А» размыкают от выходного контакта и подключают к плюсу зарядного устройства. К выходному контакту реле подключают лампу, второй вывод лампы подключают к массе питания.

В обеих схемах порог срабатывания можно выставить в пределах от 13.5 до 14 вольт, напряжение полностью заряженного автомобильного аккумулятора составляет от 12.6 до 12.8 вольт но при заведенном двигателе напряжение доходит до 14.5 вольт, так что небольшой перезаряд аккумулятора никак не повредит.

Аналогичную схему можно собрать на базе компаратора или операционного усилителя в компараторном включении, принцип работы тот же, что и в случае внедрения таймера NE555. В этой же статье, приведены наиболее простые и доступные варианты.

Все печатки в формате .lay можно скачать для повторения.

Автор; Ака Касьян

Выпрямитель для зарядки аккумуляторов 12/24 В

Знакомые с автобазы маршрутных микроавтобусов попросили сделать зарядное устройство для зарядки аккумуляторов 12 В и 24 В. Поскольку пользоваться им будут абсолютно неподготовленные люди, решено сделать его устойчивой к ошибкам от далёких от электроники юзерам.

Просмотрев несколько разных схем с сайта 2Схемы обнаружилось, что бессмысленно делать какую-то автоматику и электронику. Выпрямитель должен просто давать правильное напряжение и, при необходимости, оптимальный ток. Что как раз нужно автомобильным аккумуляторам.

Схема выпрямителя для АКБ на 12 и 24 В

В общем конструкция тривиальна. Трансформатор, выключатель, диодный мост, светодиоды, амперметр, реле, кнопка. Вот и всё.

Как действует зарядное устройство

Нажмите кнопку СТАРТ, чтобы подать напряжение на трансформатор. Это приводит в действие реле Pk, которое соединит контакты, подключенные параллельно кнопке START. Цепь зафиксируется и проводит до тех пор, пока на катушке реле есть напряжение.

Реле действует как «защита от дурака», такая как случайное замыкание и постоянная перегрузка выпрямителя. Короткое замыкание или большой ток вызывают падение напряжения и реле размыкается, отключая источник питания трансформатор и защищая выпрямитель от повреждения.

Далее тут есть переключатель напряжения в сочетании со светодиодами, которые информируют о текущем напряжении на выходе. Можно было соединить две обмотки параллельно и тогда выходной ток был бы больше, но в наличии был переключатель только однополюсный. Конечно вы можете сделать такую модификацию либо использовать другой трансформатор и получать разные напряжения, например 6 В и 12 В. Нужно только впаять другое реле и светодиоды.

Выходные напряжения 14 В и 28 В. Ток — 3,5 А или чуть выше. Понадобилось всего 5 часов, чтобы собрать и запустить его (с перерывом на обед). Передняя панель напечатана на белой клейкой бумаге для струйной печати.


Аккумулятор должен заряжаться током 1/10 от его емкости, то есть 45 Ач — 4,5 А. Что подразумевает полное время зарядки 10 часов. Полная разрядка кислотной батареи окажет большое влияние на ее работу.

Конечно ошибкой является отсутствие предохранителя на выходе выпрямителя, который защитил бы АКБ в случае пробоя моста. Кроме того, сетевой предохранитель следует обязательно размещать на обмотке.

Что касается отсутствия регулирования тока. Вероятно оно и не нужно при такой текущей эффективности. Максимальный ток составляет 3,5 А, то есть можете легко зарядить авто аккумулятор 36 Ач и выше. Перегрузка тоже не угроза, потому что напряжение низкое и ток будет падать с ростом напряжения. Естественно заряжая аккумулятор не забывайте, что он подключен (автомата тут нет).

Понятно что в идеале зарядный ток должен быть установлен на уровне 10% емкости аккумулятора (например 100 Ач — это 10 A зарядный ток или 50 Ач — это зарядный ток 5 А), после этого зарядное напряжение не должно превышать 13,8 В во время обычной зарядки, а на ускоренном третьем напряжении 15 В должен быть автоматический выключатель зарядки, когда зарядный ток достигает небольшого значения на конечной стадии зарядки и зависит от емкости аккумулятора и его температуры, ну и должно быть защищено от короткого замыкания и перегрузки, но это всё уже из области совсем других ЗУ.

Если трансформатор на напряжение 20 В, то будет ток намного больше, чем 10 А, а если 10 В, ток, вероятно, вообще не будет течь. Для зарядки батареи обычно достаточно 5 А. Помните еще одну вещь: чем больше ток, который заряжаете АКБ, тем быстрее придётся заменить его новым!

Схема защиты зарядного

Самая простая система защиты может быть выполнена на нескольких радиоэлементах. Реле с контактным током, превышающим зарядный ток (например 16 А) — катушка на 5-9 В постоянного тока. Диод — 1 А, резистор Р — в 5 раз больше, чем сопротивление катушки реле. Конденсатор С — например 220 мкФ 25 В. Конечно у схемы есть недостаток — после отсоединения аккумулятора реле продолжает работать, пока не отключится электропитание.

Можно использовать два решения. Сначала установите дополнительный выпрямительный диод в направлении противоположном «стабилитрону» в цепи катушки реле. Второе решение состоит в том, чтобы поставить выпрямительный диод в противоположном направлении вместо «стабилитрона», а светодиод также обратно плюс резистор и использовать его как знак обратного подключения батареи.

Также советую использовать диоды Шотки, например, от блока питания компьютера. Эти диоды выделяют меньше тепла чем обычные. Дальнейшее снижение потерь мощности в выпрямителе может быть достигнуто с помощью трансформатора с симметричной (двойной) вторичной обмоткой. Трансформатор тут на 50 Вт, нельзя ожидать от него многого, но он всё-же делает свою работу уже долгое время.


Схема автоматического зарядного устройства для сотовых телефонов

Сотовые телефоны комплектуются собственными зарядными устройствами. Эти зарядные устройства нельзя назвать универсальными. Поскольку разновидностей сотовых телефонов много, напряжение питания их аккумуляторов также различно. Так сотовый телефон фирмы Motorola нельзя заряжать с помощью зарядного устройства для сотового телефона фирмы Samsung Или Sony Ericsson не только потому, что телефоны имеют разные разъемы для подключения внешнего питания, но, главное, потому, что у этих телефонов различное номинальное напряжение аккумуляторных батарей.

Большинство современных моделей сотовых телефонов имеют встроенное «умное» устройство, автоматически прекращающее зарядку аккумулятора при достижении им полной емкости. Поэтому оставлять такие сотовые телефоны на постоянной подпитке от зарядного устройства практически безопасно для самого телефона и его аккумулятора. То же касается и зарядного устройства, включенного в осветительную сеть 220 В. Потребляемый ток (от сети 220 В) зарядным устройством очень мал, и не превышает 8— 10 мА (при полностью заряженном аккумуляторе). Внешне можно лишь зафиксировать незначительный (до +30 °С) нагрев корпуса зарядного устройства при зарядке телефона и охлаждение этого корпуса в режиме насыщенного аккумулятора.

Такое устройство можно собрать как по «классической» схеме, понизив сетевое напряжение обычным трансформатором и регулируя пониженное напряжение, так и по более современной импульсной схеме, поставив стабилизатор и высокочастотный преобразователь в высоковольтную часть схемы.

Преимущество «стандартной» компоновки схемы — простота схемы стабилизатора и большая безопасность при настройке схемы. Но есть и недостатки, отсутствующие в импульсной схеме— нужен трансформатор довольно больших размеров, сильный нагрев регулирующего транзистора, чувствительность схемы к колебаниям сетевого напряжения…

Импульсные источники питания работают на высокой частоте — десятки килогерц, поэтому трансформатор может быть буквально «микроскопическим» (трансформатор в виде куба со стороной 20 мм выдает в нагрузку до 3—5 Вт полезной мощности, т. е. до 1 А тока; ток в высоковольтной части схемы в коэффициент трансформации раз (30— 40) меньше тока в низковольтной части). Поэтому нагрев транзистора также значительно меньше, тем более что он работает в ключевом режиме; ну а благодаря ШИМ (широтно-импульсной модуляции) устройство будет нечувствительно к колебаниям сетевого напряжения в пределах 150— 250 В и более.

Для тех же, у кого нет штатного зарядного устройства (кто приобрел б/у сотовый телефон на распродаже), будет полезным самодельное зарядное устройство с индикацией состояния и автоматической регулировкой зарядного тока. Электрическая схема этого простого в повторении и налаживании устройства представлена ниже:

 

 

Рис. 1. Электрическая схема зарядного устройства для сотовых телефонов с индикацией состояния и автоматической регулировкой выходного тока

На схеме показано «классическое» зарядное устройство для заряда никель-металлогидридных (Ni-MH) и литиевых (Li-ion) аккумуляторов для сотовых телефонов с номинальным напряжением 3,6— 3,8 В.

Такое номинальное напряжение имеют аккумуляторные батареи сотовых телефонов Nokia различных модификаций (например, Nokia 3310, Nokia 1610 и др.). Однако спектр применения этого зарядного устройства можно сущест-

венно расширить таким образом, чтобы оно стало универсальным и помогало заряжать сотовые телефоны других фирм (с иным номинальном напряжением аккумулятора). Для переделки зарядного устройства (изменения значения выходного напряжения и тока) достаточно изменить в принципиальной схеме значения только некоторых элементов (VD2, R5, R6)— об этом написано чуть дальше.

Чтобы понять, какое номинальное напряжение аккумулятора у вашего сотового телефона, достаточно снять верхнюю крышку аппарата и рассмотреть запись на аккумуляторе.

Как правило, аккумуляторные батареи телефонов Nokia, Motorola, Sony Ericsson и некоторых моделей Samsung имеют номинальное напряжение 3,6— 3,8 В. Это наиболее популярное напряжение среди современных моделей сотовых телефонов.

Первоначальный ток зарядного устройства 100 мА. Это значение определяется выходным напряжением вторичной обмотки трансформатора Т1 и величиной сопротивления резистора R2. Оба эти параметра можно корректировать, подбирая другой понижающий трансформатор или иное сопротивление ограничивающего резистора.

Переменное напряжение осветительной сети 220 В понижается силовым трансформатором Т1 до 10 В на вторичной обмотке, затем выпрямляется диодным выпрямителем (собранном по мостовой схеме) VD1 и сглаживается оксидным конденсатором С1.

Выпрямленное напряжение через токоограничивающий резистор R2 и усилитель тока на транзисторах VT2, ѴТЗ (включенные по схеме Дарлингтона) поступает через разъем XI на аккумулятор и заряжает его минимальным током. При этом свечение светодиода HL1 свидетельствует о наличии зарядного тока в цепи. Если данный светодиод не светится, то значит аккумулятор заряжен полностью, или в цепи зарядки нет контакта с нагрузкой (аккумулятором).

Свечение второго индикаторного светодиода HL2 в самом начале процесса зарядки не заметно, т. к. напряжения на выходе зарядного устройства недостаточно для открывания транзисторного ключа VT1. В это же самое время составной транзистор ѴТ2, ѴТЗ находится в режиме насыщения и зарядный ток присутствует в цепи (протекает через аккумулятор).

Как только напряжение на контактах аккумулятора достигнет значения 3,8 В (что говорит о полностью заряженном аккумуляторе), стабилитрон VD2 открывается, транзистор VT1 также открывается и загорается светодиод HL2, а транзисторы ѴТ2, ѴТЗ соответственно закрываются и зарядной ток в цепи питания аккумулятора (X1) уменьшается почти до нуля.

Для полноценного и эффективного налаживания устройства потребуются два однотипных аккумулятора для сотового телефона с номинальным напряжением 3,6—3,8 В. Один аккумулятор полностью разряженный, а другой соответственно полностью заряженный штатным зарядным устройством, идущим в комплекте вместе с сотовым телефоном.

Налаживание сводится к установке максимального зарядного тока и напряжения на выходе устройства, при котором светится светодиод HL2. Этот максимальный ток устанавливается опытным путем так.

К выходу зарядного устройства (точки А и Б, разъема X1, см. рис. 1.7) через (последовательно соединенный) миллиамперметр постоянного тока подключают заведомо разряженный сотовый телефон, например, фирмы Nokia 3310 (который после длительной эксплуатации выключился сам из-за разряженной аккумуляторной батареи), и подбором сопротивления резистора R2 выставляют ток 100 мА. Для этой цели удобно использовать стрелочный миллиамперметр М260М с током полного отклонения 100 мА. Однако можно использовать и иной аналогичный прибор, в том числе стрелочный ампервольтметр (тестер) Ц20, Ц4237 (и подобные им), включенный в режиме измерения тока на пределе 150—250 мА. В этой связи применять цифровой тестер не желательно из-за инерции считывания и индикации показаний.

После этого (предварительно отключив зарядное устройство от сети переменного тока) эмиттер транзистора ѴТЗ отпаивают от других элементов схемы и вместо сотового телефона с «севшим» аккумулятором к точкам А и Б на схеме подключают сотовый телефон с нормально заряженным аккумулятором (для этого переставляют аккумуляторы в одном и том же телефоне). Теперь подбором сопротивления резисторов R5 и R6 добиваются зажигания светодиода HL2. После этого эмиттер транзистора ѴТЗ подключают к другим элементам согласно схеме.

Трансформатор Т1 любой, рассчитанный на питание от осветительной сети 220 В 50 Гц с вторичными (вторичной) обмотками, выдающими напряжение 10— 12 В переменного тока, например, ТПП 277-127/220-50, ТН1-220-50 и аналогичный.

Транзисторы VT1, VT2 типа КТ315Б—КТ315Е, КТ3102А—КТ3102Б, КТ503А— КТ503В, KT3117A или аналогичные по электрическим характеристикам. Транзистор ѴТЗ — из серий КТ801, КТ815, КТ817, КТ819 с любым буквенным индексом. Необходимости в установке этого транзистора на теплоотвод нет.

К точкам А и Б (на схеме) припаивают штатный провод от зарядного устройства сотового телефона соответствующей модели с тем, чтобы оконечный разъем на другом конце этого провода подходил к разъему сотового телефона.

Все постоянные резисторы (кроме R2) типа МЛТ-0,25, MF-25 или аналогичные. R2 — с мощностью рассеяния 1 Вт.

Оксидный конденсатор С1 типа К50-24, К50-29 на рабочее напряжение не ниже 25 В или аналогичный. Светодиоды HL1, HL2 типа АЛ307БМ. Светодиоды можно применить и другие (для индикации состояния различными цветами), рассчитанные на ток 5— 12 мА.

Диодный мост VD1 — любой из серии КЦ402, КЦ405, КЦ407. Стабилитрон VD2 определяет напряжение, при котором зарядной ток устройства уменьшится почти до нуля. В данном исполнении необходим стабилитрон с напряжением стабилизации (открывания) 4,5—4,8 В. Указанный на схеме стабилитрон можно заменить КС447А или составить из двух стабилитронов на меньшее напряжение, включив их последовательно. Кроме того, как было отмечено ранее, порог автоматического отключения режима зарядки устройства можно корректировать изменением сопротивления делителя напряжения, состоящего из резисторов R5 и R6.

Элементы устройства монтируют на плате из фольгированного стеклотекстолита в пластмассовый (диэлектрический) корпус, в котором просверливают два отверстия для индикаторных светодиодов. Хорошим вариантом (использованным автором) является оформление платы устройства в корпус от использованной батареи типа А3336 (без понижающего трансформатора).

Альтернативный вариант зарядного устройства можно собрать с помощью импульсного стабилизатора напряжения, который рассмотрим далее.

Литература: Андрей Кашкаров — Электронные самоделки

Беспроводная зарядка своими руками: как правильно сделать, инструкция

С повышением количества мобильных устройств на руках жителей планеты, как никогда встает вопрос обеспечения приборов питанием. Конечно, самый простой способ – зарядка аккумуляторных батарей, с последующим использованием накопленного тока. Вот только, бесконечное подключение или отсоединение зарядного кабеля к устройству приводит со временем к разбалтыванию и выходу разъемов из строя. Вариантом решения служит беспроводная зарядка, сделанная своими руками или приобретенная в магазине.

Принцип работы беспроводной зарядки для телефона

К сожалению, современные модели представленных устройств передачи тока по эфиру имеют некоторые недостатки. Но удобство применения такого оборудования позволяет закрыть глаза на его минусы. Собственно, весь процесс зарядки заключается в помещении мобильного устройства рядом или на специальную платформу – передатчик. Конечно же, телефон, планшет, смарт–часы, ноутбук или иное конечное перемещаемое устройство должны быть оборудованы соответствующим клиентским получателем тока по воздуху. Зарядка телефона по воздуху: один из вариантов исполнения

Топовый ценовой сегмент устройств уже, скорее всего, содержит в своей конструкции встроенный приемник индукционных сигналов одного из распространенных стандартов – Qi, PMA и AirFuel, а соответствующий передатчик можно приобрести уже в сборе, или отдельно, а также он, бывает, что поставляется вместе с мобильным оборудованием. Есть и проприетарные, закрытые стандарты беспроводной зарядки, которые используются, к примеру, фирмой Samsung для своих продуктов.

Но основная разница состоит не в принципе передачи – используется всегда физический эффект электромагнитной индукции, – а в частоте переменного тока на выходе передатчика. Стандарт Qi, который разрабатывается концерном компаний по использованию беспроводной энергии WPC, характерен этим параметром излучателей в пределах 100-205 кГц. PMA, производимый одноименной компанией, применяет для передачи тока диапазон 277-357 кГц.

Хоть он и проиграл конкурентную борьбу с QI, многие производители оставляют возможность его использования в своих устройствах беспроводной зарядки, или гибридным образом оба стандарта, или конкретно одного PMA. Гибридное беспроводное зарядное устройство

После падения технологии PMA фирма, его ранее производящая, объединила свои усилия с более чем 200 компаниями, входящими в концерн WPC. Результатом стала разработка нового стандарта AirFuel, который подразумевает подключение передающих катушек, выполняющих роль антенн, на резонансных частотах, что позволило увеличить расстояние приема и общий КПД системы зарядки. Передача тока по воздуху

Вопросом, как сделать беспроводную зарядку или передачу питания различным устройствам по воздуху, задавались люди еще более 200 лет назад. Конечно, тогда не было аккумуляторов, но существовали их прообразы – лейденские банки. Поэтому и вопрос их подзарядки или непосредственного снабжения энергией устройств-потребителей без использования проводов и поднимался.

Еще в XIX веке, родоначальник всей электрической физики – Андре Ампер, от имени которого и получала название единица измерения силы тока, открыл физическое явление электромагнитной индукции.

Основные его труды в этом направлении связаны с наблюдением за опытами. Им было замечено, что есть взаимосвязь, при возникновении электромагнитного поля в двух рядом расположенных проволочных катушках. Если подать ток в одну, то и во второй будет наблюдаться возникновение тока на концах ее проводников и общего магнитного эффекта. Было установлено, путем проведенных экспериментов, что мощность электромагнитной индукции сильно падает при увеличении расстояния между обмотками. Тот самый Андре-Мари Ампер

Спустя почти 100 лет, работы Ампера были продолжены гением своего времени – Николой Тесла, который изучал передачу высокочастотных токов по воздуху и проектировал различные устройства их приема, с использованием такой технологии.

Постепенно физические принципы, лежащие в основе приборов обмена питанием через эфир, были подзабыты и не использовались. Слишком высоки затраты мощности передаваемого тока, малы расстояния, сложно производство принимающего и передающего оборудования на большие дистанции.

Второе дыхание технология получила с развитием носимых гаджетов и необходимостью их постоянной подзарядки. Аккумуляторы мобильных устройств имеют конечную емкость, весьма невеликую из-за своего размера, в то же время, внутренняя начинка сотовых телефонов, планшетов, «умных» часов и прочих мобильных устройств становится все более «жадной» к потреблению, что и приводит к необходимости постоянного подключения источника тока.

Состав беспроводной зарядки для телефона

Самодельное беспроводное зарядное устройство

Прежде чем изготавливать индукционную беспроводную зарядку для телефона своими руками, необходимо разобраться, какие компоненты относятся к приемнику, а что входит в состав передатчика. Индукционная токовая связь подразумевает генератор частоты сигнала. Можно использовать как самый простой – на одном транзисторе, так и более сложный – применяя сборку на микросхемах.

Минус первого способа – его относительно низкие частоты работы. А от этого параметра прибора как раз зависит дальность расстояния передачи, возникновение вихревых, паразитных токов в рядом расположенных металлических предметах, общая сложность монтажа антенны, – она должна состоять из двух взаимосвязанных обмоток. Схемы второго типа лишены этих недостатков.

В сущности, излучатель в системах индукционной связи и состоит из самого блока питания, выдающего напряжение, генератора, превращающего постоянный ток в последовательность импульсов, и передающей антенны – в роли которой используется намотанная проволокой своеобразная катушка.

Схема приемника еще проще. Обмотка-антенна через диод и конденсатор, преобразующий импульсы в постоянный ток, подключены к входам потребителя, в качестве которых может выступать зарядный штекер мобильного устройства или его аккумуляторная батарея напрямую.

В существующих схемах используемые токи малы, происходит передача энергии мощностью не более 5В.

Преимущества и недостатки самодельной беспроводной зарядки

Прежде чем перейти к тому, как сделать беспроводную зарядку для телефона, планшета или иного мобильного устройства, желательно быть уверенным в необходимости ее использования, учитывая все плюсы и минусы существующих систем питания без проводов.

Итак, плюсы, если изготовить схему беспроводной зарядки своими руками:

  • стоимость конструкции на порядок ниже, чем у покупных вариантов;
  • удобство применения – нет необходимости бесконечно вставлять или вынимать штекер зарядного устройства, достаточно просто положить телефон рядом с передающей частью;
  • из предыдущего пункта проистекает уменьшение износа разъемов;
  • ну, и конечно же, повышение своего ЧСВ и профессионализма в результате самостоятельного изготовления устройства.
Один из вариантов самодельных беспроводных зарядок

Есть у конструкции и несколько минусов:

  • необходимость доставания/покупки деталей;
  • умение паять или представление о процедуре монтажа схемы;
  • медленная зарядка устройств при передачах энергии по воздуху, которая происходит в несколько раз дольше. Это характерно и для промышленных вариантов исполнения беспроводных зарядок.
  • малое расстояние, на котором работает технология.
  • относительная сложность сборки без гарантии успеха.
  • наличие индукционных токов при работе беспроводной зарядки. Они, конечно, микроскопические, тем не менее, могут вызывать нагрев металлических поверхностей, электронных компонентов, отрицательно сказываться на здоровье. Кроме того, они вносят помехи в работу радиооборудования и оказывают общее негативное влияние на электронику.

Инструкция по созданию беспроводной зарядки своими руками

Описываться будет достаточно простая схема беспроводной зарядки. Передатчик в ней выполнен на микросхеме таймере – формирователе одиночных импульсов и полевом транзисторе, а приемник на диоде и стабилизаторе. Схема беспроводной зарядки

Простота конструкции дает возможность произвести ее даже навесным монтажом. Необходимо только помнить о том, что микросхемы и вообще полупроводниковые элементы не любят перегрева, поэтому сборку нужно выполнять придерживая пинцетом ножки критических компонентов схемы между их корпусом и местом пайки. Это позволит уменьшить температуру чувствительной части – пинцет будет работать, как радиатор.

Лучше использовать специальную панельку, для размещения на ней микросхемы таймера.

Инструменты и материалы для изготовления беспроводной зарядки

Для изготовления схемы беспроводной зарядки понадобятся:

  • ножницы или кусачки для работы с проволокой;
  • флюс и припой, в простейшем варианте канифоль и олово;
  • паяльник 25-40Вт;
  • обычное зарядное устройство от мобильного телефона;
  • микросхема формирователя импульсов NE555 на 5В;
  • мощный полевой транзистор IRF-Z44;
    Пример расположения выводов на аналоге транзистора
  • стабилизатор напряжения 7805;
    Расположение пинов стабилизатора
  • диод M4, для схемы приемника;
  • конденсаторы – два по 10n, и по одному 100n и 10µ;
  • резисторы – 10 Ом и 1 кОм;
  • медная, лакированная проволока для антенны – сечением 1 мм и 0,35-0,4 мм.

Изготовление передатчика

Как уже говорилось, монтаж схемы передатчика можно сделать, как навесной, так и на макетной или самостоятельно травленой плате. Здесь его размеры особого значения не имеют. Единственное замечание – антенна должна быть расположена ближе к подложке, на которую впоследствии помещается приемник.

Сама форма катушки также влияния на представленную схему большого не имеет, но рекомендуется выполнить ее спиральной формой, как на фотографии. Это улучшит характеристики передачи энергии, позволит повысить расстояние между приемником и излучателем. Передатчик на травленной плате и с антенной хорошей формы

Намотку рекомендуется проводить внутри какого-либо корпуса круглой формы – к примеру, в коробке от CD диска – в том месте, где он сам находился. Туда укладывается провод, с оставлением кончика, к которому будет припаян один из контактов самого передатчика, и потом витками, оборачивая вокруг предыдущих, укладывается проволока. Нужно сделать 25 таких оборотов.

После окончания намотки рекомендуется залить всю конструкцию универсальным клеем или эпоксидной смолой, оставив только конечные выходы проволоки. Которые в свою очередь необходимо залудить, а впоследствии и подсоединить к выходам излучателя. Схема излучателя

Изготовление приёмника

Приемник собрать еще проще. В нем минимум элементов. Вот только в его случае лучше всего осуществлять намотку антенны спиральным способом, для уменьшения размера схемы. Хотя самодельное приемное устройство, с высокой вероятностью, все равно не поместится в корпус телефона. А вот для планшетов есть реальный шанс его встроенного использования, так-как обычно в корпусе подобных устройств есть еще много свободного места.

Элементы схемы скрепляются пайкой. В идеале желательно использовать SMD компоненты, но можно обойтись и обычными радиодеталями. Намотка катушки антенны производится проволокой или проводом сечения 0,35-0,4 мм. Для уверенного приема индуцированных токов необходимо сделать 30 витков. Схема приемника

Соединение элементов

Хотелось бы заметить, что, как и для любой передающей и принимающей аппаратуры – в случае индукционной также необходима аккуратность выполнения. Просто смотать в кучу присоединенные элементы не получится – будут возникать паразитные электрические связи, которые сведут на нет весь толк от собранного прибора.

Для исполнения схемы все же рекомендуется вытравить их из заготовок, или же в случае недоступности фольгированного текстолита – использовать макетную плату. Все соединения – пайка, никаких скруток. Слишком ненадежно и мало того, что будет плохой контакт, так еще и в случае его возникновения будет трудно найти источник проблемы.

Особенности процесса сборки и подключения

Тут нужно помнить о том, что приемник будет присоединен к реальному, достаточно дорогому устройству–потребителю. Поэтому, перед присоединением нужно мультиметром проверить полярность на выходах приемника и наличие необходимого напряжения при работе собранной схемы – оно должно быть в пределах 4-5В. Стрелочный мультиметр – удобен для определения полярности

Также нужно определиться, как подключать потребителя. Здесь два варианта – или напрямую к аккумулятору, но в этом случае не будет видно, заряжен он уже или нет при выключенном устройстве, или в штатный разъем питания.

В обоих случаях обязательна проверка полярности и допустимых токов! Цена упущения – последующая функциональность мобильного устройства.

Модели телефонов, поддерживающие беспроводную зарядку

Собственно говоря, весь топовый сегмент мобильного оборудования от известных производителей обладает приемниками индукционных токов. Среди них аппараты Apple, Blackerry, Sony, Yota, Kyosera, Motorola, LG, Samsung, Asus, Google, HTC, Nokia.

Советы по выбору комплектующих

Богатство существующей элементарной базы

Многие элементы схемы индуктивного передатчика и приемника тока имеют как российские, так и зарубежные аналоги. К примеру, таймер NE555 можно безболезненно заменить на его полные аналоги (для некоторых необходимо будет проверить калибровку ножек и рабочее напряжение) – 1006ВИ1, 1006ВИ2, AN1555(N), GL555, LB8555(D|P), LM555(CN|N), MC1455(P|P1), NJM555D, RC555, TA7555P, UPC1555(C), UPC617C, KP1006ВИ1(А), KФ1006ВИ1, 142EH6, ICM7555(CBA-T|IPA)), LM555(CM|N), MC1455(D|U|G|P1), NE555(D|M|P|N), TA7555(F|S), UA555(TC(-8)|PC), ECG955M, M51841P.

В качестве полевого транзистора подойдут его варианты MTP50N05, КП723А, MTP50N06V, STP45NE06, STP50N06, MTB50N06V, STB45NF06T4, HUF75329(P3|S3(S)), STP45NF06, STP60NF06, STB60NF06(T4|L|LT4) или близкие по характеристикам.

Диод М4 в приемном контуре – заменяется любым с допустимыми токами 1А/400В. Можно чуть менее мощным, так как сила приходящего питания намного меньше.

Стабилизатор напряжения также можно заменить любым с выходным током 5В. Полные аналоги: L7805CV, MC7805CTG, русский КР142ЕН5А.

Зарядка Автомобильного Аккумулятора, Схема Импульсного Зарядного Устройства, Какое Напряжение, Цикл Зу, Сколько Часов, Батарейки и Лампочки

В процессе эксплуатации автомобиля может возникнуть необходимость самостоятельно восполнить запас энергии. В этом случае, зарядка аккумулятора станет крайне важна и следует знать, как правильно провести такую операцию.

Регулярность зарядки

Процесс подзарядки аккумулятора в автомобиле выполняет генератор и обычно этого достаточно для поддержания работоспособности батареи. Для снижения риска интенсивного выделения газов в акб устанавливается защитное реле ограничивающее напряжение до 14,1 В. Такие требования безопасности не позволят осуществить полный цикл зарядки, для которого необходимы показатели тока 14.5 В. Интенсивное использование кондиционера и других устройств, требующих большое количество электроэнергии способно истощить батарею. Для её восстановления потребуется зарядка аккумулятора автомобиля, которую легко провести самостоятельно.

Исправный аккумулятор обычно не вызывает проблем при положительной температуре воздуха. Для обеспечения запуска двигателя и функционирования приборов будет достаточно половины ресурсов такого устройства. Работа акб в зимнее время более осложнена, и отрицательные температуры способны снизить в два раза показатели ёмкости батареи. Наступление холодов также требует высоких пусковых токов, так как густеет моторное масло и необходимо больше энергии для включения двигателя. В качестве экстренной меры можно использовать провода от прикуривателя другой машины, но это не избавит от необходимости полностью зарядить автомобильный аккумулятор.

Интенсивная нагрузка на аккумулятор приводит к тому, что генератор не успевает компенсировать электроэнергию. Такая ситуация является стандартной, и отрицательная температура окружающей среды требует повышенного внимания к батарее. Оптимальным решением будет ежегодная зарядка аккумулятора автомобиля, которую следует проводить до наступления морозов.

Проверка заряда АКБ

Оценка уровня заряда аккумулятора может помочь в спорных ситуациях и определить необходимость проведения полного цикла зарядки. Стационарное измерение напряжения следует проводить не менее чем через 6 часов после отсоединения батареи от системы автомобиля или пуско-зарядного устройства. Существует несколько методов для определения таких показателей, имеющих некоторую погрешность в точности.

  • Снятие показателей напряжения на выходах акб предоставляет относительную оценку состояния батареи. Для получения таких данных можно воспользоваться мультиметром и сравнить показатели напряжения с соответствующей им ёмкостью;
    Соотношение напряжения к остаточному заряду
    Напряжение на клеммах аккумулятора (B) 12,8 12,6 12,2 12,0 < 11,8
    Уровень заряда аккумулятора (%) 100 75 50 25 Разрядка
  • Измерение напряжения под нагрузкой не требует длительного отстоя аккумулятора. Для таких изысканий используют вольтметр и нагрузочные вилки с подключенным сопротивлением в 0,018-0,020 Ом. После подключения устройства к клемам акб выдерживается пауза в 5 секунд, и снимаются показания. Данные, полученные с помощью вольтметра и нагрузочной вилки необходимо сравнить с таблицей, позволяющей определить состояние батареи;
    Соотношение напряжения к остаточному заряду
    Напряжение на клеммах аккумулятора (B) 10,5 9,9 9,3 8,7 < 8,18
    Уровень заряда аккумулятора (%) 100 75 50 25 Разрядка
  • Для обслуживаемых аккумуляторов проверку можно выполнить с помощью замера плотности электролита. Для таких целей используется ареометр, который легко приобрести на авторынке или в магазине. Проведённые замеры, следует сопоставить с таблицей, которая покажет степень заряда батареи;
  • Получение данных состояния батареи во время запуска двигателя. Такая методика требует исправного стартера и заключается в измерении напряжения во время пуска силовой установки. При условии, что автомобиль оснащён исправным стартером, напряжение не должно быть ниже 9,5 вольт. Меньшие показатели будут свидетельствовать о необходимости зарядки или неисправности стартера;
  • Без снятия батареи можно выполнить замеры путём создания нагрузки с помощью включения габаритов и дальнего света. Учитывая, что лампы автомобиля имеют мощность в 50 Вт нагрузка должна составлять 10 ампер. При таком условии напряжение заряженного аккумулятора должно быть на уровне 11.2 вольт, а более низкие показатели свидетельствуют о необходимости провести дозарядку устройства.

Некоторые модели имеют встроенный гидрометрический индикатор зарядки аккумулятора, позволяющий без использования специальных устройств определить состояние акб. Зелёный глазок такого прибора свидетельствует о зарядке не менее 60%, а чёрный индикатор сигнализирует о небольшом запасе энергии, и зарядка аккумулятора автомобиля будет необходима. Кроме показателей степени заряда такой датчик может принять светлый оттенок, что означает недостачу  дистиллированной воды.

Виды зарядных устройств

Для достижения полной зарядки аккумуляторных батарей необходимо использовать специальное оборудование. Так схема зарядного устройства для автомобильного аккумулятора представляет собой простой преобразователь электроэнергии, обеспечивающий на выходе постоянное напряжение тока. Для большего удобства используются дополнительные датчики и специальные алгоритмы зарядки. Такие приборы могут требовать ручной настройки или работать в автоматическом режиме, самостоятельно определяя характеристики акб.

Определить, как зарядить аккумулятор способен каждый водитель, а использовать можно любое зарядное устройство, выбор которого зависит от собственных предпочтений. Первым признаком нехватки заряда может стать горящая лампочка на приборной панели, что потребует принятия более решительных мер. Полный цикл зарядки длится несколько часов и эти работы удобнее проводить в помещении. Все зарядные приборы независимо от настроек имеют обязательную защиту от неправильного подключения клем и перегрева.

Типы аккумуляторных батарей

Для автомобильных аккумуляторов используются источники тока, основанные на применении различных технологий. Если ранее были востребованны щелочные элементы, то современный рынок представлен кислотными аккумуляторами. Такая технология позволяет в качестве электролита использовать кислоту, помещённую между свинцовых пластин. Особенности этого исполнения предполагают обслуживание акб, которое заключается в доливе дистиллированной воды.

Не менее популярны и гелевые батареи, использование которых не требует обслуживания. Такая технология имеет большую стоимость, а процесс зарядки не отличается от других акб. Существуют и литий-ионные батареи,  но такие устройства не всегда имеют пусковой ток достаточной мощности, что ограничивает их применение.

Самостоятельная зарядка акб

Полная зарядка аккумулятора потребует не менее 10 часов для выполнения всех технических условий. При проведении таких операций потребуется снять аккумулятор с автомобиля и стереть с него грязь или остатки кислоты. Зарядку следует проводить в сухом помещении, обязательно соблюдая полярность электрической цепи. Для исключения появления искр следует сначала подсоединить отрицательный контакт, а затем положительный. Трансформаторное или  импульсное зарядное устройство для автомобильного аккумулятора подключается последним, после чего можно настроить параметры тока.

В обслуживаемых типах батарей следует проверить уровень электролита и обязательно открутить пробки на банках. В зависимости от типа пуско-зарядного устройства такая процедура будет требовать корректировки или выполняться в автоматическом режиме. Обычно батарею оставляют восполнять запас энергии на всю ночь, а падение стрелки тока на нулевое значение будет свидетельствовать о завершении зарядки.

Методика зарядки батареи

Правильная зарядка аккумулятора автомобиля предполагает подачу тока недостающего батареи до заполнения 100%  её ёмкости. Для устройств, не поддерживающих автоматический режим несложно провести самостоятельную настройку параметров тока. Такие действия потребуют периодического контроля и некоторой корректировки характеристик зарядного устройства. Чтобы понять, как заряжать автомобильный аккумулятор, следует рассмотреть способы зарядки, которые могут быть:

  • На основе постоянного тока;
  • На основе постоянного напряжения.

При зарядке постоянным током следует задать силу тока, равную 10% от её ёмкости. Следовательно, для акб с ёмкостью  80А/ч потребуется сила тока в 8 ампер. Эти показатели необходимо выдерживать на протяжении всего цикла восстановления, что потребует периодической проверки и корректировки напряжения зарядки. Для обслуживаемых моделей признаком завершения первого этапа зарядки будет газообразование, а показатель тока гелевых акб должен достигнуть 14 вольт. Далее следует вдвое снизить силу тока и продолжить зарядку пока напряжение не поднимется до 15 вольт. После чего сила тока опять снижается вдвое.

Удостовериться в правильности зарядки аккумулятора автомобиля и достижения показателя в 100% не представляет сложностей. Для такого контроля в течение 2 часов отслеживаются параметры напряжения и силы тока. Их неизменное значение и будет свидетельствовать о завершении зарядки.

Если ток зарядки автомобильного аккумулятора имеет постоянное значение, то придётся определить, сколько времени необходимо для завершения таких процедур. Следует учесть, что чем меньше будет ток, тем лучше восполнится батарея. Чтобы рассчитать зарядку аккумулятора необходимо знать его ёмкость. Производители источников питания рекомендуют устанавливать силу тока в размере 0,1 от ёмкости акб. Следовательно, батарея 80А/ч будет заряжаться током в 8 ампер, а продолжительность зарядки составит стандартные 15 часов.

Глубокий разряд аккумулятора

Невнимательность или простой автомобиля с включенными электроприборами способен привести к ситуации, в которой аккумулятор получит глубокий разряд. К сожалению, такая ошибка может повлиять на работоспособность источника питания. Восстановление батареи необходимо начинать с показателей силы тока не более 0.1, от её номинальной ёмкости. Следует использовать по возможности меньшую силу тока, увеличив время зарядки устройства до 24 часов.

Такие нормы отчасти касаются и нового аккумулятора, только зарядка акб проводится минимальными токами в течении 2-4 часов. При выполнении полного цикла восстановления будет гореть зелёный индикатор зарядки аккумулятора, а напряжение на клеммах составит 16,2 вольт.

Выбор зарядного устройства

Среди различных моделей зарядных приборов определяющим остаётся их принцип работы. Всем знакомы трансформаторные устройства, которые характеризуются большим весом и габаритами. На смену им пришили импульсные приборы, которые лишены громоздких деталей. Для гелевых батарей импульсная технология является более щадящей, хотя они хорошо работают с любым зарядным устройством.

При восстановлении показателей тока кислотной батареи можно заметить, как аккумулятор кипит при зарядке и такое его состояние вполне допустимо. Кипение электролита может происходить при использовании зу любого типа и является признаком работоспособности банок. Появление пузырьков газа должно быть во всех банках, что будет свидетельствовать о завершении зарядки.

Любое зарядное устройство позволяет восполнить запас электроэнергии аккумулятора независимо от его типа и мощности. Для упрощения этого процесса существуют автоматические приборы, способные точно вычислить время и эффективный метод зарядки. Такие устройства позволяют исключить все расчёты, и провести обычную или форсированную зарядку. Бережное отношение к аккумуляторной батарее и своевременная подзарядка продлят её срок службы, что позволит сосредоточиться на вождении.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Схема 5б. Система зарядки Ford Fusion (Форд Фьюжн)

  1. Руководства по ремонту
  2. Ford Fusion 2002-2012
  3. Схема 5б. Система зарядки

Схема 5б. Система зарядки Ford Fusion (Форд Фьюжн):

1, 2 – монтажный блок реле и предохранителей за вещевым ящиком; 3 – аккумуляторная батарея; 4 – комбинация приборов; 5 – стартер; 6 – блок управления автоматической или роботизированной коробкой передач; 7 – электронный блок управления двигателем; 8 – генератор

 

 

 

 

 

 

 

Скачать информацию со страницы
↓ Комментарии ↓

 



Раздел 1. Устройство автомобиля
Общие сведения об автомобиле Паспортные данные Ключи автомобиля Приборы и органы управления Комбинация приборов Маршрутный компьютер Отопление (кондиционирование) и вентиляция салона Двери Ремни безопасности Сиденья Регулировка положения рулевого колеса Зеркала заднего вида Освещение салона Противосолнечные козырьки Капот Управление коробкой передач

Раздел 2. Рекомендации по эксплуатации
Правила техники безопасности и рекомендации Обкатка автомобиля Эксплуатация автомобиля в гарантийный период Подготовка автомобиля к выезду Заправка автомобиля бензином Использование домкрата Буксировка автомобиля

Раздел 3. Неисправностив пути
Двигатель не заводится Неисправности системы впрыска топлива Пропал холостой ход Перебои в работе двигателя Диагностика состояния двигателя по внешнему виду свечей зажигания Автомобиль движется рывками Автомобиль плохо разгоняется Двигатель заглох во время движения Упало давление масла Перегрев двигателя Аккумуляторная батарея не подзаряжается Пуск двигателя от внешних источников тока Неисправности электрооборудования Появились посторонние стуки Проблемы с тормозами Прокол колеса

Раздел 4. Техническое обслуживание
Общие положения Ежедневное обслуживание (ЕО) Первое техническое обслуживание (ТО-1) Второе техническое обслуживание (ТО-2)

Раздел 5. Двигатель
Особенности конструкции Возможные неисправности двигателя, их причины и способы устранения Полезные советы Проверка компрессии в цилиндрах Снятие и установка брызговика двигателя Замена опор подвески силового агрегата Установка поршня первого цилиндра в положение ВМТ такта сжатия Снятие, установка и дефектовка маховика Замена деталей уплотнения двигателя Регулировка зазоров в приводе клапанов Головка блока цилиндров Снятие и установка двигателя Система смазки Система охлаждения Система выпуска отработавших газов Система питания Система улавливания паров топлива

Раздел 6. Трансмиссия
Сцепление Коробка передач Приводы передних колес

Раздел 7. Ходовая часть
Передняя подвеска Задняя подвеска

Раздел 8. Рулевое управление
Особенности конструкции Возможные неисправности рулевого управления с гидроусилителем, их причины и способы устранения Рулевая колонка Рулевые тяги Рулевой механизм

Раздел 9. Тормозная система
Особенности устройства Возможные неисправности тормозной системы, их причины и способы устранения Прокачка гидропривода тормозной системы Проверка положения педали тормоза Главный тормозной цилиндр Вакуумный усилитель тормозов Замена шлангов и трубок гидропривода тормозов Тормозные механизмы передних колес Тормозные механизмы задних колес Стояночный тормоз

Раздел 10. Электрооборудование
Особенности конструкции Диагностика неисправностей бортового электрооборудования Монтажные блоки Аккумуляторная батарея Генератор Стартер Выключатель (замок) зажигания Система управления двигателем Освещение, световая и звуковая сигнализация Замена моторедуктора стеклоочистителя ветрового окна Замена моторедуктора стеклоочистителя окна двери задка Снятие и установка омывателя стекла ветрового окна Замена моторедуктора стеклоподъемника передней двери Снятие и установка электродвигателя вентилятора радиатора системы охлаждения Снятие и установка электровентилятора отопителя Снятие и установка электродвигателя заслонки режима рециркуляции отопителя Замена дополнительного сопротивления электровентилятора отопителя Электрообогрев стекла двери задка Комбинация приборов Выключатели панели приборов Автомобильная аудиосистема Замена датчиков и выключателей Снятие и установка патрона прикуривателя Электронная противоугонная система дистанционного управления Иммобилизатор

Раздел 11. Кузов
Особенности конструкции Возможные неисправности кузова, их причины и способы устранения Снятие и установка облицовки радиатора Снятие и установка брызговиков колес и подкрылков Снятие и установка бамперов Снятие и установка переднего крыла Снятие и установка решетки короба воздухопритока Капот Боковые двери Дверь задка Крышка люка наливной трубы топливного бака Сиденья Снятие и установка облицовки тоннеля пола Система пассивной безопасности (SRS) Зеркала заднего вида Панель приборов Отопитель и кондиционер Арматура салона Снятие и установка облицовок салона Снятие и установка кожухов рулевой колонки Снятие и установка облицовок багажника Стеклоочиститель ветрового окна Стеклоочиститель окна двери задка Замена неподвижного остекления кузова Снятие и установка кронштейна полки крепления аккумуляторной батареи Уход за кузовом

Раздел 12. Колеса и шины
Технические характеристики Маркировка колесных дисков Маркировка шин Замена колес Колесные гайки Обкатка шин Хранение шин Балансировка колес Цепи противоскольжения Запасное колесо Проверка давления в шинах Проверка протектора шин Проверка вентиля Проверка радиального и бокового биения дисков

Раздел 13. Покупка запасных частей
Моторное масло Пластичные смазки Охлаждающие жидкости Тормозная жидкость Топливный фильтр тонкой очистки Воздушный фильтр Масляный фильтр системы смазки двигателя Свечи зажигания

Раздел 14. Поездка на СТО

Раздел 15. Зимняя эксплуатация автомобиля
Как подготовить автомобиль к зиме Рекомендации по пуску двигателя в сильный мороз Что полезно купить к зиме Полезные зимние советы

Раздел 16. Подготовка к техосмотру
Рекомендации Перечень неисправностей и условий, при которых запрещается эксплуатация транспортных средств Изменения к государственным стандартам, регламентирующим предельно допустимое содержание вредных веществ в отработавших газах автотранспортных средств

Раздел 17. Советы начинающему автомеханику
Техника безопасности при проведении ремонтных работ Инструменты Перед началом работы Восстановление резьбовых соединений Советы по кузовному ремонту

Приложения
Приложение 1. Моменты затяжки резьбовых соединений, Н·м Приложение 2. Лампы, применяемые на автомобиле Приложение 3. Горюче-смазочные материалы и эксплуатационные жидкости

Схемы электрооборудования
Схема 1. Блок-схема Схема 2а. Система управления двигателем Схема 2б. Система управления двигателем Схема 2в. Система управления двигателем Схема 2г. Система управления двигателем Схема 2д. Система управления двигателем Схема 2е. Система управления двигателем Схема 3. Система питания Схема 4а. Система пуска двигателя автомобилей с механической коробкой передач Схема 4б. Система пуска двигателя автомобилей с автоматической коробкой передач Схема 5а. Система зарядки Схема 5б. Система зарядки Схема 6. Система зажигания Схема 7. Аудиосистема Схема 8а. Система охлаждения Ремонт Ford Fusion : Схема 8б. Система охлаждения Схема 9а. Роботизированная коробка передач Схема 9б. Роботизированная коробка передач Схема 9в. Роботизированная коробка передач Схема 9г. Роботизированная коробка передач Схема 10а. Антиблокировочная система (ABS) и система динамической стабилизации (ESP) автомобиля Схема 10б. Антиблокировочная система (ABS) и система динамической стабилизации (ESP) автомобиля Схема 11а. Диагностический разъем Схема 11б. Диагностический разъем Схема 11в. Диагностический разъем Схема 12а. Противоугонная система Схема 12б. Противоугонная система Схема 13. Подсветка комбинации и панели приборов Схема 14а. Комбинация приборов и подрулевые переключатели Схема 14б. Комбинация приборов и подрулевые переключатели Схема 15. Звуковой сигнал Схема 16. Часы Схема 17. Система отопления и вентиляции хема 18а. Система кондиционирования воздуха Схема 18б. Система кондиционирования воздуха Схема 18в. Система кондиционирования воздуха Схема 18г. Система кондиционирования воздуха Схема 19а. Внутреннее освещение салона Схема 19б. Внутреннее освещение салона Схема 20а. Габаритное освещение для вождения в светлое время суток (система DRL) Схема 20б. Габаритное освещение для вождения в светлое время суток (система DRL) Схема 20в. Габаритное освещение для вождения в светлое время суток (система DRL) Схема 21. Противотуманные фары Схема 22а. Блок-фары Схема 22б. Блок-фары Схема 23. Габаритное освещение и подсветка номерного знака Схема 24. Фонари заднего хода автомобилей, оснащенных механической или роботизированной коробкой передач Схема 25а. Стоп-сигналы Схема 25б. Стоп-сигналы Схема 26а. Указатели поворотов Схема 26б. Указатели поворотов Схема 26в. Указатели поворотов Схема 27. Задние противотуманные фонари Схема 28а. Наружные зеркала заднего вида Схема 29. Стеклоомыватель Схема 30. Обогрев стекла двери задка и зеркал Схема 31. Привод замков Схема 32. Центральный замок Схема 33. Подогрев сидений

Как разработать трехступенчатую схему зарядки аккумулятора | Custom

Трехступенчатые зарядные устройства обычно называют интеллектуальными зарядными устройствами. Это высококачественные зарядные устройства, которые популярны для зарядки свинцово-кислотных аккумуляторов. Однако в идеале все типы аккумуляторов следует заряжать с помощью трехступенчатых зарядных устройств. Для более дорогих свинцово-кислотных аккумуляторов этот трехэтапный процесс зарядки сохраняет их работоспособность.

Прежде чем переходить к схемам трехступенчатого зарядного устройства, мы должны больше узнать о многоступенчатых зарядных устройствах и причинах их использования.

Что такое многоступенчатые зарядные устройства?

Многоступенчатые зарядные устройства определяют требования к батарее и автоматически переключаются в режим CC-CV, гарантируя оптимальную эффективность и более длительный срок службы батареи. Эти технологии зарядки аккумуляторов обычно используют микропроцессоры для регулируемой зарядки от 2 до 5 ступеней.

Двухступенчатое зарядное устройство имеет (очевидно) две ступени: накопительную и плавающую. Вы можете наблюдать эти этапы на общей схеме контроллера зарядного устройства для мобильных аккумуляторов.Здесь стадия накопления обычно называется стадией повышения, на которой батарея заряжается высокими токами в течение короткого промежутка времени. Стадия плавающего режима, также называемая непрерывной зарядкой, происходит, когда батарея заряжается со скоростью саморазряда.

Некоторые зарядные устройства имеют стадию восстановления для восстановления разряженных батарей. Как упоминалось ранее, эти зарядные устройства повышают эффективность и продлевают срок службы аккумуляторов. Возможно, вы видели людей, заряжающих свинцово-кислотные (или другие дорогие) батареи от постоянного источника питания.Это как медленная смерть вашим батареям!

Трехэтапный процесс зарядки

Как видно из названия, в этом зарядном устройстве есть три стадии: накопление, абсорбция и поплавок. Обсудим каждый этап.

Зарядный столик

Около 80% аккумулятора заряжается за счет накопительного заряда. Здесь обеспечивается постоянный ток 25% от номинального значения Ач. Например, в случае батареи 100 Ач подается постоянный ток 25 А, и напряжение увеличивается со временем.

Вы можете увеличить ток, подаваемый на аккумулятор, более чем на 25% от его емкости, что сократит время зарядки, но также может сократить срок службы аккумулятора, поэтому не рекомендуется применять ток более высокий, чем указано. Не забудьте ознакомиться с рекомендациями производителей по зарядке, некоторые батареи также указывают 10% емкости.

Стадия абсорбции

На стадии абсорбции заряжаются оставшиеся 20% батареи. Здесь зарядное устройство подает постоянный ток, такой же, как и напряжение поглощения зарядного устройства, которое зависит от вариантов зарядки, и это потребление тока уменьшается до тех пор, пока аккумулятор не будет полностью заряжен.

Иногда, однако, сила тока не падает должным образом. В этом случае в аккумуляторе может быть стойкое сульфатирование. Постоянная сульфатация возникает, когда аккумулятор находился в состоянии низкого заряда в течение недель или более, и восстановление аккумулятора в этом случае невозможно.

Float Stage

На плавающей стадии зарядное устройство пытается поддерживать полностью заряженный аккумулятор в том же состоянии в течение неопределенного времени. Здесь снижается напряжение и подается ток менее 1% от емкости батареи.Вы можете оставить зарядку аккумулятора в этом состоянии навсегда, и это не повредит аккумулятору.

Трехступенчатые схемы зарядки аккумулятора

Давайте поговорим об обычном аккумуляторе 12 В, 7 Ач. Его напряжение поглощения составляет от 14,1 В до 14,3 В, а напряжение холостого хода составляет от 13,6 В до 13,8 В. Зная это, нам нужна схема, в которой мы можем регулировать напряжение с течением времени, чтобы было легче контролировать его с помощью потенциометра, или мы можем использовать микроконтроллер задачи.

ИС регулятора напряжения LM317 — это первое, что приходит на ум для таких приложений.Вы можете выбрать LM338 или LM350 в соответствии с вашими текущими требованиями к емкости. Нам нужны резисторы на выводе регулировки микросхемы для управления выходным напряжением. Для этого мы используем потенциометры 5 кОм и 2 кОм, поскольку у нас есть фиксированный резистор стока на 270 Ом.

Схема автоматической зарядки аккумулятора

— Полное руководство — Robu.in | Индийский интернет-магазин | Радиоуправляемый хобби

Считаете ли вы, что зарядные устройства для аккумуляторов стали важной частью нашей повседневной жизни, как в личной, так и в профессиональной сфере?

Дело в том, что мы хотим использовать портативное электронное оборудование, для работы которого требуется аккумулятор.Точно так же на рынке доступны различные виды электронного оборудования с батарейным питанием, например мобильные телефоны, электрические велосипеды, ноутбуки и т. Д.

Большинство из нас не инженеры, но хотят иметь возможность устранять и предотвращать проблемы с аккумулятором простым способом. Для решения таких проблем мы используем зарядное устройство. Это безопасно для всех пользователей. Кроме того, безопасно перемещаться из одного места в другое (по дороге), так что каждый может использовать его с гибкостью.

Гиков всегда интересовало, как работают зарядные устройства.В этом блоге мы собираемся обсудить схему автоматической зарядки аккумулятора и ее параметры.

Основные параметры зарядки

Там три основных параметра, которые необходимо учитывать при зарядке аккумулятор безопасно:

  1. Постоянный ток (CC)
  2. Постоянное напряжение (CV) и
  3. Автоматическое отключение

Постоянный ток — Здесь величина тока зарядки аккумулятора является фиксированной. Этот ток поддерживается изменением напряжения.

Постоянное напряжение — Здесь ток будет изменяться в соответствии с требованиями зарядки аккумулятора, сохраняя при этом постоянное напряжение.

Автоматическое отключение — Он постоянно определяет напряжение зарядки аккумулятора и, когда аккумулятор достигает полного уровня заряда, отключает напряжение зарядки.

Эти три основные вещи, которые необходимы для зарядки аккумулятора успешно, не влияя на срок службы батареи.

В литий-ионных батареях, помимо этих параметров, управление температурой и ступенчатая зарядка также важны для поддержания напряжения батареи и ее срока службы.Литий-ионный аккумулятор использует BMS (систему управления батареями) для поддержания этих параметров.

Давай вкратце выясните вышеупомянутые основные параметры.

Почему CC и CV важны?

Уровень зарядного тока является наиболее важным фактором, который существенно влияет на поведение аккумулятора. Это простой метод, который использует небольшой постоянный ток для зарядки аккумулятора во время полного процесса зарядки. Когда аккумулятор достигает заданного значения, зарядка CC прекращается.

В основном этот метод используется для зарядки никель-кадмиевых, никель-металлогидридных и литий-ионных аккумуляторов. Высокий ток зарядки быстро заряжает аккумулятор, но значительно снижает срок его службы. Следовательно, низкий зарядный ток обеспечивает высокое использование емкости, но заряжает аккумулятор медленно, что неудобно для электромобилей.

Например, в литий-ионном аккумуляторном блоке 2S две ячейки 18650 по 3,7 В каждая подключены последовательно, поэтому общее напряжение составляет 7,4 В. Этот аккумулятор необходимо зарядить, когда напряжение упадет до 6.4 В (3,2 В на элемент) и зарядка должна быть завершена до 8,4 В (4,2 В на элемент). Следовательно, значения 6,4 В и 8,4 В для этого аккумуляторного блока уже фиксированы.

Другой метод — это зарядка с постоянным напряжением, при которой поддерживается заданное напряжение для зарядки аккумулятора. Если напряжение постоянно, зарядный ток уменьшается по мере зарядки аккумулятора.

Для зарядки аккумулятора требуется более высокое значение тока, чтобы обеспечить постоянное напряжение на ранней стадии. Высокий зарядный ток от 15% до 80% обеспечивает быструю зарядку, но нагружает аккумулятор и может повлиять на срок его службы.

В режиме CC мы определяем ток зарядки. Этот ток зависит от класса C батареи / элемента (указанного в техническом описании батареи) и от номинала батареи в ампер-часах.

Предположим, мы выбрали значение 1000 мА в качестве постоянного зарядного тока. Таким образом, изначально, когда начинается зарядка аккумулятора, зарядное устройство должно перейти в режим CC и выдать 1000 мА в аккумулятор, изменяя напряжение зарядки. Благодаря этому аккумулятор будет заряжаться, и напряжение начнет медленно расти.

Цепь постоянного напряжения

Здесь мы рассматриваем режим CV зарядного устройства литиевой батареи, в котором мы должны регулировать напряжение батареи от 6,4 В до 8,4 В, как обсуждалось ранее. Стабилизатор напряжения IC LM317 может сделать это, используя всего два резистора. Схема ниже описывает схему зарядного устройства с режимом постоянного напряжения.

Для расчета выходного напряжения регулятора LM317,

  • Vout = 1,25 * (1 = (R2 / R1)), где 1.25 — опорное напряжение.

Здесь выходное напряжение (Vout) должно быть 8,4 В. Чтобы построить это схемы, значение R1 должно быть меньше 1000 Ом, поэтому мы используем 560 Ом Резистор. С помощью приведенной выше формулы мы можем вычислить значение R2.

  • 8,4 В = 1,25 * (1+ (R2 / 560 Ом)

В качестве альтернативы вы можете использовать любую комбинацию номиналов резистора, которая обеспечивает выходное напряжение 8,4 В. Для этой комбинации вы можете использовать онлайн-калькулятор LM317 , чтобы облегчить вашу работу.

Цепь постоянного тока

Используя единственный резистор, LM317 IC может быть регулятором тока. На приведенной ниже схеме показана схема зарядного устройства для этого регулятора тока.

Согласно приведенному выше объяснению, мы рассматриваем 1000 мА как Постоянный ток зарядки.

Для расчета номинала резистора на требуемый ток (указано в паспорте батареи) as,

Резистор (Ом) = 1,25 / Ток (А)

Итак, нам нужно использовать 1.Резистор 25 Ом для построения этой схемы. У нас нет резистора на 1,25 Ом, поэтому мы выбираем ближайшее значение 1,5 Ом, которое указано на принципиальной схеме.

Цепь автоматического отключения

Автоотключение — важнейший параметр зарядки аккумулятора. В настоящее время в большинстве батарей используется цепь автоматического отключения. На приведенной ниже схеме показана схема зарядного устройства с функцией автоматического отключения. Это реализовано с помощью регулируемого стабилизатора напряжения LM317.

Эта схема обеспечивает регулируемое выходное напряжение постоянного тока и заряжает аккумулятор. LM317 — это монолитная интегрированная ИС, доступная в трех различных корпусах. Этот регулируемый регулятор напряжения обеспечивает ток нагрузки 1,5 А и диапазон выходного напряжения от 1,2 до 37 В.

Работа цепи автоматического отключения

В основном, он использует основные компоненты источника питания, такие как трансформатор, выпрямитель, фильтр и регулятор. Понижающий трансформатор (от 230 В до 15 В) понижает напряжение питания переменного тока.Далее, выпрямитель использует четыре диода 1N4007, которые преобразуют понижающий переменный ток в постоянный.

Конденсаторы C1 и C2 используются для работа фильтра. Для регулирования напряжения мы использовали микросхему C1 LM317. Это также работает как устройство управления током.

Здесь переменный резистор VR1 изменяет подачу питания на контакт ADJ (Adjust) регулятора напряжения и, следовательно, он изменяет выходное напряжение.

Здесь мы показали зеленый и красный светодиоды. Зеленый светодиод показывает состояние зарядки аккумулятора, а красный светодиод показывает полную зарядку аккумулятора.

Когда батарея полностью заряжается, стабилитрон (12 В) генерирует обратное напряжение, которое течет к базе транзистора BD139 и включает его. Из-за такой проводимости в транзисторе контакт ADJ регулятора напряжения будет подключаться к земле, которая отключает выходное напряжение регулятора. Во время этого непрерывного процесса, чтобы избежать теплового воздействия, используйте радиатор с регулятором напряжения.

IC LM317 предоставляет переменную выходное напряжение. Это напряжение можно изменять с помощью контакта ADJ, чтобы общее выходное напряжение as,

  • Vout = Vref (1 + R2 / R1) + IADJ R2

Где Vout — выходное напряжение.

В зависимости от положения резистора формула будет иметь вид

  • Vout = VREF (1 + VR1 / R1) + I ADJ VR1

Ток питания в зависимости от номинала батареи

Очень важно выбрать зарядный ток, чтобы продлить срок службы батареи. Этот ток зарядки зависит от емкости аккумулятора (номинал в ампер-часах). Каждая батарея имеет определенный номинал в ампер-часах. Это заряд аккумулятора.

Пожалуйста, обратитесь к приведенным ниже примерам расчетов времени зарядки. Приведенные ниже расчеты являются приблизительными. Зарядный ток не всегда одинаковый. Когда аккумулятор почти полностью заряжен, зарядный ток уменьшается.

Например, у нас есть аккумулятор емкостью 50 Ач:

Сначала рассчитаем зарядный ток. По стандарту зарядный ток должен составлять 10% от емкости аккумулятора.

Следовательно, зарядный ток для АКБ 50А = 50 Ач x (10/100) = 5 Ампер.

Но из-за некоторых потерь мы можем взять 5-8 ампер для зарядки аккумулятора.

Предположим, мы использовали для зарядки 8 Ампер,

Тогда время зарядки аккумулятора 50 Ач = 50/8 = 6,25 часа.

Но это идеальный случай, практически было замечено, что 40% потерь приходится на зарядку аккумулятора.

  • 50 x (40/100) = 20… .. (120 Ач x 40% потерь)

Следовательно, 50 + 20 = 70 Ач (50 Ач + потери)

Время зарядки аккумулятора = Ач / зарядный ток

  • 70/8 = 8.75 часов (в реальном случае)

Следовательно, для полной зарядки аккумулятора на 50 Ач потребуется около 9 часов. зарядка при необходимом зарядном токе 8А.

Если ваша батарея имеет емкость 50 Ампер-час, то вам не следует использовать зарядное устройство с током заряда 5А. Если да, то на зарядку аккумулятора уйдет около 10 часов, и вам это точно не понравится.

Идеальное время зарядки аккумуляторов должно составлять 2-3 часа. Этот уровень зарядного тока может варьироваться в зависимости от типа аккумуляторов, поэтому вы можете установить зарядный ток в соответствии с емкостью аккумулятора и его типом.

Заключительные слова

Я надеюсь, что эта статья поможет вам понять полное руководство по схеме автоматического зарядного устройства. Зарядные устройства для аккумуляторов различаются в зависимости от приложений, таких как зарядное устройство для мобильных телефонов, зарядные устройства для аккумуляторов электромобилей и зарядные станции. В соответствии со спецификацией батареи мы можем разработать схему зарядного устройства с использованием SCR, операционного усилителя, различных микросхем регуляторов и т. Д.

Цепь автоматического зарядного устройства

Это автоматическое зарядное устройство для свинцово-кислотных аккумуляторов на 12 В, которое отключает процесс зарядки, когда аккумулятор полностью заряжен.Это предотвращает перезарядку аккумулятора, поэтому зарядное устройство можно оставить без присмотра.

Если напряжение на клеммах аккумулятора упадет ниже установленного уровня, скажем, 13,5 вольт, схема автоматически перейдет в режим зарядки.

Зарядный ток, а также питание цепи поступает от понижающего трансформатора 0–18 В на 2 Ампера. Низкое напряжение переменного тока выпрямляется мостовым выпрямителем, состоящим из D1 — D4, и устраняется пульсация с помощью сглаживающего конденсатора C1.Для зарядки используется 18 В постоянного тока, в то время как для питания схемы используется регулируемый постоянный ток 9 В от IC1.

Схема автоматического зарядного устройства аккумулятора

IC2 (CA3140) используется как простой компаратор напряжения для управления реле. Его инвертирующий вход получает опорное напряжение 4,7 В от стабилитрона ZD, в то время как неинвертирующий вход получает регулируемое напряжение через POT VR1. Таким образом, обычно инвертирующий входной контакт 2 получает более высокое напряжение от стабилитрона (в соответствии с настройкой VR1), а выход IC2 остается низким.T1 остается выключенным, реле остается выключенным. Зарядный ток проходит к аккумулятору через нормально замкнутые контакты реле.

Когда напряжение на клеммах аккумулятора увеличивается до 13,5 вольт, контакт 3 IC2 получает более высокое напряжение, чем контакт 2, и выход IC2 становится высоким. Это активирует реле и контакты размыкаются. Ток зарядки аккумулятора отключается, и реле остается в таком состоянии, поскольку напряжение аккумулятора (13,5 В или более) поддерживает напряжение на контакте 3 IC2 выше, чем на контакте 2.

Настройки зарядного устройства

Перед подключением батареи установите входное напряжение на IC2, используя полностью заряженную батарею или регулируемый источник питания. Переведите переключатель S1 в положение «выключено» и включите питание. Затем подключите полностью заряженный аккумулятор / регулируемый источник питания к контрольным точкам TP, соблюдая полярность. Измерьте входное напряжение на контакте 3 IC2.

Медленно регулируйте VR1, пока входное напряжение на выводе 3 IC2 не повысится до 5 вольт. В этот момент реле должно включиться, и загорится красный светодиод.Затем подключите аккумулятор для зарядки и включите S1. Если батарея заряжается, ток на выводе 3 IC2 будет низким, поскольку большая часть тока утекает в батарею. Это отключает реле. Когда напряжение батареи увеличивается выше 13,5 вольт, ток в батарею больше не проходит, поэтому напряжение на контакте 3 микросхемы IC2 повышается и реле включается.

Зарядка и разрядка конденсаторов | Цепи постоянного тока

Детали и материалы эксперимента для зарядки и разрядки конденсаторов

Для этого эксперимента вам понадобится следующее:

  • Аккумулятор 6 В
  • Два больших электролитических конденсатора, минимум 1000 мкФ (каталог Radio Shack № 272-1019, 272-1032 или аналогичный)
  • Два резистора 1 кОм
  • Один тумблер, SPST («однополюсный, однопозиционный»)

Для этого эксперимента требуются конденсаторы большой емкости, чтобы получить постоянные времени, достаточно медленные, чтобы их можно было отслеживать с помощью вольтметра и секундомера.

Имейте в виду, что большинство больших конденсаторов относятся к «электролитическому» типу, и они чувствительны к полярности ! Один вывод каждого конденсатора должен иметь определенный знак полярности.

Обычно конденсаторы указанного размера имеют отрицательную (-) маркировку или серию отрицательных маркировок, указывающих на отрицательную клемму.

Очень большие конденсаторы часто имеют маркировку полярности положительным знаком (+) рядом с одной клеммой.

Несоблюдение полярности почти наверняка приведет к отказу конденсатора, даже при напряжении источника всего 6 вольт.

Когда электролитические конденсаторы выходят из строя, они обычно взрываются , извергая едкие химические вещества и выделяя неприятные запахи. Пожалуйста, постарайтесь этого избежать!

Я рекомендую бытовой выключатель света для «тумблера SPST», указанного в списке запчастей.

СПРАВОЧНЫЕ ССЫЛКИ

ЦЕЛИ ОБУЧЕНИЯ

В этом эксперименте мы будем стремиться узнать о следующих концепциях:

  • Действие зарядки конденсатора
  • Действие разряда конденсатора
  • Расчет постоянной времени
  • Последовательная и параллельная емкость

Принципиальная электрическая схема зарядки и разрядки

Иллюстрация эксперимента

Инструкции по эксперименту

Измерение напряжения вашей цепи

Постройте цепь «зарядки» и измерьте напряжение на конденсаторе, когда переключатель замкнут.

Обратите внимание, как он медленно увеличивается с течением времени, а не внезапно, как в случае с резистором.

Вы можете «сбросить» конденсатор обратно до нулевого напряжения, закоротив его клеммы куском провода.

«Постоянная времени» (τ) цепи резистор-конденсатор вычисляется путем умножения сопротивления цепи на ее емкость.

Для резистора 1 кОм и конденсатора 1000 мкФ постоянная времени должна составлять 1 секунду.Это количество времени, которое требуется для повышения напряжения конденсатора примерно на 63,2% от его текущего значения до конечного значения: напряжения батареи.

Поучительно изобразить напряжение зарядного конденсатора с течением времени на миллиметровой бумаге, чтобы увидеть, как развивается обратная экспоненциальная кривая.

Однако, чтобы изобразить действие этого контура, мы должны найти способ его замедлить. Постоянная времени в одну секунду не дает много времени для снятия показаний вольтметра!

Изменение постоянной времени цепи

Мы можем увеличить постоянную времени этой схемы двумя способами:

  • Изменение общего сопротивления цепи, и / или
  • Изменение общей емкости цепи.

При наличии пары идентичных резисторов и пары идентичных конденсаторов поэкспериментируйте с различными последовательными и параллельными комбинациями, чтобы получить самый медленный заряд.

К настоящему моменту вы уже должны знать, как нужно подключить несколько резисторов, чтобы получить большее общее сопротивление, но как насчет конденсаторов?

Эта схема продемонстрирует вам, как изменяется емкость при последовательном и параллельном подключении конденсаторов.

Просто убедитесь, что вы вставляете конденсатор (-ы) в правильном направлении: концы, помеченные отрицательным (-), электрически «ближе» к отрицательному полюсу аккумулятора!

Разрядная цепь обеспечивает такое же изменение напряжения конденсатора, за исключением того, что на этот раз напряжение перескакивает до полного напряжения батареи, когда переключатель замыкается, и медленно падает, когда переключатель размыкается.

Еще раз поэкспериментируйте с различными комбинациями резисторов и конденсаторов, как всегда, убедившись, что полярность конденсатора правильная.

Компьютерное моделирование

Схема с номерами узлов SPICE:

Netlist (создайте текстовый файл, содержащий следующий текст, дословно):

Схема зарядки конденсатора v1 1 0 dc 6 r1 1 2 1k c1 2 0 1000u ic = 0 .tran 0,1 5 uic .plot tran v (2,0).конец 

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Создание зарядного устройства, управляемого Arduino

Arduino и подключенная цепь зарядки могут использоваться для мониторинга и управления зарядкой NiMH аккумуляторных батарей, вот как это сделать:

Готовый прибор

Аккумуляторы — отличный способ питания вашей портативной электроники. Они могут сэкономить вам много денег, а при правильной переработке они намного лучше для окружающей среды.Чтобы максимально использовать возможности аккумуляторных батарей, их необходимо правильно зарядить. Значит, вам нужно хорошее зарядное устройство. Вы можете потратить много денег на коммерческое зарядное устройство, но гораздо интереснее построить его для себя. Итак, вот как создать зарядное устройство, управляемое Arduino.

Во-первых, важно отметить, что не существует универсального метода зарядки, подходящего для всех аккумуляторных батарей. Каждый тип батареи использует свой химический процесс для работы.В результате каждый тип батареи необходимо заряжать по-разному. В этой статье мы не можем охватить все типы аккумуляторов и способы зарядки. Поэтому для простоты мы сосредоточимся на наиболее распространенном типе аккумуляторных батарей AA — никель-металлогидридных (NiMH).

Диаграмма Фритцинга проекта

Схема для проекта

Материалы:

Детали в порядке слева направо

  • Микроконтроллер Arduino
  • Держатель батареи AA
  • NiMH батарея AA
  • Силовой резистор 10 Ом (номинальная мощность не менее 5 Вт)
  • Резистор 1 МОм
  • Конденсатор 1 мкФ
  • IRF510 МОП-транзистор
  • Датчик температуры TMP36
  • Регулируемый источник питания 5 В
  • Макетная плата
  • Провода перемычки

Как заряжать NiMH аккумуляторы AA

Увеличение скорости C заряжает аккумулятор быстрее, но увеличивает риск его повреждения

Есть много разных способов зарядить NiMH аккумулятор.Метод, который вы используете, в основном зависит от того, насколько быстро вы хотите зарядить аккумулятор. Скорость заряда (или C-rate) измеряется относительно емкости аккумулятора. Если ваш аккумулятор имеет емкость 2500 мАч и вы заряжаете его током 2500 мА, то вы заряжаете его со скоростью 1С. Если вы заряжаете его током 250 мА, то вы заряжаете его со скоростью C / 10.

При быстрой зарядке аккумулятора (с более высокой скоростью C / 10) вам необходимо внимательно следить за напряжением и температурой аккумулятора, чтобы убедиться, что вы не перезарядите его.Это может серьезно повредить аккумулятор. Однако, когда вы заряжаете аккумулятор медленно (со скоростью C / 10 или меньше), гораздо меньше шансов повредить нашу батарею, если вы случайно перезарядите ее. Из-за этого методы медленной зарядки обычно считаются более безопасными и помогают продлить срок службы батареи. Поэтому для зарядного устройства, сделанного своими руками, я решил использовать скорость заряда C / 10.

Цепь зарядки

Схема этого зарядного устройства представляет собой базовый источник питания, управляемый Arduino.Схема питается от источника регулируемого напряжения на 5 В, такого как адаптер переменного тока или компьютерный блок питания ATX. Большинство портов USB не подходят для этого проекта из-за текущих ограничений. Источник 5 В заряжает батарею через силовой резистор 10 Ом и силовой полевой МОП-транзистор. MOSFET устанавливает, сколько тока может проходить в батарею. Резистор включен как простой способ контролировать ток. Это делается путем подключения каждой клеммы к аналоговым входным контактам на Arduino и измерения напряжения на каждой стороне.MOSFET управляется выходным контактом PWM на Arduino. Импульсы сигнала широтно-импульсной модуляции сглаживаются в сигнал постоянного напряжения с помощью резистора 1M и конденсатора 1 мкФ. Эта схема позволяет Arduino отслеживать и контролировать ток, протекающий в батарею.

Датчик температуры

Датчик температуры предотвращает перезарядку аккумулятора и угрозу безопасности

В качестве дополнительной меры предосторожности я включил датчик температуры TMP36 для контроля температуры батареи.Этот датчик выдает сигнал напряжения, который напрямую соответствует температуре. Таким образом, он не требует калибровки или балансировки, как термистор. Датчик устанавливается на место путем просверливания отверстия в задней части корпуса аккумулятора и приклеивания датчика таким образом, чтобы он находился напротив боковой части аккумулятора при установке. Затем контакты датчика подключаются к 5V, GND и аналоговому входу на Arduino.

Держатель батарейки AA до и после установки на макетную плату

Код

Код этого проекта достаточно прост.В верхней части кода есть переменные, которые позволяют настраивать зарядное устройство, вводя значения номинальной емкости аккумулятора и точное сопротивление силового резистора. Также существуют переменные для пороговых значений безопасности зарядного устройства. Максимально допустимое напряжение АКБ выставлено 1,6 вольт. Максимальная температура аккумулятора установлена ​​на 35 градусов Цельсия. Максимальное время зарядки установлено на 13 часов. При превышении любого из этих пороговых значений зарядное устройство выключается.

В теле кода вы увидите, что система постоянно измеряет напряжение на выводе силового резистора. Это используется для расчета как напряжения на клеммах батареи, так и тока, протекающего в батарею. Этот ток сравнивается с целевым током, который установлен на C / 10. Если рассчитанный ток отличается от заданного более чем на 10 мА, система автоматически корректирует выходной сигнал для его корректировки.

Arduino использует инструмент последовательного монитора для отображения всех текущих данных.Если вы хотите контролировать производительность вашего зарядного устройства, вы можете подключить Arduino к USB-порту вашего компьютера, но это не обязательно, поскольку Arduino питается от источника питания 5 В зарядного устройства.

Вы можете найти загружаемую версию полного кода ниже:

Arduino_Controlled_Battery_Charger_Code.zip

Теперь, когда у вас есть знания, вы можете приступить к работе с собственным зарядным устройством. Обязательно следите за скоростью зарядки и используйте протоколы безопасности, так как чрезмерная зарядка аккумулятора может быть опасной.

Попробуйте этот проект сами! Получите спецификацию.

Зарядка литий-ионных аккумуляторов

требует точного измерения напряжения

Литий-ионные (Li-Ion) аккумуляторы

набирают популярность в портативных системах из-за их увеличенной емкости при тех же размерах и весе, что и у более старых никель-кадмиевых и никель-металлгидридных аккумуляторов. Например, портативный компьютер с литий-ионным аккумулятором может работать дольше, чем аналогичный компьютер с никель-металлгидридным аккумулятором.Однако проектирование системы для литий-ионных аккумуляторов требует особого внимания к схеме зарядки, чтобы обеспечить быструю, безопасную и полную зарядку аккумулятора.

Новая микросхема для зарядки аккумуляторов, ADP3810, разработана специально для управления зарядом литий-ионных аккумуляторов с 1-4 элементами. Доступны четыре высокоточных фиксированных варианта конечного напряжения батареи (4,2 В, 8,4 В, 12,6 В и 16,8 В); они гарантируют конечное напряжение батареи ± 1%, что так важно при зарядке литий-ионных батарей.Сопутствующее устройство, ADP3811, похоже на ADP3810, но его конечное напряжение батареи программируется пользователем для работы с другими типами батарей. Обе микросхемы точно контролируют зарядный ток, чтобы обеспечить быструю зарядку при токах 1 ампер и более. Кроме того, оба они имеют прецизионный источник опорного напряжения 2,0 В и прямой выход привода оптопары для изолированных приложений.

Li-Ion Зарядка: Li-Ion аккумуляторы обычно требуют алгоритма зарядки с постоянным током и постоянным напряжением (CCCV).Другими словами, литий-ионная батарея должна заряжаться при заданном уровне тока (обычно от 1 до 1,5 ампер) до достижения конечного напряжения. В этот момент схема зарядного устройства должна переключиться в режим постоянного напряжения и обеспечивать ток, необходимый для удержания батареи при этом конечном напряжении (обычно 4,2 В на элемент). Таким образом, зарядное устройство должно обеспечивать стабильные контуры управления для поддержания постоянное значение тока или напряжения, в зависимости от состояния батареи.

Основная задача при зарядке литий-ионного аккумулятора — реализовать полную емкость аккумулятора без перезарядки, которая может привести к катастрофическому отказу.Возможна небольшая погрешность, всего ± 1%. Избыточная зарядка более чем на + 1% может привести к выходу из строя батареи, а недостаточная зарядка более чем на 1% приводит к снижению емкости. Например, недозаряд литий-ионного аккумулятора всего на 100 мВ (-2,4% для литий-ионного элемента на 4,2 В) приводит к потере емкости примерно на 10%. Поскольку место для ошибки очень мало, требуется высокая точность схемы управления зарядкой. Для достижения этой точности контроллер должен иметь прецизионный источник опорного напряжения, усилитель обратной связи с высоким коэффициентом усиления и малым смещением, а также точно согласованный резистивный делитель. .Суммарные погрешности всех этих компонентов должны приводить к общей погрешности менее ± 1%. ADP3810, объединяющий эти элементы, гарантирует общую точность ± 1%, что делает его отличным выбором для зарядки литий-ионных аккумуляторов.

ADP3810 и ADP3811: На рисунке 1 показана функциональная схема ADP3810 / 3811 в упрощенной схеме зарядного устройства CCCV. Два усилителя « г м » (вход напряжения, выход тока) являются ключевыми для производительности ИС. GM1 определяет и контролирует заряд , ток через шунтирующее сопротивление, R CS , а GM2 определяет и управляет конечным напряжением батареи .Их выходы соединены в аналоговой конфигурации «ИЛИ», и оба спроектированы таким образом, что их выходы могут подключаться только к общему узлу COMP. Таким образом, либо усилитель тока, либо усилитель напряжения контролирует контур зарядки в любой момент времени. . Узел COMP буферизирован выходным каскадом « г м » (GM3), выходной ток которого напрямую управляет входом управления преобразователем постоянного тока (через оптопару в изолированных приложениях).

Рис. 1. Блок-схема ADP3810 / 3811 в упрощенной схеме зарядки аккумулятора.

ADP3810 включает прецизионные тонкопленочные резисторы для точного деления напряжения батареи и сравнения его с внутренним опорным напряжением 2,0 В. ADP3811 не включает эти резисторы, поэтому разработчик может запрограммировать любое конечное напряжение батареи с помощью пары внешних резисторов в соответствии с приведенной ниже формулой. Буферный усилитель обеспечивает вход с высоким импедансом для программирования зарядного тока с использованием входа VCTRL, а схема блокировки при пониженном напряжении (UVLO) обеспечивает плавный запуск.

Чтобы понять конфигурацию «ИЛИ», предположим, что полностью разряженный аккумулятор вставлен в зарядное устройство.Напряжение аккумулятора значительно ниже конечного напряжения заряда, поэтому на входе VSENSE GM2 (подключенном к аккумулятору) положительный вход GM2 значительно ниже внутреннего опорного напряжения 2,0 В. В этом случае GM2 хочет вывести узел COMP на низкий уровень, но он может только подтянуть, поэтому он не оказывает никакого влияния на узел COMP. Поскольку батарея разряжена, зарядное устройство начинает увеличивать ток заряда, и токовая петля берет на себя управление. Ток заряда создает отрицательное напряжение на резисторе токового шунта (RCS) с сопротивлением 0,25 Ом.Это напряжение измеряется GM1 через резистор 20 кОм (R3). В состоянии равновесия ( I CHARGE R CS ) / R 3 = -V CTRL /80 кОм. Таким образом, ток заряда поддерживается на уровне

.

Если ток заряда имеет тенденцию превышать запрограммированный уровень, вход V CS GM1 принудительно становится отрицательным, что приводит к высокому уровню на выходе GM1. Это, в свою очередь, подтягивает узел COMP, увеличивая ток с выходного каскада, уменьшая привод блока преобразователя постоянного / постоянного тока (который может быть реализован с различными топологиями, такими как возвратный, понижающий или линейный каскад), и, наконец, уменьшение зарядного тока.Эта отрицательная обратная связь завершает контур управления зарядным током.

Когда батарея приближается к своему конечному напряжению, входы GM2 приходят в равновесие. Теперь GM2 подтягивает узел COMP к высокому уровню, и выходной ток увеличивается, в результате чего ток заряда уменьшается, поддерживая равными V SENSE и V REF . Управление зарядным контуром изменено с GM1 на GM2. Поскольку коэффициент усиления двух усилителей очень высок, переходная область от управления током к управлению напряжением очень резкая, как показано на рисунке 2.Эти данные были измерены на 10-вольтовой версии автономного зарядного устройства, показанного на Рисунке 3.

Рис. 2. Изменение тока / напряжения зарядного устройства ADP3810 CCCV

Полное автономное литий-ионное зарядное устройство: На рис. 3 показана полная система зарядки с использованием ADP3810 / 3811. В этом автономном зарядном устройстве используется классическая архитектура с обратным ходом для создания компактной и недорогой конструкции. Три основных участка этой схемы — это контроллер первичной стороны, силовой полевой транзистор и трансформатор обратного хода, а также контроллер вторичной стороны.В этой конструкции используется ADP3810, напрямую подключенный к батарее, для зарядки 2-элементной литий-ионной батареи до 8,4 В при программируемом токе заряда от 0,1 до 1 А. Диапазон входных значений от 70 до 220 В переменного тока — для универсальной работы. .Используемый здесь широтно-импульсный модулятор первичной стороны — это промышленный стандарт 3845, но могут использоваться и другие компоненты ШИМ. Фактические выходные характеристики зарядного устройства контролируются ADP3810 / 3811, что гарантирует конечное напряжение в пределах ± 1%.

Рисунок 3. Полное автономное зарядное устройство для литий-ионных аккумуляторов

Токовый привод управляющего выхода ADP3810 / 3811 напрямую подключается к фотодиоду оптопары без дополнительных схем.Его выходной ток 4 мА может управлять различными оптопарами — здесь используется MOC8103. Ток фототранзистора протекает через R F , устанавливая напряжение на выводе COMP 3845 и, таким образом, управляя рабочим циклом ШИМ. Контролируемый импульсный стабилизатор спроектирован таким образом, что повышенный ток светодиода от оптопары снижает рабочий цикл преобразователя.

В то время как сигнал от ADP3810 / 3811 управляет средним зарядным током , первичная сторона должна иметь циклическое ограничение тока переключения.Этот предел тока должен быть спроектирован таким образом, чтобы при отказе или неисправности вторичной цепи или оптопары или во время запуска компоненты первичной силовой цепи (полевой транзистор и трансформатор) не подвергались перенапряжению. Когда вторичная сторона V CC поднимается выше 2,7 В, ADP3810 / 3811 берет на себя управление средним током. Предел тока первичной стороны устанавливается резистором считывания тока 1,6 Ом, подключенным между силовым транзистором NMOS, IRFBC30 и землей.

ADP3810 / 3811, ядро ​​вторичной стороны, устанавливает общую точность зарядного устройства.Для выпрямления требуется только один диод (MURD320), и никакой катушки индуктивности фильтра не требуется. Диод также предотвращает обратное движение батареи к зарядному устройству при отключении входного питания. Конденсатор емкостью 1000 мкФ (CF1) поддерживает стабильность при отсутствии батареи . RCS определяет средний ток (см. Выше), и ADP3810 подключается напрямую (или ADP3811 через делитель) к батарее для измерения и управления ее напряжением.

С этой схемой реализовано полностью автономное зарядное устройство для литий-ионных аккумуляторов.Топология обратного хода объединяет преобразователь переменного тока в постоянный со схемой зарядного устройства, что дает компактный и недорогой дизайн. Точность этой системы зависит от контроллера вторичной стороны, ADP3810 / 3811. Архитектура устройства также хорошо работает в других схемах зарядки аккумуляторов. Например, стандартное зарядное устройство постоянного тока понижающего типа может быть легко сконструировано путем объединения ADP3810 и ADP1148. Простое линейное зарядное устройство также может быть разработано с использованием только ADP3810 и внешнего транзистора. Во всех случаях присущая ADP3810 точность контролирует зарядное устройство и гарантирует конечное напряжение батареи ± 1%, необходимое для зарядки литий-ионных аккумуляторов.

Схема зарядки щелочной батареи

— M0UKD — Блог любительского радио

Вот слаботочное зарядное устройство, которое я разработал в попытке продлить срок службы / перезарядить обычные неперезаряжаемые щелочные батареи. Уловка для этого состоит в трех вещах.

  • Используйте слабый ток в течение более длительного периода
  • Зарядить до полного истощения
  • Зарядка не более чем на 110% от емкости элементов (например, заряд 1,5 В до 1,65 В и остановка)

Преимущество использования щелочных батарей в том, что они не имеют внутреннего разряда, в отличие от никель-кадмиевых и никель-металлгидридных аккумуляторов, и поэтому подходят для устройств с низким потреблением тока, таких как пульты дистанционного управления, часы или вещи, которые вы нечасто используете. как факелы.В своих тестах я обнаружил, что чем ниже скорость заряда, тем лучше заряд и меньше вероятность утечки электролита в ячейке. Кроме того, если элемент становится слишком плоским или полностью плоским, он не будет заряжаться должным образом, а также, вероятно, приведет к утечке электролита и, возможно, даже к открытию. Идея здесь в том, чтобы они пополнялись. Допустим, у вас есть свежие батарейки в фонарике, и вы какое-то время им пользовались. Например, элементы разряжены примерно до 1,3 В. Поместите их на осторожную зарядку с помощью этой схемы, следите за напряжением и остановите, когда оно достигнет 110%.Это будет 1,65 В для одной ячейки или 3,3 В для двух последовательно соединенных элементов. Не заряжайте более 110%, иначе существует риск протечки элемента или даже лопания / взрыва. Также не рекомендуется заряжать полностью разряженную щелочную батарею. По моему опыту, они не поглощают заряд и просто просачиваются. Некоторые из моих тестов, которые я проводил на улице зимой (около 2 ° C), я обнаружил, что элементы довольно быстро достигают 1,65 В, но не поглощают большую их часть из-за высокого внутреннего сопротивления при низких температурах. Зарядку следует проводить при комнатной температуре, около 20 ° C.

Вот принципиальная схема источника постоянного тока с использованием регулятора переменного напряжения LM317. Это очень простая схема для зарядки щелочных батарей. Он обеспечит стабильный постоянный ток, который можно регулировать переключением резисторов разных номиналов. Входное напряжение должно быть как минимум на 6 В выше, чем напряжение батареи, которую вы хотите зарядить. Светодиод, BC548 и резистор 470 Ом обеспечивают индикацию протекания тока, чтобы показать, что ваши соединения с батареей в порядке.Их можно не указывать, если вы хотите упростить схему. Я использовал 12-позиционный поворотный переключатель, установленный на 5 способов выбора различных резисторов, чтобы получить выходные токи около 5, 10, 20, 30 и 40 мА. Идея заключается в том, что для типов PP3 с напряжением питания 9 В я бы использовал 5 мА. Для ААА 10 мА. 20 мА для AA, 30 мА для C и 40 мА для D. Это всего лишь мой совет, вы можете попробовать то, что вам нравится! Просто помните, что больший ток не подходит для зарядки щелочных неперезаряжаемых батарей.

Вы можете не использовать переключатель и фиксировать ток, или использовать простой тумблер для переключения между 2 или 3 различными токами или любым другим способом!

Постоянный ток можно установить, выбрав соответствующий резистор.R = 1,25 ÷ I, где R — номинал резистора в омах, 1,25 — опорное падение напряжения регулятора в вольтах, а I — постоянный ток в амперах. Например, если вам нужен постоянный ток 100 мА, значение R будет: 1,25 ÷ 0,1 = 12,5 Ом. Рассеиваемая мощность на резисторе R в этом примере равна: P = V x I = 1,25 x 0,05 = 0,125 Вт или 125 мВт. Рассеиваемая мощность на микросхеме LM317 составляет: (Vin — Vout) x ток заряда. Радиатор не требуется для LM317 (TO220) в этой цепи малой мощности. Если вы разрабатываете один с выходным током более 40 мА, вы должны его отвести.Обратите внимание, что металлический корпус или язычок ИС также содержит Vout, поэтому необходимо использовать изолирующие шайбы, если вы прикрепляете радиатор к металлическому корпусу. Резисторы большой мощности потребуются более 200 мА, но здесь они не нужны, поскольку мы используем малые токи для зарядки щелочных батарей! (200 мА = 1 4 Вт при 1,25 В)

Как это работает: LM317 поддерживает постоянное напряжение 1,25 В на резисторе независимо от входного напряжения или выходной нагрузки. Это означает, что когда ток нагрузки увеличивается или уменьшается, регулятор регулирует свой выход, чтобы поддерживать постоянное напряжение на резисторе, равном 1.Постоянно 25 В и, следовательно, ток 1,25 ÷ R.

Одна из причин, по которой эта схема настолько проста, заключается в том, что большая часть схемы находится внутри самого LM317. Сложную схему можно увидеть на внутренней принципиальной схеме ниже:

Внутренняя схема LM317

Да, вся схема размещена внутри LM317. Слева на схеме показаны три контакта: вход, выход и регулировка. Внутри 26 транзисторов, 26 резисторов, 3 конденсатора и 4 стабилитрона.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *