Site Loader

Усилитель звука на микросхеме TDA2030A мощностью 14 Вт.

С помощью данного набора, можно собрать простой и компактный усилитель мощностью 14 Ватт на известной всем микросхеме TDA2030A. Эти микросхемы не дорогие и в своё время были очень популярны, они обладают достойным звучанием и их часто можно встретить в заводской аудио аппаратуре. Купить такой набор можно по ссылкам ниже:

Описание комплекта

В комплект набора входят печатная плата, на которой расписано где какая деталь должна быть установлена, небольшой набор необходимых деталей и инструкция по сборке усилителя, где можно найти параметры усилителя, принципиальную схему, список компонентов и внешний вид уже собранный усилитель. Все предельно понятно и компактно, сложности возникнуть не должно.

Для стерео усилителя нужно собрать два таких набора. Основой усилителя является многим известная микросхема TDA2030A, которая обладает выходной мощностью 18 Ватт.

Печатная плата имеет небольшие размеры, выполнена качественно, все номиналы деталей указаны на плате. Подключить этот усилитель можно от однополярного источника питания или аккумуляторной батареи. Кстати схема немного отличается от схемы их даташита, в ней нет диодов, но я думаю, что на работоспособность это не повлияет!

Сборка усилителя

Так как резисторы имеют цветовую маркировку, советую проверить их номиналы мультиметром или специальным тестером, ссылку на который вы можете найти в начале статью. Затем по очереди, припаиваем резисторы на свои места..

Далее припаиваем неполярные конденсаторы, которых в комплекте всего 2, просто помещаем их на своё место в любом положении.

Далее устанавливаем электролитические конденсаторы на свои места. В отличии от неполярных, эти нужно устанавливать соблюдая полярность! Если на корпусе конденсатора нет опознавательных знаков, то определить его полярность можно очень легко, обычно короткая ножка это минус, а длинная плюс, так же не забывайте смотреть на номинал при установки.

Для защиты от переполюсовки по питанию предусмотрен диод, который то же имеется в наборе. На корпусе диода имеется метка и такая же есть на плате, согласно им, устанавливаем и припаиваем диод на своё место!

Для подключения питания, входа и выхода, в наборе предусмотрены специальные штыревые разъёмы с шагом 2.5 мм. С помощью лезвия или ножниц, разделяем их по парам и припаиваем на свои места на плате.

Ну и наконец, осталось только припаять на своё место микросхему TDA2030A. Обязательно после пайки, протирайте дорожки от канифоли, сделать эти можно специальными растворами или простым растворителем.

В процессе работы усилителя, микросхема будет греться, поэтому необходимо установить на неё теплоотвод, в виде небольшого радиатора. В комплекте с усилителем имеется специальная теплоотводящая прокладка, её нужно поставить между радиатором и микросхемой!

Сборка усилителя завершена и теперь можно его испытывать, по инструкции, питается он от напряжения 9-24 Вольта, сопротивление акустики от 4 Ом до 8 Ом, мощность усилителя указана до 14 Ватт. Для удобства подключения питания, входа и выхода, можно купить специальные разъёмы, ссылка на которые имеется в начале статьи.

Вход усилителя можно выполнить следующим образом, взять провод для передачи звукового сигнала от телефона, на усилитель, отрезать один край и припаять провода к разъёму, как на фото ниже.

Для питания усилителя можно использовать любой подходящий источник постоянного тока, например идеально подойдет блок питания от ноутбука. Обязательно соблюдайте полярность при подключении питания к усилителю!!!

На этом все, ниже вы найдете видео, где показана работа усилителя!

Видео работы усилителя

 

Ссылки на товары из статьи 

 

 

Усилитель звука на микросхеме TDA 2030


Привет всем любителям самоделок. Наверно каждый начинающий радиолюбитель мечтал собрать свой первый усилитель звука с хорошим качеством, который можно было в дальнейшем применить в каких-то своих целях или создании самоделки. В этой статье я расскажу, как сделать усилитель звука на микросхеме TDA 2030 с хорошими звуковыми показателями своими руками при помощи кит-набора, заказать который можно по ссылке в конце статьи.

Перед прочтением статьи предлагаю посмотреть видео, где подробно показана сборка данного усилителя и проверка звука на разных динамиках.

Для того, чтобы сделать усилитель звука на микросхеме TDA 2030 своими руками, понадобится:
* Кит-набор
* Паяльник, припой, флюс
* Бокорезы
* Динамик мощностью не меньше 10 Вт и сопротивление 4 Ом
* Самодельный зажим для фиксации плат
* Блок питания на 12-15В
* Мультиметр
* Крестовая отвертка

Шаг первый.
Первым делом нужно осмотреть плату, ее качество можно считать достаточно хорошим, в данном случае она односторонняя и на ее верхней части промаркированы все детали, что очень хорошо.



В комплекте нас встречает множество компонентов, а также микросхема TDA 2030 с алюминиевых радиатором и в роли регулятора громкости здесь будет переменный резистор с ручкой.

Приступим к процессу сборки. Первые компоненты, которые необходимо установить на плате, это резисторы, их в данной схеме 6 штук и 4 из них имеют одинаковый номинал, а именно 100 кОм, поэтому сначала устанавливаем 4 резистора с одинаковыми по цвету полосками.

Далее два следующих резистора, сопротивление которых можно узнать при помощи мультиметра или же воспользоваться справочной таблицей, где при помощи цветовой маркировки можно определить номинальное сопротивление отдельного резистора. Определив сопротивление резисторов, устанавливаем их на свои места на плате.

Шаг второй.
Теперь устанавливаем на плату неполярные керамические конденсаторы, на их корпусе расположилась маркировка с цифрой 104, для них на плате есть два места, устанавливаем и подгибаем ножки с обратной стороны, чтобы не выпали при пайке.

Шаг третий.
Далее за конденсаторами идут диоды, в наборе их два, устанавливаем их согласно полоске на корпусе и плате, расположив в одинаковом направлении.

После установки диодов беремся за конденсаторы. В данном случае
в комплекте целых пять полярных конденсаторов. Номиналы каждого подписаны на самом корпусе, а также нанесены на плате. Для правильно установки располагаем длинную ножку конденсатора с плюсом на плате или же при помощи серой полоски, которая соответствует минусы конденсатора. Устанавливаем сначала большие конденсаторы, затем маленькие.

Шаг четвертый.
Переворачиваем плату в зажиме и фиксируем для дальнейшей пайки. Перед тем, как приступить к припаиванию выводов к дорожкам платы, наносим флюс. Далее припаиваем выводы, постепенно добавляя припоя по мере необходимости. После пайки удаляем излишки выводов при помощи бокорезов.
При откусывании ножек компонентов будьте аккуратны, так как их с легкостью можно откусить вместе с дорожкой, восстанавливать которую не очень интересное занятие.


Шаг пятый.
Для регулировки уровня громкости устанавливаем переменный резистор на 100 кОм, его четвертый вывод служит для более прочного закрепления на плате.


Теперь на винтик прикручиваем к алюминиевому радиатору микросхему при помощи крестовой отвертки, для лучшего теплоотвода наносим перед этим термопасту. Далее уже с радиатором располагаем микросхему на плате, слегка подгибаем выводы, чтобы они прошли в отверстия под микросхему.

После установки радиатора с микросхемой устанавливаем коннекторы, к ним уже будет подключаться питание, динамик и вход звука.

Шаг шестой.
Припаиваем выводы микросхемы и коннекторов. После пайки очищаем плату от остатков флюса при помощи бензина «калоша».

На этом усилитель готов к тестированию.
Шаг седьмой.
К коннекторам подключаем динамик, вход звука с телефона или другого устройства и подаем питание от 12 до 15В. Звук с данного усилителя получился достаточно хорошего уровня, а сам усилитель с легкостью подойдет для сборки колон для компьютера или же домашней акустики.

На этом у меня все, всем спасибо за внимание и творческих успехов.

Купить Kit-набор на Aliexpress

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Стерео усилитель на TDA2030A — набор сделай сам.

Приветствую! Представляю вам обзор DIY набора для самостоятельной сборки усилителя звука. Купил у известного продавца ChipWorld, выиграл лот за $3.25. В общем самодостаточный усилитель с регулировкой громкости за копейки. Подробности, фото и видео далее.

Характеристики итогового девайса:
Входное питание AC9-15V или DC9-15V
Мощность 15+15 при 4 омах
Сопротивление колонок от 4 до 8 ом

Даташит lib.chipdip.ru/076/DOC000076110.pdf
В нем кстати заявлена мощность 18Вт

Для начала рассмотрим что же нам пришло

Вот и все содержимое

Плата качественная, из текстолита.

Все подписано — бери да паяй))

Микросхемы TDA2030A

Радиаторы для них
Один походу ветром погнуло))

Ручка для переменного резистора

Клеммы

Теперь можно собрать

Сначала впаял переменник и аудио разъем

Потом все резисторы

Диоды

Конденсаторы

Клеммы

Микросхемы и радиаторы

Мажем термопастой

Прикручиваем

Осталось отмыть остатки канифоли

Теперь осталось попробовать в работе

Подключить решил к комповскому блоку питания (12 вольт)

Кушает в пиках 0,8 ампер, в среднем 0.5, сфоткать удалось 0.39. (на максимальной громкости)

В покое 0.05 А
За полчаса радиаторы разогрелись до 45 градусов

Тестил на вегах

За половину громкости начинаются неприятные искажения

TK2050 звучит конечно же намного лучше.
обзор

В общем нормально, можно впилить в какие-нибудь недорогие мультимедийные колонки, ибо в них ставят зачастую совсем непотребство.
Ну и стоимость деталей выше всего этого набора, так что можно брать.

Спасибо за внимание! Надеюсь обзор понравился и оказался полезным.

Плата усилителя TDA2030a — Обзор характеристик

Чтобы собрать усилитель, понадобится

  • рисунок печатной платы
  • заготовка
  • распечатанный макет расположения элементов на плате
  • схема использовалась на однополярном питании
  • микросхема
  • радиатор
  • конденсаторы
  • диоды
  • резистор

Может быть такое, что на китайской схеме будет написано не 2030, а 2050. Хотя на самом деле внутри нее находится самая настоящая схема от ТДА 2030.

Понадобится достаточно мощный блок питания с напряжением на 18-20 Вольт. Мощность должна быть побольше. К примеру если придется снимать с усилителя 10 Ватт, то пригодится запас на 20-25 Ватт. Поэтому блок питания на 90 Ватт подойдет хорошо.

Характеристики

Левый и правый каналыtda2030ax2.мощность: 18Вт + 18Вт, предложил 2.5-4 дюймов, 4-8 Ом 10-30w широкодиапазонных динамиков.
Басыtda2030ax1. мощность: 18Вт (≤250hz) предложил 5-8 дюймов, 4-8 Ом 20-50w вуферов.
Мощностьпеременного тока двойной ac9-15v трансформатор, мы рекомендуем двойной власти AC12V выше 25W (2а) трансформатора.
Размер платы79 х 95 х 60 мм (длина х ширина х высота), содержащая высоту радиатора.
Размер тона платы79 х 23 х 25 мм (длина х ширина х высота), за исключением длины потенциометра рукоятки.
Ось потенциометра28мм, потенциометров монтажные отверстия, необходимые: 7 мм
Кабельматеринская плата и шаг пластины поставляются с 30 см в длину 6р кабеля.
Вес158 г

Монтаж печатной платы

Для обычной нагрузки подойдет небольшой радиатор. Если придется загружать усилитель двухполярным питанием, то лучше найти радиатор, который по размеру будет больше самой платы раза в полтора.

Провода для усилителя нужно подготовить как обычно. Один конец подготовить для подключения к плате, а с другой припаять обычный разъем.

Запуск и тестирование tda2030a

Прежде всего нужно разобраться с тем, какое напряжение нужно будет подавать на плату. Начнем с 15 Вольт и затем поднимем его до 18.

Если дотронуться пальцем до входа, то можно убедиться, что все работает по звуку в динамике. При повышении напряжения до 18 Вольт, звук также усиливается.

У усилителя нет ограничения на входной сигнал. Поэтому все, что поступает на вход усилителя, сразу же целиком уходит на динамики. Чтобы его ограничить, на вход нужно установить потенциометр.

Но так как усилитель делается для электрогитары, то громкость будет регулироваться при помощи специальной педали.

Теперь плату можно очистить от канифоли и приступать к проверке звучания инструмента с помощью этого усилителя.

Тест громкости на педали с гитарой

Запас по громкости хороший. Если же выставить звук на полную громкость, то усилитель выдает совсем кислотное звучание.

На самом деле придраться к качеству звучания всегда можно. Хотя что можно было ожидать, когда в наличии транзисторная педаль и оконечник, плюс 8 дюймовый динамик.

Но если использовать ламповый преамп, то получится совсем другое звучание.

Итог

Для искушенных гитаристов данный усилитель будет неинтересен. Потому что он совершенно не окрашивает звучание инструмента. Какой звук в него вошел, такой из него и вышел. Нет глубины, динамики звука, каких-то интересных провалов на разных диапазонах.

Вконтакте

Facebook

Twitter

Google+

Усилитель мощности на микросхеме TDA2030

Есть много примеров, когда требуется построить (и относительно дешевый) усилитель мощности.

TDA2030 представляет собой монолитную интегральную схему в Pentawatt пакет, предназначенный для использования в качестве усилителя низкой частоты класса AB. Он обеспечивает выходную мощность 14 Вт (D = 0,5%) в 14V/4Ω на ± 14В или 28В, гарантированный выходной мощностью 12 Вт на нагрузке 4Ω или 8 Вт на 8Ω

Он может быть использован практически для любого приложения.
Мощность этого усилителя является средней среди многих усилителей, который означает, что он может найти применение в любом месте.

Пара может образовывать усилитель для стерео системы.
Этот усилитель может быть использована для завершения систем объемного звучания (например, центрального и тыловых каналов усилителя). Я использовал этот усилитель для центрального канала в моей оригинальной системе объемного звучания . Пара может быть использован для улучшения звука NICAM ® TV, или даже может быть использована для улучшения моно ТВ.  Укрепляя тем 400W усилитель + в Колонки (серьезно)!

 TDA2030

Как видно, схема довольно проста действительности. Для нее можно сделать свою собственную печатную плату.

Резисторы должны быть не менее 1/4W типа с допуском 1%. Я использовал 0.6W 1% резисторов металлической пленкой, и они работают хорошо. Конденсаторы я использовал, были электролитические для C2, C5 и C6. Во время здание, у меня не было 100uF и я использовал 220uF вместо него, это не вызовет проблем.

C1 может быть электролитический, я использовал тантала себя (не спрашивайте, почему, так как на самом деле они дороже).Некоторые читатели могут захотеть использовать полиэфирный конденсатор для ввода (C1), это будет работать также, но я не уверен, что никакой выгоды будут связаны с дополнительных расходов. Другие конденсаторы C3, C4 и C7 полиэстеровые.

Значения R5 и С8 определяются из уравнений, но я использовал 1.8k Ом для R5 и 220pF для C8 и они работают нормально.
Диоды должны быть 1N4001 или аналогичный (убедитесь, что вы припаяли их в правильном направлении).

Хороший теплоотвод имеет важное значение, и это должно быть большого размера с хорошей теплопроводностью.
Когда Вы эксплуатируете TDA2030 от источника питания (рекомендуется), необходимо изолировать устройство от теплоотвода, с помощью шайбы слюды или аналогичных. С одинарными направляющими питания это не требуется.

TDA2030 схема усилителя 20 Вт

TDA2030 печатная плата


 

TDA2030 35W Мостовой усилитель

 

 

Габариты, электрические параметры, характеристики, маркировка… TDA2030

 

<<< Схемы электрические

TDA2030

TDA2030

     Наверное самым популярным из интегральных усилителей на микросхемах является УНЧ на TDA2030. Этому способствуют кроме довольно неплохих параметров ещё и возмутительно низкая цена: 0.5уе. Согласитесь, получить за доллар стерео усилитель с суммарной мощностью 35 Ватт совсем неплохо. Тем более, что схема не капризна в настройке и обладает хорошей повторяемостью. Типовая схема включения микросхемы TDA2030 даёт такие параметры:

  • Выходная мощность, 14 Вт
  • Сопротивление нагрузки, RL = 4 Ω
  • Коэффициент нелинейных искажений, d = 0.5%
  • Напряжение питания: от ±6 до ±18 В
  • Защита от короткого замыкания
  • Выходной ток: 3.5 A макс
  • Полоса пропускания: от 10 до 140000 Гц
  • Корпус, 5 выводов.

TDA2030 схема

     Если кому покажется данной мощности недостаточно, включаем две микросхемы TDA2030 по мостовой схеме. В этом случае при напряжении питания +-15 В получаем на выходе 35 Ватт.

TDA2030 мост

     Усилить выходную мощь можно подключив к TDA2030 два дополнительных транзистора КТ818 и КТ819 на выход. Выходная мощность повысится до 60 Ватт, что позволит использовать такой УНЧ на TDA2030 для сабвуферного канала. Естественно, можно поставить и блатные импортные транзисторы серии MJE, но смысла нет — класс усилителя не тот. Транзисторы можно садить на один теплоотвод без изоляции, так как коллекторы соединены по схеме. Кроме комплиментарной пары BD911+BD912 можно применить BD909+BD910. По размеру радиатора чем больше — тем лучше. У микросхемы TDA2030 на фланце минус питания (соединен с 3-м выводом), поэтому её от общего теплоотвода нужно ОБЯЗАТЕЛЬНО изолировать.

TDA2030 схема2

TDA2030 сабвуфер

     Учтите, что для TDA2030А +/-22 В и для TDA2040 (являющейся умощнённым аналогом) +/-25 В это самые предельные значения. Лучше им давать питания не больше +/-18 В. Для этого трансформатор с обмотками 2х12 В пойдёт накальный, типа ТН30 или что то аналогичное. Объединяет все вышеназванные микросхемы один минус — у них нет встроенных защитных диодов. Поэтому TDA2030 могут вылететь от реактивной ЭДС нагрузки в любой момент. И в схемах такие диоды нарисованы не случайно. Но в TDA2050, TDA2051 и в TDA2052 эти диоды встроены и их из схемы можно исключить. Для питания очень хорошо поставить компенсационный стабилизатор — это существенно улучшит звук, особенно на низких частотах.

     Испытания TDA2030 показывают довольно неплохое звучание, как за такую смешную стоимость. Отлично пойдёт для домашнего усилителя. Вообще микросхема TDA2030 пользуется у фирм производителей УНЧ пользуется такой популярностью, что на данный момент китайские 5.1 комплекты с этими TDA2030 и TDA2050 заполнили весь рынок.

     ФОРУМ по усилителям.

   Схемы усилителей

Возможности TDA2030 (от усилителя до блока питания)

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее “скрытых достоинствах”: оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС – усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

 

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс2=1/6,28*40*47*10-6=85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током IПР0,5… 1 А и UОБР более 100 В, например КД209, КД226, 1N4007. Схема включения ИМС в случае использования однополярного источника питания показана на рис.2.

 

Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника ±18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3.

 

При Vs=±18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3…0,4 А падение напряжения на резисторах R3 и R4 составит 0,45…0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.

 

Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=±16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС – идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.

 

Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300…5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R – в килоомах, С – в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.

Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована “в живую”, на макетной плате, часть – смоделирована в программе Electronic Workbench.

 

Мощный повторитель сигнала:

 

 

Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5… 1 МГц, что более чем достаточно для генератора НЧ.

 

Умощнение источников питания:

                      

 

Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8. Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает UИП= 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения UИМС= UИП – UВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины РРАС= UИМС*IН = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле: UИМС= РРАС.МАХ / IН.

В нашем примере UИМС= 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять UИП = UВЫХ+UИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле: R1 = ( UИП – UСТ)/IСТ, где UСТ и IСТ – соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7…15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.

 

Простой лабораторный блок питания:

 

Электрическая схема блока питания показана на рис.9. Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:

IМАХ = РРАС.МАХ / UИМС

Например, если на выходе выставлено напряжение UВЫХ = 6 В, на микросхеме происходит падение напряжения UИМС = UИП – UВЫХ = 36 В – 6 В = 30 В, следовательно, максимальный ток составит IМАХ = 20 Вт / 30 В = 0,66 А. При UВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).

 

Стабилизированный лабораторный блок питания:

 

Электрическая схема блока питания показана на рис.10. Источник стабилизированного опорного напряжения – микросхема DA1 – питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при UИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.

 

Регулируемый источник тока:

 

Электрическая схема стабилизатора показана на рис.11. На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение UBX. Под действием этого напряжения через нагрузку протекает ток IН = UBX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя UBX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0…0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока – измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А – это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.

 

Мощный генератор прямоугольных импульсов:

        

 

Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (UВЫХ = +UИП). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+UИП/2), ИМС DA1 переключится в состояние отрицательного насыщения (UВЫХ = -UИП). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-UИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:

f=l/2,2*R3Cl.

Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.

 

Мощный низкочастотный генератор синусоидальных колебаний:

 

Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем – резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + REL1,2. Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:

f=1/2piRC.

Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.

В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см2. При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы “земляные” шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде “звезды”). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.

 

По материалам из журнала “Радіоаматор”

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *