Site Loader

Содержание

Мощный линейный источник питания на полевых транзисторах (13В, 20А)

Схема мощного источника питания на полевых транзисторах, обеспечивающего стабилизированное напряжение 13В при токах до 20А и больше.

Принципиальная схема

Рис. 1. Принципиальная схема мощного источника питания на полевых транзисторах, напряжение 13В при токах до 20А и выше.

На диодах Д1-Д4 и конденсаторах C2-C3 собран выпрямитель напряжения.

На компонентах DA1, Д7, R8-R9 собран узел стабилизации напряжения. Напряжение стабилизации задается сопротивлением резистора R9.

На транзисторе VT5 собрана защита по току от короткого замыкания на выходе.

Выходные транзисторы VT1-VT4 работают в линейном режиме.

Детали и монтаж

Диоды Д1-Д4 должны бить закреплены на радиаторе. Также допускается использование готового диодного моста на ток больше 20А.

Мощный полевые транзисторы VT1-VT4 обязательно должны быть закреплены на радиаторе, который можно дополнительно оснастить вентилятором. Нагрев транзисторов при больших токах в нагрузке может быть значительным.

Рис. 2. Размещение выводов у микросхемы TL431.

Рис. 3. Размещение выводов у полевого транзистора IRFZ40.

Резисторы цепочки сравнения R8, R9 и конденсатор C8 должны быть смонтированы как можно ближе к выходу — на клеммах выходных устройства.

Резистор R7 — проволочный, его сопротивлением задается ток срабатывания защиты от короткого замыкания: Ток К.З. = 0.6/R7.

Доработанный вариант схемы

Вариант доработки схемы, предложенный UR5YW, содержит схему защиты по току от короткого замыкания на выходе, собранную в плюсовой цепи питания стабилизатора.

Рис. 4. Доработанный вариант схемы мощного блока питания на 9-17В и ток 14А от UR5YW.

Добавив в схему параллельно VT3-VT4 еще один транзистор IRF3205 можно будет получить выходной ток до 20А. Силовой трансформатор ТС-180 придется заменить более мощным, например на ТС-270. Собранный правильно и без ошибок блок питания запускается сразу.

Автор оригинальной схемы: RK9UC (ex. RA9UCR). 73!

Литература: Мельничук В. В. г. Черновцы, Украина. (UR5YW) — Блок питания на полевых транзисторах IRF3205. https://qrz.if.ua/tech/173-power_source_irf3205.html.

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ СВОИМИ РУКАМИ

ДАННЫЙ МАТЕРИАЛ СОДЕРЖИТ БОЛЬШОЕ КОЛИЧЕСТВО АНИМИРОВАННЫХ ПРИЛОЖЕНИЙ!!!

       

       

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСТВА

      Прежде чем приступить к описанию принципа работы импульсных источников питания следует вспомнить некоторые детали из общего курса физики, а именно что такое электричество, что такое магнитное поле и как они зависят друг от друга.
Сильно глубоко мы не будем углублятся и о причинах возникновения электричества в различных объектах мы тоже умолчим — для этого нужно просто тупо перепечатать 1/4 курса физики, поэтому будем надеятся, что читатель знает что такое электричество не по надписям на табличах «НЕ ВЛЕЗАЙ — УБЬЕТ!». Однако для начала напомним какое оно бывает, это самое электричество, точнее напряжение.

Ну а теперь, чисто теоритически, предположим, что в качестве нагрузки у нас выступает проводник, т.е. самый обычный отрезок провода. Что происходит в нем, когда через него протекает ток наглядно показанно на следующем рисунке:

Если с проводником и магнитным полем вокруг него все понятно, то сложим проводник не в кольцо, а в несколько колец, чтобы наша катушка индуктивности проявила себя активней и посмотрим что будет происходить дальше.

На этом самом месте имеет смысл попить чаю и дать мозгу усвоить только что узнанное. Если же мозг не устал, или же эта информация уже известна, то смотрим дальше

В качестве силовых транзисторов в импульсных блока питания используются биполярные транзисторы, полевые(MOSFET) и IGBT.

Какой именно силовой транзистор использовать решает только производитель устройств, поскольку и те, и другие и третьи имеют и свои достоинства, и свои недостатки. Однако было бы не справедливым не заметить, что биполярные транзисторы в мощных источника питания практически не используются. Транзисторы MOSFET лучше использовать при частотах преобразования от 30 кГц до 100 кГц, а вот IGBT «любят частоты пониже — выше 30 кГц уже лучше не использовать.
Биполярные транзисторы хороши тем, что они довольно быстро закрываются, поскольку ток коллектора зависит от тока базы, но вот в открытом состоянии имеют довольно большое сопротивление, а это означает, что на них будет довольно большое падение напряжения, что однозначно ведет к лишнему нагреву самого транзистора.
Полевые имеют в открытом состоянии очень маленькое активное сопротивление, что не вызывает большого выделения тепла. Однако чем мощнее транзистор, тем больше его емкость затвора, а для ее зарядки-разрядки требуются довольно большие токи.
Данная зависимость емкости затвора от мощности транзистора вызвана тем, что используемые для источников питания полевые транзисторы изготавливаются по технологии MOSFET, суть которой заключается в использовании параллельного включения нескольких полевых транзисторов с изолированным затвором и выполненных на одном кристалле. И чем мощенее транзистор, тем большее количество параллельных транзисторов используется а емкости затворов суммируются.
Попыткой найти компромисс являются транзисторы, выполненные по технологии IGBT, поскольку являются составными элементами. Ходят слухи, что получилисьони чисто случайно, при попытке повторить MOSFET, но вот вместо полевых транзисторов, получились не совсем полевые и не совсем биполярные. В качестве управляющего электрода выступает затвор встроенного внутрь полевого транзистора не большой мощности, который своими истоком-стоком уже управляет током баз мощных биполярных транзисторов, включенных параллельно и выполненных на одном кристалле данного транзстора.
Таким образом получается довольно маленькая емкость затвора и не очень большое активное сопротивление в открытом состоянии.
Основных схем включения силовой части не так уж и много:
АВТОГЕНЕРАТОРНЫЕ БЛОКИ ПИТАНИЯ. Используют положительную связь, обычно индукционную. Простота подобных источников питания накладывает на них некоторые ограничения — подобные источники питания «любят» постоянную, не меняющуюся нагрузку, поскольку нагрузка влияет на параметры обратной связи. Подобные источники бывают как однотактные, так и двухтактные.
ИМПУЛЬСНИНЫЕ БЛОКИ ПИТАНИЯ С ПРИНУДИТЕЛЬНЫМ ВОЗБУЖДЕНИЕМ. Данные источники питания так же делятся на однотактыные и двухтактные. Первые хоть и лояльней относятся к меняющейся нагрузке, но все же не очень устойчиво поддерживают необходимый запас мощности. А аудиотехника имеет довольно большой разброс по потреблению — в режиме паузы усилитель потребляет единицы ватт (ток покоя оконечного каскада), а на пиках аудиосигнала потребление может достигать десятков или даже сотен ватт.

Таким образом единственным, максимально приемлемым вариантом импульсных источником питания для аудиотехники является использование двухтактных схем с принудительным возбуждением. Так же не стоит забывать о том, что при высокочастотном преобразовании необходимо уделять более тщательное внимание к фильтрации вторичного напряжения, поскольку появление помех по питанию в звуковом диапазоне сведут на нет все старания по изготовлению импульсного источника питания для усилителя мощности. По этой же причине частота преобразования уводится по дальше от звукового диапазона. Самой популярной частотой преобразования раньше была частота в районе 40 кГц, но современная элементная база позволяет производить преобразование на частотах гораздо выше — вплоть до 100 кГц.
Различают два базовых вида данных импульсных источников — стабилизированные и не стабилизированные.
Стабилизированные источники питания используют широтноимпульсную модуляцию, суть которой заключается в формровании выходного напряжения за счет регулировки длительности подаваемого в первиную обмотку напряжения, а компенсация отсутствия импульсов осуществляется LC цепочками, включенными на выходе вторичного питания.
Большим плюсом стабилизированных источников питания является стабильность выходного напряжения, не зависящая ни от входного напряжения сети 220 В, ни от потребляемой мощности.
Не стабилизированные просто управляют силовой частью с постоянной частотой и длительностью импульсов и от обычного трансформатора отличаются лишь габаритами и гораздо меньшими емкостями конденсаторов вторичного питания. Выходное напряжение напрямую зависит от сети 220 В, и имеет небольшую зависисмость от потребляемой мощности (на холостом ходу напряжение несколько выше рассчетного).
Самыми популярными схемами силовой части импульсных источников питания являются:
Со средней точкой (ПУШ-ПУЛЛ). Используются обычно в низковольтных источниках питания, поскольку имеет некоторые особенности в требованиях к элементной базе. Диапазон мощностей довольно большой.
Полумостовые. Самая популярная схема в сетевых ипульсных источниках питания. Диапазон мощностей до 3000 Вт. Дальнейшее увеличение мощности возможно, но уже по стоимости доходит до уровня мостового варианта, поэтому несколько не экономично.

Мостовые. Данная схема не экономична на малых мощностях, поскольку содержит удвоенное количество силовых ключей. Поэтому чаще всего используется на мощностях от 2000 Вт. Максимальные мощности находятся в пределах 10000 Вт. Данная схемотехника является основной при изготовлении сварочных аппаратов.
Рассмотрим подробнее кто есть кто и как работает.

            СО СРЕДНЕЙ ТОЧКОЙ

Как было показанно — данную схемотехнику силовой части не рекомендуется использовать для создания сетевых источников питания, однако НЕ РЕКОМЕНДУЕТСЯ не значит НЕЛЬЗЯ. Просто необходимо более тщательно подходить к выбору элементной базы и изготовлению силового трансформатора, а так же учитывать довольно большие напряжения при разводке печатной платы.

Максимальную же популярность данный силовой каскад получил в автомобильной аудитехнике, а так же в источниках бесперебойного питания. Однако на этом поприще данная схемотехника притерпевает некоторые неудобства, а именно ограничение максимальной мощности. И дело не в элементной базе — на сегодня совсем не являются дефицитными MOSFET транзисторы с мгновенными значениями тока сток-исток в 50-100 А. Дело в габаритной мощности самого трансформатора, а точнее в первичной обмотке.
Проблема заключается… Впрочем для большей убедительности воспользуемся программой расчетов моточных данных высокочастотных трансформаторов.
Возьмем 5 колец типоразмера К45х28х8 с проницаемостью M2000HM1-А, заложем частоту преобразования 54 кГц и первичную обмотку в 24 В (две полуобмотки по 12 В) В итоге получаем, что мощность данный сердечник сможет развить 658 вт, но вот первичная обмотка должна содержать 5 витков, т.е. по 2,5 витка на одну полуобмотку. Как то не естественно маловато… Однако стоит поднять частоту преобразорвания до 88 кГц как получится всего 2 (!) витка на полуобмотку, хотя мощность выглядит весьма заманчиво — 1000 Вт.
Вроде с такими результатами можно смириться и равномерно по всему кольцу распределить 2 витка тоже, если сильно постараться, можно, но вот качество феррита оставляет желать лучшего, да и M2000HM1-А на частотах выше 60 кГц уже сам по себе греется довольно сильно, ну а на 90 кГц его уже обдувать надо.
Так что как не крути, но получается замкнутый круг — увеличивая габариты для получения большей мощности мы слишком сильно уменьшаем количество витков первичной обмотки, увеличивая частоту мы опять же уменьшаем количество витков первичной обмотки, но еще в довеско получаем лишнее тепло.
Именно по этой причине для получения мощностей свыше 600 Вт используют сдвоенные преобразователи — один модуль управления выдает управляющие импульсны на два одинаковых силовых модуля, содержащих два силовых трансформатора. Выходные напряжения обоих трансформаторов суммируются. Именно таким способом организуется питания сверхмощных автмобильных усилителей заводского производства и с одного силовго модуля снимается порядка 500..700 Вт и не более. Способов суммирования несколько:
— суммирования переменного напряжения. Ток в первичные обмотки трансформаторов подается синхронно, следовательно и выходные напряжения синхронны и могут соединяться последовательно. Соединять вторичные обмотки параллельно от двух трансформаторов не рекомендуется — небольшая разница в намотке или качестве феррита приводит в большим потерям и снижению надежности.
— суммирование после выпрямителей, т.е. постоянного напряжения. Самый оптимальный вариант — один силовой модуль выдает положительное напряжение для усилителя мощности, а второй — отрицательное.
— формирование питания для усилителей с двух уровневым питанием сложением двух идентичных двухполярных напряжений.

            ПОЛУМОСТОВАЯ

Полумостовая схема имеет довольно много достоинств — проста, следовательно надежна, легка в повторении, не содержит дефицитных деталей, может выполняться как на биполярных, так и на полывых транзисторах. Транзисторы IGBT в ней тоже прекрано работают. Однако слабое место у нее есть. Это проходные конденсаторы. Дело в том, что при больших мощностях через них протекает довольно большой ток и качество готового импульсного источника питания на прямую зависит от качества именно этого компонента.
А проблема заключается в том, что конденсаторы постоянно перезаряжаются, следовательно они должны иметь минимальное сопротивление ВЫВОД-ОБКЛАДКА, поскольку при большом сопротивлении на этом участке будет выделяться довольно много тепла и в конце концов вывод просто отгорит. Поэтому в качестве проходных конденсаторов необходимо использовать пленочные конденсаторы, причем емкость одного конденсатора может достигать емкости 4,7 мкФ в крайнем случае, если используется один конденсатор — схема с одни кондлесатром тоже довольно часто используется, по принципу выходного каскада УМЗЧ с однполярным питанием. Если же используются два конденсатора на 4,7 мкФ (точка их соединения подключена к обмотке трансформатора, а свободные выводы к плюсовой и минусовой шинам питания), то данная комплектация вполне пригодна для питания усилителей мощности — суммарная емкость для переменного напряжения преобразования складывает и в итоге получается равной 4,7 мкФ + 4,7 мкФ = 9,4 мкФ. Однако данный вариант не расчитан для догосрочного непрерывного использования с максимальной нагрузкой — необходимо разделять суммарную емкость на несколько конденсаторов.
При необходимости получения больших емкостей (низкая частота преоразования) лучше использовать несколько конденсаторов меньшей емкости (например 5 штук по 1 мкФ соединенных параллельно). Однако большое количество включенных параллельно конденсаторов довольно сильно увеличивает габариты устройства, да и суммарная стоимость все гирлянды конденсаторов получается не маленькой. Поэтому, при необходимости получить большую мощность имеет смысл воспользоваться мостовой схемой.
Для полумостового варианта мощности выше 3000 Вт не желательны — уж больно громоздкими будут платы с проходными конденсаторами. Использование в качестве проходных конденсаторов электролитических имеет смысл, но лишь на мощностях до 1000 Вт, посокольку на больших частотах электролиты не эффективны и начинаю греться. Бумажные конденсаторы в каестве проходных показали себя очень хорошо, но вот их габариты…
Для большей наглядности мы приводим таблицу зависимости реактивного сопротивления конденсатора от частоты и емкости (Ом):

Емкость конденсатора Частота преобразования
30 кГц 40 кГц 50 кГц 60 кГц 70 кГц 80 кГц 90 кГц 100 кГц
0,1 мкФ 53 39,8 31,8 26,5 22,7 19,9 17,7 15,9
0,22 мкФ 24,1 18 14,5 12 10,3 9 8 7,2
0,33 мкФ 16 12 9,6 8 6,9 6 5,4 4,8
0,47 мкФ 11,9 8,5 6,8 5,6 4,8 4,2 3,8 3,4
1,0 мкФ 5,3 4 3,2 2,7 2,3 2 1,8 1,6
2,2 мкФ 2,4 1,8 1,4 1,2 1 0,9 0,8 0,7
3,3 мкФ 1,6 1,2 1 0,8 0,7 0,6 0,5 0,5
4,7 мкФ 1,1 0,8 0,7 0,6 0,5 0,4 0,4 0,3

На всякий случай напоминаем, что при использовании двух конденсаторо (один на плюс, второй на минус) финальная емкость будет равна сумме емкостей этих конденсаторов. Итоговое сопротивление не выделает тепла, поскольку реактивное, но может повлиять на КПД источника питания при максимальных нагрузках — напряжение на выходе начнет уменьшаться, не смотря на то, что габаритная мощность силового трансформатора вполне достаточна.

            МОСТОВАЯ

Мостовая схема пригодна для любых мощностей, но наиболее эффективна на больших мощностях (для сетевых источников питания это мощности от 2000 Вт). Схема содержит две пары силовых транзисторов, управляемых синхроно, но необходимость гальванической развязки эмиттеров верхенй пары вносит некоторые неудобства. Однако эта проблема вполне решаема при использовании трансформаторов управления или же специализированных микросхем, например для полевых транзисторов вполен можно использовать IR2110 — специализированная разработка компании International Rectifier.

Однако силовая часть не имеет ни какого смысла, если ею не управляет модуль управления.
Специализированных микросхем, способных управлять силовой частью импульсных источников питания довольно много, однако наиболее удачной разработкой в этой области является TL494, которая появилась еще в прошлом веке, тем не менее не утратила своей актуальности, поскольку содержит ВСЕ необходимые узлы для управления силовой частью импульсных источников питания. О популярности данной микросхемы прежде всего говорит выпуск ее сразу несколькими крупными производителями электронных компонентов.
Рассмотрим принцип действия данной микросхемы, которую с полной ответственностью можно назвать контроллером, поскольку она обладет ВСЕМИ необходимыми узлами.

ЧАСТЬ I


ЧАСТЬ II

В чем же заключается собственно ШИМ способ регулировки напряжения?
В основу способа положена все таже инерционность индуктивности, т.е. ее не способность мгновенно пропустить ток. Поэтому регулируя длительность импульсов можно изменять финальное постоянное напряжение. Причем для импульсных источников питания это лучше делать в первичных цепях и таким образом экономить средства на создание источника питания, поскольку данный источник будет исполнять сразу две роли:
— преобразование напряжения;
— стабилизацию выходного напряжения.
Причем тепла при этом будет выделяться гораздо меньше по сравнению с линейным стабилизатором, установленным на выходе не стабилизированно импульсного блока питания.
Для больше наглядности стоит посмотреть рисунок, приведенный ниже:

      На рисунке приведена схема-эквивалент импульсного стабилизатора в котором в качестве силового ключа выступает генерато прямоугольных импульсов V1, а R1 в качестве нагрузки. Как видно из рисунка при фиксированной амплитуде выходных импульсов в 50 В, изменяя длительность импульсов можно в широких пределах изменять подаваемое на нагрузку напряжение, причем с очень маленькими тепловыми поетрями, зависищами лишь от параметров используемого силового ключа.

С принципами работы силовой части разобрались, с управлением тоже. Осталось соединить оба узла и получить готовый импульсный источник питания.
Нагрузочная способность контроллера TL494 не очень большая, хотя ее хватает для управления одной парой силовых транзисторов типа IRFZ44. Однако для более мощных транзисторов уже необходимы усилители тока, способные развить необходимы тока на управляющих электродах силовых транзисторов. Поскольку мы стараемся снизить габариты источника питания и уйти подальше от звукового диапазона, то оптимальным использованием в качестве силовых транзисторов будут полевые транзисторы, выполненные по технологии MOSFET.


Варианты структур при изготовлении MOSFET.

      С одной стороны — для управления полевым транзистором не нужны большие токи — они открываются напряжением. Однако в этой бочке меда есть ложка дегтя, в данном случае заключающаяся в том, что хоть затвор и имеет огромное активное сопротивление, не потребляющее тока для управления транзистором, но затвор имеет емкость. А для ее заряда и разряда как раз и нужны большие токи, поскольку на больших частотах преобразования реактивное сопротивление уже снижается до пределов которые нельзя игнорировать. И чем больше мощность силового MOSFET транзистора тем больше емкость его затвора.
Для примера возьмем IRF740 (400 V, 10A), у которого емкость затвора составляет 1400 пкФ и IRFP460 (500 V, 20 A), у которого емкость затвора составляет 4200 пкФ. Поскольку и у первого, и у второго напряжение затвора не должно быть более ± 20 В, то в качестве управляющих импульсов возьмем напряжение 15 В и посмотрим в симмуляторе что происходит при частоте генератора в 100 кГц на резисторах R1 и R2, которые включены последовательно с конденсаторами на 1400 пкФ и 4200 пкФ.


Тестовый стенд.

      При протекании через активную нагрузку тока на ней образуется падение напряжения, по этой величене и можно судить о мгновенных значениях протекающего тока.


Падение на резисторе R1.

      Как видно из рисунка сразу при появлении управляющего импульса на резисторе R1 падает примерно 10,7 В. При сопротивлении 10 Ом это означает, что мгновенное значения тока достигает 1, А (!). Как только импульс заканчивается на резисторе R1 падает так же 10,7 В, следовательно и для того, чтобы разрядить конденсатор С1 требуется ток около 1 А..
Для зарядки-разрядки емкости в 4200 пкФ через резистор 10 Ом требуется 1,3 А, поскольку на резисторе 10 Ом падает 13,4 В.

      Вывод напрашивается сам собой — для зарядки-разрядки емкостей затворов необходимо, чтобы каска, работающий на затворы силовых транзисторов, выдерживал довольно большие токи, не смотря на то, что суммарное потребление довольно мало.
Для ограничения мгновенных значений тока в затворах полевых транзисторов обычно используют токоограничивающие резисторы от 33 до 100 Ом. Чрезмерное уменьшение этих резисторов повышает мгновенное значение проеткающих токов, а увеличение — увеличивает длительность работы силового транзистора в линейном режиме, что влечет необоснованный нагрев последних.
Довольно часто используется цепочка состоящая из соединенных параллельно резистора и диода. Данная хитрость используется прежде всего для того, чтобы разгрузить управляющий каскад на время зарядки и ускорить разрядку емкости затвора.


Фрагмент однотактного преобразователя.

      Таким образом достигается не мгновенное появление тока в обмотке силового трансформатора, а несколько линейное. Хотя это увеличивает температуру силового каскада, но довольно ощутимо снижает выбосы самоидуции, которые неизбежно появляются при подаче прямоугольного напряжения в обмотку трансформатора.


Самоиндукция в работе однотактного преобразователя
(красная линия — напряжение на обмотке трансформатора, синяя — напряжение питания, зеленая — импульсы управления).

      Итак с теоритической частью разобрались и можно подвести кое какие итоги:
Для создания импульсного источника питания необходим трансформатор, сердечник у которого изготовлен из феррита;
Для стабилизации выходного напряжения импульсного источника питания необходим ШИМ метод с которым вполне успешно справляется контроллер TL494;
Силовая часть со средней точкой наиболее удобна для низковольных импульсных источников питания;
Силовая часть полумостовой схемотехники удобна для малых и средних мощностей, а ее параметы и надежность во многом зависят от коичества и качества проходных конденсаторов;
Силовая часть мостового типа более выгодна для больших мощностей;
При использовании в силовой части MOSFET не стоит забывать о емкости затворов и расчитывать управляющие элементы силовыми транзисторами с поправками на эту емкость;
Поскольку с отдельными узлами разобрались переходим к финальному варианту импульсного источника питания. Поскольку и алгоритм и схемотехника всех полумостовых источников практически одинакова, то для разъяснения какой элемент для чего нужен разберем по косточкам самый популярный, мощностью 400 Вт, с двумя двуполярными выходными напряжениями.


Осталось отметить некоторые ньюнасы:
Резисторы R23, R25, R33, R34 служат для создания RC-фильтра, который крайне желателен при использовании электролитических конденсаторах на выходе импульсных источниках. В идеале конечно же лучше использовать LС-фильтры, но поскольку «потребители» не очень мощные можно вполне обойтись и RC-фильтром. Сопротивление данных резисторов может использоваться от 15 до 47 Ом. R23 лучше мощностью 1 Вт, остальные на 0,5 Вт вполне достаточно.
С25 и R28 — снабер снижающий выбросы самоиндукции в обмотке силового трансформатора. Наиболее эффективны при емкостях около выше 1000 пкф, но в этом случае на резисторе выделяется слишком много тепла. Необходимы в случае когда после выпрямительных диодов вторичного питания отсутствуют дроссели (подавляющее большинство заводской аппаратуры). Если дроссели используются эффективность снаберов не так заметна. Поэтому мы их ставим крайне редко и хуже источники питания от этого не работают.
Если некоторые номиналы элементов отличаются на плате и принципиальной схеме эти номиналы не критичны — можно использовать и те и другие.
Если на плате имеются элементы отсутствующие на принципиальной схеме (обычно это конденсаторы по питанию) то можно их не ставить, хотя с ними будет лучше. Если же решили устанавливать, то не электролитические конденсаторы можно использовать на 0,1…0,47 мкФ, а электролитические такой же емкости как и те, которые получаются с ними включенными параллельно.
На плате ВАРИАНТ 2 Возле радиаторов имеется прямоугольная часть которая высверливается по периметру и на нее устанавливаются кнопки управления источником питания (вкл-выкл). Необходимость данного отверстия обусловлена тем, что вентилятор на 80 мм не умещается по высоте , для того, чтобы закрепить его к радиатору. Поэтому вентиялтор устанавливается ниже основания печатной платы.

ИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
СТАБИЛИЗИРОВАННОГО ИМПУЛЬСНОГО ИСТОЧНИКА ПИТАНИЯ

      Для начала внимательно следует ознакомиться с принципиальной схемой, впрочем это следует делать всегда, перед тем как приступать к сборке. Данный преобразователь напряжения работает по полумостовой схеме. В чем отличие от остальных подробно рассказанно здесь.

      Принципиальная схема упакованна WinRAR старой версии и выполнена на странице WORD-2000, поэтому с распечаткой данной страницы проблем возникнуть не должно. Здесь же мы рассмотрим ее фрагментами, поскольку хочется сохранить высокую читаемость схемы, а целиком на эеран монитора она умещается не совсем корректно. На всякий случай можно пользоватся этим чертежом для представления картины в целом, но лучше распечатать…
На рисунке 1 — фильтр и выпрямитель сетевого напряжения. Фильтр предназначен прежде всего для исключения проникновения импульсных помех от преобразователя в сеть. Выполнен на L-C основе. В качестве индуктивности используется ферритовый сердечник любой формы (стержневые лучше не нужно — большой фон от них) с намотанной одинарной обмоткой. Габариты сердечника зависят от мощности источника питания, поскольку чем мощнее источник, тем больше помех он будет создавать и тем лучше нужен фильтр.


Рисунок 1.

      Примерные габариты сердечников в зависимости от мощности источника питания сведены в таблицу 1. Обмотка мотается до заполения сердечника, диаметр(ы) провода следует выбирать из расчета 4-5 А/мм кв.

Таблица 1
МОЩНОСТЬ ИСТОЧНИКА ПИТАНИЯ КОЛЬЦЕВОЙ СЕРДЕЧНИК Ш-ОБРАЗНЫЙ СЕРДЕЧНИК
200-400 Вт Диаметр от 22 до 30 при толщине 6-8 мм Ширина от 24 до 30 при толщине 6-8 мм
400-800 Вт Диаметр от 32 до 40 при толщине 8-10 мм Ширина от 30 до 40 при толщине 8-10 мм
800-1200 Вт Диаметр от 40 до 45 при толщине 8-10 мм Ширина от 40 до 45 при толщине 8-10 мм
1200-1600 Вт Диаметр от 40 до 45 при толщине 10-12 мм Ширина от 40 до 45 при толщине 10-12 мм
2000-2500 Вт Диаметр от 40 до 45 при толщине 12-16 мм Ширина от 40 до 45 при толщине 12-16 мм
2500-3000 Вт Диаметр от 40 до 45 при толщине 16-20 мм Ширина от 40 до 45 при толщине 16-20 мм

Здесь следует немного пояснить почему диаметр(ы) и что такое 4-5 А/мм кв.
Данная категория источников питания относится в высокочастотной. Теперь вспомним курс физики, а именно то место, в котором говорится, что на высоких частотах ток течет не по всему сечению проводника, а по его поверхности. И чем выше частота, тем большая часть сечения проводника остается не задействованной. По этой причине в импульсных высокочастотных устройствах обмотки выполняют с помощью жгутов, т.е. берется несколько более тонкив проводников и складывается вместе. Затем получившийся жгут немного скручивают вдоль оси, чтобы отдельные проводники не торчали в разные стороны во время намотки и этим жгутом наматывают обмотки.
4-5 А/мм кв означает, что напряженность в проводнике может достигать от четырех до пяти Ампер на квадрантный миллиметр. Этот параметр отвечает за нагрев проводника за счет пандения в нем напряжения, ведь проводник имеет, хоть и не большое, но все же сопротивление. В импульсной технике моточные изделия (дроссели, трансформаторы) имеют сравнительно не большие габариты, следовательно охлаждаться они будут хорошо, поэтому напряженность можно использовать именно 4-5 А/мм кв. А вот для традиционных трансформаторов, выполненных на железе, этот параметр не должен превышать 2,5-3 А/мм кв. Сколько проводов и какого сечения поможет расчитать табличка диаметров. Кроме этого табличка подскажет какую мощность можно получить при использовании того или иного количества проводов имеющегося в наличии провода, если использовать его в качестве первичной обмотки силового трансформатора. Открыть табличку.
Емкость конденсатора С4 должна быть не ниже 0,1 мкФ, если он используется вообще. Напряжение 400-630 В. Формулировка если он используется вообще используется не напрасно — основным фильтром является дроссель L1, а его индуктивность получилась довольно большой и вероятность проникновения ВЧ помех сводится практически до нулевых значений.
Диодный мост VD служит для выпрямления переменного сетевого напряжения. В каечстве диодного моста используется сборка типа RS (торцевые выводы). Для мощности в 400 Вт можно использовать RS607, RS807, RS1007 (на 700 В, 6, 8 и 10 А соответственно), поскольку установочные габариты у этих диодных мостов одинаковые.
Конденсаторы С7, С8, С11 и С12 необходимы для снижения импульсных помех, создаваемых диодами во время приближения переменного напряжения к нулю. Емкость данных конденсаторов от 10 нФ до 47 нФ, напряжение не ниже 630 В. Однако проведя несколько замеров было выяснено, что L1 хорошо справляется и с этими помехами, а для исключения влияния по первичным цепях вполне хватает конденсатора С17. Кроме этого свою лепту вносят и емкости конденсаторов С26 и С27 — для первичного напряжения они являются двумя, соединенными последовательно конденсаторами. Поскольку их номиналы равны, то итоговая емккость делится на 2 и эта емкость уже не только служит для работы силового трансформатора, но еще и подавляет импульсные помехи по первичному питанию. Исходя из этого мы отказались от использования С7, С8, С11 и С12, ну а если кому то уж очень хочется их установить, то на плате, со стороны дорожек места вполне достаточно.
Следующий фрагмент схемы — ограничители тока на R8 и R11 (рисунок 2). Данные резисторы необходимы для снижения тока зарядки электролитических конденсаторов С15 и С16. Данная мера необходима, поскольку в момент включения необходим очень большой ток. Ни предохранитель, ни диодный мост VD не способны, пусть даже кратковременно выдержать такой мощный токовый бросок, хотя индуктивность L1 и ограничивает максимальное значение протекающего тока, в данном случае этого не достаточно. Поэтому используются токоограничивающие резисторы. Мощность резисторов в 2 Вт выбрана не столько из за выделяемого тепла, а по причине довольно широкого резистивного слоя, способного кратковременно выдержать ток в 5-10 А. Для источников питания мощностью до 600 Вт можно использовать резисторы мощностью и 1 Вт, либо использовать один резистор мощностью 2 Вт, необходимо лишь соблюсти условие — суммарное сопротивление даннйо цепи не должно быть меньше 150 Ом и не должно быть больше 480 Ом. При слишком низком сопротивлении увеличивается шанс разрушения резистивного слоя, при слишком выском — увеличивается время заряда С15, С16 и напряжение на них не успеет приблизится к максимальному значению как сработает реле К1 и контактам этого реле придется коммутировать слишком большой ток. Если вместо резисторов МЛТ использовать проволочные, то суммарное сопротивление можно уменьшить до 47…68 Ом.
Емкость конденсаторов С15 и С16 выбирается так же в зависимости от мощности источника. Вычислить необходиму емкость можно воспользовавшись не сложной формулой : НА ОДИН ВАТТ ВЫХОДНОЙ МОЩНОСТИ НЕОБХОДИМ 1 МКФ ЕМКОСТИ КОНДЕНСАТОРОВ ФИЛЬТРА ПЕРВИЧНОГО ПИТАНИЯ. Если есть сомнения в своих математических способностях можно воспользоваться табличкой, в которой просто ставите мощность источника питания, который вы собираетесь изготовить и смотрите сколько и каких конденсаторов Вам необходимо. Обратите внимание на то, что плата расчитана на установку сетевых электролитических конденсаторов диаметром 30 мм.


Рисунок 3

      На рисунке 3 показанны гасящие резисторы основная цель которых сформировать стартовое напряжение. Мощность не ниже 2 Вт, на плату устанавливаются парами, друг над дружкой. Сопротивление от 43 кОм до 75 кОм. ОЧЕНЬ желательно, чтобы ВСЕ резисторы были одного номилала — в этом случае тепло распределяется равномерно. Для небольших мощностей используется маленькое реле с небольшим потреблением, поэтому можно обойтись 2 или тремя гасящими резисторами. На плате устанавливаются друг над дружкой.


Рисунок 4

      Рисунок 4 — стабилизатор питания модуля управления — в любом корпусе интергарльный стабилизатор на +15В. Необходим радиатор. Размер… Обычно хватает радиатора от предпоследнего каскада отечественных усилителей. Можно попросить что-то в телемастерских — на телевезионных платах обычно 2-3 подходящих радиатора находятся. Второй как раз используется для охлаждения транзистора VT4, управляющего оборотами вентилятора (рисунок 5 и 6). Конденсаторы С1 и С3 можно использовать и 470 мкФ на 50 В, но такая замена подходит лишь для источников питания, использующих определенный тип реле, у которых сопротивление катушки довольно большое. На более мощных источниках используется более мощное реле и уменьшение емкости С1 и С3 крайне не желательно.


Рисунок 5

Рисунок 6

      Транзистор VT4 — IRF640. Можно заменить на IRF510, IRF520, IRF530, IRF610, IRF620, IRF630, IRF720, IRF730, IRF740 и т.д.. Главное — он должен быть к орпусе ТО-220, иметь максимальное напряжение не ниже 40 В и максимальный ток не менее 1 А.
Транзистор VT1 — практически любой прямой транзистор с максимальным током более 1 А, желательно с маленьким напряжение насыщения. Одинаково хорошо становятся транзисторы в корпусах ТО-126 и ТО-220, поэтому можно подобрать уйму замен. Если прикрутить небольщой радиатор то вполне подойдет даже КТ816 (рисунок 7).


Рисунок 7

      Реле К1 — TRA2 D-12VDC-S-Z или TRA3 L-12VDC-S-2Z. По сути — самое обыкновенное реле с обмоткой на 12 V и контактной группой способной коммутировать 5 А и более. Можно использовать реле, используемые в некоторых телевизрах для включения петли размагничивания, только учтите — контактная группа в подобных реле имеет другую цоколевку и даже если она становится на плату без проблем следует проверить какие выводы замыкаются при подаче напряжения на катушку. Отличаются TRA2 от TRA3 тем, что TRA2 имеют одну контактную группу, способную коммутировать ток до 16 А, а TRA3 имеет 2 контактные группы по 5А.
Кстати сказать — печатная плата предлагается в двух вариантах, а именно с использованием реле и без такового. В варианте без реле не используется система мягкого старта первичного напряжения, поэтому данный вариант пригоден для источника питания мощностью не более 400 Вт, поскольку без токоограничения включать на «прямую» емкость более 470 мкФ крайне не рекомендуется. Кроме того — в качестве диодного моста VD ОБЯЗАТЕЛЬНО должен использоваться мост с максимальным током 10 А, т.е. RS1007. Ну а роль реле в варианте без софт-старта выполняет светодиод. Фунция дежурного режима сохранена.
Кнопки SA2 и SA3 (подразумевается, что SA1 — сетевой выключатель) — кнопки любого типа без фиксации, для которых можно изготовить отдельную печатную плату, а можно закрупить и другим удбным способом. Необходимо помнить, что контакты кнопок гальванически связанны с сетью 220 В, поэтому необходимо исключить вероятность их касания в процессе эксплуатации источника питания.
Аналогов контроллера TL494 довольно много, можно использовать любой, только учтите — у разных производителей возможны некоторые различия параметров. Например при замене одного производителя на другого может измениться частота преобразования, но не сильно, а вот выходное напряжение может измениться вплоть до 15%.
IR2110 в принципе не дефецитный драйвер, да и аналогов у нее не так много — IR2113, но IR2113 имеет большее количество вариантов корпуса, поэтому будьте внимательны — необходим корпус DIP-14.
При монтаже платы вместо микросхем лучше использовать разъемы для микросхем (панельки), идеально — цанговые, но можно и обычные. Данная мера позволит избежать некоторых недоразумений, поскольку брака среди и TL494 (нет выходных импульсов, хотя тактовый генератор работает), и среди IR2110 (нет управляющих импульсов на верхний транзистор) довольно много, так что условия гарантии следует согласовать с продавцом микросхем.


Рисунок 8

      На рисунке 8 показана силовая часть. Диоды VD4…VD5 лучше использовать быстрые, например SF16, но при отсутствии таковых HER108 тоже вполне подойдут. С20 и С21 — суммарная емкость не менее 1 мкФ, поэтому можно использовать 2 конденсатора по 0,47 мкФ. Напряжение не менее 50 В, идеально — пленочный конденсатра на 1 мкФ 63 В (в случае пробоя силовых транзисторов пленочный остается целым, а многослойная керамика погибает). Для источников питания мощностью до 600 Вт сопротивление резисторов R24 и R25 может быть от 22 до 47 Ом, поскольку емкости затворов силовых транзисторов не очень велики.
Силовые транзисторы могут быть любыми из приведенных в таблице 2 (корпус ТО-220 или ТО-220Р).

Таблица 2
Наименование Емкость затвора,
пкФ
Макс напряжение,
В
Макс ток,
А
Тепловая мощн,
Вт
Сопротивление,
Ом
IRF740 1400-1600 400 10 125 0,55
IRF840 1300 500 8 125 0. 75-0.85
IRFBC40 1300 600 6 125 1.2
SPA20N60C3 2400 650 20 34 0.19
SPP20N60C3 2400 650 20 200 0.19
STP10NK60ZFP 1400 600 10 35 0.75
STP10NK60Z 1400 600 10 115 0.75
STP14NK60Z 2200 600 13 160 0.5
STP14NK60ZFP 2200 600 13 40 0.5
STP9NK65Z 1150 650 6 125 1.2
STP9NK65ZFP 1150 650 6 30 1.2
STP10NK80Z 2200 800 9 160 0.9
STP10NK80ZFP 2200 800 9 40 0. 9
STP17NK40ZPFP 400 15 35 0.23
      Если тепловая мощность не превышает 40 Вт значит корпус транзистора полностью пластмассовый и требуется теплоотвод большей площади, чтобы не доводить температуру кристалла до критического значения.

Напряжение затвора для всех не более ±20 В

Тиристоры VS1 и VS в принципе марка значения не имеет, главное — максимальный ток должен составлять не менее 0,5 А и корпус должен быть ТО-92. Мы используем либо MCR100-8, либо MCR22-8.
Диоды для слаботочного питания (рисунок 9) желательно выбирать с маленьким временем восстановления. Вполне подойдут диоды серии HER, например HER108, но можно использоваь и другие, например SF16, MUR120, UF4007. Резисторы R33 и R34 на 0,5 Вт, сопротивление от 15 до 47 Ом, причем R33=R34. Служебная обмотка, работающая на VD9-VD10 должна быть рассчитана на 20 В стабилизированного напряжения. В таблице расчета обмоток она отмечена красным.


Рисунок 9

      Силовые выпрямительные диоды могут использоваться как в корпусе ТО-220, так и в корпусе ТО-247. В обоих вариантах печатной платы подразумевается, что диоды будут установлены друг над дружкой и с платой соединяться проводниками (рисунок 10). Разумеется, что при установке диодов следует использовать термопасту и изолирующие прокладки (слюду).


Рисунок 10

      В качестве выпрямительных диодов желательно использовать диоды с маленьким временем восстановления, поскольку от этого зависит нагрев диодов на холостом ходу (сказывается внутренняю емкость диодов и они просто греются сами по себе, даже без нагрузки). Список вариантов сведен в таблицу 3

Таблица 3
Наименование Максимальное напряжение,
В
Максимальный ток,
А
Время восстановления,
нано сек
8ETH06 600 8 30
15ETH06 600 15 35
15ETH06FP 600 15 35
30EPH06 600 30 28
30ETH06 600 30 40
40EPF06 600 40 60
HFA15TB60 600 15 60
HFA16TB120 1200 16 30
HFA25TB60 600 25 75
HFA30PB120 1200 30 40
MUR1520 200 15 35
MUR820 200 8 25
MUR860 600 8 50
SF84 200 8 35

Трансформатор тока выполняет две роли — используется именно как трансформатор тока и как индуктивность, включенная последовательно с первичной обмоткой силового трансформатора, что позволяет несколько снизить скорость появляения тока в первичной обмотке, что ведет к уменьшению выбросов самоиндукции (рисунок 11).


Рисунок 11

      Строгих формул для расчета данного трансформатора нет, но вот соблюсти некоторые ограничения настоятельно рекомендуется:

            ДЛЯ МОЩНОСТЕЙ ОТ 200 ДО 500 ВТ — КОЛЬЦО ДИАМЕТРОМ 12…18 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 400 ДО 800 ВТ — КОЛЬЦО ДИАМЕТРОМ 18…26 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 800 ДО 1800 ВТ — КОЛЬЦО ДИАМЕТРОМ 22…32 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 1500 ДО 3000 ВТ — КОЛЬЦО ДИАМЕТРОМ 32…48 ММ
КОЛЬЦА ФЕРРИТОВЫЕ, ПРОНИЦАЕМОСТЬЮ 2000, ТОЛЩИНОЙ 6…12 ММ

КОЛИЧЕСТВО ВИТКОВ ПЕРВИЧНОЙ ОБМОТКИ:
3 ВИТКА ДЛЯ ПЛОХИХ УСЛОВИЙ ОХЛАЖДЕНИЯ И 5 ВИТКОВ ЕСЛИ ВЕНТИЛЯТОР ОБДУВАЕТ НЕПОСРЕДСТВЕННО ПЛАТУ
КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ:
12…14 ДЛЯ ПЕРВИЧНОЙ ИЗ 3-Х ВИТКОВ И 20…22 ДЛЯ ПЕРВИЧНОЙ ИЗ 5-ТИ ВИТКОВ

ГОРАЗДО УДОБНЕЙ ТРАНСФОРМАТОР НАМОТАТЬ СЕКЦИОННО — ПЕРВИЧНАЯ ОБМОТКА НЕ ПЕРЕХЛЕСТЫВАЕТСЯ СО ВТОРИЧНОЙ. В ЭТОМ СЛУЧАЕ ОТМОТАТЬ-ДОМОТАТЬ ВИТОК К ПЕРВИЧНОЙ ОБМОТКЕ НЕ ПРЕДСТАВЛЯЕТ ТРУДА. В ФИНАЛЕ ПРИ НАГРУЗКЕ В 60% ОТ МАКСИМАЛЬНОЙ НА ВЕРХНЕМ ВЫВОДЕ R27 ДОЛЖНО БЫТЬ ПОРЯДКА 12…15 В
Первичная обмотка трансформатора мотается тем же, что и первичная обмотка силового трансформатора TV2, вторичная двойным проводом диаметром 0,15…0,3 мм.

Для изготовления силового трансформатора импульсного блока птания следует воспользоваться программой для расчета импульсных трансформаторов. Конструктив сердечника принципиального значения не имеет — может быть и тороидальным и Ш-образным. Печатные платы позволяют без проблемно использовать и тот и другой. Если габаритной мощности Ш-образного средечника не хватает его можно так же сложить в пакет, как кольца (рисунок 12).


Рисунок 12

      Ш-образными ферритами можно разжиться в телемастерских — не чато, но трансформаторы питания в телевизорах выходят из строя. Легче всего найти блоки питания от отечественных телевизоров 3…5-го. Не стоит забывать, что в случае, если требуется трансформатор из двух-трех средечников, то ВСЕ средечники должны быть одной марки, т. е. для разборки необходимо использовать трансформаторы одного типа.
Если силовой трансформатор будет изготовлен из колец 2000, то можно воспользоваться таблицей 4.

РЕАЛИЗАЦИЯ РЕАЛЬНЫЙ
ТИПОРАЗМЕР
ПАРАМЕТР ЧАСТОТА ПРЕОБРАЗОРВАНИЯ
МОЖНО БОЛЬШЕ ОПТИМАЛЬНО СИЛЬНЫЙ НАГРЕВ
50 кГц 60 кГц 70 кГц 80 кГц 90 кГц 100 кГц 110 кГц
1 КОЛЬЦО
К40х25х11
К40х25х11 ГАБАРИТНАЯ МОЩНОСТЬ 130 160 175 200 220 250 270
ВИТКОВ НА ПЕРВ ОБМОТКУ 145 120 105 90 80 72 65
2 КОЛЬЦА
К40х25х11
К40х25х22 ГАБАРИТНАЯ МОЩНОСТЬ 230 280 330 370 420 470 520
ВИТКОВ НА ПЕРВ ОБМОТКУ 72 60 52 45 40 36 33
1 КОЛЬЦО
К45х28х8
К45х28х8 ГАБАРИТНАЯ МОЩНОСТЬ 135 150 180 200 230 240 270
ВИТКОВ НА ПЕРВ ОБМОТКУ 174 145 124 110 97 87 79
2 КОЛЬЦА
К45х28х8
К45х28х16 ГАБАРИТНАЯ МОЩНОСТЬ 240 290 340 390 440 480 530
ВИТКОВ НА ПЕРВ ОБМОТКУ 87 73 62 55 49 44 40
3 КОЛЬЦА
К45х28х8
К45х28х24 ГАБАРИТНАЯ МОЩНОСТЬ 360 440 510 580
ВИТКОВ НА ПЕРВ ОБМОТКУ 66 55 47 41
4 КОЛЬЦ А
К45х28х8
К45х28х32 ГАБАРИТНАЯ МОЩНОСТЬ 490 580
ВИТКОВ НА ПЕРВ ОБМОТКУ 50 41
КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ РАСЧИТЫВАЕТСЯ ЧЕРЕЗ ПРОПОРЦИЮ, УЧИТЫВАЯ ТО, ЧТО НАПРЯЖЕНИЕ НА ПЕРВИЧНОЙ ОБМОТКЕ РАВНО 155 В ИЛИ ПРИ ПОМОЩИ ТАБЛИЦЫ (ИЗМЕНЯТЬ ТОЛЬКО ЖЕЛТЫЕ ЯЧЕЙКИ)

Обратите внимание, что стабилизация напряжения осуществляется при помощи ШИМ, следовательно выходное расчетное напряжение вторичных обмоток должно быть минимум на 30 % больше, чем вам необходимо. Оптимальные параметры получаются, когда расчетной напряжение составляет на 50…60% больше, чем необходимо стабилизировать. Например Вам необходим источник с выходным напряжением 50 В, следовательно вторичная обмотка силового трансформатора должна расчитываться на выходное напряжение 75…80 В. В таблице расчетов вторичной обмотки этот коэфициент учтен.
Зависимость частоты преобразования от номиналов С5 и R5 показана на графике:

      Использовать довольно большое сопротивление R5 не рекомендуется — слишком большое магнитное поле находится совсем не далеко и возможны наводки. Поэтому остановимся на «среднем» номинале R5 в 10 кОм. При таком сопротивлении частотозадающего резистора получаются следующие частоты преобразования:

Параметры получены у данного производителя R5 C5 Частота преобразования
10 кОм 680 пкФ 110 кГц
820 пкФ 91 кГц
1000 пкФ 78 кГц
1200 пкФ 67 кГц
1500 пкФ 54 кГц

(!) Тут следует сказать несколько слов о намотке трансформатора. Довольно часто приходят возмущения, мол при самостоятельном изготовлении источник либо не отдает необходиму мощность, либо силовые транзисторы сильно греются даже без нагрузки.
Откровенно говоря с такой проблемой мы тоже сталкнулись используя кольца 2000, но нам было проще — наличие измерительной аппартуры позволило выяснить в чем причина таких казусов, а она оказалась довольно ожидаемой — магнитная проницаемость феррита не соответсвует маркировки. Другими словами на «слабеньких» трансформаторах пришлось отматывать первичную обмотку, на «греющихся силовых транзисторах» наоборот — доматывать.
Немного позже мы отказалиьс от использования колец, однако тот феррит который мы используем вообще был не макрирован, поэтому пошли на радикальные меры. К собранной и отлаженной плате подключается трансформатор с расчетным количеством витков первичной обмотки и изменяется частота преобразования установленным на плату подстроечным резистором (вместо R5 устанавливается подстроечник на 22 кОм). В момент включения частоат преобразования устанавливается в пределах 110 кГц и начинает снижаться вращением движка подстроечного резистора . Таким образом выясняется частота при которой сердечник начинает входить в насыщение, т.е. когда силовые транзисторы начинают греться без нагрузки. Если частота снижается ниже 60 кГц, то первичная обмотка отматывается, если же температура начинает повышаться на 80 кГц, то первичная обмотка доматывается. Таким образом выясняется количество витков именно для этого сердечника и тоько после этого наматывается вторичная обмотка с использованием предлагаемой выше таблички и на упаковках проставляется количество витков первички для того или иного средечника..
Если качество вашего сердечника вызывает сомнения, то лучше изготовить плату, проверить ее на работоспособность и только после этого изготавливать силовой трансформатор используя описанную выше методику..

Дроссель групповой стабилизации. Кое где даже мелькало суждение, что он ну никак не может работать, поскольку через него протекает постоянное напряжение. С одной стороны подобные суждения верны — напряжение действительно одной полярности, значит может быть опознанно как постоянное. Однако автор подобного суждения не учел тот факт, что напряжение хоть и постонное, но оно пульсирующее и во время работы в данном узле происходит далеко не один процесс (протекание тока), а множество, поскольку дроссель содержит не одну обмотку, а минимум две (если выходное напряжение нужно двуполярное) или 4 обмотки, если необходимо два двуполярных напряжения (рисунок 13).

Рисунок 13

Изготовить дроссель можно и на кольце и на Ш-образхном феррите. Габариты конечно же зависят от мощности. Для мощностей до 400-500 Вт хватает средечника от сетевого фильтра питания телевизоров с 54-х см диагональю и выше (рисунок 14). Конструктив сердечника не принципиален

Рисунок 14

      Мотается так же как и силовой трансформатор — из нескольких тонких проводников, свитых в жгут или склеенных в ленту из расчета 4-5 А/мм кв. Теоритически — чем больше витков — тем лучше, поэтому обмотка укладывается до заполнения окна, причем сразу в 2 (если нужен двуполярный источник) или в 4 провода (если нужен источник с двумя двуполярными напряжениями.
После сглаживающих конденсаторов стоят выходные дроссели. Особых требований к ним не предъявляется, габариты… Платы расчитаны на установку сердечников от фильтров сетевого питания телевизоров. Наматывают до заполнения окна, сечение из расчета 4-5 А/мм кв (рисунок 15).



Рисунок 15

Выше упоминалась лента в качетсве обмотки. Здесь следует остановится несколько подробней.
Что лучше? Жгут или лента? И у того и у другого способа есть свои преимущества и недостатки. Изготовление жгута наиболее простой способ — растянул необходимое количество проводов, а затем скрутил их в жгут при помощи дрели. Однако такой способ увеличивает суммарную длину проводников за счет внутреннего кручения, а так же не позволяет добиться идентичности магнитного поля во все проводниках жгута, а это, пусть и не большие, но все же потери на тепло.
Изготовление ленты более трудоемко и немного дороже обходится, поскольку необходимое количество проводников растягивается и затем, при помощи полиуританового клея (ТОП-ТОП, СПЕЦИАЛИСТ, МОМЕНТ-КРИСТАЛЛ) склеивается в ленту. Клей наносят на провод небольшими порциями — по 15…20 см длинны проводника и затем зажав жгут между пальцами как бы втирают его следя за тем, чтобы провода уложились в ленту, на подобии ленточных жгутов, используемых для соединения дисковых носителей с материнской платой IBM компьютеров. После того как клей прихватился наносится новая порция на 15…20 см длины проводов и снова разглаживается пальцами до получения ленты. И так по всей длине проводника (рисунок 16).


Рисунок 16

      После полного высыхания клея производят намотку ленты на сердечник, причем первой наматывается обмотка с большим количеством витков (как правило и меньшим сечением), а сверху уже более сильноточные обмотки. После намотки первого слоя необходимо ленту «уложить» внутри кольца воспользовавшись выструганным из дерева конусообразным колышком. Максимальный диаметр колышка равен внутреннему диаметру используемого кольца, а минимальный — 8…10 мм. Длина конуса должна быть не меньше 20 см и измение диаметра должно быть равномерным. После намотки первого слоя кольцо просто одевают на колышек и с усилием надавливают таким образом, чтобы кольцо довольно сильно заклинило на колышке. Затем кольцо снимают, переворачивают и снова одевают на колышек с тем же усилием. Колышек должен быть достаточно мягким, чтоб не повредить изоляцию обмоточного провода, поэтому твердые породы дерева для этих целей не подойдут. Таким образом проводники укладывают строго по форме внутреннего диаметра сердечника. После намотки следующего слоя провод снова «укладывают» при помощи колышка и так делают после намотки каждого следующего слоя.
После намотки всех обмоток ( не забывая использовать межобмоточную изоляцию) трансформатор желательно прогреть до 80…90°С в течении 30-40 мин (можно воспользоваться духовкой газовой или электрической печки на кухне, но не следует перегревать). При этой температуре полиуритановый клей делается эластичным и снова приобретает клеящие свойства склеивая между собой уже не только проводники расположенные параллельно самой ленте, но и находящиеся сверху, т.е. происходит склеивание слоев обмоток между собой, что добавляет механической жесткости обмоткам и исключает какие либо звуковые эффекты, появление которых иногда случается при плохой стяжке проводников силового трансформатора (рисунок 17).


Рисунок 17

      Плюсами такой намотки является получения идентичного магнитного поля во все проводах ленточного жгута, поскольку геометрически они располагаются одинаково по отношению к магнитному полю. Такой ленточный проводник гораздо легче равномерно распределять по всему периметру сердечника, что очень актуально даже для типовых трансформаторов, а для импульсных является ОБЯЗАТЕЛЬНЫМ условием. Используя ленту можно добиться довольно плотной намотки, причем увеличив доступ охлаждающего воздуха к виткам, расположенным непосредственно внутри обмотки. Для этого достаточно количество необходимых проводов разделить на два и сделать две одинаковых ленты, которые будут наматываться друг на друга. Таким образом увеличится толщина намотки, но появится большое расстояние между витками ленты, обеспечивая доступ воздуха внутрь трансформатора.
В качестве межслойной изоляции лучше всего использовать фторопластовую пленку — очень эластична, что компенсирует напряженность одного края, возникающего при намотке на кольцо, имеет довольно большое пробивное напряжение, не чувствительна к температурам до 200°С и очень тонкая, т.е. не будет занимать много места в окне сердечника. Но она не всегда имеется под рукой. Использовать виниловую изоленту можно, но она чувствительна к температурам выше 80°С. Изолента на основе материи к температурам устойчива, но имеет маленькое пробивное напряжение, поэтому при ее использовании необходимо наматывать минимум 2 слоя.
Каким бы проводником и в какой бы последовательности Вы не наматывали дроссели и силовой трансформатор следует помнить о длине выводов
Если Дроссели и силовой трансформатор изготавливаются с использованием ферритовых колец, то не надо забывать, что перед намоткой края ферритового кольца следует скруглить, поскольку они достаточно остры, а феррит материал довольно прочный и может повредить изоляцию на обмоточном проводе. После обработки феррит обматывается фторопластовой лентой или матерчатой изолентой и наматывается первая обмотка.
Для полной идентичности одинаковых обмоток обмотки мотаются сразу в два провода (подразумевается сразу в два жгута) которые после намотки прозваниваются и начало одной обмотки соединяется с концом другой.
После намотки трансформатора необходимо удалить лаковую изоляцию на проводах. Это самый не приятный момент, поскольку ОЧЕНЬ трудоемкий.
Прежде всего необходимо зафиксировать вывода на самом трансформаторе и исключить вытягивание отдельных проводов их жгута при механических воздействиях. Если жгут ленточный, т.е. клееный и после намотки прогретый, то достаточно намотать на отводы несколько витков тем же обмоточным проводом непосредственно возле тела трансформатора. Если же используется витой жгут, то его необходимо дополнительно свить у снования вывода и так же зафиксировать, намотав несколько витков провода. Далее вывода либо обжигаются при помощи газовой горелки сразу все, либо зачищаются по одному при помощи канцелярского резака. Если лак отжигался, то после остывания провода защищаются наждачной бумагой и свиваются.
После удаления лака, зачистки и свивки вывода необходимо защитить от окисления, т.е. покрыть канифольным флюсом. Затем трансформатор устанавливают на плату, все вывода, кроме вывода первичной обмотки подключаемого к силовым транзисторам, вставляются в соответствующие отверстия, на всякий случай следует «прозвонить» обмотки. Особое внимание следует обратить на фазировку обмоток, т.е. на соответствие начала обмотки с принципиальной схемой. После того как вывода трансформатора вставлены в отверстия следует их укоротить так, чтобы от конца вывода до печатной платы было 3…4 мм. Затем свитый вывод «раскручивается» и в место пайки помещается АКТИВНЫЙ флюс, т.е. это либо гашенная соляная кислота, на кончик спички берется капелька и переносится в место пайки. Либо в глицерин добавляется ацетил-салициловая кислота кристаллическая (аспирин) до получения кашеобразной консистенции (и то и другое можно приобрести в аптеке, в рецептурном отделе). После этого вывод припаивается к печатной плате, тщательно прогревая и добиваясь равномерного расположения припоя вокруг ВСЕХ проводников отвода. Затем вывод укорачивается по высоте пайки и плата тщательно моется либо спиртом (90% минимум), либо очищенным бензином, либо смесью бензина с растворителем 647 (1:1).

ПЕРВОЕ ВКЛЮЧЕНИЕ
Включение, проверка работоспособности производится в несколько этапов позволяющих избежать неприятностей, которые однозначно возникнут при ошибке в монтаже.
1. Для проверки данной конструкции потребуется отдельный источник питания с двуполярных напряжением ±15…20 В и мощность 15…20 Вт. Первое включение производят подключив МИНУСОВОЙ ВЫВОД дополнительного источника питания к минусовой первичной шине питания преобразователя, а ОБЩИЙ подключают в плюсовому выводу конденсатора С1 (рисунок 18). Таким образом симмулируется питани модуля управления и он проверяется на работоспосбность без силовой части. Тут желательно использовать осцилограф и частотомер, но если их нет, то можно обойтись и мультиметром, желательно стрелочны (цифровые не адекватно реагируют на пульсирующие напряжения).


Рисунок 18

      На выводах 9 и 10 контроллера TL494 стрелочный прибор, включенный на измерение постоянного напряжения должен показать почти половину напряжения питания, что говорит о том, что на микросхеме имеются прямоугольные импульсы
Так же должно сработать реле К1
2. Если модуль работает нормально, то следует проверить силовую часть, но опять же не от высокого напряжения, а используя доп источник питания (рисунок 19).


Рисунок 19

      При такой последовательности проверки что либо сжечь весьма затруднительно даже при серьезных ошибках монтажа (замыкание между дорожками платы, не пропайка элементов) поскольку мощности дополнительного блока не хватит. После включения проверяется наличие выходных напряжения преобразователя — конечно же оно будет значительно ниже расчетного (при использовании доп источника ±15В выходные напряжения будут занижены примерно в 10 раз, поскольку первичное питание составляет не 310 В а 30 В), тем не менее наличие выходных напряжений говорит о том, что в силовой части нет ошибок и можно переходить к терьей части проврки.
3. Первое включение от сети необходимо производить с токоограничением в качестве которого может выступить обычная лампа накаливания на 40-60 Вт, которую подключают вместо предохранителя. Радиаторы уже должны быть установлены. Таким образом в случае чрезмерного потребления по какой либо причине лампа загорится, а вероятность выхода из строя сведется к минимуму. Если же все нормально, то производят регулировку выходного напряжения резисторовм R26 и проверяют нагрузочную способность источника подключив к выходу такую же лампу накаливания. Включенная вместо предохранителя лампа должна загоряется (яркость зависит от выходного напряжения, т.е. от того какую мощность источник будет отдавать. Выходное напряжение регулируется резистором R26, однако может потебоваться подбор R36.
4. Проверка работоспособности производится с установленным на место предохранителем. В качестве нагрузки можно использовать нихромовую спираль для электропечек мощность 2-3 кВт. Два отрезка провода подпаивают к выходу источника питания, для начала к плечу, с котрого производится контроль выходного напряжения. Один провод прикручивается к концу спирали, на второй устанавливается «крокодил». Теперь, переустанавливая «крокодил» по длине спирали, можно оперативно менять сопротивление нагрузки (рисунок 20).


Рисунок 20

      Будет не лишним на спирали сделать «растяжки» в местах с определенным сопротивлением, например каждые 5 Ом. Подключаясь к «растяжкам» Уже заранее будет известно какая нагрузка и какая выходная мощность на данный момент. Ну а мощность можно вычислить по закону Ома (используется в табличке).
Все это необходимо для регулировки порога срабатывания защиты от перегрузки, которая должна устойчиво срабатывать при превышении реальной мощности на 10-15% расчетную. Так же проверяется как устойчиво источник питания держит нагрузку.

Если источник питания не отдает расчетную мощность значит какая то ошибка закралась при изготовлении трансформатора — смотрим выше как расчитать витки под реальный сердечник.
Осталось внимательно изучить как изготовить печатную плату, а это подробно описанно здесь И можно приступать к сборке. Необходимые чертежи печатной платы с первоисточником в формате LAY лежат в этом архиве. Чертежи в формате Word в этом архиве, ну а краткое описание по сборке здесь.

Если что то не понятно — спрашивайте — и ответим, и дополним архивы.

Не много дополнительной информации:

САМОДЕЛЬНЫЕ ПРЕДОХРАНИТЕЛИ
ТОК ПЕРЕГОРАНИЯ, А ДИАМЕТР МЕДНОГО
ПРОВОДА, мм
0,5 0,022
1 0,039
2 0,073
3 0,1
5 0,173
7,5 0,24
10 0,31
15 0,44
20 0,56
Цветовая маркировка резисторов

Цвет знака

Первая
цифра

Вторая
цифра

Третья
цифра

Множе-
тель

Допуск
+/- %

Серебристый

10^-2

10

Золотистый

10^-1

5

Черный

0

1

Коричневый

1

1

1

10

1

Красный

2

2

2

10^2

2

Оранжевый

3

3

3

10^3

Желтый

4

4

4

10^4

Зеленый

5

5

5

10^5

0,5

Голубой

6

6

6

10^6

0,25

Фиолетовый

7

7

7

10^7

0,1

Серый

8

8

8

10^8

0,05

ПРИМЕРНАЯ МОЩНОСТЬ УСИЛИТЕЛЯ
В ЗАВИСИМОСТИ ОТ ВЫХОДНОГО НАПРЯЖЕНИЯ И СОПРОТИВЛЕНИЯ НАГРУЗКИ
АМПЛИТУДА
ПОКАЗАНИЯ
ОСЦИЛОГРАФА
ДЕЙСТВУЮЩЕЕ
ПОКАЗАНИЯ
ВОЛЬТМЕТРА
4 Ома 8 Ом АМПЛИТУДА
ПОКАЗАНИЯ
ОСЦИЛОГРАФА
ДЕЙСТВУЮЩЕЕ
ПОКАЗАНИЯ
ВОЛЬТМЕТРА
4 Ома 8 Ом

1


2


3


4


5


6


7


8


9


10


11


12


13


14


15


16


17


18


19


20


22


24


26


28


30


32


34


36


38


40


42


44


46


48


50



0,71


1,41


2,12


2,83


3,54


4,24


4,95


5,66


6,36


7,07


7,78


8,49


9,19


9,9


10,61


11,32


12,02


12,73


13,44


14,14


15,56


16,97


18,39


19,8


21,22


22,63


24,05


25,46


26,87


28,29


29,7


31,12


32,53


33,95


35,36



0,13


0,5


1,12


2


3,13


4,49


6,13


8,01


10,11


12,5


15,13


18,02


21,11


24,5


28,14


32,04


36,12


40,51


45,16


49,98


61


72


85


98


113


128


145


162


180


200


221


242


265


288


313



0,06


0,25


0,56


1


1,57


2,25


3,06


4


5,06


6,25


7,57


9,01


10,56


12,25


14,07


16,02


18,06


20,26


22,58


24,99


30


36


42


49


56


64


72


81


90


100


110


121


132


144


156



52


54


56


58


60


62


64


66


68


70


72


74


76


78


80


82


84


86


88


90


92


94


96


98


100


105


110


115


120


125


130


135


140


145


150



36,78


38,19


39,6


41,02


42,43


43,85


45,26


46,68


48,09


49,5


50,92


52,33


53,75


55,16


56,58


57,99


59,41


60,82


62,23


63,65


65,06


66,48


67,89


69,31


70,72


74,26


77,79


81,33


84,87


88,4


91,94


95,47


99,01


102,55


106,08



338


365


392


421


450


481


512


545


578


613


648


685


722


761


800


841


882


925


968


1013


1058


1105


1152


1201


1250


1379


1513


1654


1801


1954


2113


2279


2451


2629


2813



169


182


196


210


225


240


256


272


289


306


324


342


361


380


400


420


441


462


484


506


529


552


576


600


625


689


756


827


900


977


1057


1139


1225


1315


1407


      Обычно амплитуда на выходе мощных усилителей класса АВ на 3…7 В меньше напряжения питания, следовательно если напряжение питания будет составлять ±50 В, то на выходе будет амплитуда 43…47 В, т.е. усилитель мощности может отдать в нагрузку 4 Ома 230…270 Вт.

Выбор полевых транзисторов STMicroelectronics

Введение

Основные параметры электронных преобразовательных схем определяются характеристиками применяемых ключевых полупроводниковых элементов. В преобразователях силовой электроники в качестве ключевых элементов широко используются полевые транзисторы с изолированным затвором (MOSFET) (рис. 1). Основными преимуществами MOSFET по сравнению с другими ключевыми элементами являются высокое быстродействие и низкая потребляемая мощность в цепи управления.

Рис. 1. Области применения MOSFET в силовой электронике

MOSFET производят многие ведущие компании мира, в том числе компания STMicroelectronics (STM), которфая длительное время является одним из лидеров мировой полупроводниковой промышленности. Ведущее место этой компании обусловлено постоянным совершенствованием технического уровня выпускаемой продукции, разработкой новых технологий производства полупроводниковых компонентов и непрерывным расширением продуктовых линеек. На сегодня STMicroelectronics является компанией, производящей одно из самых эффективных высоковольтных семейств MOSFET в мире.

Рис. 2. Развитие технологии STripFET компании STMicroelectronics

Семейства низковольтных транзисторов STM имеют общее название STripFET и отличаются индексом, который соответствует порядковому номеру поколения технологии (рис. 2) [1]. Технология STripFET III была представлена в 2005 г., структура транзистора приведена на рис. 3а. Транзисторы STripFET V появились в 2008 г. У них было снижено сопротивление слоя металла благодаря увеличению его толщины, улучшена структура затвора, использован вертикальный контакт μ-trench, что привело к снижению сопротивления канала и уменьшению полного заряда затвора. В этом же году начали производиться транзисторы серии F4, выполненные по технологии STripFET DeepGATE. В последующем эта технология была усовершенствована до STripFET VI DeepGATE с затвором в виде канавки (Trench MOSFET), структура которого приведена на рис. 3б. Данная технология за счет исключения паразитного сопротивления RJFET позволяет значительно снизить сопротивление канала и повысить плотность структуры кристалла. Однако в применениях с большой индуктивной нагрузкой по-прежнему используют транзисторы пятого поколения, выдерживающие большие энергии лавинного пробоя.

Рис. 3. Структура транзисторов STripFET:
а) планарная,
б) DeepGATE

Высоковольтные транзисторы STM представлены серией MDmesh [3]. Эта серия в настоящее время насчитывает четыре поколения транзисторов (рис. 4), и уже анонсировано пятое поколение. Концепция MDmesh основана на использовании глубоких р-областей под базой транзистора (рис. 5). За счет увеличения площади р-n-перехода можно снизить сопротивление эпитаксиального слоя без уменьшения пробивного напряжения. Таким образом, преодолевается противоречие между сопротивлением канала и пробивным напряжением. Концепция MDmesh в настоящее время используется многими ведущими компаниями и известна под названиями CoolMos (Infineon), DTMOS (Toshiba), SuperFet и SupreMos (Fairchild), Gen9 (Vishay) и пр. Компания «Микроника» тоже в их числе и реализует эту концепцию с использованием глубокой канавки, заполненной поликремнием, легированным бором в процессе роста, а также производит обычные планарные высоковольтные транзисторы для специального применения [2].

Рис. 4. Развитие технологии MDmesh

Рис. 5. Структура транзистора MDmesh

Одно из основных применений MOSFET нашли в импульсных источниках питания (Switched Mode Power Supply, SMPS) [4], в LED-драйверах [5], в которых используются как высоковольтные, так и низковольтные транзисторы в ключевом режиме. Типовой импульсный источник питания (рис. 6) состоит из предварительного AC/DC-преобразователя входного переменного тока с корректором мощности, на выходе которого формируется высокое напряжение, как правило, 400 В. Поэтому AC/DC-преобразователь содержит высоковольтные MOSFET. Далее DC/DC-преобразователь понижает высокое напряжение до необходимого уровня. Затем конечный DC/DC-преобразователь формирует выходные напряжения 1,2-12 В, необходимые большинству современных электронных приборов. Данный преобразователь требует наличия низковольтных MOSFET.

Рис. 6. Блок-схема системы питания с различными входными напряжениями конечных DC/DC-преобразователей

Многие применения требуют наличия различных режимов работы: режим низкой рассеиваемой мощности (резервный или «спящий») и нормальный режим, обеспечивающий максимальную эффективность работы. Некоторые применения требуют наличия одного выходного напряжения, другим нужны несколько. При выборе типа применяемого источника питания (ИП) важным параметром является выходная мощность. С целью обеспечения оптимальности показателя цена/качество для различных применений в зависимости от выходной мощности разработаны различные типы преобразователей напряжения.

Правильный и оптимальный выбор MOSFET, учет особенностей их применения обеспечивает сокращение сроков разработки и достижение необходимых параметров преобразователей напряжения.

В данной работе предлагается методика выбора высоковольтных MOSFET компании STMicroelectronics для импульсных ИП.

 

Параметры MOSFET

Основные параметры MOSFET, которые определяют характеристики проектируемого импульсного ИП и выбору которых необходимо уделять основное внимание, показаны в таблице 1. Выбор необходимого уровня этих параметров определяется функциональным назначением прибора, входными/выходными напряжениями и токами, частотой работы, выходной мощностью, необходимостью обеспечения как максимально допустимой мощности рассеяния, так и минимальных потерь MOSFET на проводимость и переключение. Различие в выходной мощности преобразователей, требование наличия баланса между рассеянием и потерями мощности обуславливают различные требования для корпусов.

Таблица 1. Основные параметры MOSFET
Параметр Обозначение
Статические параметры
Максимальное напряжение «сток-исток» V(BR)DSS
Максимальный постоянный ток стока ID
Максимальное напряжение на затворе VGS
Сопротивление «сток-исток» в открытом режиме RDS(ON)
Параметры переключения
Задержка включения td(on)
Время нарастания сигнала tr
Задержка выключения td(off)
Время спада tf
Динамические параметры
Суммарный заряд затвора QG
Входная емкость CISS
Входное сопротивление затвора RG
Проходная емкость (емкость Миллера) CRSS
Тепловые параметры
Максимальная температура перехода TJ(MAX)
Тепловое сопротивление «переход-корпус» RTH_JC

Далее будут рассмотрены вопросы, касающиеся выбора типа корпуса, параметров высоковольтных MOSFET для предварительных AC/DC-преобразователей и выбора параметров низковольтных MOSFET для конечных DC/DC-преобразователей.

Выбор типа корпуса

Выбор типа корпуса для MOSFET главным образом определяется следующими показателями: рассеиваемой мощностью, расстоянием между выводами, размером, стоимостью [6].

Рассеяние мощности, охлаждение

Тип корпуса MOSFET для использования в конкретном применении выбирают исходя из требуемой мощности рассеяния. Мощные корпуса Т0-220 и особенно ТО-247 со встроенным радиатором и форсированным отводом могут рассеивать большое количество тепла — 1,5 и 2,0 Вт соответственно — без внешних радиаторов. Однако в импульсных ИП современных электронных устройств, где большое значение имеет занимаемый объем, в основном применяются корпуса для поверхностного монтажа (SMD). В таблице 2 показаны тепловые параметры основных типов SMD-корпусов компании ST.

Таблица 2. Тепловые параметры основных типов корпусов SMD компании STM
Корпус Площадь монтажа, мм2 Мин. рекомендуемая площадь теплоотвода на плате, мм2 TJMAX, °C TTHJ-PCB*, °C/Bт TTHJ-PCB**, C/Bт PD, Вт
D2PAK 210 120 175 34,0 42,0 4,4
Power S0-10 140 60 175 35,0 50,0 4,3
DPAK 80 45 175 50,0 62,0 3,0
PowerFLAT 5×5 25 15 150 31,2 60,0 4,0
PowerFLAT 6×5 30 23 150 31,2 60,0 4,0
SOT-223 50 15 150 38,0 56,6 3,3
PowerSO-8 30 23 150 42,0 56,6 3,0
SO-8 30 23 150 50,0 100 2,5
TSS0P8 20 15 150 83,5 100 1,5

Примечания:
* — с использованием теплоотвода на плате площадью 600 мм2;
** — с использованием теплоотвода на плате минимальной рекомендуемой площади.

Расстояние между выводами корпуса

Расстояние между выводами должно соответствовать напряжению, используемому в данном применении.

Размер, объем корпуса

Размеры корпуса MOSFET также могут определяться параметрами (размер/объем/высота) корпуса источника питания. Например, в адаптерах для ноутбуков используются корпуса DPAK или D2PAK для обеспечения минимальной высоты.

Стоимость

Как правило, меньший корпус дешевле, чем корпус большего размера. Также технология поверхностного монтажа более эффективна по стоимости при производстве плат ИП. Полностью изолированный корпус транзистора позволяет снизить стоимость сборки тепловых радиаторов, так как исключает необходимость размещения изоляционной прокладки между корпусом транзистора и радиатором.

 

Выбор параметров высоковольтных MOSFET

Выбор величины пробивного напряжения

При выборе уровня пробивного напряжения необходимо учитывать следующие факторы:

  • Лавинное напряжение пробоя BVDSS, которое всегда несколько выше максимального — допустимого напряжения «сток-исток» VDS, т. е. существует некоторый запас. Температурные зависимости пробивного напряжения транзистора BVDSS, как правило, приведены в спецификациях. На рис. 7a, б приведены температурные зависимости пробивного напряжения для 600-В MOSFET ST STB10NK60Z и STE70NM60. По этим зависимостям можно определить пробивное напряжение транзистора при рабочих температурах перехода +100…+120 °С. Обычно эта величина на 4-7% выше пробивного напряжения при комнатной температуре. Однако следует отметить, что если прибор будет использоваться в аппаратуре при отрицательных температурах, то необходимо, чтобы пробивное напряжение транзистора на этих температурах было выше, чем максимальное напряжение на стоке, для предотвращения лавинного пробоя транзистора в момент включения аппаратуры.
  • Минимальное пробивное напряжение V(BR)DSS, указанное в спецификации на транзистор для комнатной температуры и имеющее такой же положительный температурный коэффициент, как и BVDSS.
  • Уровень выбросов напряжения (spike), обусловленный наличием индуктивностей и паразитных емкостей в плате применения. Уровень выбросов напряжения не должен превышать 70-90% от минимального пробивного напряжения V(BR)DSS.

Рис. 7. Зависимости нормализованного пробивного напряжения от температуры:
а) для транзистора STB10NK60Z;
б) для транзистора STE70NM60

Выбор рабочей температуры перехода

Рабочая температура перехода не должна достигать максимальной рабочей температуры, определенной в спецификации, но для обеспечения запаса по надежности рабочая температура должна быть ниже максимальной. Снижение рабочей температуры на 20-30 °С может приводить к увеличению среднего времени наработки до отказа на порядок. С другой стороны, сопротивление транзистора в открытом состоянии RDS(ON) повышается с ростом температуры перехода, что ведет к потерям проводимости. По этим причинам рекомендуется рабочая температура перехода, составляющая 55-65% от максимально допустимой.

Выбор уровня тока

В большинстве применений MOSFET не подвергается воздействию максимального тока по той причине, что для снижения потерь мощности на проводимость выбирают транзистор с низким сопротивлением, у которого максимальный ток выше, чем необходимо. Тем не менее требуется проверить область надежной работы (Safe Operating Area, SOA) выбранного MOSFET на предмет соответствия уровней необходимых тока и напряжения области устойчивой работы транзистора (рис. 8а).

Рис. 8. Транзистор STB10NK60Z:
а) SOA;
б) зависимость тока стока от напряжения затвора при напряжении на стоке 25 В

Далее следует проанализировать передаточную характеристику транзистора (рис. 8б), чтобы убедиться в том, что напряжение на затворе транзистора достаточно для его полного открытия, т. е. транзистор должен быть способен пропустить максимальный импульсный ток в схеме применения во всех режимах работы конечного устройства. Особенно в режимах различной защиты или короткого замыкания на выходе устройства, когда питающее напряжение схемы управления, а соответственно и напряжение на затворе транзистора, может уменьшаться. Если транзистор не удовлетворяет этому требованию, необходимо выбрать другой транзистор с более высоким уровнем тока.

Выбор уровня сопротивления в открытом состоянии R

DS(ON) и динамических параметров

Выбор правильного уровня RDS(ON) — одна из самых главных задач в разработке схемы применения. Граница по RDS(ON) определяется максимально допустимой мощностью рассеяния для конкретного применения и максимальной температурой перехода MOSFET. Потери мощности MOSFET разделяются на потери проводимости и потери на переключение.

Потери проводимости легко вычисляются, исходя из значений сопротивления RDS(ON) и величины тока стока. Некоторая проблема может возникнуть при расчете потерь на переключение. Эти потери определяются как характеристиками самого MOSFET, так и конструкцией платы. В частности, такими характеристиками, как динамические параметры транзистора, нелинейной выходной емкостью «исток-сток», суммарным сопротивлением затвора транзистора, паразитными емкостями и индуктивностями платы применения. В связи с этим выбор MOSFET по сопротивлению — это сложный процесс, который может потребовать несколько итераций. Входными данными этого процесса являются выходная мощность, форма импульса тока, конструкция платы применения. Также должна быть известна рабочая частота переключения транзистора, которая соответствует другим параметрам, таким как электромагнитные шумы или магнитные потери, но не связана с потерями мощности MOSFET; должна быть выбрана конструкция радиатора, для которого известно тепловое сопротивление RTH_CA.

Одним из наиболее корректных и практичных путей определения оптимального уровня сопротивления в сочетании с определенными динамическими параметрами MOSFET является оценка общей мощности потерь по измерению рабочей температуры перехода в тестовой плате применения. Конечно, такие измерения соответствуют только данному применению, и для каждого применения необходима соответствующая плата, так как паразитные параметры различны для разных применений. Сутью данного метода является предварительный выбор транзистора по расчетной максимально допустимой мощности рассеяния с учетом используемых условий применения (температур перехода и окружающей среды; конструкции радиатора) с последующей оценкой реальной общей мощности потерь.

Алгоритм определения оптимального уровня сопротивления RDS(ON) следующий:

  1. Вычисление максимальной мощности рассеяния для данной конструкции радиатора и рабочей температуры перехода по формуле:

    где Tjmax — максимальная температура перехода, ТА — температура окружающей среды, RTH_JC — тепловое сопротивление «переход-корпус», RTH_CA — тепловое сопротивление «корпус-окружающая среда».

    Так как тип MOSFET еще не выбран, для расчета необходимо определить некоторое желаемое значение RTH_JC

  2. Вычисление необходимого RDS(ON), удовлетворяющего максимальной мощности рассеяния, проводится для конкретной формы импульса тока. Для первого приближения учитываются только потери проводимости, так как на данном этапе еще неизвестен тип транзистора, а потери на переключение зависят от его конкретного типа. Важно проводить вычисления сначала для рабочей температуры перехода, а потом провести ее пересчет для комнатной.

    Для дискретного режима проводимости (рис. 9а) потери составляют:

    где D = ton × f, f — частота работы преобразователя.

    Для постоянного режима проводимости (рис. 9б) потери составляют:

    Рис. 9. Форма сигнала:
    а) для дискретного режима проводимости;
    б) для постоянного режима проводимости

    Исходя из приведенных формул потерь можно определить необходимое значение RDS(ON) для рабочей температуры и затем для +25 °С.

    Например, при дискретном режиме проводимости для рабочей температуры RDS(ON) определяется следующим образом:

    где Pcond = Ptot и для +25 °С:

    где α — это температурный фактор для данного типа транзисторов.

  3. Выбор типа транзистора, удовлетворяющего рассчитанному сопротивлению, по данным RDS(ON) из спецификаций на транзисторы компании STMicroelectronics.
  4. Транзисторы со сходным уровнем сопротивления могут иметь различный уровень динамики: различные времена нарастания и спада сигнала. При первичном выборе важно обратить внимание, что частотные свойства транзистора должны соответствовать частоте работы источника напряжения и иметь при этом некоторый запас в 15-20%. Первичную оценку необходимой частоты транзистора можно сделать по следующему соотношению:

    то есть максимальное значение каждого из четырех параметров переключения должно быть меньше, чем четверть периода работы преобразователя.

  5. Далее проводится оценка общей мощности потерь для выбранного транзистора путем имитации работы данного блока источника на тестовой плате с контролем рабочей температуры перехода. Если измеренная температура не выше той, что использована в расчете максимальной мощности рассеяния, то выбранный тип MOSFET удовлетворяет требованиям.

    При необходимости можно провести оптимизацию по размеру транзистора, проверив на соответствие требованиям MOSFET с более высоким сопротивлением, что соответствует меньшему размеру и меньшей стоимости.

  6. Если измеренная температура выше, то необходимо выбрать транзистор либо с более низким сопротивлением, либо в зависимости от соотношения стоимостей с лучшими динамическими параметрами, и проверить на соответствие требованиям. Либо для более эффективного охлаждения можно поменять радиатор теплоотвода на более мощный.

    Правильный тип MOSFET найден, когда следующий транзистор с более высоким RDS(ON) не удовлетворит требованиям по температуре перехода.

 

Выбор параметров низковольтных MOSFET

Низковольтные MOSFET составляют основу DC/DC-преобразователей, формирующих конечные выходные напряжения. Это накладывает свою специфику на выбор MOSFET для таких применений.

Типовая схема DC/DC-преобразователя показана на рис. 10 [7]. В этой схеме основным является транзистор верхнего ключа SW1 (high side MOSFET), а транзистор нижнего ключа SW2 (low side MOSFET) является синхронизирующим. Наличие транзистора нижнего ключа значительно снижает потери энергии в DC/DC-преобразователе. При этом основные режимы работы транзисторов различны, поэтому различны и параметры, определяющие выбор необходимого транзистора.

Рис. 10. Типовая схема синхронного DC/DC-преобразователя

Выбор параметров MOSFET верхнего ключа

Транзистор верхнего ключа работает главным образом в режиме переключения, поэтому для него наиболее важны динамические параметры: низкий заряд затвора, низкие внутренние емкости и, соответственно, малые времена переключения. Хорошие динамические параметры обеспечивают высокую скорость переключения, малые динамические потери и в итоге высокую эффективность преобразователя в целом. При этом уменьшение значения такого важного параметра, как сопротивление RDS(ON), не является определяющим для повышения эффективности. Поэтому сопротивление MOSFET верхнего ключа может быть достаточно высоким для оптимизации цены и размера.

Потери энергии на переключение определяются выражением:

где VIN — входное напряжение, IOUT — выходной ток, QG — заряд затвора, fSW—частота преобразователя и IGATE ток затвора.

В выражении (7) только заряд затвора QG является параметром непосредственно MOSFET. Оценку влияния заряда затвора QG и сопротивления RDS(ON) транзистора верхнего ключа на эффективность DC/DC-преобразователя можно сделать исходя из анализа таблицы 3 и рис. 11, где в качестве примера приведены значения параметров QG и RDS(ON) MOSFET верхних ключей и соответствующие им кривые эффективности. Из представленных данных видно, что лучшую эффективность имеет транзистор SW12 с минимальным значением QG, несмотря на то, что у этого транзистора значение RDS(ON) не наименьшее.

Рис. 11. Зависимость эффективности DC/DC-преобразователя с параметрами MOSFET верхнего ключа согласно таблице 3 от величины выходного тока для частоты fSW=300 кГц (Vout = 1,25 В]

При повышении частоты работы преобразователя его эффективность снижается из-за повышения в целом потерь на переключение, но важность обеспечения высокой скорости переключения повышается, как это видно на рис. 12.

Рис. 12. Зависимость эффективности DC/DC-преобразователя с параметрами MOSFET верхнего ключа согласно таблице 3 от величины выходного тока для частоты fSW = 440 кГц (Vout = 1,25 В]

Таблица 3. Значения QG и RDS(ON) MOSFET верхних ключей SW1 DC/DC-преобразователя
Транзистор V(BR)DSS, В RDS(ON), mOm QG,SW, нКл
SW 11 30 9,2 6,85
SW 12 7,3 4,65
SW 13 7,6 9,25
SW 14 7,0 7

Также необходимо отметить важность оптимального выбора сопротивления согласующего резистора RG EXT между драйвером и MOSFET верхнего ключа. Значение этого сопротивления является компромиссным для обеспечения высокой скорости переключения и эффективности (низкое RG EXT) и обеспечения устойчивого переключения и минимизации уровня выброса (phase node spike) выходного напряжения (высокое RG EXT), который определяется энергией, запасенной в паразитных индуктивностях во время выключения верхнего транзистора и наблюдается при его включении (рис. 13, 14). Выбор входного сопротивления проводится при анализе работы преобразователя на тестовой плате путем сравнения скорости переключения, эффективности, уровня выброса напряжения.

Рис. 13. Процесс возникновения выброса выходного напряжения:
а) при выключении верхнего транзистора паразитные индуктивности заряжаются;
б) при его включении разряжаются

Рис. 14. Выброс выходного напряжения на стоке MOSFET нижнего ключа при включении MOSFET верхнего ключа

Выбор параметров MOSFET нижнего ключа

Так как MOSFET нижнего ключа большую часть времени является открытым, то потери проводимости, определяемые величиной сопротивления RDS(ON), вносят основной вклад в рассеяние мощности. Для снижения величины сопротивления в зависимости от необходимого уровня выходного тока можно использовать один или несколько транзисторов нижнего ключа.

Для нижнего ключа потери проводимости определяются как

Параметр D для современных конвертеров очень низкий (0,1-0,2%), и потери проводимости определяются главным образом сопротивлением. Поэтому минимизация RDS(ON) является критической для оптимальной работы MOSFET нижнего ключа. Как и в случае MOSFET верхнего ключа, в качестве примера в таблице 4 приведены значения параметров двух MOSFET нижнего ключа и соответствующие им кривые эффективности на рис. 15 при использовании для обоих случаев одного и того же транзистора верхнего ключа SW11. Отметим, что транзистор SW21 соответствует критерию для транзистора верхнего ключа: низкое значение заряда затвора. Как видно на рис. 15, для малых выходных токов, когда значительный вклад дают потери на переключение и управление затвора, эффективность транзистора SW21 несколько выше благодаря низкому QG. Однако для средних и больших токов выше эффективность уже транзистора SW22 — благодаря низкому значению RDS(ON).

Рис. 15. Зависимость эффективности преобразователя с параметрами MOSFET нижнего ключа согласно таблице 4 от величины выходного тока (Vout = 1,25 В]

Таблица 4. Значения QG и RDS(ON)MOSFET нижних ключей SW2 DC/DC-преобразователя
Транзистор V(BR)DSS, В RDS(ON), mOm QG,SW, нКл
SW11 25 13 8,5
SW21 30 6 15
SW22 25 5,2 18

Еще одним критическим параметром, определяющим поведение MOSFET нижнего ключа, является переходная емкость Миллера CGD. Выше уже упоминался выброс напряжения при включении MOSFET верхнего ключа. Для уменьшения величины выброса необходимо также снижать скорость переключения MOSFET нижнего ключа. Это можно достичь путем увеличения емкости Миллера. На рис. 16 а, б приведены характеристики сигналов на обоих транзисторах для двух разных значений CGD и показано, что увеличение емкости CGD с 190 до 315 пФ уменьшает уровень выброса напряжения с 30,7 до 18,8 В.

Рис. 16. Осциллограмма переключения транзисторов верхнего и нижнего ключей:
а) для CGD 190 пФ уровень выброса напряжения Vphase 30,7 В;
б) для CGD 315 пФ уровень выброса напряжения Vphase 18,8 В

С другой стороны, слишком высокое значение CGD приводит к значительному росту заряда затвора и, соответственно, росту потерь на переключение и управление. Это необходимо учитывать для высокочастотных применений или когда используется несколько MOSFET нижнего ключа.

Примером выбора низковольтных транзисторов верхнего и нижнего ключей для DC/DC-преобразователей являются ST транзисторы широко распространенной 30-В серии в корпусе DPAK — STD60N3LH5 и STD95N3LLH6 соответственно (табл. 5).

Таблица 5. Сравнительные параметры транзисторов STMicroelectronics
Типономинал V(BR)DSS, B RDS(ON) MAX, (VGS = 10 В), В ID MAX, A PD MAX, Вт QG TYP, нКл
STD40NF03L 30 0,011 40 55 35
STD40NF3LL 0,011 40 80 40
STD60N3LH5 0,008 48 60 8,8
STD65N3LLH5 0,0069 65 50 8
STD75N3LLH6 0,008 75 60 17
STD85N3LH5 0,065 80 70 14
STD86N3LH5 0,005 80 70 14
STD95N3LLH6 0,042 80 70 20

Видно, что транзистор STD60N3LH5 имеет практически минимальное QG, а транзистор STD95N3LLH6 — минимальное RDS(ON).

Также из спецификаций на данные транзисторы следует, что STD95N3LLH6 имеет значительную емкость Миллера 280 пФ против 32 пФ у STD60N3LH5. Следовательно, в качестве транзистора верхнего ключа целесообразно использовать MOSFET STD60N3LH5, а в качестве транзистора нижнего ключа — STD95N3LLH6.

 

Заключение

Описанные в данной статье критерии и особенности выбора как высоковольтных, так и низковольтных MOSFET компании STMicroelectronics с учетом особенностей их применения позволяют с практической точки зрения подойти к первоначальному подбору и окончательному определению необходимых оптимальных типов транзисторов. Обращено внимание на некоторые особенности выбора и применения транзисторов исходя из их режимов работы в импульсных ИП.

Литература
  1. Захаров Ю. Новые MOSFET: нет лавинному пробою // Новости электроники. 2010. № 12.
  2. http://te.vrn.ru/projects.htm /ссылка утрачена/
  3. Managing the best in class MDmesh V and MDmesh II super junction technologies: driving and layout key notes. 
  4. Рудаковский Д., Котов В., Битно Л. Распределенная система электропитания на основе AC/DC- и DC/DC-преобразователей компании «Микроника» // Компоненты и технологии. 2012. № 6.
  5. Цевелюк Е., Котов В. Обзор LED-драйверов для светодиодных ламп широкого применения // Полупроводниковая светотехника. 2012. № 5.
  6. R. Gulino. Guidelines for using ST’s MOSFET SMD package. 
  7. F. Fusillo, F. Scrimizzi. Power MOSFETs:best choice guide for VRM applications. 

Включение МОП-транзистора в линейный БП — Электроника

Считаем минимальное амплитудное значение напряжения на вторичке.

24+0.8+2.4+1=28.2В на проходном транзисторе в этом режиме (пульсации принимаю пилообразной формы) 10А*2В=20Вт

Считаю максимальное амплитудное значение напряжения на вторичке для случая +/- 10%.

28.2*1.22=34.4В среднее падение напряжения на проходном транзисторе 34.4-24-1-1.2=8.2В Мощность соответственно 82Вт.

Все ясно откуда такие цифры,но

1.Надо не умножать а делить.

2.Не 1,22,а 1,41

3,Эта часть схемы как бы рассчитывается в другой части.

Нам надо получить 24,8 минимум при 198 вольтах значит на выходе выпрямителя надобно получить 24,8 значит на входе должно быт напряжение 24,8 плюс падение напряжения на диоде (например по 0,5 на каждом итого 1)

25,8-это амплитудное значение,чтобы получить действующее надо ПОДЕЛИТЬ НА 1,41.

Для примера — если подать на идеальный выпрямитель с конденсатором 220 вольт получим 310вольт , а не 156.

 

Это в упрощенном виде — на самом деле все гораздо сложнее,но обычно никому это не надо…

Индуктивность мерил, так вот далеко не всегда наилучший результат получался при той индуктивности, которая расчетная. Транс только перематывал (добавлял-убирал витки) больше 10 раз точно, а уж сколько раз подбирал зазор уже не вспомню. И сердечники, заразы, иногда ломаются при разборке (феррит колется) — сложно склеить так, чтобы потом было не слишком тяжело разобрать.

Технология получалась нудная. Подшаманил транс, чуть подождал пока подсохнет клей, включил, дал нагрузку, посмотрел на результат (при каком токе уже валится, и при каком еще работает и насколько долго). И далее итерационным методом.

Т.е. проблема не в том, чтобы оно работало — так как работает практически всегда, кроме как если сделать трансформатор с совсем уж левыми параметрами. Проблема при заданных габаритах суметь снять заданную мощность. По расчету получается с запасом, а на практике приходится основательно повозиться.

Странно однако — я этим никогда не заморачивался .

Я перемотал где-то с сотню разных трансформаторов,так вот намоточные данные отличаются очень незначительно.

А силовые трансформаторы компьютерных блоков питания имеют вообще АБСОЛЮТНО ОДИНАКОВОЕ количество витков независимо от размеров и материала сердечника.

Поэтому ,если надо сделать источник я мотаю в первичке около 70 витков для однотактного и 40 для двухтактного и все работает.Это для 200 ваттного.Для мелких -150…180 витков.

Источник питания на полевых транзисторах типа IRF3205 — Меандр — занимательная электроника

Для питания различных транзисторных конструкций ре­шил собрать источник питания (далее — ИП) со стабилизато­ром на полевых транзисторах, так как они имеют малое па­дение напряжения при больших токах в нагрузке.

Собрал и проверил схему стабилизатора RK9UC [1], по­казанную на рис.1. Эта схема выбрана из-за того, что имеет узел ограничения тока в нагрузке (за это отвечают элементы R6 R7 и VT5, выделенные на рис.1 рамкой). Узел ограничения тока в нагрузку позволяет уменьшить послед­ствия аварийных ситуаций, поскольку надеяться только на один предохранитель не очень разумно. Правда, мне не понравилось место установки «датчика тока» R7 в схеме.

Рис. 1

Перед сборкой стабили­затора, показалось, что из-за него возможна про­садка выходного напря­жения. Так как из-за па­дения напряжения на «датчике тока» R7 «регу­лируемый стабилитрон» DA1 будет неправильно корректировать выходное напряжение.

При испытании ИП, уже при токе нагрузки всего 4 А напряжение на нагрузке проседало с 14,56 до 13,72 В. При закорачивании «датчика тока» R7 «просадка» значительно уменьшалась.

Чтобы спасти изготовленный мною ИП от радикальных переделок, было принято решение, перенести элементы R6, R7 и VT5 в цепь положительного напряжения, и поставить их перед стабилизатором, между выходом выпрямителя и сто­ками полевых транзисторов, так как сделал RA3WDK [2].

Работа устройства

Схема доработанного ИП показана на рис.2. Он обеспе­чивает выходное напряжение в пределах 9… 17 В, при токе в нагрузку до 14 А, это значение тока ограничено мощнос­тью примененного трансформатора Тр1 типа ТС-180. Если применить трансформатор типа ТС-270, максимальный ток может быть 20 А. При этом придется добавить еще один тран­зистор типа IRF3205, включенный параллельно транзисторам VT3 и VT4.

Рис. 2

Для работы стабилизатора на полевых транзисторах VT3 и VT4 необходимо, чтобы напряжение на входе выпрямите­ля было на 2…3 В больше чем на выходе.

Но для нормальной работы полевых транзисторов VT3 и VT4 типа IRF3205 напряжение на их затворах должно быть на 5…7 В больше чем на истоках. Для этого нужно либо поднять выпрямленное напряжение на входе всего стабили­затора или использовать дополнительный удвоитель напря­жения на элементах СЗ VD5 VD6 С6 для питания цепи за­творов транзисторов VT3 и VT4.

При увеличении тока нагрузки свыше расчетного, паде­ние напряжения на резисторе R2 превысит значение 0,7 В. Это напряжение, через резистор R3 будет приложено к пе­реходу база-эмиттер транзистора VT1, открывая его. Ток через открытый переход коллектор-эмиттер транзистора VT1 и резисторы R4 и R5, создает падение напряжения на ре­зисторе R5. Это напряжение, приложенное к переходу ба­за-эмиттер транзистора VT2, открывает его. Открытый пе­реход коллектор-эмиттер транзистора VT1 шунтирует «ре­гулируемый стабилитрон» DA1, вследствие чего выходное напряжение уменьшается на столько, на сколько это необ­ходимо для ограничения тока в нагрузке, согласно задан­ной величине.

Резисторы R7 и R9 предназначены для равномерного распределения тока между полевыми транзисторами VT3 и VT4. Стабилитрон VD8 служить для защиты цепи стоков полевых транзисторов VT3 и VT4. Конденсатор С7 служит для повышения помехоустойчивости узла ограничения тока в нагрузке.

Конструкция и детали

Детали для помехоподавляющего фильтра С1, L1, С2 взя­ты от импортного компьютерного монитора. Силовой транс­форматор Тр1 типа ТС-180, у которого смотаны вторичные обмотки, а вместо них намотано по одной обмотке на каж­дой катушке с выходным напряжением 9 В, которые вклю­чены последовательно.

Диодный мост VD1 — VD4 — диоды с барьером Шоттки, например КД2999, КД2997. Подстроенный резистор R12, для установки выходного напряжения, проволочный, установлен­ный на передней панели. Резистор R2 состоит из двух, со­единенных параллельно, резисторов 0,1 Ом 5 Вт.

Емкость конденсаторов С4 и С5 выбирается из расчета 1000 мкФ на каждый 1 А требуемого максимального тока нагрузки.

Транзистор VT1 — маломощный p-n-p, например КТ361 с любым буквенным индексом. Транзистор VT2 – n-p-n, на­пример КТ815, КТ817 с любым буквенным индексом. Транзисторы VT3 и VT4 установлены на радиатор, площадью 200…250 см2. Стабилитрон VD8 — симметричный, на напря­жение 8… 12 В, например КС210А, КС213А,

Микроамперметр РА1 на 150 — 200 мкА от кассетных маг­нитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0.

Настройка источника питания

Изменяя сопротивление резисторов R11 и R13, устанав­ливаем пределы регулировки выходного напряжения. При ука­занных сопротивлениях резисторов R11 — R13 выходное на­пряжение регулируется в пределах 9… 17 В.

Нагружаем ИП на эквивалент нагрузки, мощный резис­тор с сопротивлением 1… 1,5 Ом. Последовательно с экви­валентом подключаем образцовый амперметр. Подбором сопротивления резистора R1 калибруем амперметра РА1. Движком резистора R12 увеличиваем напряжение на выхо­де, тем самым увеличиваем ток в нагрузку сверх расчетно­го уровня. Смотрим, есть ли ограничение тока, работает ли стабилизация тока?

Результаты после переделки ИП:

  • Напряжение Uxx = 14,64 В;
  • При токе нагрузки 12 А напряжение на нагрузке 14,52 В.

Изготовленный ИП мною часто используется для пита­ния аккумуляторного шуруповерта, у которого вышла из строя аккумуляторная батарея.

Литература;

  1. Стабилизатор RK9UC //http://vprl.ru/staty/nachinayushi/tl/bp13v22a.gif.
  2. Блок питания «POWER ICE ЗОА v.3» // http://ra3wdk.qrz.ru/tech.htm.

Автор: Василий Мельничук, г. Черновцы

Простой метод выбора ключевых транзисторов для импульсных источников питания


На фотке — метод «ошибок трудных». Шурик, это не наш метод!
При проектировании или сборке по готовой схеме ИИП одним из острых вопросов является выбор ключей. И если по остальным деталям можно как-то подстроиться (мотать трансформатор в 2 провода вместо 1, если не хватает сечения или ставить два конденсатора параллельно вместо одного, если не хватает емкости и т.д.), то с ключами не так-то всё и просто. Неправильный выбор ведет к большому БУМУ (вспоминая знаменитый фильм Люка Бессона: «Бада-бум!») из-за теплового или электрического пробоя. И здесь тоже не всё просто. Электрический пробой произойдет сразу (или почти сразу), а вот тепловой можно ждать долго, и случится он в самый неподходящий ответственный момент.

В первый раз я задался вопросом выбора ключей около 8 лет назад. Куда же я пошел первым делом? В интернет, естественно, ага. В общем и целом могу теперь сказать так: зря я это сделал. Вопрос выбора ключей для импульсной техники в интернете оброс кучей недостоверных фактов, мифов и неправильными интерпретациями графиков в даташитах.
Мой способ выбора ключей тоже неидеальный и неполный. Однако в подавляющем большинстве случаев в радиолюбительской практике его окажется достаточно и даже за глаза, сами рады не будете.
Начнем!

Содержание / Contents

Создайте тему на любом форуме, связанным с радиоэлектроникой, с вопросом: «Как выбрать ключи в ИИП?».
Ответы будут самые разнообразные: от «выбирай ключи по напряжению и максимальному току» до «выбирай ключи по графику Maximum Safe Operating Area». Сюда входят все вариации типа «выбирай на ток вдвое больше максимального тока первичной обмотки» до «надо чтобы мощность, выделяемая при падении напряжения на сопротивлении открытого перехода, была меньше максимальной рассеиваемой мощности корпуса».

Вот весь этот бред читают новички и далее «делятся опытом» с другими. Жуть, да и только.
Вот, к примеру, знаменитый график Maximum Safe Operating Area (оно же ОБР, область безопасной работы) для ключа IRFS840B:


Посмотрите на него внимательно. Посмотрите, какие оси создают этот график. Посмотрели? Больше никогда не смотрите в его сторону.
На этот график призывают смотреть люди, пришедшие из аналоговой линейной техники, линейных усилителей или линейных стабилизаторов.

Чем может быть полезен этого график для разработки импульсных преобразователей или импульсных же усилителей (они же D-класс или цифровые)? Ничем.
А, ну не совсем так: этот напоминание о том, что у полевых транзисторов отсутствует вторичный пробой и что транзистор может быть пробит как при превышении максимального рабочего напряжения, так и при превышении максимального тока через него.
Много это нам дало? Не-а, вообще ничего, это всё в начале даташита указывается словами.

Надо сказать честно, что тот график в отдельных даташитах действительно вводит в заблуждение неподготовленного человека, ибо иногда к таким графикам идет ещё один, указывающий зависимость выхода за ОБР от частоты работы транзистора. Но это всё для линейной техники, для тех ситуаций, когда есть недооткрытое или недозакрытое состояние транзисторов, когда есть некие переходные процессы.

Мы же собираемся делать технику, которая использует только 2 состояния транзистора: полностью открытое и полностью закрытое, никаких средних значений. Исходя из того, что график ОБР нам лишний раз напоминает: вторичного пробоя у полевых транзисторов нет. Следовательно, изначально нас сдерживают только 2 параметра: максимальная рабочая температура кристалла Tj, указывающая на то, когда начнется тепловой пробой, и максимальное рабочее напряжение исток-сток Vdss, определяющее, когда начнется электрический пробой.
Косвенно удерживает параметр ток стока Id, который влияет на нагрев кристалла.

Теперь, попробуем разобраться с вопросом подбора транзистора. С вопросом максимального напряжение ни у кого не должно возникнуть сомнений. Просто для страховки берем ключ на 200 Вольт больше, чем максимальное действующее напряжение в схеме. Например, в ИИП я советую 600-вольтовые ключи, не ниже.

Вопрос в том, что делать с температурой. Она таки считается! Для теплового расчета надо всего лишь узнать, сколько Ватт потерь получится при работе ключа и как сильно надо его охладить, чтобы не случилось теплового пробоя.
Если результат меньше Tj, то использовать такой транзистор можно. Если больше, увы и ах, но надо выбирать дальше.

Из чего состоит нагревание? Для начала из статических потерь, связанных с сопротивлением перехода Rds on, которое влияет на падение напряжения на переходе, в зависимости от протекающего через ключ тока. Это падение напряжение вызывает выделение мощности на кристалле и нагрев транзистора в открытом состоянии. Считается как произведение квадрата среднего тока импульса Iимп на сопротивление перехода Rds on и коэффициента заполнения Кзап. Последний показывает, какую часть времени транзистор открыт.

В большинстве радиолюбительских конструкции мостовых и полумостовых преобразователей и усилителей Кзап не выше 0.45, а дальнейшее увеличение его не приводит ни к чему особенно хорошему, кроме сильной боли в голове или ж
Так, ладно, со статическими потерями разобрались.

Теперь динамические потери. Эти потери — основная проблема в преобразователях на полевых транзисторах с жесткой коммутацией ключей. Они возникают в момент включения и выключения ключа. Так сказать, потери на переходных процессах. И чем выше частота преобразования, тем выше динамические потери. А ниже делать частоту тоже не хочется, ведь тогда вырастают размеры трансформатора.

Есть резонансные или квазирезонансные схемы, позволяющие значительно снизить динамические потери, но это уже сложная техника, к которой никак не подходит выражение «простой расчет».

Итак, динамические потери состоят из потерь при включении и потерь при выключении. Считается как произведение тока в начале (Ir) или конце (If) импульса, напряжения питания (Uпит) и времени нарастания (Tr) или спада (Tf), разделенное на двойной период импульса. Хочу сразу заметить: отдельно считаются потери при включении и отдельно при выключении, а потом суммируются.

Теперь охлаждение. Основная проблема охлаждения — тепловое сопротивление между разными материалами. У транзистора таких мест 2: между кристаллом и корпусом транзистора, а так же между корпусом транзистора и радиатором. Эти значения табличные и не требующие вычислений. Первое значение берется из даташита на транзистор. Второе тоже можно взять оттуда, если оно там имеется. Если нет, то берётся усредненное значение.

Итак, потери подсчитаны, пора применять в деле. Первым делом, складываем потери динамические и статические, получаем общие потери — это сколько Ватт надо отвести от кристалла.

Затем складываем тепловые сопротивления.

Теперь умножаем общие потери на тепловое сопротивление. Получившийся результат — та температура, которую нужно «сдувать» с радиатора. Вычтем из ожидаемой рабочей температуры получившуюся, и на выходе нас ждет ожидаемая температура радиатора.
Именно по ней можно оценить, подходит или нет транзистор.

Как? Очень просто. Ожидаемая температура радиатора не может быть ниже температуры окружающей среды при естественном охлаждении. То есть, если у вас получился результат +24°, а на улице +32° то всё, кранты! Транзисторы ждёт тепловой пробой, потому как никакой супервентилятор не сможет охладить радиатор до 24 градусов, если температура воздуха выше. Совсем печально, если результат получился отрицательным. Если у вас нет фреоновой или азотной системы охлаждения, лучше выбрать другой транзистор.

Разумеется, в деле, подобном этому, есть свои тонкости и особенности. В целом, можно это охарактеризовать выражением «не доводи до крайностей», которое весьма полно объясняет чего нельзя делать, чтобы не бабахнуло.

В первую очередь это касается температур. Tj — это максимальная рабочая температура кристалла транзистора, фактически потолок его работоспособности. Было бы как минимум нелепо использовать это значение при расчете. Никогда не загоняйте параметры в угол, всегда оставляйте место для маневра.

Я, к примеру, использую в расчёте температуру на 5-10° ниже, и обзываю ее «Температура ожидаемая» — Tож.. Так как наиболее часто Tj указывается в районе 125° Цельсия, я использую в расчете 115-120°.

Далее, температуру окружающей среды для оценки тоже не следует брать наобум. Есть утвержденные ГОСТы, хотя можно просто принять для средней полосы +35° и +45° для южных регионов. Это для того, чтобы в набитом людьми помещении летом техника не сгорела синим пламенем. Ну и для случаев колебания температур.
Для работы на открытом воздухе под солнцепеком есть еще более жесткие условия, но это уже за рамками радиолюбительства.

Далее о напряжениях. Всегда стоит сделать запас прочности по допустимому напряжению. Опять-таки, в даташите параметр Vdss — предельный. И подбор транзистора строго под выпрямленное напряжение сети может сыграть злую шутку. Посчитаем: при напряжении в сети 220 Вольт на выходе мостового выпрямителя будет 310 Вольт. Однако в реальности в сети редко бывает 220 Вольт, и скачки до 20%, увы, обыденное явление. И что же будет, если напряжение в сети увеличится на эти 20%? На выходе выпрямителя будет уже 378 Вольт. Добавим сюда шум от сварочника и, вуаля, 400-вольтовый ключ искрится и взрывается.

Мне довелось отремонтировать очень много усилителей, в которых многочисленные дядюшки Ляо экономили на транзисторах. Не делайте так, разочарований будет куда больше экономии.

Как-то блуждая по просторам интернета, я наткнулся на аппноут IR, рекомендовавший выбирать ключи с запасом в 200 — 250 Вольт от максимального напряжения в схеме. Увы, этот аппноут я не сохранил, а затем найти его не смог. У кого-то есть сомнения, что он вообще существует, но сама рекомендация звучит достаточно трезво, пусть и относительно недёшево.

Теперь о сопротивлении перехода. В открытом состоянии идеальный ключ должен пропускать весь ток без потерь. Увы, живём мы в неидеальном мире. В настолько неидеальном, что маркетологи с удовольствием этим пользуются. Открывая даташит любого полевого транзистора можно увидеть маленькую характеристику Rds on, написанную большим шрифтом. Так вот: это сопротивление перехода при некоей „комнатной“ температуре в 20-25 градусов. Для того же IRFS840B указывается 0,8 Ома.

Это всё красиво только на словах, на деле кристалл в процессе работы будет нагреваться, что неизбежно приведет к увеличению сопротивления открытого перехода. Об этом мало кто помнит, но именно на это надо опираться, при выборе подходящего транзистора.
Чаще всего в даташитах не указывают эти печальные цифры, а лишь приводят график температурного коэффициента сопротивления ТКС, вот он для выбранного нами транзистора:


Как видно на графике, при нагревании сопротивление открытого перехода быстро увеличивается, и для рекомендованных мною максимальных рабочих 120° ТКС открытого канала уже составляет 2,1 Ома, а значит из приятных 0,8 Ом уже получаются малоприятные 1,68 Ома. Печаль, да и только, но с этим надо считаться.

Ну и последняя из тонкостей. Обязательно учитывайте крайние характеристики транзистора. В таблицах даташита всегда указывается три значения: минимальное, типичное и максимальное (или лучшее, типичное и худшее). Это касается практически всего. Например, время открытия и время закрытия. Причем с маркетинговой точки зрения делается упор именно на типичное время открытия и закрытия. Так, например, для IRFS840B типичное время нарастания составляет 65 нс, что и пишется всюду, хотя отдельные экземпляры доходят до 140 нс, что более чем в 2 раза дольше! Соответственно, для расчета необходимо использовать именно худшее значение, если нет желания отбирать транзисторы для конструкции.

Для выбора ключевого транзистора необходимо:
  1. Всегда помнить о неидеальности условий окружающей среды
  2. Использовать в расчете параметры наихудших экземпляров
  3. Всегда оставлять запас и место для маневров
  4. Иметь ввиду тепловые изменения параметров
  5. Не давать кристаллу перегреваться
  6. Не допускать перенапряжения из-за плохой сети

Все остальное считается и выбирается.

И вот здесь у меня для вас есть бонус. Так как я всё же ленив, то сделал таблицу в Excel, которая сама всё посчитает. Остается только сделать вывод о пригодности или непригодности транзистора.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Краткая инструкция по использованию: редактируются только желтые ячейки, данные вписываются исходя из проектируемой конструкции (частота преобразования, напряжение питания, коэффициент заполнения) и из даташита на транзистор (все остальное).
В зеленых ячейках получаем результаты. Как интерпретировать, читайте выше.

Для преобразователей с жесткой коммутацией ключей (традиционные) ток в начале импульса (Ir) и ток в конце импульса (If) равны среднему току импульса.

Для нетрадиционных вариантов типа резонансных ZVC и прочих — согласно расчету, вплоть до 0.
Для примера, в таблицу уже внесены данные на полюбившийся IRFS840B, в полумостовом преобразователе с жесткой коммутацией ключей со средним током первичной обмотки 2А.

Очень надеюсь, что этот маленький опус поможет выбрать транзисторы правильно и при этом не убить нервы.
Всем удачи! Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

 

Импульсный блок питания 5 В, 2,5 А

Блоки питания с трансформаторами на частоту 50 Гц сегодня практически сдали свои позиции импульсным с высокой рабочей частотой, которые при той же выходной мощности имеют, как правило, меньшие габариты и массу, более высокий КПД. Основные сдерживающие факторы для самостоятельного изготовления импульсных блоков питания радиолюбителями — трудности с расчётом, изготовлением или приобретением готового импульсного трансформатора или ферритового магнитопровода для него. Но если для сборки маломощного импульсного блока питания использовать готовый трансформатор от компьютерного блока питания формфактора ATX, задача значительно упрощается.

У меня оказался в наличии неисправный компьютерный блок питания IW-ISP300J2-0 (ATX12V300WP4). В нём был заклинен вентилятор, пробит маломощный диод Шотки, а более половины всех установленных оксидных конденсаторов вздуты и потеряли ёмкость. Однако дежурное напряжение на выходе +5VSB было. Поэтому было принято решение, используя импульсный трансформатор источника дежурного напряжения и некоторые другие детали, изготовить другой импульсный источник питания с выходным напряжением 5 В при токе нагрузки до 2,5 А.

В блоке питания ATX узлы источника дежурного напряжения легко обособить. Он даёт напряжение 5 В и рассчитан на максимальный ток нагрузки 2 А и более. Правда, в старых блоках питания этого типа он может быть рассчитан на ток всего 0,5 А. При отсутствии на этикетке блока пояснительной надписи можно ориентироваться на то, что трансформатор источника дежурного напряжения с максимальным током нагрузки 0,5 А значительно меньше трансформатора источника на 2 А.

Схема самодельного импульсного блока питания с выходным напряжением 5…5,25 В при максимальном токе нагрузки 2,5 А изображена на рис. 1. Его генераторная часть построена на транзисторах VT1, VT2 и импульсном трансформаторе T1 по образу и подобию имевшейся в компьютерном блоке, из которого был извлечён трансформатор.

Рис. 1. Схема самодельного импульсного блока питания

 

Вторичные узлы исходного блока питания (после выпрямителя напряжения +5 В) было решено не повторять, а собрать по традиционной схеме с интегральным параллельным стабилизатором напряжения в качестве узла сравнения выходного напряжения с образцовым. Входной сетевой фильтр собран из имеющихся деталей с учётом свободного места для их монтажа.

Переменное напряжение сети 230 В через плавкую вставку FU1 и замкнутые контакты выключателя SA1 поступает на RLC фильтр R1C1L1L2C2, который не только защищает блок от помех из питающей сети, но и не даёт создаваемым самим импульсным блоком помехам проникнуть в сеть. Резистор R1 и дроссели L1, L2, кроме того, уменьшают бросок потребляемого тока при включении блока. После фильтра напряжение сети поступает на мостовой диодный выпрямитель VD1-VD4. Конденсатор C9 сглаживает пульсации выпрямленного напряжения.

На высоковольтном полевом транзисторе VT2 собран генераторный узел преобразователя напряжения. Резисторы R2-R4 предназначены для запуска генератора. Суммарная мощность этих резисторов увеличена, поскольку печатная плата блока питания, из которого они извлечены, под ними заметно потемнела в результате перегрева. По той же причине демпфирующий резистор R8 установлен большей мощности, а в качестве VD6 применён более мощный, чем в прототипе, диод.

Стабилитрон VD5 защищает полевой транзистор VT2 от превышения допустимого напряжения между затвором и истоком. На биполярном транзисторе VT1 собран узел защиты от перегрузки и стабилизации выходного напряжения. При увеличении тока истока транзистора VT2 до 0,6 А падение напряжения на резисторе R5 достигнет 0,6 В. Транзистор VT1 откроется. В результате напряжение между затвором и истоком полевого транзистора VT2 уменьшится. Это предотвратит дальнейшее увеличение тока в канале сток- исток полевого транзистора. По сравнению с прототипом сопротивление резистора R5 уменьшено с 1,3 до 1,03 Ом, резистора R6 увеличено с 20 до 68 Ом, ёмкость конденсатора C13 увеличена с 10 до 22 мкФ.

Напряжение с обмотки II трансформатора T1 поступает на выпрямительный диод Шотки VD8, размах напряжения на выводах которого около 26 В. Пульсации выпрямленного напряжения сглаживает конденсатор C15. Если по тем или иным причинам выходное напряжение блока питания стремится увеличиться, растёт напряжение на управляющем входе параллельного стабилизатора напряжения DA1. Ток, текущий через излучающий диод оптрона U1, увеличивается, его фототранзистор открывается. Открывшийся в результате транзистор VT1 уменьшает напряжение между затвором и истоком полевого транзистора VT2, что возвращает выходное напряжение выпрямителя к номинальному значению. Цепь из резистора R16 и конденсатора C16 предотвращает самовозбуждение стабилизатора.

Изготовленный источник питания оснащён стрелочным измерителем тока нагрузки PA1, что значительно повышает удобство пользования им, поскольку позволяет быстро оценить ток, потребляемый нагрузкой. Шунтом для микроамперметра PA1 служит омическое сопротивление обмотки дросселя L4. Светодиоды HL1 и HL2 подсвечивают шкалу микроамперметра.

На выходные разъёмы XP2 и XS1 напряжение поступает через фильтр L5C19. Стабилитрон VD9 с диодом VD10 предотвращают чрезмерное повышение выходного напряжения при неисправности цепей его стабилизации.

Рабочая частота преобразователя — около 60 кГц. При токе нагрузки 2,3 А размах пульсаций выпрямленного напряжения на конденсаторе C15 — около 100 мВ, на конденсаторе C18 — около 40 мВ и на выходе блока питания — около 24 мВ. Это очень неплохие показатели.

КПД блока питания при токе нагрузки 2,5 А — 71 %, 2 А — 80 %, 1 А — 74 %, 0,2 А — 38 %. Ток короткого замыкания выхода — около 5 А, потребляемая от сети мощность при этом — около 7 Вт. Без нагрузки блок потребляет от сети около 1 Вт. Измерения потребляемой мощности и КПД проводились при питании блока постоянным напряжением, равным амплитуде сетевого.

При длительной работе с максимальным током нагрузки температура внутри его корпуса достигала 40 оС при температуре окружающего воздуха 24 оС. Это значительно меньше, чем у многочисленных малогабаритных импульсных источников питания, входящих в комплекты различных бытовых электронных приборов. При токе нагрузки, равном половине заявленного максимального значения, они перегреваются на 35…55 оС.

Большинство деталей описываемого блока питания установлены на плате размерами 75×75 мм. Монтаж — двухсторонний навесной. В качестве корпуса применена пластмассовая распределительная коробка размерами 85x85x42 мм для наружной электропроводки. Блок в открытом корпусе показан на рис. 2, а его внешний вид — на рис. 3.

Рис. 2. Блок в открытом корпусе

 

Рис. 3. Внешний вид блока

 

При изготовлении блока следует обратить особое внимание на фазировку обмоток трансформатора T1, начало и конец ни одной из них не должны быть перепутаны. Применённый трансформатор 3PMT10053000 (от упомянутого выше компьютерного блока питания) имеет также предназначенную для выпрямителя напряжения -12 В обмотку, которая в данном случае не использована. Взамен него можно применить почти любой подобный трансформатор. Для ориентировки при подборе трансформатора привожу значения индуктивности обмоток использованного: I — 2,4 мГн, II — 17 мкГн, III — 55 мкГн.

В качестве PA1 применён микроамперметр M68501 (индикатор уровня от отечественного магнитофона). Учтите, что микроамперметры этого типа различных лет выпуска имеют очень большой разброс сопротивления измерительного механизма. Если установить нужный предел измерения подборкой резистора R13 не удаётся, нужно включить последовательно с дросселем L4 проволочный резистор небольшого сопротивления (ориентировочно 0,1 Ом).

При градуировке микроамперметра неожиданно выяснилось, что он очень чувствителен к статическому электричеству. Поднесённая пластмассовая линейка могла отклонить стрелку прибора до середины шкалы, где она могла остаться и после того, как линейка была убрана. Устранить это явление удалось удалением имевшейся плёночной шкалы. Вместо неё была приклеена липкая алюминиевая фольга, которой были оклеены и свободные участки корпуса. Экран из фольги следует соединить проводом с любым выводом микроамперметра. Можно попробовать обработать корпус микроамперметра антистатическим средством.

Напечатанную на принтере бумажную шкалу приклеивают на место удалённой. Образец шкалы изображён на рис. 4. Как видите, у этого микроамперметра она заметно нелинейна.

Рис. 4. Образец шкалы

 

Резистор R1 — импортный невозгораемый. Вместо такого резистора можно установить проволочный мощностью 1…2 Вт. Отечественные металлоплёночные и углеродные резисторы в качестве R1 не подходят. Остальные резисторы общего применения (С1-14, С2-14, С2-33, С1-4, МЛТ, РПМ). Резистор R19 для поверхностного монтажа припаян непосредственно к выводам розетки XS1.

Оксидные конденсаторы — импортные аналоги К50-68. Использование конденсаторов C15, C18, C19 с номинальным напряжением 10 В вместо часто применяемых в импульсных блоках питания оксидных конденсаторов на напряжение 6,3 В значительно повышает надёжность устройства. Плёночный конденсатор C2 ёмкостью 0,033…0,1 мкФ предназначен для работы на переменном напряжении 275 В. Остальные конденсаторы — импортные керамические. Конденсаторы C14, C17 припаяны между выводами соответствующих оксидных конденсаторов. Конденсатор C20 установлен внутри штекера ХР2.

Мощная сборка диодов Шотки S30D40C взята из неисправного компьютерного блока питания. В рассматриваемом устройстве она может работать без теплоотвода. Заменить её можно на MBR3045PT, MBR4045PT, MBR3045WT. MBR4045WT При максимальном токе нагрузки корпус этой сборки нагревается до 60 оС — это самый горячий элемент в устройстве. Вместо диодной сборки можно применить два обычных диода в корпусе DO-201AD, например, MBR350, SR360, 1N5822, соединив их параллельно. К ним со стороны выводов катодов нужно прикрепить дополнительный медный теплоотвод, показанный на рис. 5.

Рис. 5. Дополнительный медный теплоотвод

 

Вместо диодов 1N4005 подойдут 1 N4006, 1 N4007, UF4007, 1N4937, FR107, КД247Г, КД209Б. Диод FR157 можно заменить на FR207, FM207, FR307, PR3007. Один из перечисленных диодов подойдёт и вместо КД226Б. Заменой диода FR103 может служить любой из UF4003, UF4004, 1N4935GP RG2D, EGP20C, КД247Б. Вместо стабилитрона BZV55C18 подойдут 1N4746A, TZMC-18.

Светодиоды HL1, HL2 — белого цвета свечения из узла подсветки ЖКИ сотового телефонного аппарата. Их приклеивают к микроамперметру цианакрилатным клеем. Транзистор KSP2222 можно заменить любым из PN2222, 2N2222, KN2222, SS9013, SS9014, 2SC815, BC547 или серии КТ645 с учётом различий в назначении выводов.

Полевой транзистор SSS2N60B извлечён из неисправного блока питания и установлен на ребристый алюминиевый теплоотвод с площадью охлаждающей поверхности 20 см2, причём все выводы транзистора должны быть электрически изолированы от теплоотвода, при работе блока питания с максимальным током нагрузки этот транзистор нагревается всего до 40 оС. Вместо транзистора SSS2N60B можно применить SSS7N60B, SSS6N60A, SSP10N60B, P5NK60ZF, IRFBIC40, FQPF10N60C.

Оптрон EL817 можно заменить другим четырёхвыводным (SFH617A-2, LTV817, PC817, PS817S, PS2501-1, PC814, PC120, PC123). Вместо микросхемы LM431ACZ подойдёт любая функционально аналогичная в корпусе ТО-92 (TL431, AZ431, AN1431T).

Все дроссели — промышленного изготовления, причём магнитопроводы дросселей L1, L2, L4 — H-образные ферритовые. Сопротивление обмотки дросселя L4 — 0,042 Ом. Чем крупнее этот дроссель по размеру, тем меньше будет нагреваться его обмотка, тем точнее будет измерять ток нагрузки микроамперметр PA1. Дроссель L5 намотан на кольцевом магнитопроводе, чем меньше сопротивление его обмотки и чем больше её индуктивность, тем лучше. Дроссель L3 — надетая на вывод общего катода диодной сборки VD8 ферритовая трубка длиной 5 мм.

Штекер XP2 соединён с конденсатором C19 сдвоенным многожильным проводом 2×2,5 мм2 длиной 120 см. Розетка XS1 USB-AF закреплена в отверстии корпуса устройства клеем.

Первое включение изготовленного устройства в сеть переменного тока производят без нагрузки через лампу накаливания мощностью 40…60 Вт на 235 В, установленную вместо плавкой вставки FU1. Предварительные испытания под нагрузкой выполняют, заменив FU1 лампой накаливания мощностью 250…300 Вт. Нити ламп накаливания при нормальной работе блока питания не должны светиться. Безошибочно изготовленное из исправных деталей устройство начинает работать сразу.

При необходимости подборкой резистора R13 можно установить показания амперметра. Подбирая резистор R14, устанавливают выходное напряжение блока питания равным 5…5,25 В. Повышенное напряжение компенсирует его падение на проводах, соединяющих блок с нагрузкой.

Изготовленный источник питания можно эксплуатировать совместно с доработанным USB-концентратором [1], к которому можно будет подключить до четырёх внешних жёстких дисков типоразмера 2,5 дюйма, работающих одновременно. Мощности будет достаточно и для питания, например, таких устройств, как [2].

Литература

1. Бутов А. Доработка USB-концентратора. — Радио, 2013, № 11, с. 12.

2. БутовА. Преобразователь напряжения 5/9 В для питания радиоприёмников. — Радио, 2013, № 12, с. 24, 25.

Автор: А. Бутов, с. Курба Ярославской обл.

Полевой транзистор | Журнал Nuts & Volts


Необходимое устройство для современной ИС

Обычно используемый биполярный транзистор , в котором электроны или дырки проходят через два PN-полупроводниковых перехода, по сути, является устройством усиления тока . Хотя напряжение может быть усилено косвенно, если используются конфигурации проводки «общий эмиттер» или «общий коллектор», все же верно, что небольшая величина входного тока всегда должна течь в базовую область транзистора для целей управления.

Другой тип полупроводникового устройства, полевой транзистор или «полевой транзистор», не так хорошо знаком многим энтузиастам электроники, возможно, потому, что его легко повредить при неправильном использовании. Полевой транзистор усиливает напряжение напрямую, а ток , необходимый для управления, настолько мал, что его невозможно измерить обычными приборами. Этот транзистор был фактически первым типом полупроводникового усилителя, теоретически предсказанным в Bell Labs еще в 1950-х годах, но он не был разработан в практическое устройство до тех пор, пока биполярный тип не стал популярным.Однако сейчас наиболее распространенным типом стали полевые транзисторы, их десятки миллионов находятся в каждой микросхеме микропроцессора.

С таким огромным количеством транзисторов, работающих в одной микросхеме, мы, конечно, не хотим, чтобы для управления каждым из них требовался большой ток — заряд батареи будет быстро израсходован, и потребуется много тепла. удаленный. Кроме того, существует множество других приложений, в которых желателен сверхнизкий входной ток. Очевидный пример — первая ступень точного вольтметра, когда мы не хотим вызывать каких-либо новых падений напряжения путем отвода тока из исследуемой цепи.

Еще одним преимуществом полевого транзистора, вероятно, менее важным, является тот факт, что его входные и выходные характеристики аналогичны характеристикам электронных ламп. Поскольку лампы используются примерно с 1910 года, у нас есть большой опыт работы с ними, и некоторые конструкторы чувствуют себя более комфортно с полевыми транзисторами, чем с биполярными устройствами, особенно в усилителях звука. (Действительно ли это преимущество или нет, зависит не только от научных факторов, но и от эмоциональных факторов. Некоторые читатели могут признать автора настоящей статьи одним из первых сторонников этой активно обсуждаемой проблемы, поэтому мы не будем ее обсуждать. дальше сюда!)

В любом случае, полевой транзистор полностью реагирует на напряжение на управляющем электроде, и это можно использовать для регулирования довольно большого количества выходного тока и / или напряжения в двух других проводах.

JFET

Вместо того, чтобы делать транзистор, который проводит через оба PN перехода, когда он включен («биполярный»), один тип полевого транзистора может быть изготовлен только с одним PN переходом («однопереходный»). Поскольку он имеет переход, он называется juncFET или JFET, и упрощенная диаграмма поперечного сечения показана на , рис. 1, .

РИСУНОК 1. Упрощенное поперечное сечение полевого транзистора с рабочей схемой. Это N-канальный режим, режим истощения и обычно включен.Символ находится в правой части рисунка.


Прямоугольники, обведенные жирной линией, представляют собой твердые материалы, включая две области, которые представляют собой кремний P-типа, но не проводят заметного тока. Посередине находится область N-типа, которая может проводить весь ток. В очень простой схеме, показанной на схеме, которую читатель может легко построить, чтобы получить некоторый опыт работы с полевым транзистором, омметр выдает напряжение, а также показывает протекание тока нагрузки. Этот тип полевого транзистора обычно находится во включенном состоянии до подачи какого-либо управляющего напряжения.Если потенциометр 5K настроен так, что на «затворе» нет напряжения (перемещая его стрелку вниз, как показано на схеме), то «положительный» ток нагрузки от омметра переходит в верхний левый угол полевого транзистора, а затем вниз. в самый верхний металл, затем вниз через сплошной кремний N-типа и из транзистора через нижний металл. (Области «Бык» — изоляторы из диоксида кремния.)

Диаграмма построена не в масштабе, а прямоугольники показывают области, размер которых на самом деле составляет всего около микрона.(Более формальное обозначение размера — «микрометр», что составляет миллионную долю метра.) Металл обычно представляет собой тонкую алюминиевую или медную пленку толщиной около микрона, и вся конфигурация иногда бывает более сложной, чем показано на этой упрощенной диаграмме. Кремний P-типа (справа, как показано здесь) в основном является просто механической опорой для небольших активных областей, которые проводят. Его часто называют «субстратом».

Чтобы выключить транзистор, настройку потенциометра 5K можно увеличить, чтобы получить отрицательное управляющее напряжение.Это заряжает область P-типа, но электричество практически не течет, потому что имеется «обратносмещенный» PN переход (отрицательное напряжение на кремнии P-типа и положительное на N). Однако этот заряд сильно отталкивает электроны от очень тонкого проводящего «канала» N-типа в середине. Здесь образуется зона обеднения, содержащая меньше электронов, поэтому кремний внутри овала, изображенного пунктирной линией, становится внутренним (I-тип, как обозначено буквой I в скобках), который является изолирующим, и полевой транзистор перестает проводить.Такой тип поведения называется «режимом истощения». Поскольку управляющее действие осуществляется электрическим полем (а не носителями, текущими в базовую область), все устройство называется полевым транзистором , или «полевым транзистором».

Один металлический электрод называется истоком, один — затвором, а третий — стоком, аналогично эмиттеру, базе и коллектору в биполярном транзисторе. Это «N-канальное» устройство, потому что ток проходит через кремний N-типа. Символ отображается справа от поперечного сечения.Другой тип JFET, устройство с «P-каналом», имеет полупроводниковые области P и N противоположного типа, поэтому стрелка в символе направлена ​​в сторону от канала. Этот тип ворот должен быть заряжен положительно, чтобы перекрыть канал, отталкивая дыры. Он не так распространен, как показанный здесь, но он существует и может быть полезен для специальных целей.

Диод постоянного тока

Интересным применением JFET является «диод постоянного тока». Общий эффект от этого аналогичен эффекту биполярного регулятора напряжения, за исключением того, что здесь регулируется ток , а не напряжение .Это может быть очень простая схема, как показано на Рисунок 2 , диаграмма B.

РИСУНОК 2. N-канальный JFET-транзистор, подключенный к саморегулирующемуся устройству с постоянным током, с символом, показанным рядом с ним слева. Два других символа справа относятся к источникам постоянного тока, в том числе к источникам питания, например батареям.


Если посмотреть на отрицательный ток, который течет вверх через резистор, некоторая его часть будет направлена ​​на затвор, который частично отключает полевой транзистор.Это отрицательная обратная связь, поэтому, если ток в цепи начинает увеличиваться, транзистор отключается еще больше. Таким образом, протекает меньше тока, пока не будет достигнут некоторый постоянный уровень тока. Полевой транзистор и потенциометр находятся внутри изоляционного пластикового «пакета». Все это вместе с источником питания, таким как батарея (здесь не показана), символизируется двумя перекрывающимися кругами, Рисунок 2 , диаграмма C. Иногда используется альтернативный символ со стрелкой вверх, особенно в Европе, как показано на диаграмме D.

МОП-транзистор

Другой тип полевого транзистора проиллюстрирован на рис. 3 , металл-оксид-полупроводник или «МОП» устройство.

РИСУНОК 3. Упрощенная диаграмма поперечного сечения полевого МОП-транзистора с рабочей схемой. Это N-канальный режим, режим улучшения и обычно выключен. Справа показаны два альтернативных символа.


В этом транзисторе используется изолирующий диоксид кремния для предотвращения попадания тока затвора в основной полупроводник вместо обратносмещенного перехода, который использовался в полевом транзисторе.Его иногда называют IGFET из-за изолированного затвора. Это обычно выключенное устройство, которое необходимо включить каким-либо действием, поэтому оно называется устройством «улучшенного режима». (IGFET также может быть выполнен в режиме истощения.)

На рисунке, если потенциометр понижен до нуля, то ток батареи, имеющий тенденцию проходить как через лампочку, так и через транзистор, будет остановлен одним из PN-переходов. На этой диаграмме это верхний, который имеет обратное смещение.(Первоначально пунктирная линия и область N посередине отсутствуют.)

Если стрелка потенциометра поднята, и теперь к затвору приложен положительный потенциал, дыры в кремнии P-типа отталкиваются, в результате чего эта область становится N-типа (на что указывает N в скобках). Теперь нет соединения PN непосредственно на пути между верхней и нижней областями N-типа, потому что все это одна непрерывная область N-типа (нарисованная как вертикальная черта, с пунктирной линией как один край).Этот транзистор также является N-канальным, потому что электричество проходит через кремний N-типа, когда он включен.

Если читатель желает получить некоторый опыт работы с полевым МОП-транзистором, можно установить амперметр, как показано на рис. , , чтобы показать, что в затвор не течет измеримый ток, даже когда горит лампочка. На этой схеме мультиметр был переключен на измерение тока, и он перемещен к выводу затвора. (Эта схема также может быть использована для эксперимента с полевым транзистором. Экспериментатор должен отметить, что меры предосторожности для предотвращения повреждения МОП-устройств описаны в разделе «Чувствительность к электростатическому разряду» ниже.)

Символы для полевого МОП-транзистора показаны справа. Стрелка в этом случае указывает, что электрод «истока» внутренне соединен с подложкой, что часто делается, если один из PN-переходов не будет использоваться.

Если бы устройство было P-каналом, исток и сток были бы P-типа, а стрелка была бы направлена ​​в сторону от подложки N-типа.

Характеристические кривые и линия нагрузки

В типичных «спецификациях» полевых транзисторов используются форматы, аналогичные форматам электронных ламп.Форма кривых почти такая же, но напряжения обычно намного ниже. На входе — V GS , на выходе — I D . В этом случае MOSFET типа 2N7000 используется в N-канальном режиме расширения.

«Линия нагрузки» показана здесь пунктирной линией. Его наклон представляет собой эффект сопротивления нагрузки (например, лампочка на рис. 4 , ), и он весьма полезен как способ показать величину тока в любой ситуации.

РИСУНОК 4. Характеристические кривые для полевого МОП-транзистора 2N7000 с линией нагрузки.


В случае, показанном здесь, сопротивление нагрузки составляет 1000 Ом, а V DS составляет 20 вольт. Пунктирная линия нагрузки проведена от максимально возможного напряжения (показано здесь как B) до максимально возможного тока с этой конкретной нагрузкой, который составляет 20 В / 1 кВт = 20 мА (показано как A). Если транзистор частично включен (V GS = 3 вольта), ток стока будет около 11 мА, как показано пересечением (кружок под буквой C).

CMOS

Два МОП-транзистора противоположного типа могут быть подключены, как на рис. 5 , , в комплементарной конфигурации МОП («КМОП») .

РИСУНОК 5. Пара CMOS транзисторов. При отсутствии входного сигнала ток очень низкий.


Когда на вход не подается сигнал, один из транзисторов всегда «выключен», поэтому практически нулевой ток может проходить от источника питания вниз через резистор, а затем через пару транзисторов.Когда сигнал поступает на вход, ток нагрузки может поступать с выходной клеммы либо при высоком (V +), либо при низком (заземление) напряжении, в зависимости от полярности входного напряжения. Однако в ситуациях, когда нет входа, общий ток практически равен нулю.

В современных интегральных схемах миллионы транзисторов подключены параллельно, поэтому, если бы только микроампер «тока утечки» протекал через каждый из неиспользуемых транзисторов, ампер или более все равно потреблялись бы от источника питания или батареи.Это будет генерировать много тепла, а также слишком быстро разряжать батареи для портативных устройств. Поэтому почти все современные калькуляторы, портативные компьютеры, сотовые телефоны и т. Д. По возможности используют схемы CMOS.

Чувствительность к электростатическому разряду

МОП-транзистор особенно чувствителен к повреждению статическим электричеством, которое возникает, когда человек идет по ковру в сухую погоду. Искра, которую создает человек при прикосновении к металлической лицевой панели выключателя света, называется электростатическим разрядом , или «ESD», но полевой МОП-транзистор может быть поврежден, даже если статического электричества недостаточно, чтобы образовалась видимая искра.

Статическое электричество может разрушить очень тонкий оксид кремния, изолирующий затвор. Некоторые МОП-транзисторы защищены стабилитронами, подключенными параллельно им внутри корпусов, но большинство из них не защищены. Чтобы предотвратить повреждение, люди, работающие с IGFET, всегда должны соблюдать эти две меры предосторожности:

  1. Касайтесь только пластиковой изоляции руками, а не металлическими выводами;
  2. Используйте заземленный браслет.

Последний представляет собой пластиковую ленту (обычно черного или розового цвета), которая проводит электричество и прикрепляется к длинному проводу.Его следует закрепить на любом запястье, касаясь кожи человека, а затем другой конец провода подсоединить к надежному заземлению, например к водопроводу. NV


Список деталей

JFET N-канал
Потенциометр 5000 Ом
Силовой полевой МОП-транзистор N-канал
Колба лампы Вольфрам, 12 В, 40 мА
Аккумулятор Девять вольт
Мультиметр
Антистатический браслет

Полевой транзистор

— обзор

Входные каскады полевых транзисторов

Полевые транзисторы (FET) имеют гораздо более высокий входной импеданс, чем биполярные переходные транзисторы (BJT), и поэтому кажутся идеальными устройствами для входных каскадов операционных усилителей.Однако они не могут быть изготовлены на всех процессах биполярных ИС, и когда процесс позволяет их производство, у них часто возникают собственные проблемы.

Полевые транзисторы имеют высокое входное сопротивление, низкий ток смещения и хорошие характеристики на высоких частотах. (В операционном усилителе более низкий g m полевых транзисторов допускает более высокие хвостовые токи, тем самым увеличивая максимальную скорость нарастания напряжения.) Полевые транзисторы также имеют гораздо более низкий токовый шум.

С другой стороны, входное напряжение смещения пар полевых транзисторов с длинными хвостами не так хорошо, как смещение соответствующих BJT, и подстройка для минимального смещения одновременно не минимизирует дрейф.Для дрейфа требуется отдельный триммер, и в результате смещение и дрейф в операционном усилителе с полевым транзистором с полевым транзистором, хотя и хороши, но не так хороши, как у лучших биполярных транзисторов. Упрощенная процедура подстройки входного каскада операционного усилителя на полевых транзисторах показана на рисунке 1-26.

Рисунок 1-26. Входной каскад операционного усилителя на полевом транзисторе (JFET) с подстройкой смещения и дрейфа

Операционные усилители JFET можно сделать с очень низким уровнем шума, но задействованные устройства очень большие и имеют довольно высокую входную емкость, которая зависит от входа. напряжение, и поэтому существует компромисс между шумом напряжения и входной емкостью.

Ток смещения операционного усилителя на полевом транзисторе — это ток утечки диффузионного затвора (или утечка защитного диода затвора, который имеет аналогичные характеристики для полевого МОП-транзистора). Такие токи утечки удваиваются при повышении температуры кристалла на каждые 10 ° C, так что ток смещения операционного усилителя на полевых транзисторах в тысяч раз больше при 125 ° C, чем при 25 ° C. Очевидно, это может быть важно при выборе между операционным усилителем с биполярным или полевым транзистором, особенно в высокотемпературных приложениях, где входной ток смещения биполярного операционного усилителя фактически уменьшается.

До сих пор мы говорили в основном обо всех типах полевых транзисторов, то есть о переходах (JFET) и MOS (MOSFETS). На практике операционные усилители с комбинированной биполярной / JFET-технологией (т. Е. BiFET) обеспечивают лучшую производительность, чем операционные усилители, использующие только технологию MOSFET или CMOS. В то время как ADI и другие производят высокопроизводительные операционные усилители с входными каскадами MOS или CMOS, в целом эти операционные усилители имеют худшие смещение и дрейф, шум напряжения и высокочастотные характеристики, чем биполярные аналоги. Потребляемая мощность обычно несколько ниже, чем у биполярных операционных усилителей с сопоставимой или даже лучшей производительностью.

JFET-устройства требуют большего запаса по сравнению с BJT, поскольку их напряжение отсечки обычно больше, чем напряжение BJT-базой-эмиттером. Следовательно, их труднее работать при очень низких напряжениях питания (1-2 В). В этом отношении КМОП имеет то преимущество, что требует меньшего запаса по сравнению с полевыми транзисторами.

Структура и принцип работы полевых транзисторов

Полевой транзистор — это полупроводниковое устройство, которое использует эффект электрического поля входной цепи управления для управления током выходной цепи и названо в честь него.Поскольку проводимость электричества зависит только от основного носителя в полупроводнике, его также называют униполярным транзистором. FET на английском языке — полевой транзистор, сокращенно FET. Существует два основных типа: транзисторный полевой транзистор (JFET) и полевой транзистор металл-оксид-полупроводник (MOSFET).

Введение

Полевой транзистор представляет собой полупроводниковое устройство, которое использует эффект электрического поля входной цепи управления для управления током выходной цепи и названо в честь него.Поскольку проводимость электричества зависит только от основного носителя в полупроводнике, его также называют униполярным транзистором. FET на английском языке — полевой транзистор, сокращенно FET. Существует два основных типа: транзисторный полевой транзистор (JFET) и полевой транзистор металл-оксид-полупроводник (MOSFET).

Он относится к полупроводниковому устройству, управляемому напряжением, с высоким входным сопротивлением (107-1015 Ом), низким уровнем шума, низким энергопотреблением, большим динамическим диапазоном, простой интеграцией, отсутствием вторичного пробоя и широкой безопасной рабочей зоной, которая стала мощный конкурент биполярным транзисторам и силовым транзисторам.

Это может помочь вам узнать больше:

Основы полевых транзисторов

Каталог

I Устройство и принцип работы Полевые транзисторы

делятся на две категории: полевые транзисторы (JFET) и металлические оксидно-полупроводниковые полевые транзисторы (MOSFET) .

В зависимости от материала канала и типа изолированного затвора существуют транзисторы с каналом N и P с каналом;

В зависимости от режима проводимости различают тип истощения и тип улучшения.Все полевые транзисторы JFET относятся к типу истощения, а полевые МОП-транзисторы имеют как тип истощения, так и тип расширения.

1. Переходный полевой транзистор

(1) Конструкция

Структура полевого транзистора с N-канальным переходом показана на следующем рисунке. Это структура, в которой PN-переход изготовлен на каждой стороне полупроводниковой кремниевой пластины N-типа, образуя структуру, в которой два PN-перехода образуют между собой канал N-типа. Две области P являются затворами, один конец кремния N-типа — сток, а другой конец — исток.

Рисунок 1. Структура переходного полевого транзистора

(2) Принцип работы

Возьмем N-канал в качестве примера, чтобы проиллюстрировать его принцип работы.

Когда VGS = 0, когда определенное напряжение приложено между стоком и истоком, основная несущая будет дрейфовать между стоком и истоком, создавая ток стока. Когда VGS <0, PN-переход смещен в обратном направлении, образуя обедненный слой.Канал между стоком и истоком сузится, а ID уменьшится. Если VGS продолжает уменьшаться, канал будет продолжать сужаться, и ID будет продолжать уменьшаться, пока не достигнет 0. Когда ID равен 0, соответствующий VGS называется напряжением отсечки VGS (выключено).

(3) Характеристика переходных полевых транзисторов

Имеются две характеристические кривые переходного полевого транзистора,

Одна — это кривая выходной характеристики (ID = f (VDS) | VGS = постоянная), вторая — кривая передаточной характеристики (ID = f (VGS) | VDS = постоянная).

Характеристическая кривая полевого транзистора с N-канальным переходом показана на рисунке ниже.

(A) Характеристическая кривая дренажного выхода (b) Кривая передаточной характеристики

Рис. 2. Кривая характеристики полевого транзистора с N-канальным переходом

2. Металлооксидный полупроводниковый полевой транзистор

Металлооксидные полупроводниковые полевые транзисторы подразделяются на:

Тип истощения → канал N, канал P

Тип расширения → N-канал, P-канал

(1) Структура N-канального полевого транзистора обедненного типа

Структура и обозначение N-канального режима истощения показаны на следующем рисунке (а).Изолирующий слой SiO2 под затвором легирован большим количеством положительных ионов металлов. Таким образом, когда VGS = 0, эти положительные ионы индуцировали инверсионный слой, образуя канал. Следовательно, пока есть напряжение сток-исток, существует ток стока.

Когда VGS> 0, ID увеличивается. Когда VGS <0, ток стока постепенно уменьшается по мере уменьшения VGS до ID = 0. VGS, когда ID = 0, называется напряжением отсечки, иногда обозначается символом VGS (выкл.) Или VP.

Кривая передаточной характеристики N-канального обедненного режима показана на рисунке (b) ниже.

(а) Структурная схема (б) Кривая передаточной характеристики

Рис. 3. Структура и кривая передаточной характеристики N-канального режима истощения

(2) N-канальный тип расширения FET

N-канальный полевой транзистор улучшенного типа имеет структуру, аналогичную структуре режима истощения.Но когда VGS = 0 В, добавление напряжения между стоком и истоком не образует тока. При подаче напряжения на затвор, если VGS> VGS (th), образуется канал, соединяющий сток и исток. Если в это время приложено напряжение сток-исток, может быть сформирован идентификатор.

Когда VGS = 0V, ID = 0, и ток стока улучшенного типа появится только после VGS> VGS (th).

ВГС (th) — напряжение открытия или напряжение клапана;

Рисунок 4.N-канальный тип расширения FET

(3) Режим расширения P-канала и режим истощения MOSFET

Принцип работы P-канального MOSFET точно такой же, как и у N-канального MOSFET, за исключением того, что проводящие носители и полярность напряжения питания отличаются. Это похоже на биполярные транзисторы типа NPN и PNP.

3. Вольт-амперная характеристика полевого транзистора

Существует много типов характеристических кривых полевых транзисторов.Имеются четыре кривые передаточных характеристик и кривые выходной характеристики в зависимости от того, увеличены они или истощены, а также разные направления напряжения и тока. Если положительное направление задано равномерно, характеристические кривые будут построены в разных квадрантах. Чтобы упростить рисование, положительное направление транзистора с каналом P обратное. Соответствующие кривые показаны на рисунке ниже.

Рисунок 5.Вольт-амперная характеристика полевых транзисторов

4. Сравнение различных характеристик полевых транзисторов

(a) Кривая передаточной характеристики (b) Кривая выходной характеристики

Рисунок 6. Сравнение различных характеристик полевых транзисторов

II Параметры полевого транзистора

Существует множество параметров полевых транзисторов, включая параметры постоянного и переменного тока и предельные параметры, но в целом нам нужно обратить внимание только на следующие параметры.

(1) Напряжение отсечки (UP)

Это относится к напряжению UGS, приложенному к затвору, когда ток стока / D (т. Е. Ток канала) равен нулю или меньше небольшого значения тока (например, 1 мкА. 10 мкА) при заданном напряжении стока UDS. Это важный параметр полевых МОП транзисторов переходного или обедненного типа.

(2) Напряжение включения (UT)

Это напряжение затвора UGS, когда токопроводящий канал (между стоком и истоком) только что включен, когда напряжение стока UDS имеет определенное значение.Это важный параметр усиленного полевого транзистора. Когда напряжение затвора UGS меньше абсолютного значения напряжения включения, полевой транзистор не может быть включен.

(3) Ток утечки насыщения (DSS)

Он относится к току утечки насыщения тока стока D, вызванному определенным напряжением стока UDS (большим, чем напряжение отсечки), когда затвор и исток закорочены (UGS = 0). Он отражает проводимость исходного канала при нулевом напряжении на затворе, что является важным параметром истощенных полевых транзисторов.

(4) Низкочастотная крутизна (gm)

Когда напряжение стока UDS имеет заданное значение, отношение изменения тока стока к изменению напряжения затвора △ UGS, которое вызывает это изменение, называется крутизной, то есть:

Общепринятая единица измерения грамма — мСм (миллисименс). gm — это параметр, который измеряет силу напряжения затвора полевого транзистора при управлении током стока, а также эффект усиления.Он аналогичен коэффициенту усиления переменного тока транзистора β и связан с рабочей площадью транзистора. Чем больше ток стока / D, тем больше gm.

(5) Напряжение пробоя истока стока (BUDS)

Это относится к максимальному напряжению стока, которое может выдержать полевой транзистор, когда напряжение затвора UGS является постоянным. Это эквивалентно напряжению пробоя коллектор-эмиттер V (BR) ceo (т.е. BUceo) обычного кристаллического транзистора.Это предельный параметр, и рабочее напряжение, подаваемое на полевой транзистор, должно быть меньше BUDS.

(6) Максимальный ток сток-исток (DSM)

Это относится к максимальному току, допустимому между стоком и истоком, когда полевой транзистор работает нормально. Это эквивалентно рабочему току обычного кристаллического транзистора. Этот предельный параметр не должен превышаться.

(7) Максимальное рассеивание мощности (PDSM)

Это относится к максимально допустимой рассеиваемой мощности стока, когда характеристики полевого транзистора не ухудшаются, что эквивалентно Pcm обычного транзистора.При использовании фактическая потребляемая мощность полевого транзистора (PD = UDS × / D) должна быть меньше этого предельного параметра и оставлять определенный запас.

ИИИ Полевой транзистор Метод испытания

1. Идентификация контактов JFET

Затвор полевого транзистора эквивалентен базе транзистора, а исток и сток соответствуют эмиттеру и коллектору транзистора соответственно.Установите мультиметр на «R × 1k» и используйте два измерительных провода для измерения прямого и обратного сопротивления между каждыми двумя контактами. Когда положительное и обратное сопротивление двух выводов составляют несколько тысяч Ом, тогда эти два вывода являются стоком и истоком (взаимозаменяемы), а оставшийся вывод — затвором. Для соединительных полевых транзисторов с 4 контактами другой полюс является полюсом экранирования (заземление при использовании).

2. Решение суда

Подключите черный измерительный провод мультиметра к одному электроду транзистора, а красный измерительный провод — к двум другим электродам соответственно.Если значения сопротивления, измеренные дважды, очень большие, это означает, что они являются обратными сопротивлениями. Итак, это N-канальный полевой транзистор, и черный провод подключен к затвору.

Рис. 7. Тестовый полевой транзистор с мультиметром

Производственный процесс определяет, что исток и сток полевого транзистора симметричны и могут использоваться как взаимозаменяемо, , не влияя на нормальную работу схемы, поэтому нет необходимости различать их.Сопротивление между истоком и стоком составляет около нескольких тысяч Ом.

Обратите внимание, что этот метод не может использоваться для определения затвора полевого МОП-транзистора. Поскольку входное сопротивление полевого МОП-транзистора чрезвычайно велико, а межэлектродная емкость между затвором и истоком очень мала, до тех пор, пока во время измерения имеется небольшое количество зарядов, на межэлектродной емкости может формироваться высокое напряжение, что легко повредить транзистор.

3. Оценка усиления

Установите мультиметр в положение «R × 100» и подключите красный измерительный провод к источнику, а черный измерительный провод к стоку, что эквивалентно добавлению 1.Напряжение питания 5В на полевой транзистор. В это время стрелка указывает значение сопротивления между стоком и истоком.

Затем зажмите затвор пальцем, чтобы подать индуцированное напряжение человеческого тела в качестве входного сигнала на затвор. Из-за эффекта усиления транзистора и UDS, и ID изменятся, что означает, что сопротивление между стоком и истоком также изменится, и измерительный провод сильно колеблется. Если качание небольшое, когда вы зажимаете затвор, это означает, что способность транзистора к увеличению мала; если вывод не двигается, это означает, что транзистор поврежден.

Поскольку напряжение переменного тока 50 Гц, индуцированное человеческим телом, довольно велико, и разные полевые транзисторы могут иметь разные рабочие точки при измерении с помощью резистивного механизма, руки могут качаться вправо или влево, когда затвор зажимается рукой. . Когда RDS транзисторов уменьшается, измерительный провод поворачивается вправо, а при увеличении RDS — влево.

Независимо от направления движения стрелок, пока есть четкое движение, это означает, что транзистор может усиливать.

Этот метод также подходит для измерения МОП-транзисторов. Для защиты полевого МОП-транзистора необходимо удерживать изолирующую ручку и соединить затвор с помощью металлического стержня, чтобы предотвратить непосредственное добавление индуцированного телом человека заряда к затвору и повреждение транзистора.

После каждого измерения МОП-транзистора будет небольшое количество зарядов на конденсаторе перехода G-S, и будет установлено напряжение UGS. Затем, если вы продолжите тест, измерительный провод может не двигаться, и короткое замыкание цепи между полюсом G-S решит проблему.

IV Меры предосторожности

1. Для безопасного использования полевого транзистора в схеме схемы должны ограничивать параметры , такие как рассеиваемая мощность, максимальное напряжение сток-исток, максимальное напряжение затвор-исток и максимальный ток. не должно быть превышено.

2. При использовании различных типов полевых транзисторов их необходимо вставлять в схему в строгом соответствии с требуемым смещением и соблюдать полярность смещения полевого транзистора.Например, существует PN-переход между истоком и стоком затвора с полевым эффектом перехода, поэтому затвор N-канала не может быть смещен положительно, а затвор P-канала не может быть смещен отрицательно.

3. Из-за чрезвычайно высокого входного сопротивления полевого МОП-транзистора, выводные контакты должны быть замкнуты накоротко во время транспортировки и хранения. Кроме того, следует использовать металлический экранирующий пакет, чтобы предотвратить повреждение затвора внешним наведенным потенциалом.

В частности, полевой МОП-транзистор лучше хранить в металлическом корпусе , а не в пластиковом. Также следует отметить влагостойкость транзистора.

4. Чтобы предотвратить индукционный пробой затвора полевого транзистора, все испытательные приборы, рабочие места, электрические утюги и сама цепь должны быть хорошо заземлены, что означает:

(1) При пайке контактов сначала припаяйте электрод истока.

(2) Перед подключением к цепи все выводы транзистора должны быть закорочены друг с другом, а закорачивающий материал удаляется после сварки.

(3) Когда вы извлекаете транзистор из стойки для компонентов, человеческое тело должно быть заземлено соответственно, как с помощью заземляющего кольца.

(4) При использовании современного газонагревательного электрического паяльника удобнее сваривать полевой транзистор, но при этом следует обеспечить безопасность.

Рисунок 8. Газовая пайка

(5) категорически запрещается вставлять или втягивать транзистор в схему без отключения питания.

5. При установке полевого транзистора положение установки должно находиться на расстоянии от , насколько это возможно, от нагревательного элемента . А чтобы не допустить вибрации транзистора, необходимо закрепить корпус транзистора. Также, когда мы сгибаем штифт, он должен быть на 5 мм выше основания, чтобы не повредить штифт и не вызвать утечку воздуха.

6. При использовании транзистора VMOS необходимо добавить соответствующий радиатор.Взяв VNF306 в качестве примера, максимальная мощность может достигать 30 Вт только после того, как транзистор оснащен радиатором 140 × 140 × 4 (мм).

7. После параллельного включения нескольких транзисторов высокочастотные характеристики усилителя ухудшаются из-за увеличения межэлектродной емкости и распределенной емкости , и легко вызвать высокочастотные паразитные колебания через Обратная связь. По этой причине обычно используется не более четырех параллельных составных транзисторов, и сопротивление антипаразитных колебаний должно быть подключено последовательно к базе или затвору каждого транзистора.

8. Напряжение затвор-исток переходного полевого транзистора не может быть изменено на противоположное и может храниться в открытом состоянии. Когда полевой МОП-транзистор не используется из-за очень высокого входного сопротивления, каждый электрод должен быть закорочен, чтобы предотвратить повреждение транзистора внешним электрическим полем.

9. Во время сварки внешняя оболочка электрического паяльника должна быть снабжена внешним заземляющим проводом , чтобы предотвратить повреждение транзистора из-за заряженного электрического утюга.Для небольшого количества пайки вы также можете отключить паяльник после его нагрева или отключить питание и припаять его. Особенно при сварке полевых МОП-транзисторов, исток-сток-затвор следует сваривать по порядку, а цепь должна быть отключена.

10. При сварке электрическим паяльником мощностью 25Вт операция должна быть быстрой. Если вы используете электрический паяльник мощностью от 45 до 75 Вт, воспользуйтесь пинцетом, чтобы зажать основание штифта, чтобы улучшить отвод тепла. Используйте мультиметр, чтобы проверить качество полевого транзистора перехода (например, сопротивление между прямым и обратным сопротивлением каждого PN перехода и сток-исток).Однако полевой МОП-транзистор нельзя проверить с помощью мультиметра, вместо этого необходимо использовать тестер. А линию короткого замыкания каждого электрода можно удалить только после подключения тестера. При снятии мы должны сначала устранить короткое замыкание, а затем удалить его, чтобы избежать плавающего затвора.

Рис. 9. Тестер полевого МОП-транзистора

При высоком входном импедансе необходимо принять меры по защите от влаги, чтобы предотвратить уменьшение входного сопротивления полевого транзистора из-за температуры.Если используется четырехпроводной полевой транзистор, провод подложки следует заземлить. Транзистор с керамическим корпусом стоит, поэтому его следует защищать от света.

Для силовых полевых транзисторов должны быть хорошие условия теплоотвода . Поскольку силовой полевой транзистор используется в условиях высокой нагрузки, необходимо разработать достаточно радиаторов, чтобы температура корпуса не превышала номинальное значение, чтобы устройство могло стабильно работать в течение длительного времени.

Короче говоря, для обеспечения безопасного использования полевого транзистора необходимо учитывать ряд факторов, а также различные меры безопасности. Огромному количеству профессионального и технического персонала, особенно энтузиастам электроники, следует принять практические меры для безопасного и эффективного использования полевых транзисторов в соответствии с их реальной ситуацией.

V Полевой эффект Transisto r VS. Транзистор

1.Исток S, затвор G и сток D полевого транзистора соответствуют эмиттеру E, базе B и коллектору C транзистора соответственно, и их функции аналогичны.

2. Полевой транзистор — это устройство , управляемое напряжением, , токовое устройство для управления идентификатором с помощью VGS, и его коэффициент усиления gm, как правило, невелик, поэтому емкость полевого транзистора недостаточна. Транзистор — это устройство тока , управляемое током, для управления IC посредством iB (или iE).

3. Затвор полевого транзистора почти не поглощает ток, в то время как база транзистора поглощает определенный ток во время работы.Следовательно, входное сопротивление полевого транзистора выше, чем у транзистора.

4. Полевой транзистор проводит ток с основными несущими . Транзистор может проводить электричество с большинством и неосновными носителями. Поскольку на концентрацию неосновных носителей сильно влияют температура, излучение и другие факторы, полевой транзистор имеет лучшую температурную стабильность и радиационную стойкость, чем транзистор.

Рисунок 10.Поток большинства и меньшинства несущей в транзисторе PNP

Полевой транзистор следует использовать, когда условия окружающей среды (температура и т. Д.) Сильно различаются.

5. Когда металлический источник истока соединен с подложкой, электрод истока и электрод стока могут использоваться, , взаимозаменяемо, , и их характеристики не сильно меняются. Однако, если коллектор и эмиттер транзистора используются взаимозаменяемо, его характеристики будут сильно отличаться, и значение β значительно уменьшится.

6. Коэффициент шума полевого транзистора очень мал, поэтому полевой транзистор следует выбирать в схеме малошумящего усилителя, где входной каскад требует высокого отношения сигнал / шум (SNR).

7. Полевые транзисторы и транзисторы могут образовывать различные и переключающие схемы, но полевой транзистор более широко используется в крупномасштабных и сверхбольших интегральных схемах из-за его простого производственного процесса, низкого энергопотребления, хорошей термостойкости. , широкий диапазон рабочего напряжения питания и другие преимущества.

8. Сопротивление в открытом состоянии транзистора велико, а сопротивление полевого транзистора невелико, всего несколько сотен миллиом. В современных электрических устройствах полевые транзисторы обычно используются в качестве переключателя из-за его высокого КПД.

Рекомендуемая Артикул:

Введение в TFT-дисплеи

Обзор биполярных транзисторов

Какие методы тестирования и типы транзисторов?

Четырехточечный опыт полевого транзистора в блоке питания, какой из них вы знаете?

Благодаря быстрому развитию портативных электронных продуктов, наша жизнь становится легкой для электронных продуктов.Возможно, вы не знаете, что в процессе производства электронных продуктов есть электронный компонент, который предпочитают инженеры-электронщики. Полевой транзистор Мы часто соприкасаемся с кристаллической трехкаскадной лампой, и мы знакомы с ее использованием. Он является относительно новым для полевого транзистора, но поскольку Полевой транзистор имеет свои уникальные преимущества и пользуется популярностью в электронной промышленности, такие как высокий входной импеданс, низкий уровень шума, хорошая термическая стабильность и т. Д., которые также широко используются при производстве и использовании наших электронных продуктов. Мы знаем, что существует много видов полевых транзисторов, которые делятся на транзисторы на переходных полевых кристаллах и полевые транзисторы с изолированным затвором в соответствии с различными структурами; Полевые транзисторы с изолированным затвором также называют полевыми транзисторами с металлооксидным проводником, или сокращенно МОП. Полевой транзистор

1, для предотвращения пробоя кристаллической трубки с изолированным затвором

Поскольку входной импеданс полевого транзистора с изолированным затвором очень высок, это изначально является его преимуществом, но при его использовании возникают новые проблемы.Из-за высокого входного импеданса, когда заряженный объект приближается к затвору, он индуцируется на затворе. Заряд трудно разрядить через этот резистор, и накопление заряда вызывает повышение напряжения. Особенно в случае, когда межэлектродная емкость относительно мала, небольшое количество заряда будет генерировать более высокое напряжение, так что трубка еще не вышла из строя или индекс упал. В частности, МОП-трубка имеет тонкий изолирующий слой и более подвержена поломкам.Чтобы избежать такой аварии, необходимо избегать плавающего затвора, то есть между затвором и источником должен сохраняться путь постоянного тока. Обычно резистор (в пределах 100 кОм) подключается между двумя выводами затвора и истока, чтобы накопленный заряд не был чрезмерным, или стабилитрон подключается так, чтобы напряжение не превышало определенного значения. Во время хранения три электрода следует замкнуть накоротко и поместить в экранированный металлический ящик; при припаивании трубки к цепи или снятии ее следует в первую очередь закоротить электроды; Инструмент паяльника, используемый для проверки установки, должен иметь хорошее заземление, лучше всего отключить питание паяльника, а затем припаять.

2. Определить электрод переходного полевого транзистора

Поместите мультиметр в блок RX1K, коснитесь предполагаемого контакта G затвора черной ручкой, а затем коснитесь двух других контактов красной ручкой. Если сопротивление небольшое (около 5 ~ 10 Ом), то красный и черный будут красными. Измерительные провода заменяются один раз, если сопротивление велико (бесконечно), это означает, что обратное сопротивление (обратное PN-переход) представляет собой трубку с N-каналом, а трубка, к которой прикасается черный измерительный провод, является затвором G, а исходное предположение верно.. Снова измеренное значение сопротивления невелико, что указывает на прямое сопротивление, принадлежащее каналу P. Полевой транзистор Черная ручка счетчика также контактирует с затвором G. Если описанная выше ситуация не возникает, вы можете заменить красный и черный измерительные провода и проверить их, как описано выше, до тех пор, пока не будет оценен затвор. Обычно исток и сток транзистора с переходным эффектом симметричны во время изготовления. Следовательно, после определения затвора G нет необходимости оценивать сток D истока S, поскольку два полюса могут использоваться взаимозаменяемо. Нет необходимости различать.Сопротивление между истоком и стоком составляет около нескольких тысяч Ом.

3. Оценка возможности усиления полевого транзистора

Оценка с блоком RX100 мультиметра Полевой транзистор Возможности усиления. Конкретный тест заключается в следующем: красный измерительный провод подключается к истоку S, а черный измерительный провод подключается к стоку D. Это эквивалентно добавлению напряжения источника питания 1,5 В на полевой транзистор.В это время стрелка показывает значение сопротивления между полюсами DS. Затем палец G зажимается пальцем, и индуцированное напряжение человеческого тела подается в качестве входного сигнала на затвор. Из-за эффекта усиления полевого транзистора изменятся как Uds, так и Id, что эквивалентно изменению сопротивления между электродами DS. Можно заметить, что руки имеют большую амплитуду качания. Если зажатая вручную игла затвора качается очень мало, усилительный эффект полевого транзистора будет слабым.Если руки не двигаются, полевой транзистор поврежден.

Обратите внимание, что Rds большинства полевых транзисторов увеличивается, стрелки колеблются влево, Rds нескольких полевых транзисторов уменьшаются, а стрелки колеблются вправо. Но независимо от направления стилуса, пока он может значительно колебаться, трубка имеет усиление. . Однако, поскольку входное сопротивление МОП-транзистора выше, индуцированное напряжение затвора не должно быть слишком высоким, чтобы затвор нельзя было непосредственно зажать рукой.Изолирующую ручку отвертки нужно держать рукой, а металлический стержень используется для прикосновения к решетке. Не допускайте прямого приложения индуцированного заряда к затвору, вызывающего пробой затвора МОП-транзистора.

4, сопротивление затвора МОП в аналоговой цепи

1, — эффект парциального давления

2, понижающий резистор должен разрядить заряд затвора как можно скорее, чтобы как можно скорее отрезать трубку MOS

3, для предотвращения перенапряжения на затворе (стабилизатор напряжения, подключенный параллельно на затворе, также предотвращает перенапряжение)

4.Полномостовое сопротивление затвора — это тот же механизм. Заряд затвора разряжается как можно скорее, а МОП-транзистор отключается как можно скорее. Избегайте плавающего затвора, МОП-транзистор с плавающим затвором будет включен, что приведет к полному короткому замыканию моста

5. Сопротивление между приводной трубкой и затвором служит для изоляции и предотвращения паразитных колебаний.

Выбор полевого МОП-транзистора

для импульсных систем питания

Выбор полевого МОП-транзистора

для контроллеров переключения постоянного тока может быть сложным процессом.Недостаточно просто посмотреть номинальные значения напряжения и тока для полевого МОП-транзистора. Баланс между низким уровнем заряда затвора и R DS (ON) должен быть достигнут, чтобы поддерживать температуру полевого МОП-транзистора в пределах спецификации. Эта ситуация усложняется в системе питания с несколькими нагрузками. Онлайновые инструменты проектирования, такие как WEBENCH® Power Architect от Texas Instruments, могут упростить этот процесс и позволить пользователю принимать решения на основе эффективности, занимаемой площади и стоимости для достижения желаемых целей проектирования контроллеров MOSFET.

Импульсные источники питания постоянного тока

широко используются в современных электронных системах из-за их высокой эффективности. Пример понижающего (или понижающего) синхронного переключающего регулятора с полевым транзистором верхнего и нижнего полевого транзистора показан на рис. 1. В этой конфигурации полевые транзисторы включаются и выключаются в соответствии с рабочим циклом, установленным контроллер для достижения желаемого выходного напряжения. Уравнения для рабочего цикла понижающего регулятора:

Рабочий цикл (верхний полевой транзистор) = V OUT / (V IN × КПД) (1)

Рабочий цикл (нижний полевой транзистор) = 1 — постоянный ток (верхний полевой транзистор) (2)

Полевые транзисторы могут быть интегрированы в тот же чип, что и контроллер, что обеспечивает простейшее решение.Но для обеспечения возможности высокого тока и / или достижения максимальной эффективности полевые транзисторы должны быть внешними по отношению к контроллеру. Это обеспечивает максимальное рассеивание тепла, поскольку физически отделяет полевые транзисторы от контроллера, а также дает максимальную гибкость при выборе правильных полевых транзисторов для работы. Недостатком является то, что процесс выбора полевого транзистора может быть трудным, поскольку необходимо учитывать множество факторов.

Типичный вопрос: «Почему этот полевой транзистор на 10 А не подходит для моей конструкции 10 А?» Ответ заключается в том, что рейтинг 10А не обязательно применим ко всем дизайнам.Факторы, которые необходимо учитывать при выборе полевого транзистора, — это номинальное напряжение, температура окружающей среды, частота коммутации, мощность привода контроллера и площадь радиатора. Ключевой проблемой является то, что полевые транзисторы могут стать слишком горячими и сгореть, если рассеиваемая мощность слишком высока, а теплоотвод недостаточен. Мы можем оценить температуру перехода полевого транзистора, используя θ JA , или тепловое сопротивление корпуса / радиатора, мощность, рассеиваемую в полевом транзисторе, и температуру окружающей среды:

T J = θ JA × P disFET + T A (3)

Это требует расчета рассеиваемой мощности в полевых транзисторах.Рассеиваемую мощность можно разделить на две основные области: потери переменного и постоянного тока. Эти потери можно рассчитать с помощью:

Где:

P SWAC = потери переменного тока
V DS = Напряжение на полевом транзисторе
I DS = Ток нагрузки
t RISE = время нарастания полевого транзистора
t FALL = Время спада FET
T SW = период времени переключения регулятора (1 / частота переключения

Потери постоянного тока: P swDC = R DS (ON) * I OUT * I OUT * Рабочий цикл (5)

Где:

P SWDC = потери постоянного тока
R DS (ВКЛ) = FET на сопротивлении
I OUT = Ток нагрузки для понижающей топологии
D = Рабочий цикл

Другие механизмы потерь связаны с выходной паразитной емкостью, потерями на затворе и потерями в корпусных диодах из-за проводимости в течение мертвого времени для полевого транзистора нижнего уровня, но в этом обсуждении мы сосредоточимся на потерях переменного и постоянного тока.

Коммутационные потери переменного тока возникают при переходе между включением и выключением переключателя, когда напряжение и ток через переключатель не равны нулю. Выделенные области на рис. 2 показывают это. Согласно уравнению (4), одним из способов уменьшения этих потерь является уменьшение времени нарастания и спада переключателя. Это можно сделать, выбрав полевой транзистор с более низким зарядом затвора. Другой фактор — частота переключения. Чем выше частота переключения, тем больше процент времени периода переключения тратится на переходные области нарастания и спада, как показано на рис.3. Таким образом, более высокая частота означает большие потери при переключении переменного тока. Таким образом, еще один способ снизить потери переменного тока — снизить частоту переключения, но для этого требуется более крупная и обычно более дорогая катушка индуктивности, чтобы поддерживать пиковый ток переключения в пределах спецификации.

потерь постоянного тока возникают, когда переключатель находится во включенном состоянии, из-за R DS (ON) полевого транзистора. Это довольно простой механизм потерь I 2 R, показанный на рис. 4. Однако это осложняется тем фактом, что R DS (ON) изменяется в зависимости от температуры перехода полевого транзистора.Таким образом, для точного определения R DS (ON) должен использоваться итерационный процесс, который учитывает повышение температуры полевого транзистора с использованием уравнений (3), (4) и (5). Самый простой способ уменьшить потери постоянного тока — выбрать полевой транзистор с низким R DS (ON) . Кроме того, потери постоянного тока пропорциональны проценту включения полевого транзистора, который представляет собой рабочий цикл контроллера для полевого транзистора верхней стороны, и 1 минус коэффициент заполнения полевого транзистора нижней стороны, как упоминалось ранее. Как показано на рис. 5, более длительное время включения означает большие потери при переключении постоянного тока, таким образом, снижение потерь постоянного тока может быть достигнуто за счет сокращения времени включения / рабочего цикла полевого транзистора.Разработчик может изменить рабочий цикл, если входное напряжение может быть изменено, например, если используется промежуточная шина постоянного напряжения.

Простое решение состоит в том, чтобы выбрать полевой транзистор как с низким зарядом затвора, так и с низким R DS (ON) , однако между этими двумя параметрами существует характерный компромисс, который показан на рис. 6. Низкий заряд затвора обычно означает меньший площадь затвора / меньшее количество параллельно включенных транзисторов и, следовательно, больше R DS (ON) . С другой стороны, низкий уровень R DS (ON) обычно достигается за счет использования больших / параллельных транзисторов, что приводит к большему заряду затвора.Это означает, что при выборе полевого транзистора необходимо уравновесить эти две конкурирующие спецификации. Также необходимо учитывать стоимость.

Для схем с низким коэффициентом заполнения, что означает высокое входное напряжение, полевой транзистор на стороне высокого напряжения в основном отключен, поэтому потери постоянного тока низкие. Но высокое напряжение на полевом транзисторе приводит к высоким потерям переменного тока, поэтому можно выбрать полевой транзистор с низким зарядом затвора, даже если R DS (ON) высокий. Полевой транзистор нижнего уровня в основном включен, но потери переменного тока минимальны. Это связано с тем, что напряжение на полевом транзисторе нижнего уровня во время включения / выключения возникает только из-за внутреннего диода полевого транзистора, которое очень мало.Таким образом, необходимо выбрать полевой транзистор с низким R DS (ON) , и заряд затвора может быть высоким. Это показано на рис. 7.

Если мы снизим входное напряжение, мы получим конструкцию с высоким коэффициентом заполнения, в которой в основном используется полевой транзистор верхнего плеча, что показано на рис. 8. В этом случае потери постоянного тока будут высокими и низкими R DS (ON) требуется. В зависимости от входного напряжения потери переменного тока могут быть не такими важными, но все же не такими низкими, как для полевого транзистора нижнего уровня. Таким образом, может потребоваться умеренно низкий заряд затвора.Это требует компромисса между низким уровнем R DS (ON) и низким уровнем заряда затвора. Для полевого транзистора низкого уровня время включения минимально, а потери переменного тока низки, поэтому выбор полевого транзистора может быть сделан на основе цены или занимаемой площади вместо R DS (ON) и заряда затвора.

ОБЯЗАТЕЛЬНЫЙ ЦИКЛ TRADEOFFS

Предполагая, что для регулятора точки нагрузки (POL) у нас есть возможность указать номинальное входное напряжение от шины промежуточного напряжения, что является наилучшей ситуацией: высокое входное напряжение / низкий рабочий цикл или низкое входное напряжение / высокий рабочий цикл? Давайте возьмем пример проекта, созданного в WEBENCH Power Designer компании Texas Instruments, с использованием различных входных напряжений для модуляции рабочего цикла с учетом потерь рассеиваемой мощности полевого транзистора.На рис. 9 график поведения полевого транзистора на стороне высокого напряжения показывает, что потери переменного тока значительно уменьшаются при переходе от 25% до 40% рабочего цикла, тогда как потери постоянного тока увеличиваются только линейно. Таким образом, около 35% рабочего цикла кажется идеальным, чтобы иметь возможность выбрать полевой транзистор с балансом емкости и R DS (ON) . Продолжение снижения входного напряжения и перехода к более высоким рабочим циклам даст самые низкие потери переменного тока и самые высокие потери постоянного тока, поэтому в этот момент можно использовать полевой транзистор с низким R DS (ON) с более высоким зарядом затвора.Как показано на графике на рис.10 для полевого транзистора нижней стороны, потери постоянного тока линейно уменьшаются при переходе от низкого рабочего цикла контроллера к высокому (что приводит к сокращению времени работы полевого транзистора на нижней стороне), а потери минимизируются при высоком уровне контроллера. рабочий цикл. Потери переменного тока низкие по всем направлениям, поэтому для всех случаев следует выбирать полевой транзистор с низким R DS (ON) .

ВЫСОКАЯ ЭФФЕКТИВНОСТЬ

На рис. 11 показано, что происходит с общей эффективностью, когда мы объединяем вместе высокие и низкие потери.Мы видим, что самые низкие суммарные потери на полевых транзисторах и лучшая эффективность в этом случае относятся к случаю с большим рабочим циклом. Эффективность повысилась с 94,5% до 96,5%. К сожалению, чтобы получить низкое входное напряжение, нам пришлось снизить напряжение питания шины промежуточного напряжения, что увеличило его рабочий цикл, поскольку он питается от фиксированного входного источника. Так что это может компенсировать некоторые или все достижения POL. Другой вариант может заключаться в том, чтобы вообще не использовать промежуточную шину и перейти непосредственно от источника питания к регулятору POL, чтобы уменьшить количество регуляторов.В этом случае рабочий цикл будет низким, и полевые транзисторы должны быть тщательно выбраны.

СРАВНИТЬ НАПРЯЖЕНИЯ НА НАПРЯЖЕНИЯХ

Ситуация усложняется в системе питания с несколькими требованиями к выходному напряжению и току. Чтобы визуализировать компромиссы в такой системе, мы можем использовать инструмент WEBENCH Power Architect. Это позволяет пользователям просматривать ряд сценариев с различными напряжениями промежуточной шины для сравнения эффективности, стоимости и занимаемой площади для различных рабочих циклов регулятора POL.На рис. 12 показана система с входным напряжением 28 В и 8 нагрузками с 4 различными напряжениями в диапазоне от 3,3 В до 1,25 В. Три варианта для сравнения: один без промежуточной шины с 28 В напрямую от источника входного сигнала для достижения низкого рабочего цикла на регуляторах POL, один с промежуточной шиной 12 В для среднего рабочего цикла на регуляторах POL и один с промежуточной шиной 5 В для высокий рабочий цикл регуляторов POL. Рис. 13 и Таблица 1 показывают результаты.

В этом случае архитектура без питания промежуточной шины имела самую низкую стоимость, архитектура с напряжением промежуточной шины 12 В имела наилучшую эффективность, а вариант с напряжением промежуточной шины 5 В имел наименьшую площадь основания.Таким образом, мы видим, что для такой большой системы, как эта, не было четкой тенденции для проектных параметров, как мы видели в случае с одиночным источником питания POL. Это связано с потенциально противоречивыми требованиями нескольких регуляторов, каждый из которых имеет разные требования к току и напряжению на нагрузке, а также сам регулятор промежуточной шины. Лучший способ изучить различные компромиссы — использовать такой инструмент, как WEBENCH Power Architect.

Ссылку на инструмент WEBENCH можно найти здесь.

Список литературы

Доступ к

WEBENCH Power Architect можно получить, используя параметр нескольких выходных напряжений на панели WEBENCH по адресу http: // www.ti.com

Статьи по теме

Демистификация лавинной стойкости силовых полевых МОП-транзисторов

Выбор n-канальных полевых МОП-транзисторов для управления горячей заменой верхнего плеча

Не вводите в заблуждение спецификациями силовых устройств

Управление питанием 101: Характеристики силового MOSFET

Что такое полевой транзистор? — Блог Fusion 360

Полевой транзистор (FET) — это трехконтактный активный полупроводниковый прибор, в котором выходной ток регулируется электрическим полем, создаваемым входным напряжением.Полевые транзисторы также известны как униполярные транзисторы, потому что, в отличие от биполярных транзисторов, полевые транзисторы имеют либо электроны, либо дырки, работающие в качестве носителей заряда. Полевой транзистор использует напряжение, приложенное к его входной клемме (называемой затвором), для управления током, протекающим от истока к стоку, что делает полевой транзистор устройством, управляемым напряжением.

Полевые транзисторы

широко используются в интегральных схемах (ИС) из-за их компактных размеров и значительно более низкого энергопотребления. Кроме того, полевые транзисторы также используются в устройствах переключения высокой мощности, в качестве резисторов с переменным напряжением (VVR) в операционных усилителях (операционных усилителях), регуляторах тембра и т. Д., для работы микшера на FM- и ТВ-приемниках и в логических схемах.

Психический обзор

Полевой транзистор имеет четыре терминала с именами Источник, Сток, Затвор и Корпус.

  1. Источник : Источник — это терминал, через который большинство носителей заряда вводятся в полевой транзистор.
  2. Дренаж : Дренаж — это терминал, через который большинство носителей заряда выходят из полевого транзистора.
  3. Затвор : Вывод затвора формируется путем диффузии полупроводника N-типа с полупроводником P-типа.Это создает сильно легированную область PN-перехода, которая контролирует поток носителя от истока к стоку.
  4. Корпус : Это основа, на которой построен полевой транзистор. В дискретных приложениях он внутренне привязан к выводу источника, что позволяет полностью игнорировать его эффекты. Однако в интегральных схемах этот вывод обычно подключается к наиболее отрицательному источнику питания в цепи NMOS (наиболее положительному в схеме PMOS), поскольку он используется многими транзисторами. Тщательные соединения и конструкция имеют решающее значение для поддержания производительности полевого транзистора, когда задействовано соединение Body.

Канал : это область, в которой большинство несущих проходят от терминала истока к терминалу стока.

Классификация полевых транзисторов

Полевые транзисторы

подразделяются на полевые транзисторы (JFET) и полевые транзисторы металл-оксид-полупроводник (MOSFET).

JFET (переходно-полевой транзистор)

Junction Field Effect Transistor (JFET) — это самый ранний тип полевых транзисторов.Ток течет по активному каналу между истоками к клеммам стока. Напряжение, приложенное между затвором и истоком, управляет потоком электрического тока между истоком и стоком полевого транзистора. При приложении напряжения обратного смещения к выводу затвора канал напрягается, поэтому электрический ток полностью отключается. Вот почему полевые транзисторы JFET называют «нормально включенными» устройствами. Транзисторы JFET доступны как в N-канальном, так и в P-канальном исполнении.

N-канальный JFET

В N-канальном JFET канал легирован донорными примесями, что делает его полупроводником N-типа.Следовательно, ток через канал отрицателен в виде электронов. Отсюда и название N-канальный JFET. Две подложки P-типа, легированные с противоположных сторон от его средней части. Таким образом, два PN-перехода образованы этими сильно легированными областями P-типа и каналом N-типа между ними. Вывод затвора (G) подключается внутри к обоим клеммам P-типа, а выводы стока (D) и истока (S) подключаются к любому концу канала N-типа.

Как это работает?

Когда на вывод затвора не подается напряжение, канал становится широко открытым путем для прохождения электронов.Следовательно, максимальный ток течет от истока к выводу стока. Величина протекающего тока определяется разностью потенциалов между выводами истока и стока и внутренним сопротивлением канала.

Но происходит обратное, когда на вывод затвора подается отрицательное напряжение по отношению к выводу истока, что приводит к обратному смещению P-N перехода. В канале создается область истощения, которая сужает канал, увеличивая сопротивление канала между истоком и стоком, и ток становится меньше.

P-канальный JFET

Аналогичным образом, в JFET с P-каналом канал легирован акцепторными примесями, что делает его полупроводником P-типа. Следовательно, ток через канал имеет положительную форму в виде отверстий. Отсюда и название P-channel JFET. Противоположная сторона канала сильно легирована подложками N-типа. Как и в N-канальном JFET, вывод затвора формируется путем соединения областей N-типа с обеих сторон. Клеммы истока и стока взяты с двух других сторон канала.

Принцип работы также аналогичен N-канальному JFET. Единственное отличие состоит в том, что для его выключения необходимо обеспечить положительное напряжение затвора к источнику. Однако N-канальный JFET имеет более высокую проводимость по току из-за более низкого сопротивления канала, чем их эквивалентные типы P-каналов, поскольку электроны имеют более высокую подвижность через проводник по сравнению с дырками. Это делает N-канальный JFET более эффективным, чем их аналоги с P-каналом.

Характеристики

Здесь JFET смещен через источник постоянного тока, который будет управлять VGS JFET.Мы можем контролировать приложенное напряжение на клеммах стока и источника, изменяя VGS. Оттуда мы можем построить кривую ВАХ полевого транзистора.

Выходные характеристики полевого транзистора показаны между током стока (ID) и напряжением сток-исток (VDS) при постоянном напряжении затвор-исток (VGS), как показано на следующем рисунке.

  • Область отсечки — это область, в которой JFET выключен, что означает отсутствие тока стока, ID течет от стока к истоку.
  • Омическая область — В этой области JFET начинает показывать некоторое сопротивление току стока, ID, который начинает течь от стока к истоку. Ток, протекающий через полевой транзистор, линейно пропорционален приложенному напряжению.
  • Область насыщения — Когда напряжение сток-исток достигает такого значения, что ток, протекающий через устройство, является постоянным с напряжением сток-исток и изменяется только с напряжением затвор-исток, устройство считается находящимся в состоянии насыщения. область, край.
  • Область пробоя — Когда напряжение сток-исток, VDS превышает максимальное пороговое значение, что вызывает пробой области истощения, JFET теряет способность сопротивляться току, и ток стока увеличивается бесконечно.

МОП-транзистор (полевой транзистор металл-оксид-полупроводник)

Металлооксидные полупроводниковые полевые транзисторы, также известные как МОП-транзисторы, имеют большее значение и являются наиболее полезным типом среди всех транзисторов.МОП-транзистор имеет четыре вывода: сток, исток, затвор и корпус или подложку. MOSFET также является транзистором, управляемым напряжением, но основное различие между JFET и MOSFET заключается в том, что он имеет металлооксидный электрод затвора, который электрически изолирован от основного токоведущего канала между стоком и истоком очень тонким слоем. из изоляционного материала, обычно диоксида кремния, широко известного как стекло.

Трек создан с использованием двух сильно легированных зон N-типа, рассеянных в слаболегированной подложке P-типа.Эти две области N-типа известны как сток и исток, а область P-типа называется подложкой. Изоляция управляющего затвора делает входное сопротивление полевого МОП-транзистора чрезвычайно высоким по шкале мегаомов (МОм), тем самым делая его почти бесконечным. Таким образом, ток не может проходить через ворота.

Как это работает?

Основной принцип устройства MOSFET заключается в том, чтобы иметь возможность управлять напряжением и током между выводами истока и стока с помощью напряжения, приложенного к выводу затвора.Поверхность полупроводника в нижнем оксидном слое, который расположен между выводами истока и стока, может быть инвертирован из p-типа в n-тип путем приложения либо положительного, либо отрицательного напряжения затвора, соответственно. Когда мы прикладываем силу отталкивания к положительному напряжению затвора, то дырки, находящиеся под оксидным слоем, толкаются вниз вместе с подложкой. Область обеднения населена связанными отрицательными зарядами, которые связаны с атомами акцептора. Когда достигаются электроны, развивается канал.Положительное напряжение также притягивает электроны из n + областей истока и стока в канал. Теперь, если между стоком и истоком приложено напряжение, ток свободно течет между истоком и стоком, а напряжение затвора управляет электронами в канале. Если вместо положительного напряжения приложить отрицательное напряжение, под слоем оксида образуется отверстие.

Типы полевых МОП-транзисторов

Широко используются два полевых МОП-транзистора:

1.Истощение MOSFET:

МОП-транзистор в режиме истощения аналогичен разомкнутому переключателю. В этом режиме для выключения устройства применяется напряжение затвора в источник (VGS). Когда напряжение затвора отрицательное, в канале накапливаются положительные заряды. Это вызывает область истощения в канале и предотвращает протекание тока. Таким образом, поскольку на протекание тока влияет формирование обедненной области, он называется истощенным MOSFET.

2.Расширение MOSFET:

МОП-транзистор расширенного режима аналогичен переключателю включения. В этом режиме для включения устройства применяется напряжение затвор-исток (VGS). Когда отрицательное напряжение подается на вывод затвора полевого МОП-транзистора, отверстия, несущие положительный заряд, накапливаются рядом с оксидным слоем, образуя канал от истока к выводу стока. По мере того, как напряжение становится более отрицательным, ширина канала увеличивается и ток увеличивается; поэтому он называется улучшенным MOSFET.

Кроме того, типы истощения и расширения подразделяются на типы N-канал и P-канал .

1.N-канальный полевой МОП-транзистор :

N-канальный полевой МОП-транзистор имеет канал N-типа между истоком и стоком. Здесь выводы истока и затвора сильно легированы полупроводником N-типа, а подложка легирована полупроводниковым материалом P-типа. Следовательно, ток между истоком и стоком происходит из-за электронов.А протекание тока регулируется напряжением на затворе.

2.P-канальный полевой МОП-транзистор:

Аналогично, P-канальный MOSFET имеет канал P-типа между истоком и стоком. Здесь выводы истока и затвора сильно легированы полупроводником P-типа, а подложка легирована полупроводниковым материалом N-типа. Следовательно, ток между истоком и стоком происходит из-за дыр. А протекание тока регулируется напряжением на затворе.

Характеристики

В целом, полевой МОП-транзистор работает в основном в трех регионах, а именно:

  1. Область отсечки:
    В области отсечки полевой МОП-транзистор остается выключенным, поскольку в этой области нет тока.Здесь MOSFET ведет себя как разомкнутый переключатель и, таким образом, используется, когда они должны функционировать как электронные переключатели.
  2. Омическая область:
    В омической или линейной области ток сток-исток увеличивается с увеличением напряжения между стоком и истоком. Когда в этой области работают полевые МОП-транзисторы, их можно использовать в качестве усилителей.
  3. Область насыщения:
    В этой области значение тока от стока к истоку остается постоянным без учета увеличения напряжения между стоком и истоком.Это происходит только один раз, когда напряжение на стоке к выводу истока увеличивается больше, чем напряжение отсечки. В этом случае устройство будет работать как замкнутый переключатель. Поэтому эта рабочая область используется всякий раз, когда требуются полевые МОП-транзисторы для выполнения операций переключения.

Приложения

MOSFET в качестве коммутатора

Полевые МОП-транзисторы

используются во многих различных приложениях. Они широко известны своими коммутационными характеристиками. Как мы видели ранее, N-канальный MOSFET в режиме улучшения имеет очень высокое входное сопротивление и работает от положительного входного напряжения.Это позволяет нам переключать нагрузки с высоким током или высоким напряжением, используя сигнал относительно низкого логического уровня. В следующем примере мы будем использовать N-канальный МОП-транзистор в режиме улучшения для включения и выключения простой лампы.

Как видите, в этой схеме мы хотим переключить лампу на 12 В с помощью логического сигнала 5 В. Мы подключили положительную клемму лампы к источнику питания 12 В, а другой конец — к клемме стока полевого МОП-транзистора. Клемма источника подключена к GND. Сопротивление затвора к истоку (RGS) используется для предотвращения любого внешнего шума на выводе затвора.

Когда напряжение не подается, лампа остается выключенной. Если мы подадим положительное входное напряжение (VGS) на вывод затвора полевого МОП-транзистора, лампа включится и останется включенной до тех пор, пока мы не удалим входной сигнал или не подадим отрицательное входное напряжение. Затем лампа погаснет.

Усилитель MOSFET

MOSFET или eMOSFET в режиме расширения требует минимального напряжения затвор-исток, называемого пороговым напряжением (VTH), которое должно быть приложено к затвору, чтобы он начал протекать ток от стока к истоку (VDS).По мере увеличения прямого смещения затвора ток сток-исток (IDS) также будет увеличиваться, что делает eMOSFET идеальным для использования в схемах усилителя MOSFET.

Эта простая конфигурация усилителя MOSFET в режиме расширения с общим истоком использует одиночный источник питания на выводе стока для генерации необходимого напряжения затвора (VG) с использованием резистивного делителя на резисторах R1 и R2. Сеть резисторов создает необходимую схему смещения для работы в области насыщения. Нам также понадобятся резистор стока и истока и емкости связи.Значения R1 и R2 обычно большие, чтобы увеличить входное сопротивление усилителя и уменьшить омические потери мощности. Конденсаторы связи C1 и C2 изолируют напряжение смещения постоянного тока от сигнала переменного тока, который необходимо усилить. На изображении выше небольшой сигнал переменного тока (VGS) подается на затвор полевого МОП-транзистора, что приводит к колебаниям тока стока, синхронному с приложенным входным переменным током.

Драйвер мотора H-моста

Н-мост — это конфигурация схемы, обычно используемая для управления скоростью и направлением щеточного двигателя постоянного тока.Как мы видели ранее, используя полевой МОП-транзистор, мы можем легко контролировать скорость двигателя. Но это работает только в одном направлении. Чтобы сделать его двунаправленным, нам нужно 4 полевых МОП-транзистора, подключенных таким образом, чтобы он мог одновременно переключать как верхнюю, так и низкую стороны.

При активации одной пары (диагонально противоположных) полевых МОП-транзисторов двигатель видит, что ток течет в одном направлении, а когда активируется другая пара, ток через двигатель меняет направление. Срабатывание как нижнего, так и верхнего полевых МОП-транзисторов (но никогда вместе) прерывает ток и останавливает двигатель.

Затворы полевого МОП-транзистора с N-каналом обычно подтягиваются понижающим резистором, а затворы полевого МОП-транзистора с P-каналом поднимаются высоко. Это приводит к тому, что полевые МОП-транзисторы с каналом P и N отключаются; следовательно, ток не может течь. Когда сигнал ШИМ подается на затворы полевого МОП-транзистора, полевые МОП-транзисторы с каналом N и P попеременно включаются и выключаются, контролируя мощность.

_____

Технология полевых транзисторов может использоваться в различных областях электроники, где биполярные транзисторы не подходят.Полевой транзистор имеет очень высокое входное сопротивление и является устройством, управляемым напряжением; они, возможно, являются наиболее широко используемым активным устройством. Поскольку они используются в КМОП и других технологиях интегральных схем, где потребляемая мощность является решающим фактором, полевые МОП-транзисторы обеспечивают работу с очень низким энергопотреблением. МОП-транзистор также можно использовать в качестве переключателя для управления большими нагрузками, такими как лампы или двигатели большой мощности. ШИМ-сигналы от внешнего источника, такого как микроконтроллер, используются для управления проводимостью транзистора. Соответственно, полевой МОП-транзистор включается или выключается, таким образом поддерживая яркость лампы или скорость двигателя.

Вы уже знакомы с электронными возможностями Fusion 360? Fusion 360 предлагает доступ к комплексным средствам проектирования электроники и печатных плат на одной платформе разработки продуктов в облаке. Попробуйте сами сегодня.

Что такое полевые транзисторы и какова их роль в конструкции микрофона? — Мой новый микрофон

При просмотре каталогов конденсаторных микрофонов довольно часто можно встретить термины FET или твердотельные, используемые для описания микрофона.Многие конденсаторы, представленные сегодня на рынке, имеют в своей конструкции полевые или полевые транзисторы.

Что такое полевые транзисторы и какова их роль в конструкции микрофона? FET (полевые транзисторы) — это активные электрические устройства, которые используют электрическое поле от микрофонного капсюля для управления потоком тока, который в конечном итоге является микрофонным сигналом. Полевые транзисторы принимают сигнал с высоким импедансом от микрофонных капсюлей и выдают полезный и пропорциональный сигнал с низким импедансом.

В этой статье мы более подробно опишем микрофонные полевые транзисторы и обсудим микрофоны, для которых они необходимы, а также микрофоны, которым они не нужны.


Что такое полевой транзистор?

Полевой транзистор (FET) — это тип транзистора, который использует электрическое поле для управления протеканием тока. Проще говоря, полевой транзистор использует входной сигнал для модуляции выходного сигнала.

Давайте вернемся немного назад и опишем, что такое транзистор, прежде чем углубляться в полевые транзисторы.

Транзистор — это активное полупроводниковое устройство, которое используется для усиления (псевдоусиления) или переключения электрических сигналов и электроэнергии.

Во многих случаях транзисторы используются для включения / выключения и необходимы для двоичной цифровой обработки (единицы и нули). Так обстоит дело со многими цифровыми аудиоустройствами. В случае аналоговых микрофонов на полевых транзисторах транзистор преобразует импеданс сигнала и усиливает сигнал (хотя это не настоящее усиление).

Чтобы узнать больше о микрофонах и их роли в аналоговом и цифровом аудио, прочтите мою статью «Микрофоны аналоговые или цифровые устройства?» (Конструкция микрофонного выхода).

Транзисторы состоят из полупроводникового материала (обычно кремния) с как минимум тремя выводами, которые подключаются к внешней цепи.

Подача напряжения или тока на одну пару выводов транзистора будет управлять током через другую пару выводов. Таким образом, мы можем взять «входной» сигнал на одной паре клемм и использовать его для модуляции «выходного» сигнала с большим напряжением и / или меньшим импедансом (псевдоусиление).

Микрофоны, в которых используются полевые транзисторы, обычно используют полевые транзисторы JFET или полевые транзисторы с переходным затвором.

JFET, возможно, является самой простой конструкцией полевого транзистора и выполняет описанную выше задачу. Его «входной» сигнал (напряжение между затвором и истоком) модулирует пропорциональный «выходной» сигнал (напряжение между стоком и истоком). Таким образом, с помощью полевого транзистора мы можем взять сигнал низкого уровня на входе и превратить его в сигнал высокого уровня на выходе.

Вход и выход полевого транзистора называются клеммами. Каждый JFET имеет 3 вывода, которые называются:

Вот простая схема полевого транзистора с соединением-затвором микрофона:

Когда мы прикладываем напряжение между затвором и истоком (некоторые называют это входом) полевого транзистора, транзистор изменяет проводимость между стоком и истоком.При правильном напряжении смещения постоянного тока мы получаем выходное напряжение между стоком и истоком, которое пропорционально входному сигналу на затворе / истоке.

Таким образом, в основном выходной сигнал капсулы с высоким импедансом поступает на выводы затвора и истока и эффективно модулирует сигнал с более низким импедансом (а часто и более высоким напряжением) между выводами стока и истока.


Для чего используются полевые транзисторы в микрофонах?

Полевые транзисторы

используются в основном как преобразователи импеданса в конденсаторных микрофонах.

Капсюль конденсаторного микрофона работает как преобразователь, преобразуя звуковые волны (энергию механических волн) в звуковые сигналы (электрическую энергию). Электрические аудиосигналы (напряжение переменного тока) на выходах конденсаторного капсюля имеют невероятно высокое сопротивление и почти не пропускают ток.

Для получения дополнительной информации о микрофонных капсюлях ознакомьтесь с моей статьей Что такое микрофонный капсюль? (Плюс топ-3 самых популярных капсул).

Здесь вступает в игру полевой транзистор, преобразующий импеданс.

Полевые транзисторы

по своей конструкции имеют чрезвычайно высокий входной импеданс на затворе. Однако сопротивление на стоке намного ниже и фактически позволяет току течь.

Таким образом, выходной сигнал капсулы отправляется непосредственно на затвор полевого транзистора. Этот сигнал переменного тока изменяет проводимость между выводами стока и истока и, следовательно, изменяет ток на стоке и, в конечном итоге, «выходное» напряжение полевого транзистора.

Другими словами, полевой транзистор принимает на вход сигнал с высоким импедансом и использует его для модуляции сигнала с низким импедансом на выходе.Этот выходной сигнал затем может проходить через остальную схему микрофона; микрофонный выход и через микрофонный кабель к микрофонному предусилителю.

Вот простая схема конденсаторного микрофона на полевых транзисторах:

Как видно из этой простой схемы, для работы полевого транзистора требуется некоторое напряжение смещения постоянного тока от источника питания.

Обратите внимание, что капсулы «настоящих» конденсаторов также требуют внешнего питания для поляризации.

Полевой транзистор принимает сигнал с высоким импедансом от капсюля и понижает импеданс до приемлемого уровня, прежде чем сигнал будет отправлен на выход микрофона.

В большинстве случаев, включая микрофоны, роль полевого транзистора раньше выполняли электронные лампы. Транзисторы обычно намного меньше; требуют меньше энергии для работы (фантомное питание или смещение постоянного тока, а не выделенные источники питания), и их производство и внедрение менее затратны.

Чтобы узнать больше о правильном питании микрофонов, ознакомьтесь со следующими статьями «Мой новый микрофон»:
• Требуется ли питание для микрофонов для правильной работы?
• Требуется ли фантомное питание для правильной работы микрофонов?
• Может ли фантомное питание повредить мой ленточный микрофон?

Хотя есть различия в звучании полевых транзисторов и электронных ламп (аудиофилы определенно возразят), в настоящее время микрофоны на полевых транзисторах и ламповые микрофоны могут производиться с одинаковыми стандартами качества.

Также важно отметить, что полевые транзисторы стали стандартом для конденсаторных микрофонов. Я имею в виду, что если у конденсаторного микрофона есть трубка, он будет называться «ламповый конденсатор», тогда как конденсатор на полевых транзисторах обычно будет называться просто «конденсаторный микрофон». То есть, если только префикс «FET» не отличает микрофон от ламповой версии того же микрофона.

Подробное описание различий между ламповыми и ламповыми микрофонами можно найти в моей статье В чем разница между ламповыми и ламповыми микрофонами?


Какие микрофоны не требуют полевых транзисторов?

Не для всех микрофонов требуются полевые транзисторы.Фактически, полевые транзисторы действительно используются только в определенных конструкциях конденсаторных микрофонов, а иногда и в активных ленточных микрофонах.

Давайте посмотрим на типы микрофонов, для которых не требуются полевые транзисторы.

Пассивные микрофоны

полевых транзисторов — активные устройства. Для правильной работы им требуется смещение постоянного тока. Поэтому пассивные микрофоны, по простому определению пассивности, не имеют полевых транзисторов в своей конструкции. Давайте посмотрим на типы динамических и ленточных микрофонов, оба из которых работают на принципах пассивной электрической энергии.

Динамические микрофоны

Динамические микрофоны с подвижной катушкой работают на электромагнитной индукции и не требуют каких-либо активных компонентов.

Их выходные сигналы капсулы (картриджа) имеют низкий импеданс и могут быть отправлены непосредственно на выходное соединение микрофона (хотя часто они сначала отправляются через выходной трансформатор).

Чтобы узнать больше о динамических микрофонах с подвижной катушкой, прочитайте мою статью «Динамические микрофоны с подвижной катушкой: подробное руководство».

Ленточные микрофоны

Ленточные микрофоны

также преобразуют звук в звук с помощью электромагнитной индукции.

Их «капсулы» (известные как ленточные элементы или перегородки) выводят сигналы с низким импедансом, которые не требуют полевого транзистора с преобразованием импеданса. Ленточные микрофоны разработаны с трансформаторами, чтобы защитить их хрупкие ленточные диафрагмы от короткого замыкания постоянного напряжения.

Для получения дополнительной информации о трансформаторах микрофонов, ознакомьтесь со следующими статьями «Мой новый микрофон»:
• Что такое трансформаторы микрофонов и какова их роль?
• Все ли микрофоны имеют трансформаторы и транзисторы? (+ Примеры микрофонов)

Активные ленточные микрофоны потенциально могут иметь в своей конструкции полевые транзисторы.Эти конструкции будут иметь повышающие трансформаторы с высоким коэффициентом передачи между ленточной перегородкой и полевым транзистором для повышения относительно низкого напряжения на выходе ленты.

Эти повышающие трансформаторы также увеличивают импеданс сигналов, поэтому полевые транзисторы иногда полезны для понижения импеданса до пригодных для использования уровней без снижения мощности сигнала.

Чтобы узнать больше о ленточных микрофонах, прочитайте мою статью «Динамические ленточные микрофоны: подробное руководство».

Ламповые микрофоны

Электронные лампы по существу выполняют ту же роль, что и полевые транзисторы в микрофонах. То есть они преобразуют импеданс сигналов капсулы с высоким импедансом и действуют как псевдоусилители.

Давайте быстро взглянем на схему триодной вакуумной лампы (простейшей лампы для микрофона) и перечислим ее компоненты:

  • H — нагреватель
  • K — катод
  • A — анод
  • G — сетка

Источник питания нагревает нагреватель, который затем вызывает устойчивый поток электронов (электрический ток) от отрицательного заряженный катод к положительно заряженному аноду.Это похоже на ток, протекающий между выводами истока и стока полевого транзистора.

Выход высокоомного капсюля подключен к высокоомной сетке (входу) триодной вакуумной лампы. Напряжение переменного тока на сетке трубки модулирует поток электронов между катодом и анодом. Другими словами, входной сигнал с высоким импедансом в сети управляет сигналом с низким импедансом (и часто более высоким напряжением) на выходе лампы. Это несколько аналогично клемме затвора полевого транзистора.

Таким образом, хотя лампы сильно отличаются от транзисторов, их можно рассматривать как аналог полевых транзисторов следующим образом:

  • Нагреватель = цепь смещения постоянного тока
  • Катод = клемма истока
  • Анод = клемма стока
  • Сеть = клемма затвора

Фактически, ранние конденсаторные микрофоны требовали вакуумных ламп для преобразования сигналов с высоким импедансом от их капсул. Транзистор был изобретен только в 1947 году, а FET / JFET дебютировал в коммерческой микрофонной технологии только в 1964 году.

Чтобы узнать больше об истории микрофонов и технологических достижениях, которые сделали возможными современные микрофоны, ознакомьтесь с моей статьей История микрофонов: кто изобрел каждый тип микрофона и когда?


Что такое микрофонный капсюль? Микрофонный капсюль — это часть, отвечающая за преобразование звуковых волн в микрофонные сигналы.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *