31. Фотодиоды и светодиоды. Структуры и схемы подключений
Фотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе
Фотодиод, работа которого основана нафотовольтаическом эффекте(разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд (ЭДС)) называется солнечным элементом. Кроме p-n фотодиодов существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой изолятора i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов ифототранзисторов.
При воздействии
квантовизлучения в базе происходит генерация
свободных носителей, которые устремляются
к границе p-n-перехода. Ширина базы
(n-область) делается такой, чтобы дырки
не успевали рекомбинировать до перехода
в p-область.Токфотодиода определяется током неосновных
носителей — дрейфовым током. Быстродействие
фотодиода определяется скоростью
разделения носителей полем p-n-перехода
и ёмкостью p-n-перехода C
Фотодиод может работать в двух режимах:
-фотогальванический — без внешнего напряжения
-фотодиодный — с внешним обратным напряжением
Особенности:
-простота технологии изготовления и структур
-сочетание высокой фоточувствительности и быстродействия
-малое сопротивление базы
-малая инерционность
Светодио́д или светоизлучающий диод
Как и в любом полупроводниковом диоде, в светодиоде имеетсяp-n переход. При пропускании электрического тока в прямом направлении, носители заряда —электроныидырки— рекомбинируют с излучениемфотонов(из-за перехода электронов с одного энергетического уровня на другой).
По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:
-Высокий КПД. Современные светодиоды уступают по этому параметру только люминесцентной лампе с холодным катодом (CCFL).
-Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).
-Длительный срок службы. Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.
-Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.
-Малая инерционность.
-Малый угол излучения — также может быть как достоинством, так и недостатком.
-Низкая стоимость.
-Безопасность — не требуются высокие напряжения.
-Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
-Отсутствие ядовитых составляющих (ртутьи др.) и, следовательно, лёгкость утилизации.
Фотодиод — Википедия
Материал из Википедии — свободной энциклопедии
Фотодио́д — приёмник оптического излучения[1], который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n-области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p и n находится слой нелегированного полупроводника i. p-n- и p-i-n-фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы;Принцип работы:
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n
Фотодиод может работать в двух режимах:
- фотогальванический — без внешнего напряжения
- фотодиодный — с внешним обратным напряжением
Особенности:
- простота технологии изготовления и структуры
- сочетание высокой фоточувствительности и быстродействия
- малое сопротивление базы
- малая инерционность
Параметры и характеристики фотодиодов[править | править код]
Параметры:
- чувствительность
- отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему.
- Si,Φv=IΦΦv{\displaystyle S_{i,{\Phi _{v}}}={\frac {I_{\Phi }}{\Phi _{v}}}}; Si,Ev=IΦEv{\displaystyle S_{i,{E_{v}}}={\frac {I_{\Phi }}{E_{v}}}} — токовая чувствительность по световому потоку
- Su,Φe=UΦΦe{\displaystyle S_{u,{\Phi _{e}}}={\frac {U_{\Phi }}{\Phi _{e}}}}; Si,Ee=UΦEe{\displaystyle S_{i,{E_{e}}}={\frac {U_{\Phi }}{E_{e}}}} — вольтаическая чувствительность по энергетическому потоку
- шумы
- помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.
Характеристики:
- вольт-амперная характеристика (ВАХ)
- зависимость выходного напряжения от входного тока. UΦ=f(IΦ){\displaystyle U_{\Phi }=f(I_{\Phi })}
- спектральные характеристики
- зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
- световые характеристики
- зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
- постоянная времени
- это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
- темновое сопротивление
- сопротивление фотодиода в отсутствие освещения.
- инерционность
- В p-i-n-структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n-переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n-фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при U
обр ≈ 0,1 В p-i-n-фотодиод имеет преимущество в быстродействии.
- В p-i-n-структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n-переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n-фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при U
- Достоинства:
- 1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области.
- 2) высокая чувствительность и быстродействие
- 3) малое рабочее напряжение Uраб
- Недостатки:
- сложность получения высокой чистоты i-области
- Фотодиод Шоттки (фотодиод с барьером Шоттки)
- Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
- Лавинный фотодиод
- В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения:
- M=IΦIΦ0{\displaystyle M={\frac {I_{\Phi }}{I_{\Phi _{0}}}}}
- M=11−(UUpr)m{\displaystyle M={\frac {1}{1-\left({\frac {U}{U_{pr}}}\right)^{m}}}}
- Для реализации лавинного умножения необходимо выполнить два условия:
- 1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны:
- qλ=3Ig2{\displaystyle q\lambda ={\frac {3I_{g}}{2}}}
- 2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега:
- W>>λ{\displaystyle W>>\lambda }
- Значение коэффициентов внутреннего усиления составляет M = 10—100 в зависимости от типа фотодиодов.
- Фотодиод с гетероструктурой
- Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.
51.Светодиоды,фотодиоды,лазерные диоды.
Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light—emitting diode) — полупроводниковый прибор с электронно-дырочным переходом или контактом металл-полупроводник, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его спектральные характеристики зависят в том числе от химического состава использованных в нём полупроводников.
При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).
Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).
Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.
Светодиод
Вольт-амперная характеристика светодиодов в прямом направлении нелинейна. Диод начинает проводить ток начиная с некоторого порогового напряжения. Это напряжение позволяет достаточно точно определить материал полупроводника.
Применение
уличном, промышленном, бытовом освещении
В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах)
Массив светодиодов используется в больших уличных экранах, в бегущих строках. Такие массивы часто называют светодиодными кластерами или просто кластерами
В оптопарах
Мощные светодиоды используются как источник света в фонарях и светофорах
Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интернет[10])
В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры и т. д.)
В играх, игрушках, значках, USB-устройствах и проч
В светодиодных дорожных знаках
В гибких ПВХ световых шнурах Дюралайт.
Фотодио́д — приёмник оптического излучения[1], который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой нелегированного полупроводника i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.
Принцип работы:
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n
Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.
Фотодиод может работать в двух режимах:
Особенности:
простота технологии изготовления и структуры
сочетание высокой фоточувствительности и быстродействия
малое сопротивление базы
малая инерционность
[править] Классификация
Фотодиод Шоттки (фотодиод с барьером Шоттки) Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
Лавинный фотодиодВ структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны.
Лазерный диод — полупроводниковый лазер, построенный на базе диода. Его работа основана на возникновении инверсии населённостей в области p-n перехода при инжекции носителей заряда
Лазерные диоды — важные электронные компоненты. Они находят широкое применение как управляемые источники света в волоконно-оптических линиях связи. Также они используются в различном измерительном оборудовании, например лазерных дальномерах. Другое распространённое применение — считывание штрих-кодов. Лазеры с видимым излучением, обычно красные и иногда зелёные — в лазерных указках, компьютерных мышах. Инфракрасные и красные лазеры — в проигрывателях CD- и DVD-дисков. Фиолетовые лазеры — в устройствах HD DVD и Blu-Ray. Синие лазеры — в проекторах нового поколения в качестве источника синего света и зеленого (получаемого за счёт флюоресценции специального состава под воздействием синего света). Исследуются возможности применения полупроводниковых лазеров в быстрых и недорогих устройствах для спектроскопии.
До момента разработки надёжных полупроводниковых лазеров, в проигрывателях CD и считывателях штрих-кодов разработчики вынуждены были использовать небольшие гелий-неоновые лазеры.
Лекция 17. Светодиоды. Фотодиоды. Оптоэлектронные устройства
17.1. Светодиоды
Светодиодом (LED англ. Light-emitting diode) называется полупроводниковый прибор с одним p—nпереходом, предназначенный для непосредственного преобразования электрической энергии в световое излучение (излучающий некогерентный свет). Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в университете Иллинойса группой, которой руководил Ник Холоньяк.
Условное графическое обозначение, структура и внешний вид светодиода представлены на рис. 17.1.
Рис. 17.1. Светодиод:
а условное графическое обозначение; б – структура; в – внешний вид
При прямом включении p—nперехода и пропуске прямого тока в процессе рекомбинации происходит переход электрона с высокого энергетического уровня в зоне проводимости (n) на низкий в валентной зоне (p). Разность энергий выделяется в виде кванта света (фотона). Диаграмма энергетических уровней в полупроводнике представлена на рис. 17.2.
Рис. 17.2. Диаграмма энергетических уровней в полупроводнике
Длина волны излучения определяется выражением
, (17.1)
где h– постоянная Планка,h= 4,13510-15эВс;
с- скорость света;
W– ширина запрещённой зоны.
Излучаемый светодиодом свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника. Для видимой части светового спектра 770…400 нм. Основным цветам соответствуют следующие границы длин волн:
фиолетовый: 390—440 нм; синий: 440—480 нм; голубой: 480—510 нм; зелёный: 510—550 нм; | жёлто-зелёный: 550—575 нм; жёлтый: 575—585 нм; оранжевый: 585—620 нм; красный: 620—770 нм. |
Такие длины волн соответствуют разности энергий электрона W1,6…3,1 эВ. Следовательно, для получения видимого излучения ширина запрещённой зоныWв полупроводнике должна быть более 1,6 эВ. Германий и кремний имеютW< 1,3 эВ, поэтому светодиоды из таких материалов сделать нельзя.
Для светодиодов применяют другие полупроводниковые материалы, например:
арсенид галлия (GaAs) – инфракрасное излучение;
арсенид галлия, легированный алюминием (AlGaAs) – красное свечение;
арсенид галлия, легированный фосфором (GaAsP) – оранжевое свечение;
фосфид галлия, легированный алюминием и индием (AlGaInP) – жёлтое свечение;
фосфид галлия, легированныйN – зелёное свечение;
карбид кремния (SiC), легированный (InGaN) – синее свечение.
При работе на светодиод следует подавать прямое напряжение. Схема включения светодиода в цепь постоянного тока и его вольтамперная характеристика представлены на рис. 17.3.
а) | б) |
Рис. 17.3. Схема включения светодиода (а) и его вольтамперная характеристика (б)
В лекции 2 приведена система обозначений полупроводниковых диодов в соответствии с отраслевым стандартом ОСТ 11336.038 – 81 и его последующими редакциями. Стандарт определяет основные параметры светодиодов. Пример величин основных параметров для некоторых типов светодиодов представлен в таблице 17.1.
Таблица 17.1
Основные параметры светодиодов
Тип | Цвет свечения | Сила света, мкд (при токе, мА) | Uпр, В, не более | Iпр.макс, мА | Максимум спектрального распределения, мкм |
АЛ307А | красный | 0,15 (10) | 2 | 20 | 0,666 |
АЛ307В | зелёный | 0,4 (20) | 2,8 | 22 | 0,57 |
КЛ101Б | жёлтый | 0,15 (20) | 5,5 | 20 | 0,6 |
АЛ107А | инфракрасный | Мощность излучения 60 мВт | 2 | 100 | 0,9…1,2 |
Более подробные сведения о цветных светодиодах приведены в литературе [4, 13].
Существуют также сверх яркие белые светодиоды, применяемые для освещения. Они представляют собой полупроводниковый кристалл, излучающий ультрафиолетовое свечение, на поверхность которого наносится люминофор. Для получения требуемого угла излучения света применяется первичная оптика – линза (рис. 17.4).
а) | б) |
Рис. 17.4. Конструкция (а) и внешний вид (б) белого светодиода
Излучение белых светодиодов характеризуются цветовой температурой. Она указывает только на спектральное распределение энергии излучения, а не на температуру источника. Цветовая температура выражается в кельвинах (К). При большем значении световой температуры излучение характеризуется синеватым оттенком, при меньшем — желтоватым и даже красноватым (рис. 17.5).
Рис. 17.5. зависимость оттенка белого света от световой температуры
Ток через белый светодиод составляет от 50 мА до 1 А при прямом напряжении от 3 до 3,6 В. Таким образом, мощность светодиода от 0,15 до 3,6 Вт. 30% этой мощности идёт на световое излучение, 70% выделяется в виде тепла. Для сравнения самая лучшая лампа накаливания выделяет в виде тепла 95% мощности, а люминесцентная лампа 80 — 85%. Для эффективного отвода выделяющегося тепла печатная плата для монтажа белых светодиодов выполняется из алюминия.
К преимуществам белых светодиодов как источников света следует отнести мгновенный (без разогрева) выход на рабочий режим, длительный срок службы, отсутствие пульсаций светового потока (питание светодиодов постоянным током).
Светодиод, как и любой полупроводник, обладает отрицательным температурным коэффициентом сопротивления, то есть с ростом температуры увеличивается прямой ток и снижается прямое напряжение светодиода. Поэтому применять для питания светодиодов стабилизатор напряжения (см. лекцию 5) нежелательно. Чтобы обеспечить нормальную работу светодиодов в широком диапазоне температур следует стабилизировать ток через них. Для этой цели применяется широтно-импульсный стабилизатор с обратной связью по току нагрузки [1].
Работа светодиода зависит от температуры кристалла. С увеличением температуры яркость (сила света), а также падение напряжения на светодиоде уменьшается. Зависимость яркости от температуры практически линейная, в интервале рабочей температуры может изменяться в 2-3 раза. Также с ростом температуры снижается срок службы. Для сверх ярких светодиодов, номинальный ресурс не бывает выше 50…60 тыс. часов, цифра 100 000 часов может относиться только к индикаторным светодиодам.
Фотодиоды: принцип работы и характеристики
В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях.
Принцип действия фотодиода
Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами.
Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей.
Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока.
Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии.
Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше.
В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз.
Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения.
Характеристики фотодиодов
Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2.
Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения.
Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения.
Фотодиоды. Виды и устройство. Работа и характеристики
Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.
Устройство и принцип действия
Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.
1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.
При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.
При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».
Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.
Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.
Режимы работы
Фотодиоды способны функционировать в следующих режимах:
- Режим фотогенератора. Без подключения источника электричества.
- Режим фотопреобразователя. С подключением внешнего источника питания.
В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.
КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт/м2.
При функционировании фотодиода в качестве фотопреобразователя, источник напряжения подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.
Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.
Виды фотодиодов
Существует несколько различных видов фотодиодов, которые имеют свои достоинства.
p – i – n фотодиод
В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.
Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 1010 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.
Лавинные фотодиоды
Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.
1 — омические контакты 2 — антиотражающее покрытие
Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.
В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.
Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.
Принцип действия
При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.
Характеристики
Свойства таких световых диодов можно описать некоторыми зависимостями.
Вольт-амперная
Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.
I — ток M — коэффициент умножения U — напряжение
Световая
Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.
Спектральная
Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.
Постоянная времени
Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.
Темновое сопротивление
Это значение сопротивления диода в темноте.
Инерционность
Факторы, влияющие на эту характеристику:
- Время диффузии неравновесных носителей заряда.
- Время прохождения по р-n переходу.
- Период перезарядки емкости барьера р-n перехода.
Сфера применения
Фотодиоды являются основными элементами многих оптоэлектронных приборов.
Интегральные микросхемы (оптоэлектронные)
Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.
Фотоприемники с несколькими элементами
Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.
Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.
Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.
В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.
Наиболее влияющими оказались такие факторы:
- Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
- Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.
Похожие темы:
Фотодиод — chipenable.ru
Фотодиод — это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.
В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.
Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.
Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков — концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.
На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.
Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).
Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).
В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.
В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.
Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.
График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте.
При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.
При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.
Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.
Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:
— холостой ход (хх),
— короткое замыкание (кз).
Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.
В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.
В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.
Продолжение следует.