Site Loader

Содержание

Биполярный транзистор как ключ (БТ, BJT)

Добавлено 1 сентября 2017 в 07:00

Сохранить или поделиться

Поскольку коллекторный ток транзистора пропорционально ограничен его током базы, то транзистор можно использовать как своего рода ключ с токовым управлением. Относительно небольшой поток электронов, передаваемых через базу транзистора, обладает способностью управлять намного большим потоком электронов через коллектор.

Предположим, у нас есть лампа, которую мы хотели включать и выключать с помощью ключа. Такая схема была бы предельно простой, как на рисунке ниже (a).

Для иллюстрации, давайте вставим вместо ключа транзистор, чтобы показать, как он может управлять потоком электронов через лампу. Помните, что управляемый ток через транзистор должен проходить между коллектором и эмиттером. Поскольку мы хотим контролировать ток через лампу, то мы должны подключить коллектор и эмиттер нашего транзистора на место двух контактов ключа.

Мы также должны убедиться, что поток электронов через лампу будет двигаться против направления стрелки эмиттера на условном обозначении (направление электрического тока должно совпадать с направлением стрелки), чтобы убедиться, что смещение перехода транзистора будет правильным, как показано на рисунке ниже (b).

(a) механический ключ, (b) ключ на NPN транзисторе, (c) ключ на PNP транзисторе.

Для этой работы может использоваться и PNP транзистор. Схема с ним показана на рисунке выше (c).

Выбор между NPN и PNP может быть произвольным. Всё, что имеет значение, заключается в правильных направлениях токов для правильного смещения перехода (поток электронов двигается против стрелки на обозначении транзистора).

Возвращаясь к NPN транзистору на схеме нашего примера, мы сталкиваемся с необходимостью добавить что-то еще для появления тока базы. Без подключения к выводу базы транзистора ток базы будет равен нулю, и транзистор не сможет включиться, в результате чего лампа всегда будет выключена. Помните, что для NPN транзистора ток базы должен состоять из электронов, протекающих от эмиттера к базе (против обозначения стрелки эмиттера, точно так же, как и поток электронов через лампу). Возможно, проще всего было бы подключить коммутатор между выводом базы транзистора и аккумулятором, как показано на рисунке ниже (a).

Транзистор: (a) закрыт, лампа выключена; (b) открыт, лампа включена (стрелками показано направление движения потока электронов)

Если ключ разомкнут, как показано на рисунке выше (a), вывод базы транзистора остается «висеть в воздухе» (не подключенным к чему-либо), и ток через этот вывод протекать не будет. В этом состоянии говорят, что транзистор закрыт. Если ключ замкнут, как показано на рисунке выше (b), электроны смогут перемещаться от эмиттера, через базу транзистора, через ключ, назад к положительному выводу батареи. Этот ток базы позволит протекать намного большему потоку электронов от эмиттера через коллектор, что приведет к тому, что лампа загорится. В этом состоянии максимального тока говорят, что транзистор
открыт/насыщен
.

Конечно, может показаться бессмысленным использование транзистора для этого способа управления лампой. В конце концов, мы всё еще используем в схеме ключ, не так ли? Если мы всё еще используем ключ для управления лампой – хотя и косвенно – тогда в чем смысл ставить транзистор для управления током? Почему бы просто не вернуться к нашей первоначальной схеме и использовать ключ напрямую для управления током лампы?

На самом деле здесь можно обратить внимание на два момента. Во-первых, тот факт, что при таком способе через контакты ключа должен проходить лишь небольшой ток базы, необходимый для открытия транзистора; транзистор сам обрабатывает большой ток лампы. Это может быть важным преимуществом, если переключатель может пропускать небольшой ток: небольшой переключатель может использоваться для управления относительно мощной нагрузкой. Что еще более важно, управляемое током поведение транзистора позволяет нам использовать что-то совершенно другое для включения и выключения лампы. Рассмотрим рисунок ниже, где пара солнечных элементов обеспечивает 1В для преодоления 0,7В напряжения база-эмиттер, что позволит протекать току через базу, который, в свою очередь, управляет лампой.

Солнечный элемент служит в качестве датчика освещенности (стрелками показано направления движения потоков электронов, электрические токи направлены в противоположную сторону)

Или мы можем использовать термопару (несколько соединенных последовательно термопар), чтобы обеспечить протекание тока базы, необходимого для открывания транзистора, как показано на рисунке ниже.

Одна термопара обеспечивает напряжение менее 40 мВ. Несколько соединенных последовательно термопар могут обеспечить напряжение, превышающее 0,7 В напряжения VБЭ транзистора, что вызовет появление тока базы и, следовательно, тока коллектора через лампу (стрелками показано направления движения потоков электронов, электрические токи направлены в противоположную сторону)

Даже микрофон (рисунок ниже) с достаточным напряжением и током (от усилителя) может открыть транзистор, если сигнал на его выходе выпрямляется из переменного напряжения в постоянное так, чтобы на PN-переход эмиттер-база транзистора подавалось прямое смещение.

Усиленный сигнал микрофона выпрямляется в постоянное напряжение для смещения базы транзистора, обеспечивающего больший ток коллектора (стрелками показано направления движения потоков электронов, электрические токи направлены в противоположную сторону)

К настоящему времени должен быть очевиден следующий момент: любой достаточный источник постоянного тока может использоваться для открывания транзистора, и от этого источника требуется лишь малая часть тока, необходимого для включения лампы. Здесь мы видим, что транзистор работает не только как коммутатор, но и как настоящий усилитель: использует относительно слабый сигнал для управления

относительно большой величиной мощности. Обратите внимание, что фактическое питание для зажигания лампы исходит от батареи справа на схеме. Это не малый ток сигнала от солнечного элемента, термопары или микрофона магически трансформируется в большее количество энергии. Скорее эти маломощные источники просто контролируют мощность батареи для зажигания лампы.

Подведем итоги:

  • Транзисторы могут использоваться в качестве коммутирующих элементов для управления постоянным напряжением, поступающим на нагрузку. Переключаемый (управляемый) ток проходит между эмиттером и коллектором; управляющий ток проходит между эмиттером и базой.
  • Когда через транзистор не протекает ток, говорят, что транзистор находится в закрытом состоянии (полностью не проводит ток).
  • Когда через транзистор протекает максимальный ток, говорят, что транзистор находится в открытом состоянии, состоянии насыщения (полностью проводит ток).

Оригинал статьи:

Теги

Биполярный транзисторКоммутаторКоммутацияОбучениеТранзисторный ключЭлектроника

Сохранить или поделиться

Ключ на двух транзисторах

При работе со сложными схемами полезным является использование различных технических хитростей, которые позволяют добиться поставленной цели малыми усилиями. Одной из них является создание транзисторных ключей. Чем они являются? Зачем их стоит создавать? Почему их ещё называют «электронные ключи»? Какие особенности данного процесса есть и на что следует обращать внимание?

На чем делаются транзисторные ключи

Статический режим работы

Насыщение ключа

В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.

Недостатки ненасыщенного ключа

  1. Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
  2. Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
  3. Насыщенный ключ обладает значительной температурной стабильностью.

Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.

Быстродействие

Взаимодействие с другими ключами

Что выбрать

  1. Незначительное значение остаточного напряжения на ключе в состоянии проводки.
  2. Высокое сопротивление и, как результат – малый ток, что протекает по закрытому элементу.
  3. Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
  4. Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.

Транзисторный ключ реле – вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки – и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое – превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Расчет транзисторного ключа

1) Коллектор-эмиттер – 45 В. Общая рассеиваемая мощность – 500 mw. Коллектор-эмиттер – 0,2 В. Граничная частота работы – 100 мГц. База-эмиттер – 0,9 В. Коллекторный ток – 100 мА. Статистический коэффициент передачи тока – 200.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45 ,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,4562=0,0556 мА.

5) Считаем ток базы: 56200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 – 0,9 = 4,1В.

7) Определяем сопротивление резистора базы: 4,1 ,00028 = 14,642,9 Ом.

Заключение

И напоследок про название «электронные ключи». Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом – дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там.

«Один в поле не воин». Так можно символически охарактеризовать однотранзисторные ключи. Естественно, в паре с себе подобными решать поставленные задачи гораздо легче. Введение второго транзистора позволяет снизить требования к разбросу и величине коэффициента передачи А21э- Двухтранзисторные ключи широко применяются для коммутации повышенных напряжений, а также для пропускания большого тока через нагрузку.

На Рис. 2.68, a…y приведены схемы подключения двухтранзисторных ключей на биполярных транзисторах к MK.

Рис. 2.68. Схемы подключения двухтранзисторных ключей на биполярных транзисторах (начало):

а)транзистор VT1 служит эмиттерным повторителем. Он усиливает ток и через ограничительный резистор R2 подаёт его в базу транзистора VT2, который непосредственно управляет нагрузкой RH;

б) транзисторы K77, VT2 включены по схеме Дарлингтона (другое название «составной транзистор»). Общее усиление равно произведению коэффициентов передачи Л21Э обоих транзисторов. Транзистор VT1 обычно ставят маломощный и более высокочастотный, чем VT2. Резистор R1 определяет степень насыщения «пары». Сопротивление резистора R2 выбирается обратно пропорционально току в нагрузке: от нескольких сотен ом до десятков килоом;

в) схема Д.Бокстеля. Диод Шоттки VD1 ускоряет запирание мощного транзистора VT2, повышая в 2…3 раза крутизну фронтов сигнала на частоте 100 кГц. Тем самым нивелируется основной недостаток схем с транзисторами Дарлингтона — низкое быстродействие;

г) аналогично Рис. 2.68, а, но транзистор VT1 открывается при переводе линии MK в режим входа с Z-состоянием или входа с внутренним « pull-up» резистором. В связи с этим уменьшается токовая нагрузка на линию порта, но снижается экономичность за счёт рассеяния дополнительной мощности на резисторе R1 при НИЗКОМ уровне на выходе MK;

д) «само защищённый ключ» на силовом транзисторе VT2 и ограничивающем транзисторе VT1 Как только ток в нагрузке Лн превысит определённый порог, например, из-за аварии или замыкания, на резисторе R3 выделяется напряжение, достаточное для открывания транзистора VT1 Он шунтирует базовый переход транзистора VT2, вызывая ограничение выходного тока;

е) двухтактный усилитель импульсов на транзисторах разной структуры; О

ж) транзистор И72открывается с относительно малой задержкой по времени (R2, VD1, C7), а закрывается — с относительно большой задержкой по времени (C7, R3, VT1)

з) высоковольтный ключ, обеспечивающий фронты импульсов 0.1 МК с при частоте повторения до 1 МГц. В исходном состоянии транзистор VT1 открыт, а ГТ2закрыт. На время импульса транзистор VT1 открывается и через него быстро разряжается ёмкость нагрузки 7?н. Диод VD1 исключает протекание сквозных токов через транзисторы VT1, VT2

и) составной эмиттерный повторитель на транзисторах VT1, ГТ2обладает сверхбольшим коэффициентом усиления по току. Резистор 7?2гарантированно закрывает транзисторы при НИЗКОМ уровне на выходе MK;

к)транзистор VT1 в открытом состоянии блокирует транзистор VT2. Резистор R1 служит коллекторной нагрузкой транзистора VT1 и ограничителем базового тока для транзистора VT2 л) мощный двухтактный каскад с буферной логической микросхемой 7)7)7, которая имеет выходы с открытым коллектором. Сигналы с двух линий MK должны быть противофазными. Резисторы R5, 7?6ограничиваюттоки в нагрузке, подключаемой к цепи 6 вых; О

м) ключ для нагрузки Лн, которая подключается к источнику отрицательного напряжения. Транзистор VT1 служит эмиттерным повторителем, а транзистор VT2 — усилителем с общей базой. Максимальный ток нагрузки определяется по формуле /н[мА] = 3.7 /Л,[кОм]. Диод VDJ защищает транзистор VT2 от переполюсовки питания.

н) ключ на транзисторах разной структуры. Резистор R1 определяет ток в нагрузке RH, но подбирать его надо осторожно, чтобы не превысить ток базы транзистора VT2 при полностью открытом транзисторе VT1 Схема критична к коэффициентам передачи обоих транзисторов;

о) аналогично Рис. 2.68, н, но транзистор VT1 используется как ключ, а не как переменное сопротивление. Ток в нагрузке задаётся резистором R4. Резистор R5 ограничивает начальный пусковой ток транзистора VT2 при большой ёмкостной составляющей нагрузки RH. Схема не критична к коэффициентам передачи транзисторов. Если в качестве К72используется «суперба» транзистор KT825, то сопротивление R4 следует увеличить до 5.1 …10 кОм;

п) практический пример коммутации высоковольтного напряжения 170 В при низком токе нагрузки при сопртивлении RH не менее 27 кОм;

p) аналогично Рис. 2.68, н, но с активным НИЗКИМ уровнем на выходе MK; О

О Рис. 2.68. Схемы подключения двухтранзисторных ключей на биполярных транзисторах (окончание):

с) транзисторы VT1 и кТ2работают в противофазе. Напряжение в нагрузку Лн подаётся через транзистор VT2 и диод VD1, при этом транзистор VT1 должен быть закрыт ВЫСОКИМ уровнем с верхнего выхода MK. Чтобы снять напряжение с нагрузки, транзистор Г72закрывается ВЫСОКИМ уровнем с нижнего выхода MK, после чего транзистор VT1 открывается и через диод VD2 ускоренно разряжает ёмкость нагрузки. Достоинство — высокое быстродействие, возможность быстрой повторной подачи напряжения в нагрузку;

т) на MK подаётся «взвешенное» и отфильтрованное питание в диапазоне 4…4.5 В. Обеспечивают это гасящий стабилитрон VD1 и помехоподавляющий конденсатор C1. При ВЫСОКОМ уровне на выходе МК транзисторы K77, Г72закрыты, при НИЗКОМ — открыты. Максимально допустимый ток стабилитрона VD1 должен быть таким, чтобы он был больше суммы тока потребления MK, тока через резистор R1 при НИЗКОМ уровне на выходе MK и тока внешних цепей, если они подключены к MK по другим линиям портов;

у) видеоусилитель натранзисторах VT1 и VT2, которые включены по схеме Шиклаи (Sziklai). Это разновидность схемы Дарлингтона, но на транзисторах разной проводимости. Данная «парочка» эквивалентна одному транзистору структуры п—р—п со сверхвысоким коэффициентом усиления Л21Э. Диоды VD1, КД2защищаюттранзисторы от выбросов напряжения, проникающих извне по цепи ВЫх- Резистор R1 ограничивает ток при случайном коротком замыкании в кабеле, подстыкованном к внешней удалённой нагрузке 75 Ом.

Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.

С чего все начиналось

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.

Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.

Транзисторный ключ

Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:

Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Условия для работы транзисторного ключа

Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.

Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.

Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.

Базовая схема транзисторного ключа

А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:

Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже

В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!

Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉

И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.

Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:

Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.

Второй способ. Добиться того, чтобы UБЭ

Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.

Расчет транзисторного ключа

Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:

Для начала можно найти ток базы:

IБ – это базовый ток, в Амперах

kНАС– коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

IK– коллекторный ток, в Амперах

Ну а дальше дело за малым

Это самый простой расчет без всяких заморочек.

Расчет транзисторного ключа на практике

Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.

Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.

Транзистор КТ819Б структуры NPN

А вот и его цоколевка

Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.

Лампочка при питании 6 В светит примерно вот так:

А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.

0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.

Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148

Итак, находим ток базы по формуле

Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН

P – это мощность в Ваттах

UКЭ – напряжение между коллектором и эмиттером, В

IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А

Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор

Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:

Теперь считаем базовый резистор по формуле:

Берем ближайший из ряда, то есть 1 кОм.

Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.

Собираем схему и смотрим, как она работает

В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)

Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.

Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.

Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.

Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.

Применение транзисторного ключа в связке с МК

Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:

В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.

Заключение

В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.

Схема транзисторного ключа на 12 вольт

Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.

Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база – эмиттер».
  2. При этом канал «коллектор – эмиттер» открывается.
  3. Через канал «коллектор – эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов – около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер – коллектор» может меняться в больших пределах.

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер – коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор – эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор – эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база – эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Практические конструкции

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор – эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.

Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база – эмиттер».
  2. При этом канал «коллектор – эмиттер» открывается.
  3. Через канал «коллектор – эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов – около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер – коллектор» может меняться в больших пределах.

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер – коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор – эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор – эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база – эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Практические конструкции

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор – эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.

С чего все начиналось

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.

Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.

Транзисторный ключ

Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:

Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Условия для работы транзисторного ключа

Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.

Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.

Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.

Базовая схема транзисторного ключа

А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:

Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже

В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!

Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉

И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.

Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:

Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.

Второй способ. Добиться того, чтобы UБЭ

Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.

Расчет транзисторного ключа

Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:

Для начала можно найти ток базы:

IБ – это базовый ток, в Амперах

kНАС– коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

IK– коллекторный ток, в Амперах

Ну а дальше дело за малым

Это самый простой расчет без всяких заморочек.

Расчет транзисторного ключа на практике

Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.

Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.

Транзистор КТ819Б структуры NPN

А вот и его цоколевка

Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.

Лампочка при питании 6 В светит примерно вот так:

А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.

0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.

Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148

Итак, находим ток базы по формуле

Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН

P – это мощность в Ваттах

UКЭ – напряжение между коллектором и эмиттером, В

IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А

Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор

Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:

Теперь считаем базовый резистор по формуле:

Берем ближайший из ряда, то есть 1 кОм.

Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.

Собираем схему и смотрим, как она работает

В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)

Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.

Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.

Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.

Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.

Применение транзисторного ключа в связке с МК

Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:

В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.

Заключение

В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.

Ключи на биполярных транзисторах | Основы электроакустики

В линейных схемах потенциал коллектора транзистора устанавливается таким, чтобы его величина находилась в пределах между напряжением питания и напряжением на коллекторе в режиме насыщения UК НАС. При этом усиление сигнала осуществляется в окрестности установленной рабочей точки.

Отличительной особенностью линейных схем является то, что величина входного сигнала остается настолько малой, что выходное напряжение линейно зависит от входного и не выходит за пределы верхней и нижней границ линейного участка характеристики, так как в противном случае появились бы заметные искажения сигнала.

В отличие от линейных схем цифровое схемы работают только в двух характерных рабочих состояниях. Эти состояния характеризуются тем, что выходное напряжение может быть либо больше некоторого заданного напряжения , либо меньше заданного напряжения  причем UL < UH. Если выходное напряжение превышает , то говорят, что схема находится в состоянии H (high – выcокий), если же оно меньше, чем  говорят, что она находится в состоянии L (low – низкий).

Величины уровней  и  зависят только от используемой схемотехники. Чтобы можно было однозначно интерпретировать выходной сигнал, уровни, лежащие между значениями  и , считаются запрещенными. Схемотехнические особенности, определяемые этими требованиями, рассмотрим на примере транзисторного ключа, представленного на рис. 15.2.

 

Рис. 15.2. Транзисторный ключ

 

В схеме должны выполняться следующие условия:

UВЫХ ≥ UH при UУПРUL,                       (15.1)

UВЫХ ≤ UL при UУПРUH.                      (15.2)

 

Эти условия должны выполняться даже для самого неблагоприятного случая, т.е. UВЫХ не должно быть меньше, чем  при UУПР=UL, и UВЫХ не должно быть больше, чем  при UУПР=UH. Такие условия могут быть выполнены соответствующим выбором уровней  и , а также величин сопротивлений RK и RБ. Передаточная характеристика транзисторного ключа показана на рис. 15.3.

 

Рис. 15.3. Передаточная характеристика ключа

 

Параллельный ключ. Применение биполярного транзистора в качестве параллельного ключа показано на рис. 15.3, а, б.

 

 

 

Рис. 15.3. Параллельный ключ на биполярном транзисторе:

a) прямое включение; б) инверсное включение

 

Чтобы транзисторная цепь была достаточно низкоомна, необходимо поддерживать ток базы в пределах нескольких миллиампер. Токи коллектора и эмиттера не должны превышать этих значений; при этом остаточные напряжения, соответствующие IК=0 или IЭ=0, будут малы.

Последовательный ключ. На рис. 15.4 представлена схема последовательного коммутатора, выполненная на биполярном транзисторе. Чтобы перевести этот транзистор в режим отсечки, необходимо приложить отрицательное управляющее напряжение. Оно должно быть по абсолютной величине большим, чем максимальное напряжение отсечки.

Рис. 15.4. Последовательный ключ на базе насыщенного эмиттерного повторителя

 

Чтобы открыть транзистор, на его вход надо подать управляющее напряжение большее, чем напряжение отсечки, на величину ΔU = IБRБ. При этом переход коллектор-база откроется, и транзистор будет работать как ключ в инверсном включении. Недостатком схемы является протекание базового тока IБ транзистора через цепь источника входного сигнала. Чтобы это не сказывалось на работе схемы, внутреннее сопротивление источника сигнала должно быть достаточно малым.

Если выполняется это условие, то схема оказывается пригодной и для положительного входного напряжения. При этом ток эмиттера IЭ открытого транзистора будет положителен, что уменьшает напряжение смещения. При определенном значении тока эмиттера IЭ оно может даже равняться нулю.

В этом режиме работы схема представляет собой насыщенный эмиттерный повторитель. Для управляющего напряжения, величина которого лежит в пределах от нуля до входного напряжения (0 < UУПР < UВХ), она работает как эмиттерный повторитель сигнала управляющего сигнала. Это обстоятельство иллюстрируется передаточной характеристикой ключа для положительных входных напряжений, представленной на рис. 15.5.

 

Рис. 15.5. Передаточная характеристика для положительных входных напряжений

 

Последовательно-параллельный ключ. Если совместить насыщенный эмиттерный повторитель и параллельный ключ, получится последовательно-параллельный коммутатор, имеющий в обоих рабочих состояниях малое напряжение смещения. Недостатком его является необходимость наличия комплементарных управляющих сигналов. Более простое управление можно обеспечить, если применить изображенный на рис. 15.6 комплементарный эмиттерный повторитель, который работает в режиме насыщения в обоих направлениях. Для этого необходимо обеспечить    выполнение    следующих   условий   UУПР МАКС>UВХ   и UУПР МИН<0.

Благодаря низкому выходному сопротивлению в обоих режимах схема реализует высокую скорость коммутации выходного напряжения при 0 < UВЫХ < UВХ.

 

 

Рис. 15.6. Последовательно – параллельный ключ

Как работает транзисторный ключ — Инженер ПТО

Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.

Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.

Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.

Рисунок 1. Входная характеристика транзистора

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!

Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».

Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.

Как рассчитать режим работы ключевого каскада

Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.

Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.

Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.

Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.

Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.

При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).

Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.

Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.

Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»

Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.

Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».

Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.

Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.

Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.

Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.

При работе со сложными схемами полезным является использование различных технических хитростей, которые позволяют добиться поставленной цели малыми усилиями. Одной из них является создание транзисторных ключей. Чем они являются? Зачем их стоит создавать? Почему их ещё называют «электронные ключи»? Какие особенности данного процесса есть и на что следует обращать внимание?

На чем делаются транзисторные ключи

Статический режим работы

Насыщение ключа

В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.

Недостатки ненасыщенного ключа

  1. Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
  2. Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
  3. Насыщенный ключ обладает значительной температурной стабильностью.

Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.

Быстродействие

Взаимодействие с другими ключами

Что выбрать

  1. Незначительное значение остаточного напряжения на ключе в состоянии проводки.
  2. Высокое сопротивление и, как результат – малый ток, что протекает по закрытому элементу.
  3. Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
  4. Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.

Транзисторный ключ реле – вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки – и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое – превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Расчет транзисторного ключа

1) Коллектор-эмиттер – 45 В. Общая рассеиваемая мощность — 500 mw. Коллектор-эмиттер – 0,2 В. Граничная частота работы – 100 мГц. База-эмиттер – 0,9 В. Коллекторный ток – 100 мА. Статистический коэффициент передачи тока – 200.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45 ,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,4562=0,0556 мА.

5) Считаем ток базы: 56200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 – 0,9 = 4,1В.

7) Определяем сопротивление резистора базы: 4,1 ,00028 = 14,642,9 Ом.

Заключение

И напоследок про название «электронные ключи». Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом – дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там.

Микроконтроллерами можно производить управление мощными устройствами – лампами накаливания, нагревательными ТЭНами, даже электроприводами. Для этого используются транзисторные ключи – устройства для коммутации цепи. Это универсальные приборы, которые можно применить буквально в любой сфере деятельности – как в быту, так и в автомобильной технике.

Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15. 14 А, напряжений 50. 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Практические конструкции

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Режим насыщения транзистора — теория и практика

Между простой переключающей схемой и линейным усилителем на транзисторе имеется очевидное различие. В нормально работающем линейном усилителе коллекторный ток всегда прямо пропорционален базовому току. В переключающей схеме, такой как на рис. 1., коллекторный ток определяется, главным образом, напряжением питания VCC и сопротивлением нагрузки RL. Режим насыщения транзистора является достаточно важным и заслуживает подробного обсуждения.

Рис. 1. Иллюстрация режима насыщения. Транзистор действует как ключ для включения лампы.

Рассмотрим, что происходит с коллекторным током в схеме на рис. 1, если базовый ток постепенно увеличивается, начиная от нуля. Когда ключ S1 разомкнут, базовый ток не течет и ток коллектора ничтожно мал. Замыкание S1 приводит к появлению тока базы IB = VCC/RB, где мы пренебрегли разностью потенциалов на переходе база-эмиттер. Ток коллектора, протекающий по нагрузке RL, равен IC=hFEVCC/RB. Для конкретной схемы, приведенной на рисунке, при hFE = 100 и при максимальном значении RB (50 кОм) получим:

IC=100×10/5000 А=20 мА

Падение напряжения на RL определяется произведением RLIC и в нашем случае равно 50 х 0,02 = 1 В. Транзистор при этом находится в линейном режиме; уменьшение RB приводит к увеличению тока базы, увеличению тока коллектора и, следовательно, к увеличению падения напряжения на RL. В этих условиях схема могла бы быть использована как усилитель напряжения.

Теперь рассмотрим случай, когда

RB=hFERL

и ток базы равен

IB=VCC/RB=VCC/(hFERL)

Следовательно, коллекторный ток равен

IC=(hFEVCC)/(hFERL)=VCC/RL

С точки зрения нагрузки транзистор ведет себя как пара контактов ключа. Из закона Ома следует, что ток нагрузки в этой ситуации не может превышать величины VCC/RL. Поэтому дальнейшее увеличение тока базы не может увеличить ток коллектора, который определяется теперь только сопротивлением нагрузки и напряжением питания. Транзистор находится в насыщении. На практике при насыщении транзистора между коллектором и эмиттером всегда остается небольшое напряжение, обычно обозначаемое VCE(sat). Как правило, оно меньше 1 В и может доходить до 0,1 B y транзисторов, специально предназначенных для работы в качестве ключей. Обычно VCE(sat) уменьшается по мере того, как через переход база-эмиттер течет все больший ток, то есть в случае, когда отношение тока коллектора IC к току базы IB становится значительно меньше, чем коэффициент усиления тока транзистора hFE.

Грубо говоря, глубокое насыщение (малое значение VCE(sat)) имеет место, когда

IC/IB < hFE/5

Для схемы типа той, какая показана на рис. 1, когда ток базы задается просто подключением резистора к источнику питания, мы выбираем

RB/RL < hFE/5

Следовательно, для схемы на рис. 1, принимая типичное для транзистора 2N3053 (аналог КТ630Б — см. аналоги отечественных и зарубежных транзисторов) значение коэффициента усиления тока hFE = 150, имеем

RB/RL < 150/5 = 30.

Следовательно, при RL = 50 Ом мы выбираем

RB < 30 х 50 Ом = 1,5 кОм.

Итак, если в качестве нагрузки используется лампа с сопротивлением 50 Ом, то для ее эффективного включения нам следует выбрать сопротивление базового резистора меньше 1,5 кОм. Если это невозможно, когда, например, в качестве RB используется фоторезистор с минимальным сопротивлением 10 кОм, то следует воспользоваться схемой Дарлингтона, чтобы увеличить коэффициент усиления тока.

Если биполярный транзистор работает с током коллектора, близким к максимальному, и нужно поддержать напряжение VCE(sat) на уровне долей вольта, то из-за уменьшения hFE может понадобиться базовый ток больше, чем Iс/10.

Возможно покажется неожиданным, что VCE(sat) может быть много меньше, чем напряжение VBE, которое у кремниевого транзистора равно примерно 0,6 В. Происходит это потому, что в режиме насыщения переход коллектор-база смещен в прямом направлении. Следовательно, мы имеем два р-n перехода, смещенных в прямом направлении, включенных навстречу друг другу так, что падения напряжения на них взаимно компенсируются. Эта способность биполярного транзистора иметь в режиме насыщения очень маленькое падение напряжения между коллектором и эмиттером, делает его весьма полезным переключающим прибором. Многие из наиболее важных применений электроники, включая обширную область цифровой электроники, используют переключающие схемы.

В режиме переключений транзистор работает либо с фактически нулевым током коллектора (транзистор выключен) или с фактически нулевым напряжением на коллекторе (транзистор включен). В обоих случаях мощность, рассеиваемая на транзисторе, очень мала. Значительная мощность рассеивается только в то время, когда происходит переключение: в это время и напряжение коллектор-эмиттер и ток коллектора имеют конечные значения.

Маломощный транзистор, такой как 2N3053, с максимально допустимой рассеиваемой мощностью менее одного ватта, может переключать мощность в нагрузке в несколько ватт. Следует обратить внимание на то, что максимальные значения коллекторного напряжения и тока не должны выходить за допустимые пределы; кроме того, желательно осуществлять переключения возможно быстрее, чтобы избежать рассеяния чрезмерно большой мощности.

Pnp транзистор в режиме ключа

Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.

С чего все начиналось

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.

Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.

Транзисторный ключ

Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:

Знакомая схемка не так ли? Здесь все элементарно и просто 😉 Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор “R” здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Условия для работы транзисторного ключа

Итак, давайте вспомним, какие требования должны быть, чтобы полностью “открыть” транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется “режимом насыщения“.

Этот рисунок – воображение моего разума. Здесь я нарисовал тот самый режим насыщения.

Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.

Базовая схема транзисторного ключа

А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока 😉 Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:

Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже

В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!

Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере 😉

И что, теперь каждый раз при отключении заземлять базу? В идеале – да. Но есть более хитрое решение 😉 Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.

Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:

Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.

Второй способ. Добиться того, чтобы UБЭ

Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме “отсечки“.

Расчет транзисторного ключа

Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:

Для начала можно найти ток базы:

IБ – это базовый ток, в Амперах

kНАС– коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.

IK– коллекторный ток, в Амперах

Ну а дальше дело за малым

Это самый простой расчет без всяких заморочек.

Расчет транзисторного ключа на практике

Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.

Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.

Транзистор КТ819Б структуры NPN

А вот и его цоколевка

Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.

Лампочка при питании 6 В светит примерно вот так:

А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.

0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.

Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148

Итак, находим ток базы по формуле

Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН

P – это мощность в Ваттах

UКЭ – напряжение между коллектором и эмиттером, В

IН – сила тока, протекающая через нагрузку и коллектор-эмиттер, А

Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор

Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:

Теперь считаем базовый резистор по формуле:

Берем ближайший из ряда, то есть 1 кОм.

Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.

Собираем схему и смотрим, как она работает

В данном случае синие провода – это питание с Bat2 (MEILI), а другие два провода – это питание с блока питания Bat1 (YaXun)

Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.

Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.

Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.

Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.

Применение транзисторного ключа в связке с МК

Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:

В резистор RБЭ нет необходимости, потому как выходы МК “подтягивается” к нулю еще при программировании.

Заключение

В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.

Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.

Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.

Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.

Рисунок 1. Входная характеристика транзистора

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!

Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».

Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.

Как рассчитать режим работы ключевого каскада

Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.

Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.

Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.

Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.

Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.

При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).

Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.

Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.

Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»

Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.

Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».

Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.

Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.

Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.

Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.

Для упрощения рассказа можно представить транзистор в виде переменного резистора. Вывод базы это есть как раз та самая ручка, которую можно покрутить. При этом изменяется сопротивление участка коллектор – эмиттер. Крутить базу, конечно, не надо, может оторваться. А вот подать на нее некоторое напряжение относительно эмиттера, конечно, можно.

Если напряжение не подавать вовсе, а просто взять и замкнуть выводы базы и эмиттера пусть даже и не накоротко, а через резистор в несколько КОм. Получается, что напряжение база – эмиттер (Uбэ) равно нулю. Следовательно, нет и тока базы. Транзистор закрыт, коллекторный ток пренебрежительно мал, как раз тот самый начальный ток. Примерно такой же, как у диода в обратном направлении! В этом случае говорят, что транзистор находится в состоянии ОТСЕЧКИ, что на обычном языке значит, закрыт или заперт.

Противоположное состояние называется НАСЫЩЕНИЕ. Это когда транзистор открыт полностью, так, что дальше открываться уже некуда. При такой степени открытия сопротивление участка коллектор эмиттер настолько мало, что включать транзистор без нагрузки в коллекторной цепи просто нельзя, сгорит моментально. При этом остаточное напряжение на коллекторе может составить всего 0,3…0,5В.

Чтобы довести транзистор до такого состояния, надо обеспечить достаточно большой ток базы, подав на нее относительно эмиттера большое напряжение Uбэ,- порядка 0,6…0,7В. Да, для перехода база-эмиттер такое напряжение без ограничительного резистора очень велико. Ведь входная характеристика транзистора, показанная на рисунке 1, очень похожа на прямую ветвь характеристики диода.

Рисунок 1. Входная характеристика транзистора

Эти два состояния – насыщение и отсечка, используются в том случае, когда транзистор работает в ключевом режиме наподобие обычного контакта реле. Основной смысл такого режима в том, что малый ток базы управляет большим током коллектора, который в несколько десятков раз больше тока базы. Большой ток коллектора получается за счет внешнего источника энергии, но все равно усиление по току, что называется, налицо. Простой пример: маленькая микросхема включает большую лампочку!

Чтобы определить величину такого усиления транзистора в ключевом режиме используется «коэффициент усиления по току в режиме большого сигнала». В справочниках от обозначается греческой буквой β «бетта». Практически для всех современных транзисторов при работе в ключевом режиме этот коэффициент никак не меньше 10…20 Определяется β как соотношение максимально возможного тока коллектора к минимально возможному току базы. Величина безразмерная, просто «во сколько раз».

Даже если ток базы будет больше, чем требуется, беды особой нет: транзистор все равно не сможет открыться больше. На то он и режим насыщения. Кроме обычных транзисторов для работы в ключевом режиме используются «дарлингтоновские» или составные транзисторы. Их «супер — бетта» может достигать 1000 и более раз.

Как рассчитать режим работы ключевого каскада

Чтобы не быть совсем голословным, попробуем рассчитать режим работы ключевого каскада, схема которого показана на рисунке 2.

Задача такого каскада очень простая: включить и выключить лампочку. Конечно, нагрузка может быть любой, — обмотка реле, электромотор, просто резистор, да мало ли что. Лампочка взята просто для наглядности эксперимента, для его упрощения. Наша задача чуть посложнее. Требуется рассчитать величину резистора Rб в цепи базы, чтобы лампочка горела в полный накал.

Такие лампочки применяются для подсветки приборной доски в отечественных авто, поэтому найти ее несложно. Транзистор КТ815 с током коллектора 1,5А для такого опыта вполне подойдет.

Самое интересное во всей этой истории, что напряжения в расчетах участия не принимают, лишь бы соблюдалось условие β ≥ Iк/Iб. Поэтому лампочка может быть на рабочее напряжение 200В, а базовая цепь управляться от микросхем с напряжением питания 5В. Если транзистор рассчитан на работу с таким напряжением на коллекторе, то лампочка будет мигать без проблем.

Но в нашем примере микросхем никаких не предвидится, базовая цепь управляется просто контактом, на который просто подается напряжение 5В. Лампочка на напряжение 12В, ток потребления 100мА. Предполагается, что наш транзистор имеет β ровно 10. Падение напряжения на переходе база – эмиттер Uбэ = 0,6В. См. входную характеристику на рисунке 1.

При таких данных ток в базе должен быть Iб = Iк / β = 100 / 10 = 10(мА).

Напряжение на базовом резисторе Rб составит (за вычетом напряжения на переходе база — эмиттер) 5В – Uбэ = 5В – 0,6В = 4,4В.

Вспоминаем закон Ома: R = U / I = 4,4В / 0,01А = 440Ом. Согласно системе СИ подставляем напряжение в вольтах, ток в амперах, результат получаем в Омах. Из стандартного ряда выбираем резистор сопротивлением 430Ом. На этом расчет можно считать законченным.

Но, кто внимательно посмотрит на схему, может спросить: «А почему ничего не было сказано о резисторе между базой и эмиттером Rбэ? Про него просто забыли, или он не так и нужен?»

Назначение этого резистора — надежно закрыть транзистор в тот момент, когда кнопка разомкнута. Дело в том, что если база будет «висеть в воздухе», воздействие всяческих помех на нее просто гарантировано, особенно, если провод до кнопки достаточно длинный. Чем не антенна? Почти, как у детекторного приемника.

Чтобы надежно закрыть транзистор, ввести его в режим отсечки необходимо, чтобы потенциалы эмиттера и базы были равны. Проще всего было бы в нашей «учебной схеме» использовать переключающий контакт. Надо включить лампочку перекинули контакт на +5В, а когда потребовалось выключить — просто замкнули вход всего каскада на «землю».

Но не всегда и не везде можно позволить такую роскошь, как лишний контакт. Поэтому проще выровнять потенциалы базы и эмиттера при помощи резистора Rбэ. Номинал этого резистора рассчитывать не надо. Обычно его принимают равным десяти Rб. Согласно практическим данным его величина должна быть 5…10КОм.

Рассмотренная схема является разновидностью схемы с общим эмиттером. Тут можно отметить две особенности. Во-первых, это использование в качестве управляющего напряжения 5В. Именно такое напряжение используется, когда ключевой каскад подключается к цифровым микросхемам или, что теперь более вероятно, к микроконтроллерам.

Во-вторых, сигнал на коллекторе инвертирован по отношению к сигналу на базе. Если на базе присутствует напряжение, контакт замкнут на +5В, то на коллекторе оно падает практически до нуля. Ну, не до нуля, конечно, а до напряжения указанного в справочнике. При этом лампочка визуально не инвертируется,- сигнал на базе есть, есть и свет.

Инвертирование входного сигнала происходит не только в ключевом режиме работы транзистора, но и в режиме усиления. Но об этом будет рассказано в следующей части статьи.

Рекомендуем к прочтению

Падение напряжения на открытом транзисторе. Основной режим работы биполярных транзисторов

Импульсно-цифровая технология транзисторов основана на работе транзистора как ключа. Замыкание и размыкание цепи нагрузки — основное назначение транзистора, работающего в ключевом режиме. По аналогии с механическим переключателем (реле, контактором) качество транзисторного переключателя определяется в первую очередь падением напряжения (остаточным напряжением) на транзисторе в закрытом (открытом) состоянии, а также остаточным током транзистора в выключенное (закрытое) состояние.

Важность рассмотрения свойств транзисторного ключа для разъяснения последующего материала следует из того факта, что при изменении состояний транзистора в последовательной цепи с резистором и источником питания, по сути, формируются импульсные сигналы, а также различные преобразования импульсных сигналов в схемах и компонентах импульсной техники. Транзистор также используется как бесконтактный ключ в цепях постоянного и переменного тока для регулирования мощности, подаваемой на нагрузку.

В основе всех узлов и схем импульсной и цифровой техники лежит так называемая ключевая схема — каскад на транзисторе, работающий в ключевом режиме. Построение ключевой схемы похоже на каскад усиления. Транзистор в схеме ключа может быть включен с общей базой, общим эмиттером и общим коллектором. Самая распространенная схема МА. Этот тип включения биполярного транзистора используется в дальнейшем при рассмотрении ключевого режима его работы.

Рисунок 4.3 — Схема ключа на транзисторе и графическое определение режимов открытого и закрытого состояний транзистора

Ключевая схема транзисторного типа rr , показанная на рисунке 4.3, , но . Транзистор Т выполняет функцию ключа в последовательной цепи с резистором R K и источником питания.

Для удобства рассмотрения процессов в схеме в открытом и закрытом состояниях транзистора воспользуемся графоаналитическим методом, основанным на построении линии нагрузки a — b DC (рисунок 4.3, б ).

Линия нагрузки описывается соотношением U ke = — ( E к — I к R j) и проводится так же, как и для каскада усиления. Точки пересечения линии нагрузки с вольт-амперной характеристикой транзистора определяют напряжение на элементах и ​​ток в последовательной цепи.

Режим синхронизации (режим отсечки) транзистора осуществляется подачей на его вход напряжения положительной полярности ( U вход> 0), указанного на рисунке 4.3, , но без скоб. Под действием входного напряжения эмиттерный переход транзистора запирается ( U будет> 0) и его ток I e = 0. Однако через резистор R b течет обратно (тепловой) коллекторный переход I k0. Закрытому состоянию транзистора соответствует точка M h (см. Рисунок 4.3, b ).

Тепловой ток, протекающий через нагрузку I k0 из-за того, что транзистор в закрытом состоянии не обеспечивает полного отключения нагрузочного резистора R от источника питания.Низкое значение I k0 является одним из критериев выбора транзистора для ключевого режима работы.

Величина блокирующего входного напряжения U in. Z an выбрана таким образом, чтобы при протекании через резистор R b тепловой ток обеспечивался для выполнения условий:

U be = U дюймов z an — I k0 R b> 0.

Напряжение U 6e для германиевых транзисторов равно 0.5 … 2,0 В.

Открытое состояние транзистора достигается за счет изменения полярности входного напряжения ( U inM примерно на линии нагрузки.

Определяем необходимые условия для создания открытого состояния транзистора. Для этого предположим, что для U inI b постепенно увеличивается. Увеличение тока базы будет соответствовать увеличению тока коллектора и перемещению рабочей точки из положения M h вверх по линии нагрузки.Напряжение U, транзистора кэ затем постепенно снижается. До некоторого граничного значения базового тока I B.gr. известна пропорциональная зависимость между I to и I b.

С основами усилителей разобрались, мало что было сказано о том, что такое обратная связь и усиление. Приведен расчет схемы на операционном усилителе. Теперь мы готовы посмотреть немного глубже, чтобы понять основы.

Транзистор можно представить как переменное сопротивление.Положение регулятора зависит от тока, подаваемого на базу. Если ток не подается, сопротивление перехода коллектор-эмиттер очень велико. При подаче на базу небольшого тока сопротивление переменного резистора уменьшается, и по цепи КЭ протекает ток, в 31 раз превышающий ток базы. h31 — значение коэффициента усиления транзистора, находящегося в справочнике.

Если базовый ток постепенно увеличивать, то переходное сопротивление будет постепенно уменьшаться, пока не станет близким к нулю.В этот момент транзистор будет полностью открыт, именно этот режим мы рассматривали в статье о подключении нагрузки с помощью транзистора.

На этот раз нас интересует промежуточное состояние, поскольку вход и выход взаимосвязаны, сигнал на выходе будет копией входа, но усилен в несколько раз. Теперь разберемся в выигрыше. Дело в том, что h31 имеет довольно большой разброс для одного типа транзисторов, который может колебаться от 400 до 1000. Это также зависит от температуры.Поэтому существует типовая схема усиления, учитывающая все эти недостатки. Но для общего развития стоит рассказать, какие они вообще есть.

Напомним, что мы представили усилитель в виде черного ящика — две ножки на входе и две на выходе. В случае с транзистором одна из ножек будет постоянно общей для входа и выхода. В зависимости от этого транзистор может включаться по схеме с общей базой, с общим коллектором и общим эмиттером.


У каждой из этих схем есть свои достоинства и недостатки. Наша цель — рассмотреть включение по схеме с общим эмиттером, потому что эта схема позволяет нам усиливать как ток, так и напряжение.

На самом деле информации с расчетом схемы с общим эмиттером в интернете очень много, но, на мой взгляд, она не подходит для человека, который с трудом представляет, как выглядит транзистор. Здесь мы рассмотрим наиболее упрощенный вариант, который позволит получить очень приблизительный, но, на мой взгляд, четкий результат.Поэтому постараемся во всем разобраться поэтапно.

Настоящий транзистор имеет несколько особенностей, которые необходимо учитывать при проектировании схемы. Например, если на базу подать сигнал небольшой амплитуды, то на выходе ничего не будет — транзистор просто не откроется. Чтобы на выходе появился сигнал, его нужно немного приоткрыть, т.е. подать на базу напряжение смещения около 0,7В. Обычно это напряжение подается с помощью делителя напряжения.На номиналы резисторов пока не обращаем внимания, расчет будет немного дальше.

В следующий момент, когда транзистор откроется, ток будет протекать по цепи коллектор-эмиттер, а когда транзистор полностью открыт, ток будет ограничиваться только источником питания. Следовательно, транзистор может перегореть. Максимальное значение тока указано в инструкции, поэтому для ограничения тока в цепь коллектора помещается токоограничивающий резистор (как для светодиода).

Осталось добавить резистор в цепь эмиттера. Смысл его в том, что при изменении выходного напряжения под действием температуры окружающей среды изменяется и ток коллектора. Поскольку ток коллектора и эмиттера одинаковы, напряжение на резисторе эмиттера также изменяется. Напряжения базы и эмиттера связаны формулой U = U b — U e. Получается, что если на выходе напряжение увеличилось, то на базе уменьшится, а транзистор закроется и наоборот.Таким образом, транзистор саморегулируется, предотвращая изменение напряжения под воздействием внешних факторов, т.е. резистор эмиттера играет роль отрицательной обратной связи.

Напомним, что коэффициент усиления находится в довольно большом диапазоне. Поэтому эмиттерный резистор, помимо обратной связи, позволяет регулировать величину усиления схемы. Отношение резистора коллектора к резистору эмиттера приблизительно равно коэффициенту Ku.

Любой источник сигнала имеет собственное внутреннее сопротивление, поэтому для предотвращения протекания тока от внешнего источника VCC устанавливается блокирующий конденсатор C1.В результате мы получили схему усилителя с общим эмиттером.


Чтобы избежать искажения сигнала, необходимо приложить напряжение смещения к базе, т.е. транзистор должен быть постоянно приоткрыт, поэтому даже при отсутствии сигнала на входе ток будет течь по цепи коллектор-эмиттер. Этот ток называется током покоя, его рекомендуемое значение 1-2 мА. Остановимся на 1 мА.

Теперь нужно выбрать резисторы R3 и R4, их величина будет определять ток покоя, но нужно учитывать, что транзистор не сможет усилить напряжение ниже 0.7 В, поэтому выходной сигнал обычно колеблется относительно некоторой точки, которая обычно выбирается как половина напряжения питания. Следовательно, половина напряжения должна приходиться на эти резисторы, а вторая половина — на транзистор.

R3 + R4 = (Упит / 2) / Iк = 2,5В / 0,001 = 2,5кОм.
Требуемый коэффициент усиления равен 10, т.е. R3 должен быть в 10 раз больше, чем R4. Исходя из этого, есть два условия:
R3 + R4 = 2500
R3 = 10 * R4

Подставляем второе выражение в первую формулу
10R4 + R4 = 2500
11R4 = 2500
R4 = 227 Ом ближайшее действительное значение 220 Ом
R3 = 10 * R4 = 2270 ближайший рейтинг 2.2кОм

Пересчитать напряжение средней точки на выходе с учетом выбранных резисторов:
Uk = Upit- (Rk * Ik) = 5-2,2 * 0,001 = 2,8V

Теперь нужно рассчитать ток базы, для транзистора BC547C h31min = 420
Ib = (Упит / (Rk + Re)) / h31 = (5 / (2200 + 220)) / 420 = 0,00000492A

Ток делителя R1, R2 должен быть в 5-10 раз больше тока базы, чтобы не повлиять на него
Id = Ib * 10 = 0.0000492A

Рассчитываем полное сопротивление делителя R1, R2
R12 = Упит / Id = 5 / 0,0000492 = 101692 Ом

Напряжение Ube характерно для всех транзисторов, находится в пределах 0,55-0,7В. По знакомой формуле рассчитываем напряжение исходя из:
Ub = Ue + Ube = 0,22 + 0,66 = 0,88V

Отсюда рассчитываем сопротивление R2:
Rb2 = (Rb1 + Rb2) * Ub / Ep = (101 * 0,88) / 5 = 17,776 или 18кОм в номинальном диапазоне

Из их суммы R1, R2 можно найти R1
R1 = R12-R2 = 101-18 = 83кОм или 82кОм из имеющихся

Остается только блокирующий конденсатор, его значение должно быть больше
C>> 1/2 * pi * f * R2 || R1 f — нижняя граница усиленной частоты, 20 Гц примем
С = 1 / (6.28 * 20 * 82000) = 0,09 мкФ, 0,47 мкФ можно установить

В результате мы получили следующую схему:


Как видите, выходной вольтметр показывает 432мВ, т.е. коэффициент усиления схемы Ku = 432/50 ~ 8,5. Чуть меньше, чем ожидалось, но в целом неплохо. И еще, графики показывают, что сигнал, как уже было сказано, смещен относительно нуля, можно убрать постоянную составляющую, поставив на выход конденсатор. Также обратите внимание, что усиленный сигнал смещен на 180 градусов от входа.

Страшное слово — транзистор

Ну собственно, пройдя семь скучных и бесполезных глав про каждый мур =), мы дошли до самого интересного и увлекательного. К транзистору.

Современная электроника не могла бы существовать без этого элемента! Ведь даже самая сложная микросхема где-то в глубине своей силиконовой души состоит из одних и тех же транзисторов. Только очень маленькие.

Транзистор — это усилительный элемент. Он усиливает слабую энергию подаваемого на него сигнала за счет энергии дополнительного источника питания.


Объясняю. Все мы хоть раз ехали поездом, поездом или хотя бы трамваем. Когда поезд замедляется, всегда слышно характерное шипение. Он управляет пневматическим тормозным приводом. Другими словами, сжатый воздух идет от бака к тормозам. Тормозные колодки соединены с поршнем. Когда сжатый воздух начинает давить на поршень, поршень движется вперед и плотно прижимает колодки к колесу. Поезд тормозит … Но почему на поршень начинает поступать воздух? Вероятно, это то, чего хочет водитель.Он открывает вентиль в кабине, и выходит воздух. Это до неприличия просто!

Небольшая пояснительная картинка:


Теперь зададимся вопросом: мог ли машинист остановить поезд, если бы рычаг тормоза был напрямую соединен с тормозными колодками? Возможно нет. Как бы он ни катился, человек не может остановить поезд. А сжатый воздух облегчает это, просто откройте клапан.

Посмотрим, что получилось: водитель тратит немного энергии на нажатие рычага тормоза.Клапан открывается, и мощный поток сжатого воздуха с гораздо большей энергией прижимает тормозные колодки. То есть клапан можно назвать усилительным элементом, усиливающим слабую энергию, затрачиваемую человеком за счет сильной энергии сжатого воздуха.

Смею вас заверить, в транзисторе все точно так же. Только через него проходит не сжатый воздух, а электрический ток. Транзистор имеет три выхода: коллекторный, эмиттерный и базовый.


Между коллектором и эмиттером протекает сильный ток, он называется коллекторным (Ik), между базой и эмиттером — слабый управляющий ток базы (Ib).Величина тока коллектора зависит от величины базового тока, так же как давление сжатого воздуха зависит от того, насколько открыт клапан. Более того, ток коллектора всегда в определенное количество раз превышает ток базы. Это значение называется текущим усилением и обозначается h31e . Для различных типов транзисторов это значение колеблется от единиц до сотен раз.

Итак, коэффициент усиления по току — это отношение тока коллектора к току базы:

h31e = Ik / Ib

Чтобы рассчитать ток коллектора, необходимо умножить ток базы на коэффициент усиления:

Ik = Ib * h31e

Нарисуйте диаграмму.


В этой схеме транзистор регулирует яркость лампочки. Другими словами, он регулирует ток, протекающий через лампочку. Поскольку лампочка подключена к коллектору транзистора, то ток, протекающий через нее, является током коллектора.

Ток управления базой ограничен резистором R1. Зная этот ток и коэффициент усиления транзистора (h31e), можно легко узнать ток коллектора. С другой стороны, зная, какой ток коллектора нам нужен, мы всегда можем рассчитать ток базы и выбрать соответствующий резистор.

Посчитайте немного 🙂

.

Пусть наша лампочка питается током 0,33 А,
и у транзистора h31e = 100.
Какой базовый ток нужен, чтобы лампочка горела на полный нагрев?
А какое будет сопротивление R1?

Полный нагрев — это когда ток потребления равен номинальному.
Номинал — 0,33 А. Таким образом, требуемый ток коллектора составляет 0,33 А.
Ток базы должен быть меньше коллекторного в h31e раз. То есть — 100 раз. То есть он должен быть равен 0.33/100 = 0,0033А = 3,3 мА.
Ура, решили !!!

Схема транзисторного переключателя

— Электронная информация от PenguinTutor

Транзистор представляет собой усилитель, который может увеличивать силу тока, протекающего по цепи. Его можно использовать в качестве переключателя, используя только транзистор в выключенном состоянии или во включенном состоянии, используя область насыщения транзистора. В качестве переключателя транзистор часто используется для получения сигнала от цифровой схемы и использования его для переключения нагрузок с большей нагрузкой, чем может обеспечить интегральная схема (ИС).

На схеме ниже показана обычная простая конфигурация схемы транзисторного переключателя. Он состоит из одного транзистора NPN и изображает два резистора. Резистор R L не обязательно является резистором, но представляет значение сопротивления переключаемого устройства. Это может быть лампа, реле или какое-либо другое устройство, которому требуется больший ток, чем вход может управлять напрямую. Резистор может потребоваться, если коммутируемое устройство не имеет достаточного собственного сопротивления (например,Светодиоды). Резистор на базе R b — это резистор, используемый для предотвращения повреждения базы транзистора. Он должен быть достаточно большим, чтобы предотвратить повреждение транзистора, но при этом должен пропускать ток, достаточный для включения транзистора. Подробная информация о том, как определить размер резистора, объясняется ниже.

Как работает схема

Чтобы транзистор действовал как переключатель, он должен быть активирован как область насыщения.При включении в режиме насыщения транзистор действует как замкнутый переключатель, пропускающий ток через нагрузку.

Если переключаемая нагрузка представляет собой индуктивное устройство, такое как двигатель, соленоид или реле, то диод должен быть подключен в обратном направлении через нагрузку, чтобы предотвратить повреждение транзистора обратной ЭДС.

Хотя цель этого состоит в том, чтобы свести математические вычисления к минимуму, нам нужно использовать некоторую простую формулу, чтобы определить подходящее значение для базового резистора R b .Ключевое уравнение, используемое здесь, — это закон Ома.

Расчеты

Чтобы определить соответствующий уровень резистора, необходимо рассчитать соответствующий входной ток для насыщения транзистора. Вход обычно управляется гораздо более высоким током, чтобы гарантировать, что он находится в этой области насыщения (например, в 10 раз больше минимального базового входного тока насыщения).

Сначала нам нужно определить ток, протекающий через резистор R L . В зависимости от типа устройства его можно будет взять из таблицы данных на основе тока, необходимого для активации или работы устройства.Если это неизвестно — или нам нужно ограничить этот ток для защиты устройства, тогда сопротивление можно рассчитать с помощью закона Ома.

V cc — напряжение питания, V ce — падение напряжения между коллектором и эмиттером при насыщении. Значение V ce можно найти в паспорте транзистора.

Необходимо проверить техническое описание транзистора, чтобы убедиться в том, что через транзистор проходит максимальный ток. На транзисторе с меньшей мощностью это значение может быть довольно низким, например 100 мА на BC546, но на транзисторе высокой мощности оно может достигать 15 А на TIP3055.Если значение I c max слишком низкое, то необходимо использовать другой транзистор или добавить резистор для ограничения этого тока (если остальная часть схемы может работать с уменьшенным током).

После определения тока коллектора минимальный базовый ток можно найти, посмотрев на коэффициент усиления транзистора. Коэффициент усиления указан в техническом паспорте как hFE или β

.

Формула соотношения между током коллектора и базовым током:

, которую мы транспонируем как:

Коэффициент усиления транзистора не является постоянным, но для переключателя, использующего наименьшее значение, транзистор будет находиться в области насыщения.Примерные значения усиления составляют от 200 до 450 для транзистора BC546 или 45 для транзистора TIP3055.

Чтобы обеспечить полное включение транзистора даже при изменении нагрузки, мы обычно умножаем базовый ток в 10 раз. Если базовый ток, в десять раз превышающий требуемый базовый ток, превышает максимальный базовый ток, то значение ниже максимального. Вместо этого следует использовать базовый ток.

Чтобы подобрать резистор подходящего размера, воспользуемся следующей формулой.

Где V I — напряжение на входе базового резистора.

Практический пример

См. Мои примеры проектов с использованием транзисторных ключей

Общие сведения о конструкции схем транзисторов »Электроника

Разработка электронных схем с использованием биполярных транзисторов довольно проста, используя простые принципы проектирования и несколько уравнений.


Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Конструкция схемы с общим эмиттером Эмиттер-повторитель Общая база

См. Также: Типы транзисторных схем


Транзисторные схемы занимают центральное место в современных технологиях проектирования электронных схем.Хотя в наши дни интегральные схемы используются во многих схемах, базовая конструкция транзисторной схемы часто требуется в самых разных областях.

Хотя использование дискретных электронных компонентов с транзисторами требует большего количества компонентов, можно адаптировать схему для обеспечения именно той функциональности, которая требуется. Соответственно, схемы, использующие дискретные транзисторы и несколько дополнительных электронных компонентов, до сих пор остаются в основе конструкции электронных схем.

Это означает, что понимание конструкции транзисторной схемы по-прежнему важно, поскольку оно не только позволяет проектировать базовые транзисторные схемы, но также обеспечивает лучшее понимание работы интегральных схем, основанных на технологии биполярных транзисторов.

BC547 Транзистор с пластиковыми выводами

Основы биполярного транзистора

Очевидно, что ключевым электронным компонентом в любой транзисторной схеме является сам транзистор. Эти электронные компоненты могут быть получены в дискретной форме или могут быть внутри интегральной схемы.

Транзисторы производятся в различных форматах, и их можно получить для выполнения различных функций — от слабого сигнала до высокой мощности, от аудио до ВЧ и коммутации.

Они также бывают как PNP-транзисторы и NPN-транзисторы — из этих NPN-транзисторов более широко используются, поскольку они, как правило, подходят к широко используемой системе отрицательного заземления, а также их характеристики лучше с точки зрения скорости.

Хотя транзисторы NPN более широко используются, это не означает, что транзисторы PNP не используются. Они часто находят применение в качестве дополнения к транзисторам NPN и некоторым другим схемам.

Базовая структура транзистора и условные обозначения схем
Примечание о биполярном транзисторе:

Биполярный транзистор представляет собой устройство с тремя выводами, которое обеспечивает усиление по току, когда ток коллектора в раз больше тока базы. Биполярный транзистор широко доступен, и его характеристики оптимизируются в течение многих лет.

Подробнее о Устройство на биполярных транзисторах и принцип его работы

Биполярный транзистор доступен уже более семидесяти лет — его технология очень хорошо отработана, и хотя технология полевых транзисторов, вероятно, более широко используется в интегральных схемах, биполярные транзисторы все еще используются в огромных количествах в различных аналоговых и цифровых схемах, как в интегральных схемах и в виде дискретных электронных компонентов.

Биполярный транзистор был впервые изобретен в 1949 году группой ученых, работающих в Bell Labs в США. Его открытие представляет собой интересное чтение.

Примечание к истории транзисторов:

Биполярный транзистор был изобретен тремя исследователями, работающими в Bell Labroratories: Джоном Бардином, Уолтером Браттейном и Уильямом Шокли. Они работали над идеей, в которой для управления током в полупроводнике использовался эффект поля, но они не смогли реализовать эту идею.Они обратили свое внимание на другую возможность и создали устройство с тремя выводами, используя два близко расположенных точечных контакта на пластине из германия. Эта идея сработала, и они смогли продемонстрировать, что она принесла прибыль в конце 1949 года.

Подробнее о История биполярных транзисторов

Расчетные параметры схемы транзистора

Перед тем, как приступить к проектированию электронной схемы для транзисторной схемы, необходимо определить требования к схемам: некоторые из основных параметров, связанных с транзисторными схемами.

В требованиях к конструкции транзисторной схемы может быть ряд параметров:

  • Коэффициент усиления по напряжению: Коэффициент усиления по напряжению часто является ключевым требованием для проектирования электронных схем. Коэффициент усиления схемы — это увеличение напряжения от входа к выходу схемы. С математической точки зрения, коэффициент усиления по напряжению A v — это выходное напряжение, деленное на входное.

    Коэффициент усиления по напряжению — одна из ключевых целей многих схем, поскольку она обеспечивает «размер»

  • Коэффициент усиления по току: Коэффициент усиления по току схемы часто важен при проектировании электронных схем, особенно когда схема управляет нагрузкой с низким сопротивлением.Часто требуется схема без усиления по напряжению, и требуется только усиление по току, чтобы схема с относительно высоким выходным импедансом могла управлять другой схемой с более низким импедансом.

    Есть много примеров этого: генератору RF часто требуется буферный каскад, чтобы гарантировать, что сам контур генератора не загружен чрезмерно, но выход необходим для управления другими цепями. Коэффициент усиления по току также используется в цепях питания, где элемент последовательного прохода регулятора напряжения должен обеспечивать значительные уровни тока, но с использованием опорного напряжения низкого тока.Есть много других примеров того, где требуется усиление тока.

    Как и шкала напряжения, коэффициент усиления схемы сравнивает входной и выходной уровни, но с точки зрения тока. Коэффициент усиления по току равен выходному току, деленному на входной ток.

  • Входное сопротивление: Входное сопротивление транзисторной схемы всегда важно. Он определяет нагрузку на предыдущем этапе, а также важен в ВЧ схемах, где согласование импеданса является важным параметром.

    Во многих конструкциях электронных схем желателен высокий входной импеданс, потому что это означает, что предыдущий каскад не нагружен чрезмерно. Если входной импеданс транзисторной схемы слишком низкий, она будет загружать предыдущую, уменьшая уровень сигнала и, возможно, вызывая искажения в некоторых случаях. Настройка транзисторного каскада для обеспечения правильного входного импеданса является ключевым элементом процесса проектирования электронной схемы.

  • Выходное сопротивление: Выходное сопротивление также важно.Если транзисторная схема управляет схемой с низким импедансом, то ее выход должен иметь низкий импеданс, в противном случае на выходном каскаде транзистора произойдет большое падение напряжения и в некоторых случаях может возникнуть искажение сигнала.

    Если полное сопротивление нагрузки низкое, то обычно требуется схема с высоким коэффициентом усиления по току, и подходящий формат схемы может быть выбран в процессе проектирования электронной схемы. Если допустимо более высокое выходное сопротивление, то часто более подходящей является схема с более высоким коэффициентом усиления по напряжению.

  • Частотная характеристика: Частотная характеристика — еще один важный фактор, который влияет на конструкцию схемы транзистора. Конструкции низкочастотных или аудиотранзисторных схем сильно отличаются от схем, используемых в ВЧ-приложениях. Также выбор электронных компонентов в схеме определяет отклик: транзисторы, а также номиналы конденсаторов и резисторов в конструкции электронной схемы — все влияют на частотную характеристику.

    На ранней стадии проектирования схемы необходимо иметь определенные требования к необходимой частотной характеристике, а затем схема может быть спроектирована в соответствии с требованиями.

  • Напряжение и ток питания: Одним из ключевых параметров любой схемы является требуемая мощность с точки зрения требуемого напряжения и тока. Таким образом, на этапе проектирования электронных схем можно гарантировать, что правильное напряжение будет обеспечено с требуемой допустимой нагрузкой по току.

  • Рассеиваемая мощность: Еще одним параметром, во многом связанным с напряжением и током, подаваемым в схему, является рассеиваемая мощность.Если рассеиваемая мощность высока, то может потребоваться устройство для охлаждения и общего отвода тепла от цепи, и в частности любых электронных компонентов, которые могут рассеивать большое количество тепла. Обычно это транзистор, но другие компоненты тоже могут рассеивать тепло.

Функция цепи транзистора

Транзисторные схемы могут выполнять множество различных функций. Обычно существуют стандартные блоки для общих функций, таких как усилитель, генератор, фильтр, источник тока, дифференциальный усилитель и множество других.

Эти стандартные форматы схем широко используются и могут быть приняты, а значения электронных компонентов определены в процессе проектирования электронных схем.

Схемы часто соответствуют проверенным схемам, которые использовались в течение многих лет. Эти схемы часто использовались со старой технологией вакуумных ламп или термоэмиссионных клапанов и одинаково хорошо работают с биполярными транзисторами, а также с полевыми транзисторами, полевыми транзисторами и иногда даже с операционными усилителями.

Принимается основной формат и определяются значения для электронных компонентов, обеспечивающие требуемую производительность.

Часто для этого требуются небольшие эксперименты, но в наши дни программное обеспечение для моделирования схем способно точно воспроизвести работу схемы, так что значения электронных компонентов могут быть оптимизированы для достижения требуемых характеристик и функциональности.

Конфигурация или топология транзисторной схемы

Каким бы ни была общая функция схемы, необходимо также учитывать топологию в начале процесса проектирования электронной схемы.

Цепи транзисторов

могут быть разработаны с использованием различных топологий, каждая из которых имеет разные характеристики, особенно с точки зрения входного и выходного сопротивления.

Эти топологии конфигураций выбираются в соответствии с требованиями проектирования электронных схем и включают общий эмиттер, общий коллектор или эмиттерный повторитель и общую базу.


Процесс проектирования транзисторной схемы

Процесс проектирования транзистора состоит из нескольких этапов. Обычно они выполняются в логическом порядке, но часто необходимо пересмотреть различные этапы, чтобы оптимизировать значения различных электронных компонентов для обеспечения требуемой общей производительности.

  • Определите требования: Определение реальных требований является важным этапом, и правильное понимание этого будет означать, что концепция схемы не изменится в будущем.

  • Определите функцию и топологию схемы: После того, как общие требования для всего электронного устройства определены, необходимо выбрать фактическую схему транзистора. Например, существует множество схем генераторов, фильтров, усилителей и т. Д.для транзисторов и оптимальный тип может быть выбран в соответствии с конкретными требованиями. Это часто также определяет фактическую топологию схемы, то есть использование общего эмиттера, общего коллектора, общей базы, но в противном случае это может быть частью общего процесса принятия решения в настоящее время, потому что нагрузка на генераторы, усиление, выходное сопротивление и т. можно рассматривать в это время.

  • Установите условия смещения: В любой схеме одной из ключевых особенностей конструкции электронной схемы является обеспечение уровней смещения для активных устройств: в этом случае биполярные транзисторы настроены правильно.Если смещение неправильное, схема транзистора не будет работать. Определение значений электронных компонентов (в основном резисторов), которые задают смещение, является одним из ключевых этапов проектирования.

  • Определите значения функциональных электронных компонентов: Наряду с установкой условий смещения необходимо определить значения для других электронных компонентов, чтобы обеспечить функциональность схемы. Эта часть процесса проектирования электронной схемы продолжается вместе с установкой условий смещения, поскольку значения для одного будут влиять на другое, и наоборот.

  • Пересмотрите значения электронного компонента на предмет смещения и функции: После установки значений схемы всегда требуется небольшая итерация, чтобы сбалансировать требования к смещению и общей функциональности схемы. Скорее всего, этот процесс будет повторяться.

  • Тестовая цепь: Тестирование цепи — ключевой элемент любой конструкции. Часто во многих лабораториях есть программное обеспечение для моделирования схем, и поэтому схема может быть смоделирована до того, как она будет построена, чтобы устранить большинство проблем.Однако заключительным испытанием является создание и запуск схемы в условиях, максимально приближенных к рабочим условиям.

  • Переделка и модификация: Часто бывает необходимо изменить электронную схему. Если это необходимо, то он переделывается и испытывается с новыми значениями электронных компонентов, компоновкой и т. Д.

Они представляют некоторые из основных параметров схемы, необходимых для конструкции транзисторной схемы. Знание этих параметров может повлиять на выбор конфигурации схемы и, безусловно, будет определять параметры компонентов и многие другие факторы.

Соответственно, необходимо знать параметры, управляющие работой транзисторной схемы, прежде чем можно будет приступить к проектированию.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Конфигурации схем транзисторов

»Примечания по электронике

В транзисторных схемах

используется одна из трех конфигураций транзисторов: общая база, общий коллектор (эмиттерный повторитель) и общий эмиттер — одна выбирается в процессе проектирования электронной схемы.


Руководство по проектированию схем транзисторов Включает:
Проектирование схем транзисторов Конфигурации схемы Общий эмиттер Конструкция схемы с общим эмиттером Эмиттер-повторитель Общая база

См. Также: Типы транзисторных схем


При рассмотрении конструкции электронной схемы для транзисторной схемы можно использовать три различные основные конфигурации схемы.

Три различных конфигурации схемы транзистора: общий эмиттер, общая база и общий коллектор (эмиттерный повторитель), эти три конфигурации схемы имеют разные характеристики, и в зависимости от требований будет выбран один тип схемы.

Каждый из них имеет разные свойства с точки зрения усиления, входного и выходного импеданса и т. Д., И в результате в процессе проектирования электронной схемы будет выбрана конкретная конфигурация.

Каждая из различных топологий транзисторов имеет входы и выходы, подключенные к разным точкам, причем одна клемма является общей для входа и выхода.

В дополнение к выбору правильной конфигурации схемы или топологии на этапе проектирования электронной схемы для обеспечения требуемых основных характеристик вокруг транзистора размещаются дополнительные электронные компоненты: обычно резисторы и конденсаторы, и значения рассчитываются для получения точных необходимых характеристик .

Выбор топологии и расчет значений электронных компонентов являются ключевыми элементами процесса проектирования электронных схем.

Конфигурации транзисторных цепей

Названия трех основных конфигураций транзисторов указывают на вывод транзистора, который является общим для входных и выходных цепей. Это дает начало трем терминам: общая база, общий коллектор и общий эмиттер.

Транзистор 2N3553 в металлической банке ТО39

Термин «заземленный», т.е.е. Заземленная база, заземленный коллектор и заземленный эмиттер также могут использоваться в некоторых случаях, потому что сигнал общего элемента обычно заземлен.

Существуют конфигурации эквивалентных схем для полевых транзисторов, а также термоэмиссионных клапанов / вакуумных ламп. Эти конфигурации имеют одинаковые типы свойств, хотя и немного изменены в зависимости от типа используемого электронного устройства.

Для полевых транзисторов используются такие термины, как общий сток, общий исток и общий затвор, а для клапанов / трубок терминология включает общий катод, общий анод и общую сетку.

Конфигурация транзистора с общей базой

По алфавиту это первая конфигурация транзистора, но, вероятно, она будет использоваться с наименьшей вероятностью.

Эта конфигурация транзистора обеспечивает низкий входной импеданс при высоком выходном сопротивлении. Несмотря на высокое напряжение, коэффициент усиления по току невелик, а общий коэффициент усиления по мощности также невелик по сравнению с другими доступными конфигурациями транзисторов. Другой важной особенностью этой конфигурации является то, что вход и выход находятся в фазе.

Эта конфигурация транзисторов, вероятно, используется меньше всего, но она дает преимущества, заключающиеся в том, что база, общая для входа и выхода, заземлена, и это дает преимущества в уменьшении нежелательной обратной связи между выходом и входом для различных приложений проектирования радиочастотных схем. Это происходит потому, что база, которая физически является электродом между эмиттером и коллектором, заземлена, тем самым обеспечивая барьер между ними.

В результате общая базовая конфигурация имеет тенденцию использоваться для усилителей РЧ, где повышенная изоляция между входом и выходом дает больший уровень стабильности и снижает вероятность нежелательных колебаний.Как подтвердит любой, кто занимается проектированием радиочастот, это очень полезный атрибут.

Кроме того, низкий входной импеданс часто может обеспечить хорошее согласование с сопротивлением 50 Ом, что является полезным атрибутом для многих сценариев проектирования ВЧ.

Конфигурация схемы общей базы транзистора

Общий коллектор (эмиттерный повторитель)

Конфигурация схемы общего коллектора, возможно, более широко известна как эмиттерный повторитель, потому что напряжение эмиттера следует за напряжением базы, хотя и ниже по напряжению на величину, равную напряжению включения базового эмиттерного перехода.

Общий коллектор, эмиттерный повторитель обеспечивает высокое входное сопротивление и низкое выходное сопротивление. Коэффициент усиления по напряжению равен единице, хотя коэффициент усиления по току велик. Входные и выходные сигналы синфазны.

Принимая во внимание эти характеристики, конфигурация эмиттерного повторителя широко используется в качестве буферной схемы, обеспечивающей высокий входной импеданс для предотвращения нагрузки предыдущего каскада и низкий выходной импеданс для управления следующими каскадами.

Конфигурация схемы общего коллектора транзистора

Как видно из схемы, в этой конфигурации транзистора коллекторный электрод является общим как для входных, так и для выходных цепей.Несколько дополнительных электронных компонентов используются с резистором для эмиттера, возможно, конденсаторами на входе и выходе и резисторами смещения на базе, если это необходимо. В некоторых случаях эмиттерный повторитель может быть напрямую соединен с предыдущим каскадом, так как выходное напряжение постоянного тока может быть подходящим для размещения цепью повторителя. Это означает, что требуется очень мало дополнительных электронных компонентов.


Конфигурация транзистора с общим эмиттером

Эта конфигурация транзисторов, вероятно, является наиболее широко используемой.Схема обеспечивает средний уровень входного и выходного сопротивления. Прирост как по току, так и по напряжению можно охарактеризовать как средний, но выходной сигнал обратен входному, то есть изменение фазы на 180 °. Это обеспечивает хорошую общую производительность и поэтому часто является наиболее широко используемой конфигурацией.

Конфигурация схемы общего эмиттера транзистора

Как видно из схемы, в этой конфигурации транзистора электрод эмиттера является общим как для входных, так и для выходных цепей.


Сводная таблица конфигурации схемы транзистора

В таблице ниже приведены основные характеристики различных конфигураций транзисторов.При разработке транзисторной схемы важным аспектом является не только усиление, но и такие параметры, как входное и выходное сопротивление.


Сводная таблица конфигурации транзисторов
Конфигурация транзистора Общая база Общий коллектор
(эмиттерный повторитель)
Общий эмиттер
Коэффициент усиления по напряжению Высокая Низкий Средний
Коэффициент усиления по току Низкий Высокая Средний
Прирост мощности Низкий Средний Высокая
Соотношение фаз вход / выход 0 и град. 0 ° 180 °
Входное сопротивление Низкий Высокая Средний
Выходное сопротивление Высокая Низкий Средний

Дополнительные электронные компоненты

Какая бы форма подтверждения транзистора ни была выбрана на этапе проектирования электронной схемы, вокруг транзистора потребуются дополнительные компоненты: резисторы для установки точек смещения и конденсаторы для обеспечения связи и развязки.

Схема транзистора с общим эмиттером, показывающая дополнительные компоненты, необходимые для обеспечения смещения, связи и развязки и т.д. усиление и тому подобное. Затем рассчитываются дополнительные электронные компоненты, чтобы обеспечить требуемые рабочие условия сверх указанных.

Каждый из электронных компонентов должен быть рассчитан на этапе проектирования электронной схемы, чтобы обеспечить требуемую производительность.

Хотя общий эмиттер, вероятно, будет чаще всего встречаться с электронными компонентами, такими как резисторы и конденсаторы, при использовании для проектирования ВЧ-цепи в схему также могут быть включены такие компоненты, как индукторы и трансформаторы. То же самое верно и для других конфигураций транзисторных схем.

Наиболее часто используемая конфигурация схемы — это общий эмиттер — он используется для многих каскадов усилителя, обеспечивающих усиление по напряжению. Эмиттерный повторитель или общий коллектор также широко используется.Обеспечивая высокий входной импеданс и низкий выходной импеданс, он действует как буфер и обеспечивает только усиление по току — его усиление по напряжению равно единице. Общая база используется в более специализированных приложениях и заметна значительно реже.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Основы транзисторов | DigiKey

Поразительно, но первый исправный Транзистор был заявлен 70 лет назад, 23 декабря 1947 года! 1 Транзистор, вероятно, один из самых революционных компонентов, когда-либо изобретенных. Это привело к созданию интегральных схем, микропроцессоров и компьютерной памяти.

В этой статье мы обсудим следующие области;

(щелкните ссылку, чтобы перейти к любому разделу, который соответствует вашим потребностям)

Транзистор, также известный как BJT (Bipolar Junction Transistor), представляет собой управляемое током полупроводниковое устройство, которое может использоваться для управления потоком электрического тока, в котором небольшое количество тока в выводе базы управляет большим током между коллектором. и эмиттер.Их можно использовать для усиления слабого сигнала в качестве генератора или переключателя.

Обычно они сделаны из кристалла кремния, в котором полупроводниковые слои типа N и P соединены между собой. См. Рисунок 1 ниже.

Рис. 1: На рис. 1а показан разрез 2N3904 TO-92, на котором видны выводы E — эмиттер, B — база и C — коллектор, подключенные к кремнию. Рисунок 1b взят из журнала Radio-Electronics Magazine 2 за май 1958 года, на котором показаны срезы и устройства слоев типа N&P (в то время называемый германиевым материалом).

Транзисторы

герметично закрыты и заключены в пластиковый или металлический корпус с тремя выводами (рис. 2).

Рис. 2. Сравнение размеров и различные популярные типы упаковки.

Для примера покажем, как работает NPN-транзистор. Простой способ рассматривать его функцию как выключатель — это представить себе воду, протекающую через трубку, управляемую клапаном. Давление воды представляет собой «напряжение», а вода, протекающая по трубке, представляет собой «ток» (рис. 3).Большие трубки представляют собой соединение коллектор / эмиттер с клапаном между ними, выраженным на рисунке серым овалом, похожим на подвижную заслонку, которая приводится в действие током из маленькой трубки, представляющей Основание. Клапан предотвращает попадание воды под давлением из коллектора в эмиттер. Когда вода протекает через меньшую трубку (основание), она открывает клапан между соединением коллектор / эмиттер, позволяя воде проходить через эмиттер и на землю (земля представляет собой возврат для всей воды или напряжения / тока).

Рисунок 3: Это графическое представление показывает, как работает транзистор. Когда вода протекает через меньшую трубку (основание), она открывает клапан между соединением коллектор / эмиттер, позволяя воде течь через эмиттер на землю.

Если вы хотите просто включить цепь или нагрузку, вам следует учесть некоторые вещи. Определите, хотите ли вы смещать или возбуждать транзисторный ключ положительным или отрицательным током (т.е. Тип NPN или PNP соответственно). Транзистор NPN управляется (или включается) положительным током, смещенным на базе, для управления током, протекающим от коллектора к эмиттеру. Транзисторы типа PNP управляются отрицательным током, смещенным на базе, для управления потоком от эмиттера к коллектору. (Обратите внимание, что полярность для PNP противоположна NPN.) См. Рисунок 4 ниже для получения более подробной информации.

Рисунок 4: Условные обозначения для каждого типа транзистора.

После определения напряжения смещения следующей необходимой переменной является величина напряжения и тока, которые требуются нагрузке для работы.Это будут минимальные номинальные значения напряжения и тока транзистора. В таблицах 1 и 2 ниже показаны некоторые популярные транзисторы и основные характеристики, включая их ограничения по напряжению и току.

Транзисторы, NPN и PNP, с выводами и поверхностным монтажом

Ссылки серии
Номер детали Тип Максимальное напряжение коллектора / эмиттера (Vce) Макс.ток коллектора Ic мА Коэффициент усиления постоянного тока (hFE) (мин.) При Ic, Vce Макс.мощность, мВт 2N / MMBT для нескольких поставщиков **
К-92 с выводами SOT-23 поверхностный монтаж
2N3904 MMBT3904 НПН 40 200 100 при 10 мА, 1 В 625/350 * 3904
2N4401 MMBT4401 НПН 40 600 100 при 150 мА, 1 В 625/350 * 4401
2N5089 MMBT5089 НПН 25 50 400 при 100 мкА, 5 В 625/350 * 5089
2N3906 MMBT3906 PNP 40 200100 при 10 мА, 2 В 625/350 * 3906
2N4403 MMBT4403 PNP 40 600 100 при 150 мА, 1 В 625/350 * 4403
2N5087 MMBT5087 PNP 50 50 250 при 100 мкА, 5 В 625/350 * 5087
* Для пакета SOT-23
** Технические характеристики могут отличаться — проверьте подробности в техническом описании

Таблица 1.Популярные выводные и поверхностные транзисторы NPN и PNP.

Транзисторы, NPN и PNP, корпуса в металлическом корпусе

Номер детали Тип Максимальное напряжение коллектора / эмиттера (Vce) Макс.ток коллектора Ic мА Коэффициент усиления постоянного тока (hFE) (мин.) При Ic, Vce Макс.мощность, мВт Звенья серии 2N для нескольких поставщиков **
К-18 К-39
2N2219A НПН 40 800 100 при 150 мА, 10 В 800 2219A
2N2222A НПН 40 800 100 при 150 мА, 10 В 500 2222
2N2905A PNP 60 600 100 при 150 мА, 10 В 600 2905
2N2907A PNP 60 600 100 при 150 мА, 10 В 400 2907A
** Технические характеристики могут отличаться — подробности см. В техническом описании

Таблица 2.Популярные металлические корпуса могут быть упакованы на транзисторы NPN и PNP.

На рисунке 5 ниже показан пример схемы, которая включает переход коллектор-эмиттер путем подачи питания на базу или смещения транзистора для его включения путем подачи 5 вольт на базу с помощью ползункового переключателя. В этом примере загорается светодиод, который в данном случае является нагрузкой. При смещении базы требуется правильное использование резисторов для предотвращения перегрузки по току. Я использовал детали с выводами на макетной плате, чтобы протестировать схему в моем примере. Большинство инженеров будут использовать компоненты для поверхностного монтажа (намного меньшие по размеру, чем корпус TO-92), когда дело доходит до использования транзисторов в новом продукте, выходящем на рынок.Вот ссылка, которая показывает различные размеры корпусов для 3904 транзисторов.

Поскольку 2N3904 является NPN-транзистором, базе требуется положительное смещение (соответствующие уровни напряжения и сопротивления) для включения коллекторно-эмиттерного перехода для правильного протекания тока. Также важно использовать нагрузочный резистор (R1), чтобы не пропускать слишком большой ток через светодиод и транзистор. Для получения дополнительной информации об этом транзисторе см. Техническое описание 2N3904.

Рисунок 5: Пример схемы 2N3904 для зажигания светодиода с помощью ползункового переключателя EG1218, показывающего контакты C (коллектор), E (эмиттер) и B (база) (изображение на схеме).

На рисунке 6 показан пример схемы ночного освещения с использованием транзистора PNP. Чтобы увидеть детали этой схемы, перейдите по ссылке на инженерный вики-сайт Digi-Key и выполните поиск по PNP Night Light.

Рисунок 6: Пример схемы ночного освещения 2N3906 для освещения светодиода с фотоэлементом PDV-P5003 (изображение на схеме it)

Как все началось? Эта кроличья нора идет очень глубоко; однако я начну с изобретения телефона. Многие будут спорить, кто действительно изобрел первый рабочий электрический прототип; однако первый патент был получен Александром Грэмом Беллом 7 марта -го , 1876 3 , а позже он основал американскую телефонную и телеграфную компанию (также известную как AT&T).Примерно в 1894 году истек срок действия патента 1 Белла. Хотя AT&T доминировала на рынке телефонов до начала 1900-х годов, другие компании образовались и увели клиентов у AT&T. Из-за этого компания почувствовала необходимость продолжать доминировать и расширять свой рынок. В 1909 году президент AT&T Теодор Вейл 1 хотел передавать телефонные звонки трансконтинентально (из Нью-Йорка в Калифорнию). Но для этого им нужен был хороший усилитель или повторитель для усиления сигналов, распространяющихся на большие расстояния.Ранее, в 1906 году, Ли Де Форест позаимствовал идею Джона А. Флеминга (который позаимствовал работу у Томаса Эдисона и создал устройство на вакуумной лампе, называемое «колебательным клапаном», используемым для обнаружения радиоволн), модифицировал ее и создал Триод — неэффективная трехконтактная вакуумная лампа, которую можно было использовать в качестве усилителя. В 1912 году Форест был приглашен Гарольдом Арнольдом из Western Electric Company (производитель AT&T), чтобы продемонстрировать свое изобретение. Хотя Триод Фореста работал при низких напряжениях, Арнольду требовалось, чтобы он работал при более высоких напряжениях, чтобы создать эффективные ретрансляторы для передачи голоса на большие расстояния.Арнольд считал, что сможет сделать триод лучше, поэтому нанял ученых, чтобы они поняли, как работает устройство и как его можно улучшить. В октябре 1913 года он добился успеха. Вскоре повсюду были проведены телефонные линии. Инвестиции, которые компания AT&T вложила в наем ведущих ученых на протяжении многих лет, заставили их понять, что глубокие исследования дадут им конкурентное преимущество перед конкурентами, и в 1925 году были сформированы Bell Telephone Laboratories.

Для поддержания работы телефонных линий требовалось много тысяч электронных ламп и реле.Однако электронные лампы потребляли много энергии, были большими и часто перегорали. Получив понимание из технологических разработок кристалл-выпрямителя, используемого для работы радара во время Второй мировой войны, Мервин Келли, директор по исследованиям Bell, подозревал, что полупроводники (твердотельные устройства) могут быть ответом на создание устройства, которое может заменить дорогостоящие устройства. , ненадежные вакуумные лампы. Келли обратился к одному из блестящих физиков, Уильяму Шокли, чтобы объяснить свое видение улучшения компонентов, используемых для передачи голоса по проводам.Келли выразил свои чувства, что он был бы рад, когда шумные механические реле и энергоемкие электронные лампы когда-нибудь будут заменены твердотельными электронными устройствами. Это действительно понравилось Шокли и стало его основной целью. Келли поручила Шокли найти способ добиться этого.

Он был блестящим теоретиком, но не очень хорошо конструировал свои идеи. Шокли предпринял несколько попыток доказать свою идею о полевом переносе электронов для соединения двух сторон полупроводника путем подачи энергии на пластину над полупроводниками.Он был неудачным. Разочарованный, он обратился к двум другим физикам из Bell labs, Джону Бардину (блестящему в теории электронов в полупроводниках) и Уолтеру Браттейну (отлично разбирающемуся в прототипах и использовании лабораторного оборудования). Они стали частью его команды. Шокли позволил двойной команде работать самостоятельно. За прошедшие годы было сделано много попыток получить работу с полевым эффектом, но это так и не удалось. Они просмотрели свои расчеты, и теоретически это должно было сработать. Думая нестандартно, Бардин и Браттейн экспериментировали с тонкими пластинками кремния и германия, пытаясь заставить работать эффект поля.Осенью 1947 года появились признаки прогресса, поскольку у Браттейна возникли проблемы с конденсацией воды, оседающей на поверхности полупроводника. Вместо того, чтобы сушить его, он поместил каплю воды поверх кремния, подал напряжение на пластину над ней и заметил усиливающий эффект. Капля воды помогла преодолеть поверхностный барьер, который помог создать поток электронов, но он был медленным и не мог чисто усилить голосовые сигналы, необходимые для успешной передачи голоса.

В декабре 1947 года (отмеченном как Месяц Чудеса) они подумали об устранении эффекта промежутка поля, удалении воды и создании золотого контакта, касающегося полупроводника. Они перешли на германий, с которым в то время было легче работать, и изолировали его тонкой оксидной пленкой, которая естественным образом образуется на германии. Многие тесты прошли безуспешно. Затем в середине декабря, по-видимому, случайно, Уолтер Браттейн случайно смыл оксидное покрытие, сделав контакт золотом прямо с германием! Бинго !!! Он обнаружил хорошее усиление, и транзистор был исправен.Вместо того, чтобы притягивать электроны к поверхности полупроводника, как это предполагалось в идее эффекта поля Шокли, Браттейн / Бардин обнаружили, что, соприкасаясь с полупроводником с золотым контактом, они вводят дырки в полупроводник, позволяя течь электричеству. Примерно в середине декабря 1947 года без ведома Шокли они приступили к созданию действующего прототипа. Браттейн собрал прибор в форме пластикового треугольника с золотой фольгой по скошенным краям и проделал в острие треугольника тонкий, как бритва, разрез.Это был крайне примитивный прототип. Они использовали скрепку, сделанную в виде пружины, чтобы вдавить треугольник в тонкий германиевый полупроводник поверх тонкой медной пластины, на которой было два вывода — по одному на каждом конце треугольника. Медная пластина под пластиной германия служила, если хотите, выводом 3 rd (рис. 7). В итоге его назвали точечным контактным транзистором.

Браттейн и Бардин позвонили Шокли, чтобы сообщить ему хорошие новости. То, что я исследовал, говорит о том, что у Шокли были смешанные эмоции, он был рад, что это было функционально, но разочарован тем, что он не создал это напрямую.Демонстрация для боссов Шокли произошла через неделю после того, как они ее обнаружили, 23 декабря -го числа -го года 1947 года (об этом было публично объявлено 30 июня 1948 года). Позже в то время была сделана фотография для истории (рис. 8). Шокли знал, что хрупкий транзистор с точечным контактом будет нелегко изготовить, и был поглощен попытками сделать его лучше (самостоятельно). Шокли лихорадочно работал, пытаясь решить проблему по-своему … документируя свои мысли о попытках сделать ее более интегрированной за счет наслоения полупроводниковых материалов вместе.Чтобы завершить теорию патента на переходный транзистор (подана 25 июня, -е, , 1948 г.), потребовалось гораздо больше исследований. Функциональный транзистор с n-p-n переходом был продемонстрирован 20 апреля -го -го, 1950 г. (стало возможным благодаря работе Гордона Тила и Моргана Спаркса). Подробности всего этого гораздо глубже, чем вы можете представить. 4 .

Нобелевская премия за изобретение транзисторного эффекта была присуждена Уильяму Шокли, Джону Бардину и Уолтеру Браттейну 10 декабря 1956 года.

Рисунок 7. Точечный контактный транзистор (повторно используется с разрешения Nokia Corporation)

Рис. 8: Джон Бардин (слева), Уильям Шокли (в центре) и Уолтер Браттейн (справа). (Используется повторно с разрешения Nokia Corporation)

  1. Риордан, Майкл и Лилиан Ходдесон. 1997. Crystal Fire: изобретение транзистора и рождение информационного века. Нью-Йорк, Нью-Йорк: W.W. Norton & Company, Inc.
  2. Райдер, Р. 1958. «Десять лет транзисторам», Radio-Electronics Magazine, май, стр. 35.
  3. Houghton Mifflin Harcourt Publishing Company. 1991. «АЛЕКСАНДР ГРЭМ БЕЛЛ». Проверено 19 декабря, 2017.
  4. .
  5. Риордан, Майкл, Лилиан Ходдсон и Коньерс Херринг. 1999. «Изобретение транзистора», Modern Physics , Vol 71, No. 2: Centenary.

Дополнительную информацию можно найти по адресу: http://www.pbs.org/transistor/

Заявление об ограничении ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.

Можно ли использовать транзистор в качестве переключателя? — ES Components

Транзисторы обычно используются в цифровых схемах в качестве электронных переключателей, которые могут находиться в состоянии «включено» или «выключено» как для мощных приложений, таких как импульсные источники питания, так и для приложений с низким энергопотреблением, таких как логические ворота. Важные параметры для этого приложения включают коммутируемый ток, обрабатываемое напряжение и скорость переключения, характеризующуюся временем нарастания и спада.

В схеме транзистора с заземленным эмиттером, такой как показанная схема выключателя света, по мере увеличения напряжения базы эмиттерный и коллекторный токи возрастают экспоненциально.Напряжение коллектора падает из-за уменьшения сопротивления от коллектора к эмиттеру. Если бы разница напряжений между коллектором и эмиттером была равна нулю (или близка к нулю), ток коллектора ограничивался бы только сопротивлением нагрузки (лампочка) и напряжением питания. Это называется насыщением , потому что ток свободно течет от коллектора к эмиттеру. В насыщенном состоянии переключатель называется на .

Обеспечение достаточного базового тока возбуждения является ключевой проблемой при использовании биполярных транзисторов в качестве переключателей.Транзистор обеспечивает усиление по току, позволяя переключать относительно большой ток в коллекторе с помощью гораздо меньшего тока на вывод базы. Соотношение этих токов варьируется в зависимости от типа транзистора и даже для конкретного типа меняется в зависимости от тока коллектора. В показанном примере схемы выключателя света резистор выбран так, чтобы обеспечить достаточный базовый ток, чтобы транзистор был насыщен.

В схеме переключения идея состоит в том, чтобы максимально приблизить идеальный переключатель, имеющий свойства разомкнутой цепи в выключенном состоянии, короткого замыкания во включенном состоянии и мгновенного перехода между двумя состояниями.Параметры выбираются таким образом, чтобы выход «выключено» ограничивался токами утечки, слишком маленькими, чтобы повлиять на подключенную схему; сопротивление транзистора в состоянии «включено» слишком мало, чтобы влиять на схему; и переход между двумя состояниями происходит достаточно быстро, чтобы не оказывать вредного воздействия.

Источник: Википедия

Двумерные транзисторы с изменяемой полярностью для защищенных схем

  • 1.

    Новоселов К.С. и др. Двумерные атомные кристаллы. Proc.Natl Acad. Sci. США 102 , 10451–10453 (2005).

    Артикул Google Scholar

  • 2.

    Das, S., Chen, H.Y., Penumatcha, A. V., Appenzeller, J. Высокопроизводительные многослойные транзисторы MoS 2 со скандиевыми контактами. Nano Lett. 13 , 100–105 (2013).

    Артикул Google Scholar

  • 3.

    Das, S. & Appenzeller, J.WSe 2 полевых транзисторов с улучшенными амбиполярными характеристиками. Заявл. Phys. Lett. 103 , 103501 (2013).

    Артикул Google Scholar

  • 4.

    Liu, H. et al. Фосфорен: неизученный двумерный полупроводник с высокой подвижностью дырок. САУ Нано 8 , 4033–4041 (2014).

    Артикул Google Scholar

  • 5.

    Li, L. et al. Полевые транзисторы с черным фосфором. Nat. Nanotechnol. 9 , 372–377 (2014).

    Артикул Google Scholar

  • 6.

    Wu, P. et al. Комплементарные туннельные полевые транзисторы с черным фосфором. АСУ Нано 13 , 377–385 (2019).

    Артикул Google Scholar

  • 7.

    Penumatcha, A. V., Салазар, Р. Б. и Аппенцеллер, Дж. Анализ транзисторов с черным фосфором с использованием аналитической модели полевого МОП-транзистора с барьером Шоттки. Nat. Commun. 6 , 8948 (2015).

    Артикул Google Scholar

  • 8.

    Роббинс, М. К. и Кестер, С. Дж. Чернофосфорные p- и n-МОП-транзисторы с электростатически легированными контактами. IEEE Electron Device Lett. 38 , 285–288 (2017).

    Артикул Google Scholar

  • 9.

    Tosun, M. et al. Инверторы с высоким коэффициентом усиления на основе комплементарных полевых транзисторов WSe 2 . ACS Nano 8 , 4948–4953 (2014).

    Артикул Google Scholar

  • 10.

    Шульман Д. С., Арнольд А. Дж. И Дас С. Контактная инженерия для 2D-материалов и устройств. Chem. Soc. Ред. 47 , 3037–3058 (2018).

    Артикул Google Scholar

  • 11.

    Prakash, A., Ilatikhameneh, H., Wu, P. & Appenzeller, J. Понимание контактного стробирования в транзисторах с барьером Шоттки из двухмерных каналов. Sci. Отчет 7 , 12596 (2017).

    Артикул Google Scholar

  • 12.

    Мур, Г. Э. Втиснуть больше компонентов в интегральные схемы. Proc. IEEE https://doi.org/10.1109/JPROC.1998.658762 (1998).

  • 13.

    Франклин А. Д. Наноматериалы в транзисторах: от высокопроизводительных до тонкопленочных приложений. Наука 349 , aab2750 (2015).

    Артикул Google Scholar

  • 14.

    Скотницки, Т., Хатчби, Дж. А., Кинг, Т. Дж., Вонг, Х. С. П. и Бёф, Ф. Конец масштабирования КМОП: введение новых материалов и структурные изменения для улучшения характеристик полевого МОП-транзистора. Устройства IEEE Circuits Mag . https://doi.org/10.1109/MCD.2005.1388765 (2005).

  • 15.

    Rabaey, J. M., Chandrakasan, A.И Николич Б. Цифровые интегральные схемы 2-е изд. (Пирсон, 2003 г.).

  • 16.

    Servanton, G. et al. Усовершенствованная характеристика ПЭМ для разработки узлов с длиной волны 28–14 нм на основе технологии полностью обедненного кремния на изоляторе. J. Phys. Конф. Сер. 471 , 012026 (2013).

    Артикул Google Scholar

  • 17.

    Holler, M. et al. Трехмерное изображение интегральных схем с макро- и нанометровым увеличением. Nat. Электрон. 2 , 464–470 (2019).

    Артикул Google Scholar

  • 18.

    Holler, M. et al. Неразрушающее трехмерное изображение интегральных схем с высоким разрешением. Природа 543 , 402–406 (2017).

    Артикул Google Scholar

  • 19.

    Ву П. и Аппенцеллер Дж. К CMOS-подобным устройствам из материалов с двумерным каналом. APL Mater. 7 , 100701 (2019).

    Артикул Google Scholar

  • 20.

    Коули А. М. и Сзе С. М. Поверхностные состояния и высота барьера в системах металл – полупроводник. J. Appl. Phys. 36 , 3212–3220 (1965).

    Артикул Google Scholar

  • 21.

    Аппенцеллер, Дж., Чжан, Ф., Дас, С. и Ноч, Дж. В 2D Materials for Nanoelectronics (под ред. Houssa, M.и др.) гл. 8, 207–240 (Тейлор и Фрэнсис, 2016).

  • 22.

    Nakaharai, S. et al. Электростатически обратимая полярность амбиполярных транзисторов α-MoTe 2 . ACS Nano 6 , 5976–5983 (2015).

    Артикул Google Scholar

  • 23.

    Yu, W. J. et al. Адаптивные логические схемы с амбиполярными транзисторами из углеродных нанотрубок, не требующими допирования. Nano Lett. 9 , 1401–1405 (2009).

    Артикул Google Scholar

  • 24.

    Lin, Y. F. et al. Амбиполярные транзисторы MoTe 2 и их применение в логических схемах. Adv. Матер. 26 , 3263–3269 (2014).

    Артикул Google Scholar

  • 25.

    Ren, Y. et al. Последние достижения в области амбиполярных транзисторов для функционального применения. Adv. Функц. Матер. 29 , 1–65 (2019).

    Google Scholar

  • 26.

    Resta, G.V. et al. Не требующие допинга дополнительные логические элементы, обеспечиваемые двумерными транзисторами с контролируемой полярностью. САУ Нано 12 , 7039–7047 (2018).

    Артикул Google Scholar

  • 27.

    Bi, Y. et al. Повышение безопасности оборудования с помощью новых транзисторных технологий. В Proc. Международный симпозиум по Великим озерам 2016 г. по VLSI , GLSVLSI , 305–310 (IEEE, 2016).

  • 28.

    Rajendran, J. et al. Нано встречает безопасность: изучаем наноэлектронные устройства для приложений безопасности. Proc. IEEE 103 , 829–849 (2015).

    Артикул Google Scholar

  • 29.

    Patnaik, S. et al. Повышение безопасности оборудования с помощью полиморфных и стохастических устройств на эффекте спин-Холла. В Proc. 2018 Конференция по проектированию, автоматизации и тестированию в Европе Конференция и выставка ( DATE ) 97–102 (IEEE, 2018).

  • 30.

    Bi, Y. et al. Разработка примитивов для обеспечения безопасности оборудования на основе новейших технологий. J. Emerg. Technol. Comput. Syst. 13 , 3 (2016).

    Артикул Google Scholar

  • 31.

    Dupuis, S. & Flottes, M.-L. Логическая блокировка: обзор предлагаемых методов и показателей оценки. J. Electron. Контрольная работа. 35 , 273–291 (2019).

    Артикул Google Scholar

  • 32.

    Рой, Дж. А., Кушанфар, Ф. и Марков, И. Л. EPIC: прекращение пиратства интегральных схем. В Proc. Конференция по проектированию , Автоматизация и испытания в Европе ( ДАТА ) 1069–1074 (IEEE, 2008).

  • 33.

    Плаза, С. М. и Марков, И. Л. Решение проблемы третьей смены в пиратстве ИС с помощью логической блокировки с учетом тестирования. IEEE Trans. Comput. Помощь Дес. Интегр. Circuits Syst. 34 , 961–971 (2015).

    Артикул Google Scholar

  • 34.

    Раджендран Дж., Синаноглу О. и Карри Р. Метрика безопасности на основе тестирования СБИС для маскировки ИС. В 2013 Международная конференция по тестированию IEEE ( ITC ) https://doi.org/10.1109/TEST.2013.6651879 (IEEE, 2013).

  • 35.

    Раджендран, Дж., Сэм, М., Синаноглу, О. и Карри Р. Анализ безопасности маскировки интегральных схем. В Proc. 2013 Конференция ACM SIGSAC по компьютерной и коммуникационной безопасности 709–720 (ACM, 2013).

  • 36.

    Шиодзаки, М., Хори, Р. и Фуджино, Т. Программируемое диффузионное устройство: устройство для предотвращения обратной инженерии. IACR Cryptol. ePrint Arch. 2014 , 109 (2014).

    Google Scholar

  • 37.

    Малик, С., Беккер, Г. Т., Паар, К. и Берлесон, У. П. Разработка инструмента аппаратной обфускации на уровне макета. В Proc. 2015 Ежегодный симпозиум компьютерного общества IEEE по СБИС 204–209 (IEEE, 2015).

  • 38.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  • 39.

    Heinzig, A., Slesazeck, S., Kreupl, F., Mikolajick, T. & Weber, W.M. Реконфигурируемые транзисторы на кремниевых нанопроводах. Nano Lett. 12 , 119–124 (2012).

    Артикул Google Scholar

  • 40.

    Heinzig, A., Mikolajick, T., Trommer, J., Grimm, D. & Weber, W.М. Двойно активные кремниевые нанопроволочные транзисторы и схемы с равным переносом электронов и дырок. Nano Lett. 13 , 4176–4181 (2013).

    Артикул Google Scholar

  • 41.

    De Marchi, M. et al. Контроль полярности в полевых транзисторах из кремниевых нанопроволок с двойным затвором и круговым затвором. Тех. Копать землю. Int. Электронные устройства соответствуют . 8.4.1–8.4.4 (2012).

  • 42.

    Larentis, S. et al.Реконфигурируемые комплементарные однослойные полевые транзисторы MoTe 2 для интегральных схем. САУ Нано 11 , 4832–4839 (2017).

    Артикул Google Scholar

  • 43.

    Bao, R. et al. Решения с несколькими Vt в технологии нанолистов для высокопроизводительных и маломощных приложений. В Proc. Международная конференция по электронным устройствам IEEE 2019 234–237 (IEEE, 2019).

  • 44.

    Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. Высокоподвижная транспортная анизотропия и линейный дихроизм в многослойном черном фосфоре. Nat. Commun. 5 , 4475 (2014).

    Артикул Google Scholar

  • 45.

    Цай, Й., Чжан, Г. и Чжан, Ю. В. Слоистое выравнивание полос и работа выхода многослойного фосфорена. Sci. Отчет 4 , 6677 (2014).

    Артикул Google Scholar

  • 46.

    Haratipour, N., Namgung, S., Oh, S.-H. И Кестер, С. Дж. Фундаментальные ограничения подпороговой крутизны в полевых транзисторах с черным фосфором истока / стока Шоттки. САУ Нано 10 , 3791–3800 (2016).

    Артикул Google Scholar

  • 47.

    Haratipour, N. et al. Высокопроизводительные полевые МОП-транзисторы с черным фосфором, использующие контроль ориентации кристалла и контактную инженерию. IEEE Electron Device Lett. 38 , 685–688 (2017).

    Артикул Google Scholar

  • 48.

    Das, S., Demarteau, M. & Roelofs, A. Амбиполярный полевой транзистор на основе фосфорена. ACS Nano 8 , 11730–11738 (2014).

    Артикул Google Scholar

  • 49.

    Liu, Y. & Ang, K. W. Монолитно интегрированные гибкие комплементарные схемы инвертора с черным фосфором. АСУ Нано 11 , 7416–7423 (2017).

  • alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *