ЭЛЕКТРОННАЯ НАСЕДКА
ЭЛЕКТРОННАЯ НАСЕДКА
Данный терморегулятор не только прост, но надежен, так как в нем нет механически размыкающихся контактов. Роль ключевого элемента выполняет тиристор VS1 типа КУ202Н. В то же время его схема не содержит дефицитных деталей. Вместо терморезистора я использую германиевый транзистор, любой из серии МП39— МП42. Базовый вывод этого транзистора не использую, его можно удалить или надежно изолировать.
Выбор других деталей для данной схемы также не представляет особых проблем, схема не слишком критична к типу используемых элементов. Практически все необходимое можно найти в любом старом транзисторном или ламповом приемнике. Стабилитрон Д814А (VD1) можно заменить на Д814Б или любой другой с напряжением стабилизации от 7 до 9 В. Транзистор VT2 — типа КТ315 с любым буквенным индексом. Тиристор VS1 — типа КУ202 или КУ201 с буквенным индексом от «К» до «Н». Диоды выпрямительного моста \/Д2… \/Д5— типа КД202 с буквой «Ж», «И»… «Н». Последние можно заменить на Д226Б или «В», но при этом мощность нагревателя не должна преного моста \/Д2… \/Д5— типа КД202 с буквой «Ж», «И»… «Н». Последние можно заменить на Д226Б или «В», но при этом мощность нагревателя не должна превышать 60 Вт. Если использовать по два диода Д226 в каждом плече моста, то мощность подключаемого к регулятору нагревателя можно увеличить до 130 Вт. С диодами типа КД202 мощность может быть до 600 Вт.
Величины сопротивлений резисторов также могут несколько отличаться от приведенных на схеме рис. 1. R1 — регулировка температуры — переменный резистор любого типа от 33 до 47 кОм. R2 — типа МЛТ-0,5 или 0,25 от 1,5 до 1,8 МОм. R3 и R4 — того же типа — 5,6… 6,8 кОм и 47… 51 кОм соответственно. R5 — МЛТ-2 от 18 до 20 кОм.
Детали регулятора температуры монтируют на печатной плате (рис. 2) из фольгированного гетинакса или текстолита толщиной 1,5… 2,0 мм. Проводники вырезают резаком по линейке. Расположение деталей на лицевой стороне платы показано на рис. 3. Размеры платы и рисунок проводников позволяют устанавливать на ней диоды как типа КД202, так и типа Д226.
Датчик температуры VT1 необходимо обязательно поместить в изолирующую тонкостенную пластмассовую трубку подходящего диаметра и соединить с платой парой свитых между собой проводников. Ручка на оси переменного резистора R1 также обязательно должна быть пластмассовой.
Несмотря на простоту, терморегулятор очень надежен в работе. За три года он меня ни разу не подводил.
Простая и надёжная схема терморегулятора для инкубатора
ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ
С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.
Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.
Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье.
Простая, потому что кучу транзисторов заменила одна микросхема.
Надёжная, потому что в схеме используются некоторые моменты:
- Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
- Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
- При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
- Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.
На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.
На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.
Третий элемент DD1.3 — сумматор.
Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.
Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.
Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.
Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.
Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.
Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.
Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.
Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.
Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.
Терморезистор | R3 |
1 kОм | 2,7 кОм |
2 кОм | 4,3 кОм |
3,6 кОм | 7,5 кОм |
10 кОм | 10 кОм |
15 кОм | 15 кОм |
Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.
Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).
Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).
Гистерезис очень сильно зависит от типа применяемого терморезистора.
Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.
Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.
Таблица напряжений по постоянному току микросхемы К561ЛА7
(измеряется цифровым мультиметром в рабочей схеме)
№ вывода | |
1, 2 | 4,3 / 5,5 |
3 | 0,2 / 8,9 |
4 | 3,8 / 8,9 |
5, 6 | 4,1 / 0 |
7 | 0 |
8 | 7 / 8,9 |
9 | 0,2 / 8,9 |
10 | ~ |
12, 13 | 0 |
14 | 9 / 7,5 |
Фото собранной платы
Примечание: маркировка некоторых деталей согласно схемы изменилась.
Фото печатной платы
Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!
А. Зотов. Волгоградская обл.
P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.
Фото готовой платы, собранной из набора
Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.
Наш «Магазин Мастера«
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Запитываем сверхяркий светодиод от одной батарейки 1.5 вольта!
- Светодиодный ночник своими руками
- Как заменить разъём microUSB в планшете?
Давно хотел сделать себе миниатюрный и яркий фонарик питающийся от одного элемента АА или ААА. Для таких целей есть даже спец. микросхемы, но их дефицит у нас + жаба заставили меня пораскинуть мозгами. В результате было сделано это чудо: Подробнее…
Самодельный ночник на сверхъярких светодиодах
Раньше мы писали о доработке ночника «Луна». У него есть один недостаток — он питается от батарей и на долгое время включать его нельзя. Сегодня пойдёт речь: как сделать светодиодный ночник своими руками с питанием от сети? Его можно сделать из доступных материалов всего за один час. А также рассмотрим вариант изготовления светодиодной лампы.
Подробнее…
Для зарядки и передачи данных на компьютер в планшетах используется разъём microUSB (Universal Serial Bus — «универсальная последовательная шина»). Часто бывает такая неисправность, как механическое повреждение этого разъёма. О том, как самому перепаять разъём micro usb Вы узнаете в этой статье.
Подробнее…
Популярность: 143 659 просм.
Терморегуляторы – схемы и описание – Копилка знаний
Регулятор температуры паяльника.
Этот очень простой регулятор позволяет поддерживать паяльник в горячем состоянии, но с недогревом. С помощью регулирующего элемента мощность паяльника, рассчитанного на 50 Вт, устанавливается в пределах от 25 до 48 Вт. Принципиальная схема регулятора приведена на рис.
С помощью диода Д1 на паяльник подаются положительные полупериоды сетевого напряжения 220 В. Отрицательные полупериоды подаются через тринистор Д2, который управляется переменным резистором R2. Резистор R1 служит для ограничения тока управляющего электрода и вместе с конденсатором С1 создает необходимый для регулировки сдвиг фазы.
Простой терморегулятор
Этот терморегулятор предназначен для поддержания температуры в замкнутом объеме, например в термостате, с помощью включения или выключения вентилятора. Пределы регулировки составляют от 28 до 40 °С, точность ±1 °С. Питание осуществляется от батарей или внешнего блока питания напряжением 12 В. Принципиальная схема регулятора показана на рис.
На транзисторах Т1 и Т2 собран триггер Шмитта, работа которого управляется делителем напряжения, состоящим из резистора R2 и термистора R8. Питание делителя производится стабилизированным напряжением с помощью стабилитрона Д1 и резистора R1.
При пониженной температуре в контролируемом объеме сопротивление термистора и напряжение на базе транзистора Т1 велико, он открыт, а транзистор Т2 заперт. Поэтому электромагнитное реле Р1 обесточено и его контакты разомкнуты. При увеличении температуры, сверх установленной переменным резистором R4, напряжение на базе Т1 уменьшается и триггер опрокидывается. Теперь отпирается транзистор Т2 и срабатывает реле, замыкающимися контактами которого включается вентилятор. Диод ДЗ предохраняет транзистор Т2 вследствие пробоя от воздействия ЭДС самоиндукции обмотки реле.
Вместо указанных на схеме элементов можно использовать транзисторы КТ315Б, стабилитрон КС147А, диоды Д101, термистор СТ1-17. В качестве реле можно установить РЭС10, паспорт РС4.524.312.
Терморегулятор по схеме триггера Шмитта.
Этот автоматический регулятор предназначен для поддержания постоянной температуры в диапазоне от 10 до 50 °С с максимальной ошибкой не более ±1 °С. Максимальная мощность нагревателя составляет 500 Вт. Принципиальная схема регулятора приведена на рис.
На транзисторах Т1 и Т2 собран триггер Шмитта. Переменные резисторы R2 и R5 служат для установки порога его опрокидывания. В качестве термочувствительного элемента использован терморезистор R1 типа КМТ-10. Назначением резистора R3 является снижение сопротивления между базой Т1 и шиной питания до 30 кОм. В цепь коллектора транзистора Т2 включена обмотка реле Р1. Диод Д2 защищает ранзистор от пробоя возникающей ЭДС самоиндукции обмотки реле.
Триггер питается стабилизированным напряжением благодаря использованию стабилитрона ДЗ. Схема имеет бестрансформаторное питание с гасящим конденсатором СЗ и выпрямительным мостом на диодах Д4-Д7. Конденсаторы С1 и С4 предназначены для устойчивого срабатывания реле и снижения нагрузки на его контакты Р1/1. Лампочка Л1 сигнализирует о подаче питания на устройство.
Вместо транзисторов МП42Б можно использовать КТ361Б, а вместо диодов Д226Б – КД105Б. В регуляторе использовано открытое электромагнитное реле типа МРЦ-1, паспорт Ю.171.80.33.
Терморегулятор на тиристоре.
Этот терморегулятор рассчитан на подключение нагревательного прибора мощностью до 500 Вт. Принципиальная схема терморегулятора приведена на рис.
Чувствительным элементом в этой схеме служит терморезистор R5 типа ММТ-4, который вместе с резисторами R4 и R11 включен на входе триггера Шмитта на транзисторах Т1 и Т2. Пока температура равна или больше установленной переменным резистором R11, транзистор Т1 заперт, Т2 открыт, ТЗ заперт. Поэтому потенциал катода тиристора Д10 такой же, как потенциал управляющего электрода. Тиристор заперт, и напряжение сети не проходит через диодный мост Д6-Д9. К нагревателю питание не поступает.
Если температура меньше заданной, сопротивление терморезистора увеличивается, напряжение на базе транзистора Т1 тоже увеличивается и триггер опрокидывается. Тогда транзистор ТЗ отпирается, и падением напряжения на резисторе R9 отпирается тиристор. В результате диодный мост становится проводящим, и к нагревателю поступает напряжение сети.
Трансформатор Tpl собирается на сердечнике Ш 12×25. Обмотка I содержит 8000 витков провода ПЭВ-1 диаметром 0,1 мм, а обмотка II – 170 витков провода ПЭВ-1 диаметром 0,4 мм. В качестве ТЗ можно использовать транзистор КТ315А. В связи с тем, что тиристоры КУ201Л допускают прямое напряжение в запертом состоянии не более 300 В, а амплитудное значение сетевого напряжения составляет 311 В, во избежание пробоя тиристора рекомендуется вместо КУ201Л использовать тиристор КУ202М или КУ202Н, допускающие указанное напряжение до 400 В.
По этой теме читайте на сайте :
Термодатчики на транзисторах в схемах на МК
Физическая природа полупроводниковых материалов такова, что их параметры достаточно сильно зависят от температуры. В обычных усилительных схемах с этим явлением борются, а в измерителях температуры, наоборот, поощряют Например, у кремниевых транзисторов при постоянном токе коллектора с повышением температуры напряжение «база — эмиттер» U^^^ уменьшается с теоретическим коэффициентом 2.1 мВ/°С. Фактическое же изменение пропорционально отношению 1000|мВ|/Гх1 К], где Гх — температура среды по шкале Кельвина.
Пример расчёта. Пусть напряжение между базой и эмиттером стандартного кремниевого транзистора при температуре 7;)= 20°С составляет ^^^
С повышением температуры его корпуса до Г, = 35°С это напряжение уменьшается на 49м В: i
Реальное напряжение может несколько отличаться от расчётного, что зависит от положения рабочей точки транзистора и его типа. В любом случае рекомендуется снижать и стабилизировать ток, протекающий через /?—/7-переход, чтобы устранить эффект саморазогрева кристалла.
Рис. 3.67. Схемы подключения транзисторных термодатчиков к МК:
а) измерение температуры в диапазоне —30…+150°С. Термодатчиком выступает транзистор VTI, у которого напряжение (/[^э «дрейфует» с коэффициентом около 2 мВ/°С. Резисторами R4 и 7 выставляется диапазон температур и калибровочное напряжение +3 В на входе МК при комнатной температуре +25°С. Транзистор VTI имеет металлический корпус, торец которого можно запрессовать в термостойкую пластиковую трубку и использовать всю конструкцию как выносной щуп или зонд;
б) термодатчик на однопереходном транзисторе VTI обеспечивает линейность измерения температуры в диапазоне 0…+ 100°С;
в) транзистор VTI специально используется малогабаритный поверхностно монтируемый (SMD). Это необходимо для уменьшения тепловой инерционности датчика. К примеру, SMD- транзистор входит в стабильный тепловой режим через одну минуту после скачка температуры на 10°С (обычному «большому» транзистору требуется в несколько раз больше времени). Резистор /^/балансирует дифференциальную схему, состоящую из транзисторов VTI, VT2\
На Рис. 3.67, а…г показаны схемы подключения транзисторных термодатчиков к МК.
г) транзистор VT1 имеет в своём корпусе отверстие, через которое может закрепляться винтом на поверхности измеряемого объекта. Коллектор транзистора электрически соединяется со своим корпусом, что надо учитывать при монтаже. Температурный коэффициент преобразования прямо пропорционален отношению резисторов R3/R2 (в данной схеме около 20 мВ/°С).