Site Loader

Содержание

основные понятия, нахождение через силу тока и сопротивление

Формула расчёта напряжения При проектировании схем различных устройств радиолюбителю необходимо производить точные расчеты c помощью измерительных приборов и формул. В электротехнике используются формулы для вычислений величин электричества (формулы напряжения, сопротивления, силы тока и так далее).

Общие сведения об электрическом токе

Электрическим током является процесс движения заряженных частиц (свободных электронов), имеющий вектор направленности. Частицы перемещаются под действием напряженности электрического поля, имеющей векторное направление. Это поле совершает работу по перемещению этих частиц. Влияют на работу электрического поля сила тока, напряжение и сопротивление.

Физический смысл

Физический смыслПод физическим смыслом понимается работа тока на участке, соотносящаяся с величиной заряда. Положительный заряд перемещается из одной точки, обладающей одним потенциалом, в другую, причем потенциал в этой точке отличается от предыдущего. В результате этого и возникает разность потенциалов, именуемая напряжением или ЭДС (электродвижущей силой).

Для полного понимания этого физического процесса и выяснения физического смысла напряжения необходимо провести аналогию с трубой. Допустим, труба наполнена водой и к ней прикручен кран для слива воды. Эта труба также оборудована краном для заливания воды с помощью мощного насоса.

Для демонстрации аналогии нужно открыть кран полностью, вода начнет выливаться и можно сделать вывод о незначительном давлении. Во втором случае спускной кран открыт не полностью и происходит набор воды при помощи насоса. В трубе создается давление и напор усиливается. Насос, создающий давление, и является в этом примере напряженностью электрического поля.

Электричество, если его не контролировать и не знать о пагубном влиянии на организм человека, способно создать множество проблем начиная от сгорания приборов и пожаров, и заканчивая угрозой жизни и здоровью человека. Техника безопасности очень важна в любой сфере.

Пагубное влияние на человека

Электричество очень опасно и является причиной несчастных случаев. Радиолюбители подвержены риску поражения электрическим током довольно часто. Некоторые радиолюбители пробуют наличие напряжения пальцами и пренебрегают техникой безопасности. Большинство из них считает опасным для жизни напряжение от 500 В, а 110 и 220 — не наносящими вреда здоровью. Удары от маломощных источников тока (маломощный силовой трансформатор, конденсатор), по их мнению, являются неопасными.

Согласно технике безопасности при работах с электричеством, они ошибаются, но есть и другая сторона этого вопроса: организм каждого человека индивидуален, обладает разными параметрами. Из этого утверждения следует, что смертельные характеристики электричества (напряжение и ток) индивидуальны для каждого человека. Одних может ударить 36 В, а других не пробивает и 220 В.

Действие электричества на организм человека зависит от нескольких факторов: силы и частоты, времени и пути прохождения через организм, сопротивления организма или участка тела, по которому протекает ток.

Пагубное влияние на человекаИсследованиями ученых установлено, что величина смертельного тока, поражающего сердце, составляет более 100 мА. Токи от 50 мА до 100 мА вызывают потерю сознания при кратковременном касании к поверхности, которая проводит ток. Токи до 50 мА могут стать причиной травм, например, падения с лестницы, выпускания из рук токоведущего проводника и т. д.

Влияние на фактор поражения еще оказывает и сопротивление тела человека. Сопротивление для каждого индивида определить сложно и диапазон его составляет от 30 кОм до 200 кОм. Эта величина зависит от множества факторов: толщины кожи, влажности тела и окружающей среды, усталости, нервно-эмоционального состояния, болезни и других факторов. Сопротивление резко уменьшается при повышенной влажности воздуха и работе на влажных участках.

Формула расчета напряжения, опасного для жизни, предполагая, что Rч = 2кОм и I = 60 мА, выглядит так: U = I * R = 0,06 * 2000 = 120 В. В этой ситуации опасным напряжением можно считать 120 В и выше.

Частота тока является еще одной опасной характеристикой, обладающей поражающим действием. При увеличении частоты опасность уменьшается прямо пропорционально. Ток оказывает и тепловое действие, поэтому считать высокочастотные токи безопасными нельзя.

Травмы, происходящие из-за электричества, называются электротравмами. Каждая из них несет в себе меньшую или большую опасность. Наиболее опасными являются травмы, полученные от электрической дуги, которая обладает высокой температурой от 5 тыс. до 12 тыс. градусов по Цельсию. Виды электрических травм:

  1. Формула расчета напряженияЭлектрические ожоги происходят при тепловом воздействии на ткани организма человека, по которым течет ток.
  2. Обожженные участки на коже возникают при прямом контакте ее с токоведущей частью проводника. Пораженный участок приобретает серый или бледно-серый цвет.
  3. Металлизация кожи — пропитывание кожи частицами металла при коротком замыкании или сварке.
  4. Механические повреждения — самопроизвольная судорога мышц, приводящая к падению. При падении происходят переломы, ушибы вывихи суставов и т. д.
  5. Электроофтальмия — воспаление слизистой оболочки глаз при воздействии излучения электрической дуги.

Существует еще один вид поражения — электрический удар. Этот вид поражения можно условно разделить на 5 групп: без потери сознания; с потерей сознания, связанной с нарушением сердечной деятельности или без нее; клиническая смерть и электрический шок.

Единицы измерения

Работа электрического поля по перемещению заряда измеряется в Дж (Джоуль), заряд в Кл (кулон). Вот, как обозначается напряжение или его единица измерения: отношение этих величин (работа по перемещению в Дж к электрическому заряду в Кл) и является разностью потенциалов, измеряется в вольтах (В) и обозначается U. Разность потенциалов бывает:

  1. Переменной (амплитуда и полярность изменяются с течением времени, в зависимости от характерной частоты).
  2. Постоянной (имеет постоянное значение амплитуды и полярность есть величина постоянная).

А также у единиц измерения есть приставки, например, кВ (Киловольт = 1000В) и МВ (мегавольт = 1000000В). Существуют о совсем низкие значения, например, мВ (милливольт = 0,001В).

Цепи переменного и постоянного тока

Цепи переменного и постоянного токаВ цепях постоянного и переменного тока U обладает различными свойствами и производит иные влияния на проводники. Для постоянного напряжения существуют законы по вычислению его характеристик, но для переменного способы вычисления показателей заметно отличаются. Разберем более подробно все различия и сходства.

Расчет и анализ цепей выполняется при помощи закона Ома: сила тока полной цепи прямо пропорциональна напряжению и обратно пропорциональна сумме сопротивлений цепи и источника питания.

Следствие из закона при условии пренебрежения внутренним сопротивлением источника электричества: сила тока участка цепи прямо пропорциональна ЭДС и обратно пропорциональна сопротивлению этого участка.

Запись закона Ома, из которого следует формула напряжения, тока и сопротивления: I = U / (Rц + Rвн), где I — сила тока, U — ЭДС, Rц — сопротивление цепи, Rвн — внутреннее сопротивление источника питания.

Формула силы тока через сопротивление и напряжение: I = U / Rц.

Формула напряжения электрического тока: U = I * Rц.

Для расчета мощности необходимо U умножить на I: P = U * I = U * U / R, где P — мощность.

Переменное однофазное напряжение

В цепях для переменного тока происходят совершенно другие явления и процессы, для них справедливы другие законы. Различают такие основные виды:

  1. Переменное однофазное напряжениеМгновенное (разность потенциалов в конкретный промежуток времени: u = u (t)).
  2. Амплитудное значение (максимальное значение мгновенного U в момент времени: u (t) = Uм * sin (wt + f), где w — угловая частота, t — конкретный момент времени и f — угол начальной фазы напряжения).
  3. Среднее значение (для синусоиды равно нулю).
  4. Среднеквадратичное — Uq (U за весь период колебаний и для синусоиды имеет вид: Uq = 0,707 * Uм).
  5. Средневыпрямленное — Uv (среднее значение модуля U: Um примерно равно 0,9 * Uq).

В цепях 3-фазного тока различают 2 вида напряжений: линейное (фаза-фаза) и фазное (фаза-ноль). При соединении в цепь «треугольником» фазное и линейное U равны. В случае соединения «звездой» — фазное в 1,732050808 раз меньше линейного.

Рекомендации по выбору прибора

Для расчетов необходимо измерять значения величин электричества. Существуют специальные приборы, которые помогают произвести точные расчеты. Для измерения разности потенциалов применяют вольтметр.

Вольтметр (вольт — единица измерения ЭДС, метр — измеряю) — прибор для измерения ЭДС в цепи, подключаемый параллельно участку, на котором необходимо провести замер.

Для конкретного случая необходимо применять тот или иной прибор. Для более точных расчетов приобретаются приборы с высоким классом точности. Классификация вольтметров:

  1. Принцип действия: электромеханические (стрелочные) и электронные.
  2. Назначение: постоянного и переменного тока, импульсные, селективные и универсальные.
  3. Конструктивное исполнение: щитовые, переносные и стационарные.

Аналоговый электромеханический вольтметр имеет большие погрешности измерений в высокоомных цепях, но отлично зарекомендовал себя в низкоомных цепях и возможностью модернизации (увеличение значений измерения U за счет добавочного резистора).

Рекомендации по выбору прибора

Выпрямительный вольтметр обладает более высоким классом точности. Состоит из самого измерительного прибора (обладает чувствительностью к постоянному току) и выпрямительного устройства. Они получили не очень широкое распространение из-за высоких погрешностей, и применяются в качестве сигнальных приборов (примерное значение U).

Цифровые вольтметры применяются в комбинированных приборах-мультиметрах. Поступающее напряжение на клеммы (измерительные щупы) прибора преобразовывается в сигнал при помощи аналого-цифрового преобразователя (АЦП). Происходит отображение на цифровом табло. Этот вид приборов получил широкое применение благодаря высокой точности и универсальности.

Импульсный вольтметр необходимо применять при измерении амплитуд импульсных сигналов и одиночных импульсов.

Основным применением фазочувствительных вольтметров является измерение квадратурных составляющих комплексного напряжения (наличие мнимой и действительной частей) первичной гармоники. Они, как правило, снабжены 2-мя индикаторами для выявления мнимой и действительной частей. Они получили широкое применение в измерении АФХ (амплитудно-фазовая характеристика) для подбора деталей и настройки усилителей.

Для измерения номинала постоянного напряжения используются вольтметры подгруппы В2 (вольтметры для постоянного напряжения), а также В7 (универсальные).

Для определения переменного напряжения необходимо использовать устройства из подгруппы В3 или универсального типа (В7). Однако часто в этих вольтметрах применяются специальные преобразователи из переменного напряжения в постоянное.

Измерение номинала постоянного напряжения В3 и В7 рассчитаны только для определения среднеквадратического гармонического напряжения. В этих электроизмерительных приборах возможно применение детекторов (преобразователей): пикового, выпрямительного и квадратичного. Оптимальным вариантом является вольтметр на квадратичном детекторе, при этом измеряемое значение выдается напрямую без всяких преобразований. Измерительные приборы на пиковых и выпрямительных детекторах пересчитывают значения, тем самым уменьшая точность измерений. Для измерения периодического негармонического напряжения выбирают вольтметр на квадратичном детекторе.

Таким образом, расчет напряжения играет важную роль в электротехнике. Расчеты для переменных и постоянных цепей электрического тока существенно отличаются, в результате чего необходимо определить сначала тип тока, а затем производить расчеты. Но также необходимо соблюдать технику безопасности при работах с электричеством. Ведь ее основные положения основаны на горьком опыте человечества.

Формула электрического напряжения для новичков

Домашний мастер, затеявший ремонт бытовой проводки или электрического прибора, должен хорошо представлять электротехнические процессы, уметь проводить сложные расчеты. 

Самая простая формула электрического напряжения, выраженная для участка цепи, позволяет быстро выполнять такие вычисления. 

Я подготовил советы и рекомендации, которые помогут лучше запомнить сложные алгоритм. Рассчитываю, что вы станете правильно применять их на практике, зарекомендуете себя грамотными специалистами в глазах окружающих. 

Содержание статьи

Что такое напряжение и как его легко представлять

Мне нравится сравнение электрических процессов с более понятными механическими явлениями. Поэтому показываю такую картинку. 

Имеем какую-то горку с высотой h относительно начального уровня. На вершине стоит груз весом Р. Он не закреплён, может скатиться под действием совсем небольшого усилия, например, дуновения ветра. 

Но его нет, а если подует, то груз упадет на высоту h3. При этом им будет совершена работа, связанная с перемещением на расстояние h2. 

Такая же аналогия, на мой взгляд, действует в электротехнике. 

Рассматриваем два отличающихся потенциала φ1 и φ2, которые накопили разные материальные тела, например, облака при движении воздушных масс с противоположными знаками зарядов q. 

Они отделены слоем воздушной атмосферы, обладающей сопротивлением R, которое препятствует перемещению заряда q. 

Точно так же воробьи сидят на фазном проводе и даже аист сплел свое гнездо на столбе воздушной линии, как показано на верхней картинке. Но с ними пока ничего не происходит: от второго потенциала они отделены большим сопротивлением. 

Однако, под действием ветра груз Р может скатиться, а облака перемещаются относительно земли и друг друга: воздушная прослойка между ними изменяется. 

В какой-то момент времени разность потенциалов φ1-φ2 между заряженными телами пробьет сопротивление R и будет совершена работа по перемещению заряда q. 

Вот и получается определение формулировки напряжения U, как разность потенциалов φ1 и φ2 или работа А, совершаемая при переносе заряда q. 

Напряжение измеряется в вольтах специальными приборами — вольтметрами. Оно появляется на всех электрических схемах, где присутствуют разные потенциалы: 

  • проводах фазы и нуля домашней проводки при поданном питании от трансформаторной подстанции;  
  • шинах вводного щитка в дом или подъезд; 
  • контактных выводах любой заряженной аккумуляторной батареи либо гальванического элемента; 
  • выходных контактах включенного блока питания, зарядного устройства; 
  • многих других местах. 

Когда груз Р уже скатился вниз или произошел разряд потенциалов φ1 и φ2 между собой, то работа по перемещению зарядов произойти не сможет. В этом случае, если φ1-φ2=0, напряжение отсутствует. 

Допускаю, что опытного электрика такое мое объяснение не устроит из-за упрощений. Что ж: пишите в комментариях. Будем приходить к общему мнению. Ведь я изложил самые начальные знания для новичков. 

Виды напряжения в квартире простыми словами

А вот здесь надо ориентироваться на то, как образуются потенциалы зарядов электрической энергии. 

Как работают источники постоянного тока для бытовых приборов

На выходных клеммах элементов солнечных батарей или гальванических элементов, сборок из них накапливаются потенциалы зарядов противоположной полярности: положительные и отрицательные. Они образуют цепи постоянного напряжения. 

На графике времени его вычерчивают горизонтальной линией U, которая не меняет свою величину. 

Хотя в принципе это довольно условно: по мере разряда от приложенной нагрузки происходит снижение разности потенциалов (ничего вечного в нашей жизни не существует) и уровень сигнала со временем все же падает. Но, этим качеством при расчетах, как правило, пренебрегают. 

Как определить уровень напряжения

Если вернуться к определению термина, основанного на разности потенциалов или совершении работы по перемещению зарядов, то мы попадем в тупик: их простыми методами оценить невозможно.  

При практической работе с цепями постоянного тока пользуются измерением или вычислением электрических величин на основе известного закона Ома для участка цепи U = i * R.

Простой онлайн калькулятор, спроектированный для этих целей, значительно облегчает такие вычисления. К тому же он построен на использовании еще одной функции: мощности потребления прибора, включенного в шпаргалку электрика. 

Воспользоваться можете любым из указанных способов. Каждая приведенная формула электрического напряжения работает правильно. 

Цепи переменного тока в квартире: откуда приходят и как формируются

Электрическая энергия в дома и квартиры поступает от трансформаторных подстанций различного напряжения по линиям электропередач 0,4 киловольта (кВ). 

Как появляется напряжение в розетке

От трансформаторной подстанции электроэнергия подводится в квартиру по: 

  • двухпроводной схеме — система заземления TN-C; 
  • или трехпроводной — система заземления TN-S либо TN-C-S. 

У них используются разные алгоритмы защит в аварийных ситуациях. 

В первом случае обеспечивается меньшая электрическая безопасность. Когда возникает пробой изоляции бытового прибора на корпус, то, случайно оказавшийся поблизости человек получает электрическую травму: через его тело проходит опасный потенциал на контур заземления подстанции. 

Трёхпроводная схема электропроводки сразу обеспечивает отвод опасного потенциала через дополнительный контур защитного РЕ проводника. 

На этой картинке допущены некоторые упрощения, которые я использовал, чтобы не усложнять понимание процессов. О них будет идти речь в других статьях. 

Если отключить от розетки потенциал фазы или нуля, то совершить работу не получится: напряжения в ней не будет — отсутствует разность потенциалов.

Формулы расчета напряжения для переменного тока, приведенные в шпаргалке электрика, остаются действующими. Но, на практике требуется учитывать многие нюансы работы электроэнергии, схемы подключения оборудования, особенности прохождения частотных сигналов. 

Важные характеристики синусоиды для выполнения расчетов

Электроэнергию производят промышленные генераторы, работающие на принципе вращения ротора с витками изолированного провода (рамки) в магнитном поле статора. 

На их выводах создается синусоидальное напряжение симметричной переменной формы с гармоничными колебаниями. 

Синусоида характеризуется следующим параметрами: 

  • амплитудой; 
  • частотой или периодом колебаний; 
  • фазой. 

При этом под фазой понимают сдвиг угла между сигналами разных синусоид или относительно начала координат. 

Что такое действующее напряжение

При измерениях и вычислениях параметров синусоиды следует учитывать то обстоятельство, что ее величина постоянно изменяется по времени от нуля до максимального значения и обратно. 

Чтобы исключить ошибки и правильно вести расчет принято обозначение действующего напряжения. 

Его величина соответствует той работе, которую может выполнить одна полуволна гармоники. Ее приравнивают к действию постоянного тока за это же время Т/2. 

Для этого определяют площадь половины гармоники интегральным исчислением за полупериод. Приравнивают ее к прямоугольнику с такой же шириной. 

Далее вычисляют высоту, поделив площадь на ширину. Получается действующее значение напряжение. Оно в √2 или 1,41 раз меньше амплитудного синусоидального U max. 

Можно использовать и другую формулу расчета действующего напряжения на основе амплитудного: умножать его на 0,707. 

Все измерительные приборы — вольтметры работают за счет определения действующей величины напряжения, а не амплитудной.

Для сравнения: привычное нам значение 220 вольт является действующим, а амплитудное составляет 310. 

Что такое “импульсное напряжение”

В своей практике надо быть готовым к тому, что в бытовую проводку может проникнуть импульс перенапряжения от аварийного режима в системе электроснабжения, например, от удара молнии в воздушную линию. 

На ВЛ установлены специальные защиты от подобных случаев: разрядники. Они гасят полученные разряды, срабатывая в несколько ступеней. 

Но все равно такой импульс, хоть и пониженной величины, проникает по проводам в бытовые приборы. Он способен повредить их внутреннюю схему.

Для защиты от него используют УЗИП (устройства защиты от импульсного перенапряжения), которые рассчитывают и выбирают под местные условия. 

Как рассчитывать трехфазное напряжение

Промышленная передача электроэнергии использует три симметрично расположенных по времени синусоиды напряжения, которые вырабатывают генераторы. 

Три обмотки их ротора разнесены между собой на 120 градусов и вращаются в магнитном поле статора, поочередно пересекая его силовые линии. Поэтому у них наводится таким же образом смещенная электродвижущая сила. 

Синусоиды сдвинуты между собой на такой же угол, как показано правее. Их векторное выражение на комплексной плоскости тоже отображается с углом 120О

При этом формируется система линейных и фазных напряжений, показанная на картинке. 

Между всеми линейными проводами образуется разность потенциалов в 380 вольт. В то же время относительно каждого этого проводника и нулем присутствует так нам привычное 220. 

Такая система постоянно работает в сбалансированном режиме: токи однофазных потребителей циркулируют по своим замкнутым цепочкам, постоянно складываясь в нулевом проводнике. Сложение это не чисто арифметическое, а векторное, учитывающее направление потока энергии. 

Поэтому при геометрическом сложении векторов происходит снижение тока в проводе нуля и его, как правило, делают тоньше, чем остальные жилы.  

Формулы электрического напряжения для линейных и фазных величин, а также токов смотрите прямо на картинке. 

Обрыв нуля: как возникает и чем опасен

Нормальная работа электрооборудования происходит в сбалансированном режиме при нормально поданном напряжении на него. Если ноль пропадет, то бытовые приборы прекращают свою работу. 

Здесь есть важные отличия при эксплуатации проводки, собранной по схеме однофазного или трехфазного питания. 

Обрыв нуля в однофазной сети: опасность возникновения

Квартирная проводка подключается для подачи напряжения по двум проводам с потенциалами фазы и нуля (контура земли). Электрический ток нагрузки, совершающий полезную работу, может протекать только по замкнутому контуру. 

Это значит, что если один потенциал от обмотки трансформаторной подстанции не будет подведен к розетке или лампочке в квартире, то на них напряжения, а, следовательно, и работы не будет. 

Однако здесь есть особенность, связанная с безопасностью жильцов. 

Обычно розеточные группы собираются шлейфом при параллельном подключении между собой. В одну из них может быть вставлена вилка шнура питания какого-то прибора: холодильника, стиральной машины, микроволновки и т п. 

В такой ситуации через внутреннюю схему этого прибора потенциал фазы пройдет на контакт нуля розетку и дальше — к концу подключенного, но оборванного провода. 

Электрики говорят по этому поводу: две фазы в розетке! Их легко заметить однофазным индикатором напряжения. Его контрольная лампочка будет светиться в обоих контактных гнездах. 

Этот режим опасен тем, что оторванный конец не изолирован. Под действие вновь образованного потенциала может попасть человек, получить электрическую травму. 

Обрыв нуля в трехфазной сети и как от него защититься

Теперь еще раз внимательно посмотрим, как работает схема трехфазного подключения к квартирной проводке, приведенная выше. Разберем случай, когда оборван ноль не в однофазной цепи, а в общей питающей.  

 В этой ситуации до места обрыва практически ничего не изменяется: сформированная система напряжений 380/220 остается прежней. А вот внутри квартир происходят ну очень нехорошие вещи.  

Потребители остаются подключенными по схеме “звезды”. Но ее средняя точка, где был подвод нулевого потенциала, отсоединен от нейтрали трансформаторной подстанции. 

В итоге создаются новые контура последовательного подключения потребителей квартир к линейному напряжению 380, как я показал на правой картинке, взяв за основу сопротивления Rа и Rв.  

Теперь представим, что жильцы квартиры А очень бережливые. Они мало потребляют энергии, экономят деньги на ее оплате. При этом владелец второй квартиры B эксплуатирует большое количество бытовой техники. У него всегда высокое потребление. 

Другими славами электрика: сопротивление Rа и его мощность потребления близки к нулю, а Rв — завышены. 

Вместе они создали последовательную цепочку Rа+Rв, через которую потечет ток, вызванный приложенной разностью потенциалов 380 вольт. Этот общий ток по закону Ома на каждом сопротивлении создаст падение напряжения. (Перемножьте составляющие формулу величины). 

Все приборы в квартире подключены параллельно. Чем больше их в работе, тем выше суммарная мощность потребления и ниже сопротивление. По оборудованию обоих квартир течет один и тот же ток. К ним прикладывается напряжение, зависящее от сопротивления.

Получим, что к одной квартире будет приложено очень мало вольт, а к другой около максимального предела 380.

Что из этого следует:

  1. у экономного владельца к приборам будет приложено очень высокое напряжение порядка 380 В;
  2. во второй квартире электрооборудование станет запитано от очень низкого напряжения. Оно станет работать на износ или отключится.

Расточительный хозяин останется без света до устранения неисправности, а у бережливого выйдут из строя работающие электродвигатели, перегорят лампочки, блоки питания электронной аппаратуры и вся подключенная дорогостоящая техника.

Обрыв нуля в трехфазной сети на стороне питания энергоснабжающей организации очень опасен для бытовых потребителей. Но, от этого аварийного режима существует простая и эффективная защита — реле РКН.

Этот модуль очень быстро, за время роста первой четверти гармоники
напряжения, вычисляет неисправность и до окончания первого периода
колебания отключает питание с квартиры, разрывая цепи подвода
электроэнергии. 

За счет этого все электрооборудование обесточивается, остается в исправном состоянии. 

Кстати, формулы расчета электрического напряжения для этого случая я привел прямо на картинке. Пользуйтесь на здоровье, делайте правильные выводы для себя. 

Я постарался очень простенько объяснить сложные процессы, связанные с электричеством. Поэтому у вас могут появиться дополнительные вопросы. Задавайте их. Будем выяснять совместно.

Напряженность поля точечного заряда | Объединение учителей Санкт-Петербурга

Напряженность поля точечного заряда.

Обозначим: q — заряд, создающий поле,

q0 — заряд, помещенный в поле (внешний заряд).

Закон Кулона: Закон Кулона. Напряженность поля: Напряженность поля.

Тогда напряженность поля точечного заряда: напряженность поля точечного заряда

напряженность поля точечного заряда

Теорема  Гаусса.

Потоком вектора напряженности наз. величина Ф, равная произведению модуля вектора напряженности на площадь контура S, ограничивающую некоторую площадь, и на косинус угла между вектором напряженности и нормалью (перпендикуляром) к площадке.

 

Теорема  Гаусса

Если считать, что напряженность пропорциональна числу силовых линий, приходящихся на единицу площади поверхности (т.е. густоте), то поток напряженности пропорционален полному числу силовых линий, пересекающих данный контур.

Теорема  Гаусса

Поток линий напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален величине заряда, находящегося в области пространства,  ограниченного данной поверхностью.

Поток линий напряженности электростатического поля

Применения теоремы Гаусса.

 

1. Напряженность поля заряженной проводящей сферы радиуса R. Сфера заряжена по поверхности.

 А) Внутри сферы заряда нет . Е=0

Сфера заряжена по поверхности

Б) Снаружи сферы. Снаружи сферы

Применения теоремы Гаусса

На поверхности сферы: На поверхности сферы

2. Напряженность поля шара заряженного по объему.

 

Введем понятие объемной плотности заряда: онятие объемной плотности заряда

Объемная плотность заряда показывает, какой заряд содержится в единице объема заряженного по всему объему тела. Объемная плотность заряда показывает, какой заряд содержится в единице объема заряженного по всему объему тела

Объем шара произвольного радиуса Объем шара произвольного радиуса.

Обозначим q — заряд шара, q0 — заряд, находящийся внутри объема произвольного радиуса.

Объем шара произвольного радиуса

Тогда заряд сферы радиуса r , будет:  Тогда заряд сферы радиуса r                              

Следовательно: напряженность поля внутри шара, равномерно заряженного по объему

 – напряженность поля внутри шара, равномерно заряженного по объему. Снаружи — см. 1.

 напряженность поля внутри шара, равномерно заряженного по объему

3. Напряженность поля бесконечной заряженной плоскости.

 

Введем понятие поверхностной плотности заряда: понятие поверхностной плотности заряда.

Тогда понятие поверхностной плотности заряда.

Коэффициент 2 появляется, т.к. плоскость окружена двумя поверхностями площадью S. Поле бесконечной заряженной плоскости не зависит от расстояния от плоскости! Можно пользоваться, когда расстояние много меньше размеров плоскости.

4. Напряженность поля плоского воздушного конденсатора.

Из рисунка видим, что снаружи конденсатора поля пластин взаимно скомпенсированы, и общее поле равно нулю. Внутри конденсатора поля складываются.

Используя вывод п.3 получаем:  Напряженность поля плоского воздушного конденсатора.

Формула справедлива при условии, что расстояние между пластинами много меньше размеров самих пластин и вдали от краев пластин.

Напряженность поля бесконечной заряженной плоскости

понятие поверхностной плотности заряда

понятие поверхностной плотности заряда

Напряженность поля плоского воздушного конденсатора

понятие поверхностной плотности заряда

Потенциал. Разность потенциалов.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

  — энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

— следствие принци­па суперпозиции полей (потенциалы складываются алгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

 Разность потенциалов

 

Напряжение — разность значений потенциала в начальной и конечной точках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

1. Вектор напряженности направлен в сторону уменьшения потенциала.

2. Электрическое поле существует, если существует разность потенциалов.

3. Единица напряженности: Напряженность поля равна

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величи­на, равная

Поток вектора магнитной индук­ции Фв через произвольную поверхность S равен

Теорема Гаусса для поля В: поток век­тора магнитной индукции через любую замкнутую поверхность равен нулю:

полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

Проводники в электростатическом поле. Электроемкость уединенного проводника.

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­щение зарядов (ток) продолжается до тех пор, пока не установится равновесное рас­пределение зарядов, при котором электро­статическое поле внутри проводника обра­щается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напря­женность поля во всех точках внутри проводника равна нулю:

Е = 0.

По гауссу

Величину

С = Q/ф

называют электроемкостью (или просто емкостью) уединенного проводника. Ем­кость уединенного проводника определяет­ся зарядом, сообщение которого провод­нику изменяет его потенциал на единицу.

Емкость проводника зависит от его размеров и формы, но не зависит от мате­риала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциа­ла. Сказанное не противоречит формуле, так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.

Единица электроемкости — фарад (Ф): 1Ф

Формула напряжения тока. Как найти, вычислить электрическое напряжение.

 

 

 

Тема: как рассчитать величину напряжения зная ток, сопротивление, мощность.

 

как рассчитать величину напряжения зная ток, сопротивление, мощностьКак известно у электрического напряжения должна быть своя мера, которая изначально соответствует той величине, что рассчитана для питания того или иного электротехнического устройства. Превышение или снижение величины этого напряжения питания негативно влияет на электрическую технику, вплоть до полного выхода ее из строя. А что такое напряжение? Это разность электрических потенциалов. То есть, если для простоты понимания его сравнить с водой, то это примерно будет соответствовать давлению. По научному электрическое напряжение — это физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку единичного заряда.

 

Наиболее распространенной формулой напряжения тока является та, в которой имеются три основные электрические величины, а именно это само напряжение, ток и сопротивление. Ну, а формула эта известна под названием закона Ома (нахождение электрического напряжения, разности потенциалов).

 

формула электрического напряжения по закону ома

 

Звучит эта формула следующим образом — электрическое напряжение равно произведению силы тока на сопротивление. Напомню, в электротехнике для различных физических величин существуют свои единицы измерения. Единицей измерения напряжения является «Вольт» (в честь ученого Алессандро Вольта, который открыл это явление). Единица измерения силы тока — «Ампер», и сопротивления — «Ом». В итоге мы имеем — электрическое напряжение в 1 вольт будет равно 1 ампер умноженный на 1 ом.

 

 

 

 

Помимо этого второй наиболее используемой формулой напряжения тока является та, в которой это самое напряжение можно найти зная электрическую мощность и силу тока.

 

как вычислить напряжение зная мощность и силу тока формула

 

Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток). Сама же мощность находится путем перемножения тока на напряжение. Ну, и чтобы найти силу тока нужно мощность разделить на напряжение. Все предельно просто. Единицей измерения электрической мощности является «Ватт». Следовательно 1 вольт будет равен 1 ватт деленный на 1 ампер.

 

Ну, а теперь приведу более научную формулу электрического напряжения, которая содержит в себе «работу» и «заряды».

 

формула напряжения электрического работа и заряд

 

В этой формуле показывается отношение совершаемой работы по перемещению электрического заряда. На практике же данная формула вам вряд ли понадобится. Наиболее встречаемой будет та, которая содержит в себе ток, сопротивление и мощность (то есть первые две формулы). Но, хочу предупредить, что она будет верна лишь для случая применения активных сопротивлений. То есть, когда расчеты производятся для электрической цепи, у которой имеется сопротивления в виде обычных резисторов, нагревателей (со спиралью нихрома), лампочек накаливания и так далее, то приведенная формула будет работать. В случае использования реактивного сопротивления (наличии в цепи индуктивности или емкости) нужна будет другая формула напряжения тока, которая учитывает также частоту напряжения, индуктивность, емкость.

 

ps smail

P.S. Формула закона Ома является фундаментальной, и именно по ней всегда можно найти одну неизвестную величину из двух известных (ток, напряжение, сопротивление). На практике закон ома будет применяться очень часто, так что его просто необходимо знать наизусть каждому электрику и электронику.

 

Формула напряжения электрического поля

   

Здесь – напряжение, – работа, – заряд.

Единица измерения напряжения – В (вольт).

Напряжение не следует путать с напряжённостью – отношением силы к заряду, так как это разные по своей природе понятия. Ещё не нужно его путать с напряжением электрического тока (которое нужно искать по закону Ома), хотя это взаимосвязанные понятия. Не всякое перемещение заряда в электрическом поле сопровождается совершением работы. В частности, при перемещении заряда в электростатическом поле работа не совершается, если в конечном положении перемещённый заряд оказался в точке, в которой напряжённость равна напряжённости в точке, из которой заряд начал движение.

В зависимости от заряда, который создаёт электрическое поле, напряжение может быть как положительным, так и отрицательным.

Примеры решения задач по теме «Напряжение электрического поля»

Понравился сайт? Расскажи друзьям!

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *