Site Loader

Содержание

Стабилизатор на 3 вольта своими руками

Стабилизатор напряжения на 5 вольт, речь о котором пойдет в этой статье, имеет защиту от коротких замыканий. Он предназначен для питания схем с микроконтроллерами при их разработке. Стабилизатор рассчитан на установку на беспаячную макетную плату. Стабилизатор маломощный и имеет максимальный ток нагрузки 0,15А.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками
  • Стабилизатор напряжения — как все сделать своими руками. Видео.
  • Стабилизатор напряжения на 3 вольта
  • Стабилизатор напряжения 1,5-3 вольта
  • Стабилизатор напряжения 12 Вольт для светодиодов в авто своими руками
  • Как получить нестандартное напряжение
  • Мощный линейный стабилизатор напряжения
  • Блок питания своими руками

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Стабилизатор AMS 1117 на 3.3 вольта. Схема включения

На сайте радиочипи представлены принципиальные схемы сабвуферов, собранные своими руками


Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа. Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Необходимо сначала установить рабочее напряжение на выходе стабилизатора при помощи резистора R2 и лишь, затем подключать нагрузку.

При этом, ток нагрузки может достигать мА. Только обратите внимание на распиновку микросхемы LMLZ. Она немного отличается от привычных стабилизаторов. X CXX. X — выходное напряжение. Есть экземпляры микросхем на следующие напряжения: 1. Также есть микросхемы с регулируемым выходом с обозначением ADJ.

Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO Схема устройства Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.

Стабилизатор на 3 вольта на микросхеме SD Наверх gnativ gnativ.


Стабилизатор напряжения — как все сделать своими руками. Видео.

Современная сеть электропитания работает таким образом, что в ней очень часто меняется напряжение. Конечно, изменение тока являются допустимым, но в любом случае оно не должно быть больше десяти процентов от номинальных вольт. Данная норма отклонения должна соблюдаться как в сторону уменьшения, так и в сторону увеличения напряжения. Однако такое состояние сети электропитания является большой редкостью, так как ток в ней характеризуется большими изменениями. Для устранения такого негативного сценария люди используют различные стабилизаторы. Сегодня рынок предлагает очень много различных моделей, большая часть из которых стоит больших денег.

27 июл. г.- Стабилизатор напряжения 12 вольт 6 ампер своими руками. Еще. Publicación de Instagram de Denis Galice • 14 Feb, a las

Стабилизатор напряжения на 3 вольта

Основой стабилизатора напряжения см. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТА, может работать с током до 4А. В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока.

Стабилизатор напряжения 1,5-3 вольта

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь. Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Полезные советы. Стабилизатор напряжения своими руками — это не сложно, если есть

Стабилизатор напряжения 12 Вольт для светодиодов в авто своими руками

Описание нюансов сборки стабилизатора напряжения 12 Вольт на автомобиль, список нужных деталей, 3 варианта схем. ТЕСТ: Чтобы понять, обладаете ли вы достаточной информацией о стабилизаторах для автомобиля, следует пройти небольшой тест:. Автовладельцы часто устанавливают на своем автомобилем светодиодную подсветку. Но лампочки довольно часто выходят из строя, и вся созданная красота сразу же меркнет. Это объясняется тем, что светодиодные лампочки работают неправильно, если их просто подключить к электрической сети. Для них обязательно нужно использовать специальные стабилизаторы.

Как получить нестандартное напряжение

В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:. Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения. Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта.

Как сделать Соленоидный Двигатель своими руками. 3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали.

Мощный линейный стабилизатор напряжения

В этой статье пойдёт речь о стабилизаторах постоянного напряжения на полупроводниковых приборах. Рассмотрены наиболее простые схемы стабилизаторов напряжения, принципы их работы и правила расчёта. Изложенный в статье материал полезен для конструирования источников вторичного стабилизированного питания.

Блок питания своими руками

ВИДЕО ПО ТЕМЕ: Гениально! Самоделка! Стабилизатор! Стабилизатор напряжения! Блок питания! Стабилитрон!

Любой современный блок питания должен обеспечивать стабильное питание нагрузки. Стабильное питание обеспечивает постоянные режимы работы радиоустройст, позволяет добиться более высоких, устойчивых режимов. В статье будет приведено два примера стабилизатора напряжения на двух разных микросхемах на 5 и на 9 вольт. Стабилизатор выполнен на микросхеме lm, можно взять отечественный аналог КРЕН5.

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.

Как из 5 Вольт получить 3. Нужен наиболе простой способ Есть микросхема, которая питается от 3. Её нужно подключить к USB-разъему, где напряжение 5 Вольт. Как правильно поступить, искать какой-то преобразователь или просто припаять резистор? Проще последовательно с проводом питания установить подобранный резистор не забудьте блокировочный электролитический конденсатор

Тип сети:. Ток вводного автомата. Колебание напряжения фазы.


Микросхемы стабилизаторы напряжения на 3 вольта

Схема имеет встроенную защиту от перегрева и встроенную односкатную защиту выходного транзистора от перегрузок. Существует связанное с данным семейство 79xx для регуляторов отрицательного напряжения. Интегральные схемы 78xx и 79xx могут использоваться вместе, чтобы обеспечить как положительные, так и отрицательные напряжения питания в той же цепи. Впоследствии выпуск 78хх освоили различные производители.

Биполярные ИС семейства 78xx изготавливаются по планарно-эпитаксиальной технологии , оптимизированной под производство мощных выходных транзисторов. В ИС применяются мощные и слаботочные npn-транзисторы, боковые pnp-транзисторы в источнике тока , подложечный pnp-транзистор в усилителе ошибки , поверхностные стабилитроны диоды Зенера и сопротивления величиной от 0,2 Ом датчик выходного тока до 20 К.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Интегральные стабилизаторы для микроконтроллеров, схемы
  • LM1117-3.3 стабилизатор напряжения на 3,3 В datasheet на русском документация
  • Стабилизатор напряжения
  • Интегральный стабилизатор LM317
  • Микросхема стабилизатор напряжения 5 вольт
  • Схема преобразователя с 12 на 3 вольта
  • МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Регулируемый стабилизатор напряжения. На LM317. Своими руками

Интегральные стабилизаторы для микроконтроллеров, схемы


Русский: English:. Бесплатный архив статей статей в Архиве. Справочник бесплатно. Параметры радиодеталей бесплатно. Даташиты бесплатно. Прошивки бесплатно. Русские инструкции бесплатно. Стол заказов:.

Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники. Статьи, схемы. К любой статье этого раздела и всей Энциклопедии можно оставить свой комментарий. Рекомендуем почитать в нашей Бесплатной технической библиотеке :.

QRP трансивер на 80 м Гражданская радиосвязь Этот трансивер предназначен для работы телеграфом в любительском диапазоне 80 м.

Генератор с кварцевой стабилизацией частоты, собранный на полевом транзисторе VT5 см. Кварцевый резонатор подключают к розетке XS4.

В небольших пределах зависящих от параметров резонатора и элементов контура L1C12 рабочую частоту генератора можно изменять конденсатором переменной емкости С Обычно не составляет труда сдвинуть частоту генератора на Принцип действия металлоискателя Металлоискатели Динамический режим работы предусматривает непрерывное движение поисковой головки катушки.

Реакция прибора будет наблюдаться только при пронесении головки над металлом. Если головку остановить над объектом — реакция пропадет. Статический режим работы — такой режим, при котором реакция прибора будет сохраняться, пока головка находится над объектом.

При этом не важно, движется она или нет. Псевдостатический режим работы — динамический режим с очень медленной подстройкой порога. То есть, если головку долго держать над объектом, произойдет подстройка прибора под этот объект и реакция пропадет. При удалении головки от объекта начнется обратная подстройка той же длительности. В компьютеризированных приборах процессами подстройки порога управляет микропроцессор, поэтому скорости подстройки при приближении и удалении от объекта могут быть разными Аналог высоковольтного стабилитрона Электропитание При отсутствии стабилитронов КСА, КСА, КСА, КСА можно использовать их аналог, собранный по изображенной на рисунке схеме Устройство полностью эквивалентно стабилитронам указанной серии и может быть применено без каких-либо доработок.

Его напряжение стабилизации — Статьи по стабилизаторам напряжения; схемы стабилизаторов напряжения; описания стабилизаторов напряжения: статьи. Статьи по стабилизаторам напряжения; схемы стабилизаторов напряжения; описания стабилизаторов напряжения: 71 статья. Книги по электропитанию. Поиск по книгам, журналам, статьям. Найдите еще больше бесплатных статей по стабилизаторам напряжения. Рекомендуем скачать в нашей Бесплатной технической библиотеке :.

Гиссен Л. Зарва В. Серия E.


LM1117-3.3 стабилизатор напряжения на 3,3 В datasheet на русском документация

Стабилизатор напряжения — важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки. Такие стабилизаторы имеют три вывода: вход, земля общий и вывод. Например, стабилизатор на выходе будет выдавать 5 Вольт, соответственно 12 Вольт, а — 15 Вольт. Все очень просто. А вот и схема подключения таких стабилизаторов.

78xx — семейство трёхвыводных линейных интегральных стабилизаторов положительного напряжения первого поколения. Базовое семейство 78xx включает микросхемы на девять фиксированных выходных напряжений от + 5 до +24 Вольт, 3 Номенклатура выпускаемых микросхем. Не имеющие .

Стабилизатор напряжения

Стабилизаторы напряжения подразделяются по четырем основным критериям: — Стабилизаторы положительного или отрицательного напряжения; — По выходному напряжению — фиксированное или регулируемое; — По падению напряжения на регулирующем элементе — стандартные и с малым падением напряжения Low Dropout ; — По максимальному току нагрузки — от 0,05 до 10 А. Зависит от типа корпуса. Различные производители придерживаются разных систем обозначений, однако, в данном случае, закономерности очевидны. Отсутствие буквы — 1 или 1,5 ампера; «L» — 0,1 A; «M» — 0. Последующие цифры в явном виде показывают напряжение стабилизации. Далее следует буква за температурный диапазон — «B» — индустриальный, «C» — коммерческий, и последняя буква обозначает тип корпуса. У разных фирм это могут быть различные буквы. Из регулируемых стабилизаторов наиболее широко известны «LM», как стабилизатор положительного и «LM», как стабилизатор отрицательного напряжения.

Интегральный стабилизатор LM317

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:. Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера — это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, — это напряжение стабилизации, основной параметр стабилитрона.

В дальнейшем появились их модификации Табл. Выходные напряжения стандартизованы согласно ряду: 1.

Микросхема стабилизатор напряжения 5 вольт

Русский: English:. Бесплатный архив статей статей в Архиве. Справочник бесплатно. Параметры радиодеталей бесплатно. Даташиты бесплатно. Прошивки бесплатно.

Схема преобразователя с 12 на 3 вольта

Сегодня для подключения аппаратуры к питанию редко применяют транзисторные стабилизаторы напряжения. Это обуславливается широкой популярностью использования интегральных приборов стабилизации. Рассмотрим свойства импортных и отечественных микросхем, которые выступают вместо стабилизаторов напряжения. Они имеют параметры по таблице. Зарубежные стабилизаторы серии 78… служат для выравнивания положительного, а серии 79… — отрицательного потенциала напряжения. Типовые микросхемы с обозначением L — маломощные приборы. Они сделаны в небольших пластиковых корпусах ТО Стабилизаторы мощнее изготавливают в корпусе типа ТОТ, по подобию транзисторов КТ , и монтируются на теплоотводящие радиаторы.

APL это линейные стабилизаторы напряжения положительной на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 .

МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1. Это позволяет использовать данный стабилизатор для питания пейджеров с 1. При помощи переменного резистора R2 можно установить необходимое выходное напряжение.

В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:. Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала Вольт. При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Схемы источники питания. Схемы источников электропитания. Стабилизаторы напряжения —3. Регулируемый стабилизатор напряжения. Универсальный мощный блок питания.

Схема линейного интегрального стабилизатора с регулируемым выходным напряжением LM разработана автором первых монолитных трёхвыводных стабилизаторов Р. Видларом почти 50 лет назад. Микросхема получилась настолько удачной, что без изменений выпускается в настоящее время всеми основными производителями электронных компонентов и в разных вариантах включения применяется во множестве устройств.


Стабилизатор напряжения на 3 вольта схема. Блок питания

Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.

НаименованиеAMS1117
Kexin Промышленные
ОписаниеЛинейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3. 3В, SOT-223

С управляемым или фиксированным режимом регулирования

AMS1117 Технический паспорт PDF (datasheet) :

Характеристики:
— максимальная стабилизация при полной нагрузке по току;
— быстрая переходная характеристика;
— защита по выходу при превышении тока нагрузки;
— встроенная тепловая защита;
— низкий уровень шума
— регулируемое или фиксированное напряжение 1.5 Вольт, 1.8 Вольт, 2.5 Вольт, 1.9 Вольт, 3.3 Вольт, 5 Вольт.
Наименование
Richtek технологии
ОписаниеСтабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO .
RT9013 PDF Технический паспорт (datasheet) :

Общее описание
RT9013 представляет собой высокопроизводительный, 500mA LDO регулятор напряжения, с высоким PSRR и ультра-малым падением напряжения. Идеально подходит для портативных и беспроводных устройств с высокими требованиями к производительности и пространству размещения.Особенности:
Широкий диапазон входного рабочего напряжения: 2.2 Вольт — 5.5 Вольт с
малым падением напряжения: 250 мВ при нагрузке 500 мА.
Низкий уровень собственных шумов для применения .
Сверхбыстрая реакция на переходные процессы в нагрузке.
Термическое отключение и защита по току.
Необходим на выходе конденсатор 1 мкФ.
Наименование
Монолитные Power Systems
Описание3А, 1.5MHz, 28В Step-Down конвертер
(datasheet) :

Image Info: MP1584
MP1584 представляет собой высокочастотный 1.5 мГц понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный) напряжения с интегрированным выходным МОП-транзистором. Он обеспечивает выходной ток 3A с текущим контролем стабильности, быстрым реагированием и легкой компенсацией напряжения.

Диапазон входного напряжения от 4.5 Вольт до 28 Вольт охватывает большинство понижающих приложений, в том числе в автомобильной сфере. 100 мкА оперативный ток покоя позволяет использовать модуль в спящем режиме от батарейного питания. Эффективность преобразования в широком диапазоне нагрузки достигается путем уменьшения частоты переключения при малой нагрузке, чтобы уменьшить потери при коммутации затвора выходного транзистора.

**Приобрести можно в магазине Your Cee

Наименование
Монолитные Power Systems
Описание3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь
MP2307 Спецификация PDF (datasheet) :

Image Info: MP2307

MP2307 представляет собой монолитный синхронный понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный) . Устройство объединяет 100 миллионов МОП-транзисторов, которые обеспечивают 3A постоянного тока нагрузки в широком рабочем входном напряжении от 4.75 Вольт до 23 Вольт. Регулируемый плавный пуск предотвращает броски тока при включении/отключении, ток питания ниже 1 мкА. Это устройство, доступный в SOIC корпусе с 8 выводами, обеспечивает очень компактное решение системы с минимальной зависимостью от внешних компонентов.

1. Термостойкий 8-контактный SOIC корпус.

2. 3A — непрерывный выходной ток 4A — пиковый выходной ток.

3. Широкий диапазон рабочего входного напряжении от 4.75 Вольт до 23 Вольт.

*Приобрести можно в магазине Your Cee

Наименование
Во-первых компонентов Международной
ОписаниеПростой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц
LM2596 Технический паспорт PDF (datasheet) :

ОБЩЕЕ ОПИСАНИЕ
Серия LM2596 регуляторов напряжения является монолитными интегральными микросхемами, которые обеспечивают все активные функции понижающего импульсного стабилизатора-преобразователя электропитания , способный управлять нагрузкой до 3A с отличной линейной регулировкой напряжения на нагрузке. Эти устройства доступны с фиксированными выходными стабилизированными напряжениями 3.3 Вольт, 5 Вольт, 12 Вольт, и с регулируемым выходным стабилизированным напряжением от 1.2 Вольт до 37 Вольт. Термическое отключение и защита по току.Внутренняя схема микросхемы:
Типичное подключение:

НаименованиеMC34063A
Крыло Шинг International Group
ОписаниеDC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5. ..6 В. Конденсаторы С1…СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1. 5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.


Стабилизаторы напряжения или как получить 3,3 вольта

Изучаем популярные схемы стабилизатора напряжения

В первую очередь надо выбрать схему устройства. В глобальной сети много рекомендаций собирать такие блоки на интегральных линейных стабилизаторах 7812 (КР142ЕН8Б).

Схема стабилизатора на 7812 из интернета (явная ошибка – на входе должно быть не менее 14,5 вольта).

Те, кто публикует такие схемы, обращают внимание на их простоту и отсутствие необходимости настройки, совершенно забывая об одной проблеме. Для нормальной работы на таком стабилизаторе должно падать не менее 2,5 вольт – об этом написано в любом даташите

Попросту, для хоть сколько-нибудь эффективной стабилизации на выходе, на входе должно быть не менее 14,5 вольт. В автомобиле с исправным генератором такого напряжения быть не должно, а при более низком значении применять такую схему бессмысленно. В качестве компромисса можно использовать девятивольтовый стабилизатор (LM7809), его работоспособность начнется от 11,5 вольт на входе, но при этом упадет яркость свечения фонарей. По требованиям ГОСТ минимальная сила света должна составлять 400 кд, и ниже этого предела опускаться нельзя.

Еще более бездумными выглядят рекомендации ставить на входе диод.

Схема из сети – микросхема 7812 с диодом на входе.

Его назначение весьма сомнительно – защищать микросхему от обратной полярности при стабильном монтаже не надо. Но на кремниевом p-n переходе дополнительно упадет еще 0,6 вольта, и для нормальной работы понадобится не менее 15 вольт.

Схемы с интегральным линейником на 12 вольт (с диодом или без него) пригодны разве что для среза высоковольтных всплесков по шине +12 вольт (если таковые на самом деле присутствуют). То есть они могут служить своеобразным «барьером Зенера», но такой барьер можно сделать гораздо проще. Надо включить параллельно цепочке светодиодов стабилитрон Uст, немного превышающее рабочее напряжение. В нормальном режиме его сопротивление велико, он не окажет влияния на работу осветительного прибора. При превышении напряжения стабилизации (например, 15 вольт) он откроется и «срежет» излишек.

Подключение стабилитрона параллельно фонарю.

Немного лучше работают стабилизаторы на микросхемах LDO (low drop out). Они выглядят подобно обычным линейным регуляторам, но им для нормальной работы необходимо падение всего в 1,2 вольта, и эффективная стабилизация начнется уже при 13,2 вольтах. Что уже лучше, но все равно недостаточно для нормального функционирования. Для работы в такой схеме подойдут микросхемы LM1084 и LM1085, но схема их включения несколько сложнее.

Схема включения LDO LM1084.

Для получения выходного напряжения 12 вольт сопротивление резистора R1 должно быть 240 Ом, а R2 – 2,2 кОм. Имеется принципиальное препятствие для дальнейшего снижения падения – регулятор выполнен на биполярном транзисторе, и на его эмиттерном и коллекторном переходах должно упасть не менее 1,2 вольт. Это легко обходится применением полевого транзистора в качестве регулирующего элемента. Интегральные микросхемы, построенные по такому принципу, найти сложно, еще сложнее подобрать по нужным параметрам и они стоят дороже. А вот сделать самому такое устройство на дискретных элементах по силам даже радиолюбителю средней квалификации.

Схема линейного регулятора на мощном полевом транзисторе.

Номиналы элементов:

  • R1 — 68 кОм;
  • R2 — 10 кОм;
  • R3 — 1 кОм;
  • R4,R5 — 4,7 кОм;
  • R6 — 25 кОм;
  • VD1 — BZX84C6V2L;
  • VT1 — AO3401;
  • VT2,VT3 — 2N5550.

Выходное напряжение задается соотношением R5/R6. При указанных номиналах на выходе будет 12 вольт, на входе понадобится не более 12,5. Это cерьезное улучшение. Но принципиального скачка можно добиться только применением импульсного источника питания. Такой преобразователь по схеме Step-Up можно собрать на микросхеме XL6009.

Схема импульсника на XL6009.

Такой стабилизатор в готовом виде можно заказать на популярных интернет-площадках. Но есть проблема – производители из экономии часто устанавливают элементы, рассчитанные на ток не более 1 А (хотя микросхема способна выдать ток до 3 А). Или, например, могут быть не установлены входные или выходные оксидные конденсаторы. Даже диод Шоттки  N5824, указанный в даташите, при токах выше 1,5 А начинает греться.  Вместо него надо применить более мощный диод, например SR560. Все эти замены и упрощения ведут к перегреву платы и выходу ее из строя.

Принцип работы

Как и все стабилизаторы напряжения, так и нормализаторы марки «Ресанта» состоят из:

  1. автоматического трансформатора.
  2. электронного блока.
  3. вольтметра.
  4. элемента, который осуществляет подключение/отключение определенных обмоток.

Учитывая то, что производитель осуществляет выпуск различных видов стабилизаторов, элементы для подключения обмоток являются разными. О них мы отметим несколько ниже, а именно тогда, когда будем рассматривать особенности работы и ремонта каждого вида нормализатора от латвийского производителя.

Электронный блок любого стабилизатора компании «Ресанта» осуществляет управление всей работой устройства. Он управляет работой вольтметра и получает данные об уровне входного напряжения. Дальше он сравнивает это напряжение с нормированным и определяет, сколько вольт нужно добавить или отнять.

После этого определяется то, какие обмотки стабилизатора нужно подключить или же отключить. Когда известна эта информация электронный блок подключает/отключает необходимые обмотки с помощью реле или сервопривода и наши электроприборы получают нормализованный ток.

Такой принцип стабилизации тока присущ каждому стабилизатору напряжения от компании «Ресанта». Однако процесс стабилизации в различных моделях компании имеет отличия. Они обусловлены тем, что по-разному происходит подключение/отключение обмоток трансформатора.

В стенах компании выпускается два типа стабилизаторов:

  1. Электромеханические.
  2. Релейные.

И, конечно, ремонт каждого из них имеет свои особенности.

Это интересно: Как защитить провода от кролика?

Список источников

  • samelectrik.ru
  • amperof.ru
  • staby.ru
  • generatorexperts.ru
  • electricadom.com
  • SamElectric.ru
  • lightika.com
  • jelectro.ru

Подключение через 4 контактное реле от генератора или датчика масла

Два следующих способа имеют общую основу и подразумевают работу дневных ходовых огней только после запуска двигателя. Схема включения ДХО от генератора базируется на переключении четырёх контактного реле и геркона.

Контакты реле ДХО подключают так:

  • 30 – на плюсовые выводы светодиодных модулей;
  • 85 – на плюсовой провод к габаритам;
  • 86 – на любой вывод геркона;
  • 87 и второй вывод геркона – на «+» аккумулятора.

Проверив надёжность всех контактов, переходят к настройке. Для этого заводят двигатель и, перемещая геркон вблизи генератора, добиваются его срабатывания и стабильного свечения ДХО. Затем геркон прячут в термотрубку и с помощью нейлоновых стяжек фиксируют в найденном месте.

В момент пуска двигателя, а затем и генератора замыкаются контакты геркона и реле, подавая напряжение питания на светодиоды ходовых огней. При этом лампы габаритов остаются отключенными, так как ток через катушку реле мал, чтобы их зажечь.

В отсутствие геркона можно запитать ДХО от датчика давления масла. В этом случае 86-й контакт соединяют с лампой давления масла. В остальном схемотехника дублируется.

Обе схемы имеют общий недостаток. Их нельзя применять, если в габаритах установлены светодиоды.

Схема стабилизатора напряжения 12 вольт для светодиодов в авто собственными руками на базе LM2940CT-12.0

Схема LM2940CT-12. 0

Также для сборки качественного стабилизатора напряжения на автомобиль используют схему LM2940CT-12.0. В качестве корпуса используем абсолютно любой материал, за исключением древесины. Если в машине планируется установить свыше 10 светодиодных ламп, тогда к стабилизатору желательно прикрепить ещё и алюминиевый радиатор.

Возможно, некоторые уже имели опыт работы с таким оборудованием, и скажут, что нет никакой необходимости использовать дополнительные детали — сразу напрямую подключаем светодиоды и наслаждаемся работой. Так сделать можно, но в таком случае лампочки будут постоянно находиться в неблагоприятных условиях, а потому скоро сгорят.

Достоинства всех приведенных схем стабилизатора напряжения 12В собственными руками  — простота сборки. Чтобы собрать стабилизатор, не нужно обладать какими-то особыми умениями и навыками. Но если предоставленные картинки вызывают только недоумение, тогда своими руками не следует пытаться собрать схему.

Стабилизатор напряжения 12 вольт для светодиодов

Стабилизатор напряжения 12 вольт для светодиодов — современное любительское оформление авто практически не обходится без использования светодиодов. Но некоторые моменты тюнинга включают в себя работы, для которых нужно приложить немало усилий. В качестве примера можно привести трудоемкую установку в передние фары автомобиля светодиодной ленты. Но вот когда вся эта красота перестает вдруг работать, из-за того, что вышел из строй один или несколько светодиодов. Поэтому становится очень обидно и жалко потраченного времени и усилий на установку LED-ленты. А вот если бы изначально была грамотно построена схема подключения, то такого бы не случилось.

Дело в том, что в подключаемой схеме не был использован стабилизатор напряжения, который предназначен именно для создания корректной работы светодиодов. В случае установки в цепь бортовой сети автомобиля светодиодов с номинальным током 250-300 мА, то тогда рекомендуется включать в схему ограничительный резистор. Этот гасящий резистор ограничит ток в тракте, тем самым увеличит срок службы светодиодов.

При нестабильном напряжении бортовой сети машины, необходимо устанавливать в схему линейный стабилизатор.

Простейший стабилизатор напряжения 12 вольт

Данная схема выполнена с использованием линейного стабилизатора КРЕН8Б либо KIA7812A, а также выпрямительного диода 1n4007 с постоянным обратным напряжением 1000v.

Стабилизатор напряжения 12 вольт для светодиодов в другом варианте

Ниже представленная схема выполнена с некоторыми изменениями, то-есть в ее входном и выходном тракте добавлены конденсаторы, предназначенные для сглаживания пульсаций.

Для этого варианта схемы необходимо иметь: сам стабилизатор напряжения на базе микросхемы L7812, конденсатор с емкостью 330µF 16v, а также конденсатор 100µF 16v, выпрямительный диод 1N4001, монтажные провода и термоусадочный кембрик диаметром 3 мм.

Усовершенствованная схема стабилизатора напряжения 12 вольт

Последовательность монтажа:

1. Делаем короче один вывод на стабилизаторе;2. Хорошо облуживаем;3. Припаиваем к укороченному выводу стабилизатора диод и конденсаторы;4. Помещаем монтажные провода в термоусадочный кембрик.

1. Припаиваем монтажные провода;2. На провод одеть кембрик, для усадки нагреть его паяльником или феном;3. Подключаем к левому выводу питание, а к правому выводу выход к светодиодной ленте;4. LED-лента светится! Теперь она прослужит гораздо дольше, чем без применения стабилизатора.

Примечание: обе представленные схемы рассчитывались на работу с сопротивлением нагрузки не более 1А. В случае необходимости использования нагрузок с током более 1А, то тогда можно установить стабилизатор L78S12CV (2А) на теплоотводе.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Проверка светодиодов без выпаивания

Щупы для мультиметра с переходниками

Проверять LED-светильник можно, не выпаивая его диодные элементы. Понадобится переходник, который изготавливается самостоятельно из канцелярских скрепок, отдельных жил провода, кусочков иголок для шитья, витой пары проводки. Выбранное изделие припаивается к щупам измерителя. Между частями переходника делается прокладка из текстолита, а потом вся конструкция обматывается изоляционной лентой.

Щупы мультиметра с переходником подсоединяются на контакты светоизлучающего диода или на колодки PNP. Тестирование производится последовательно, для каждого элемента.

Проверка работоспособности светоизлучающих диодов в фонарике

Тестирование светодиодной платы фонаря

Тест стандартного фонаря – наглядный пример работ, для которых не понадобится выпаивать элементы. Чтобы узнать, рабочие ли LED-источники, нужно:

  1. Разобрать фонарик, извлечь из него плату со светодиодами.
  2. Без удаления припоя подкинуть щупы на контакты PNP-разъема, соблюдая полярность.
  3. Поставить переключатель на прозвонку.
  4. Смотреть на табло и на подсветку.
  5. Установить, исправна ли схема, путем проверки ее сопротивления. Показатель сопротивлений, равный нулю, при параллельном подключении говорит о неисправности одно светодиода.

Регулируемый блок питания на стабилизаторе напряжения LM317

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания. Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3 до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18 КОм (нужно подбирать под ток светодиода).R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма R2 + R3 = 5КОм.

R3 — 5,6 Ком.R4 – 240 Ом.C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФC3 — 10 мкФ (электролитический)C4 — 1 мкФ (электролитический)DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте!!! Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

Важнейшие характеристики светодиодов

Полярность.

Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому, при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.

Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!

Напряжение питания и падение напряжения.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).

Напряжение питания не может являться характеристикой светодиода, поскольку для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Ток.

Номинальный ток большинства индикаторных светодиодов соответствует либо 10, либо 20 миллиамперам (у зарубежных светодиодов чаще указывают 20 мА), и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включённого резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.

Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам

Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.

Подключение трехфазного стабилизатора напряжения: схема и инструкция

  • Статья
  • Видео

Нестабильность сетевого напряжения питания характеризует системы электроснабжения многих регионов. Особенно актуальна эта проблема для районов, удаленных от крупных узлов генерации электроэнергии, напряжение в которые поступает по протяженным линиям электропередачи. Применение стабилизатора напряжения (СН) в таких ситуациях является лучшим решением, позволяющим обеспечить допустимые нормы параметров электропитания и обезопасить электрооборудование от скачков напряжения. Для дома вполне хватит устройства мощностью до 15 кВт. Если к объекту подведено три фазы, имеющие напряжение 380 вольт, необходимо подключить аппарат, рассчитанный на 3 фазы. О том, как выполнить подключение трехфазного стабилизатора напряжения для дома, мы расскажем далее.

  • Схемы монтажа
  • Общие правила подключения

Схемы монтажа

Конструктивно трехфазный стабилизатор, рассчитанный на напряжение 380 вольт, представляет собой три однофазных устройства, каждое из которых стабилизирует однофазное напряжение. Подключение стабилизатора, работающего в трехфазной сети, следует производить строго в соответствии с прилагаемой инструкцией, которую нужно тщательно изучить, прежде чем начинать монтаж. По способу подключения, встречаются два вида устройств. Схема включения этих устройств имеет различия. Трехфазный стабилизатор первого типа содержит три модуля на три клеммы, к которым производится подключение проводов. К этим клеммам следует подключить вход и выход фазного провода, а также нулевой провод, который является общим для ввода питания, трех модулей стабилизации и цепей питания нагрузки. Каждый модуль подключен к однофазной сети. Схема, иллюстрирующая подключение устройства этого типа приведена ниже:

Трехфазный стабилизатор на напряжение 380 вольт второго типа, также содержит в своем составе три однофазных стабилизатора, каждый из которых имеет четыре клеммы для подключения проводов. Кроме входа и выхода фазного провода, к модулям стабилизатора этого типа следует подключить также вход и выход нулевого провода. Таким образом, в этой схеме, нулевой провод ввода питания не связан с нулевым проводом стабилизированной электрической сети. Подключение стабилизатора такого типа показано на схеме ниже. Красным цветом нарисованы провода фазы, синим цветом – нулевые провода.

Также рекомендуем просмотреть видео, на котором предоставлена схема подключения стабилизатора напряжения к сети 380 Вольт:

Общие правила подключения

Трехфазный стабилизатор напряжения необходимо после распаковки подвергнуть внешнему осмотру и проверке на наличие механических и иных повреждений до того, как осуществлять его подключение. Если транспортировка изделия производилась при отрицательной температуре, следует выдержать прибор в помещении, где он будет установлен, необходимое количество времени, чтобы исчезла наледь, а также испарился конденсат на деталях.

Подключение прибора должно выполняться специалистом, обладающим необходимой квалификацией. Если в инструкции изложены требования к персоналу, осуществляющему подключение, их следует соблюсти. Требования, как правило, заключаются в наличии аттестации на определенную группу по электробезопасности. Само подключение трехфазного стабилизатора должно выполняться в строгом соответствии с электрической схемой, прилагающейся к изделию.

Вначале производится установка стабилизатора на место, где он будет функционировать. Аппарат должен устанавливаться в сухом помещении, где он не будет подвержен воздействию токопроводящей пыли. В процессе работы следует обеспечить доступ воздуха к вентиляционным отверстиям в кожухе устройства, для нормального охлаждения электрических элементов, которые содержит схема стабилизатора. Среда в месте, где производится установка стабилизатора, не должна содержать агрессивных веществ, способных разрушить изоляцию и металлические части прибора. Диапазон температуры окружающего воздуха, атмосферное давление и влажность должны соответствовать значениям, указанным в инструкции по эксплуатации. Необходимо помнить о том, что нарушение условий установки и эксплуатации влекут за собой отказ в гарантийном ремонте и обслуживании.

Подключение входных цепей питания, по которым подается сетевое напряжение, должно быть выполнено через переключатель (автоматический выключатель), номинальный ток которого выбирается по току нагрузки, подключенной к стабилизатору. Автоматический выключатель должен обеспечивать защиту от коротких замыканий токовой отсечкой, а также защитой от тока перегрузки, имеющей выдержку времени.

Цепи защитного заземления, выполненного в соответствии с ПУЭ, должны быть подключены к предназначенной для этого клемме. Трехфазный стабилизатор на напряжение 380 вольт, может нормально функционировать только при наличии нулевого провода, то есть, электрическая сеть, подводимая к устройству, должна быть четырехпроводной. Сечение проводников, которыми осуществляется подключение входных цепей, а также стабилизированных выходов, необходимо выбрать по току нагрузки. Для этого можно воспользоваться таблицей из ПУЭ. О том, как рассчитать сечение кабеля по току, мы рассказывали в отдельной статье.

Напоследок рекомендуем просмотреть видео, на котором наглядно показаны общие правила монтажа СН:

Вот по такой инструкции производится подключение трехфазного стабилизатора напряжения для дома. Надеемся, предоставленные советы и схемы монтажа помогли вам разобраться в вопросе!

Будет полезно прочитать:

  • Как собрать трехфазный щит учета
  • Устройства защиты от перенапряжения в сети
  • Лучшие стабилизаторы напряжения для дома

Как выглядит стабилизатор напряжения на микросхеме. Интегральные стабилизаторы для микроконтроллеров

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на . Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.


Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди , да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.


Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.


И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.


Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.


Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:


Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:


При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:


Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.


Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:


При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

Компенсационные стабилизаторы положительного напряжения популярной серии «78хх» были разработаны в 1976 г. на фирме Texas Instruments. В дальнейшем появились их модификации (Табл. 6.3) и аналогичные разработки других фирм. Выходные напряжения стандартизованы согласно ряду: 1.5; 1.8; 2.5; 2.7; 2.8; 3.0; 3.3; 4; 5; 6; 8; 9; 12; 15; 18; 24 В. Изготовители различаются по первым буквам в названии, например, L7812 (STMicroelectronics), КА7805 (Samsung), NJM78L03 (NJRCorporation), LM7805 (Fairchild), UTC7805 (UnisonicTechnologies). Встранах СНГ эти стабилизаторы известны по микросхемам серии КР142ЕНхх.

Важный нюанс. Допустимое падение напряжения между входом и выходом стабилизатора (£/Вх-вых) зависит от тока нагрузки. Так, например, для микросхем серии «7805» оно составляет 1 В при токе 20 мА и 2 В при токе 1 А. В кратких справочных данных обычно указывают только последний параметр (2 В/1 А), а полные нагрузочные характеристики приводятся только в графиках даташитов. Следовательно, внимательно их изучая, можно избежать ненужной перестраховки.

Все современные интегральные стабилизаторы имеют защиту от короткого замыкания в нагрузке, от температурного перегрева кристалла и от выхода рабочей точки из зоны безопасной работы .

Кроме стабилизаторов фиксированного напряжения существуют интегральные регулируемые стабилизаторы. Первые их образцы разработал Роберт Добкин (Robert Dobkin) в 1977 г. на фирме National Semiconductor. Типичными представителями этого направления являются микросхемы серии «317», выходное напряжение которых определяется делителем на двух резисторах.

На Рис. 6.6, а. ..р показаны схемы регулируемых и нерегулируемых интегральных стабилизаторов положительного напряжения.


Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (начало):

а) типовая схема включения интегрального стабилизатора DAL Серия микросхем «78Lxx» идеально подходит для несложных любительских конструкций, содержащих МК и имеющих ток потребления до 100 мА. Встроенная в DA1 защита от короткого замыкания ограничивает выходной ток на уровне 0.1…0.2 А, что во многих случаях спасает МК при аварии. Входное напряжение фильтруют элементы L1, C1, С2, причём катушка индуктивности может отсутствовать. Конденсаторы C1, С4 устанавливают вблизи (0…70 мм) от выводов стабилизатора DA1, чтобы предотвратить самовозбуждение последнего. Ёмкость конденсатора С2 должна быть в несколько раз больше, чем ёмкость конденсатора СЗ, иначе надо ставить защитный диод VD1 (показан пунктиром). Главное, чтобы при выключении питания выходное напряжение +5 В снижалось по времени быстрее, чем входное +6. 5…+15 В (для этого и увеличивают ёмкость конденсатора С2), иначе может выйти из строя микросхема DA1. Если нет уверенности, то подобный диод рекомендуется ставить и в других аналогичных схемах;

б) стабилизатор DA1 (фирма Maxim/Dallas) не относится к серии «78хх». Он отличается названием и функциональностью. В частности, в микросхеме DA1 имеется вход для выключения стабилизатора (вывод 4) и вход для плавного регулирования напряжения (вывод 5). Микросхемы МАХ603 и МАХ604 взаимозаменяемые и обеспечивают соответственно +5 и +3.3 В на выходе;

в) LDO-стабилизатор на микросхеме DA1 с максимальным током нагрузки 1 А (аналог К1184ЕН1). В семействе LM2940 существуют микросхемы с выходным напряжением 5; 8; 9; 10; 12; 15 В, а в семействе LP2950 — с напряжением 3.0; 3.3; 5 В;

г) UltraLDO-стабилизатор на микросхеме DA1 в SMD-корпусе. Напряжение UВХ-вых не более 0.12 В при токе нагрузки 50 мА и не более 7 мВ при токе нагрузки 1 мА. Существуют модификации данного стабилизатора с выходным напряжением согласно ряду: 1. 5; 1.8; 2.5; 2.85; 3.0; 3.2; 3.3; 3.6; 3.8; 4.0; 4.7; 4.85; 5.0 В;



д) регулируемый стабилизатор напряжения на микросхеме DAI серии «317».

е) напряжение +13 В получается сложением двух напряжений стабилизаторов DAI и DA2

ж) индикатор HL1 светится зелёным цветом при нормальном напряжении батареи/аккумулятора GB1 в пределах 6.8…9 В. Ниже 6.8 В его свечение прекращается, что является сигналом к замене батареи или подзарядке аккумулятора;

з) стандартный приём увеличения выходного напряжения стабилизатора DA1 на 0.1…0.3 В. Это может потребоваться при некондиционных параметрах микросхемы DA I или для тестирования работы МК при повышенном питании. Резистором R1 в небольших пределах регулируется выходное напряжение на линейном участке ВАХ диода VD1 (ток 5… 10 мА). Резистор RI не обязателен, если микросхему DAI серии «78LC05», «78-L05» заменить аналогичной из серии «7805», имеющей потребление тока через вывод GND в пределах 3…8 мА;

и) стабилизатор напряжения DAI дополнен усилителем тока на звуковой микросхеме DA2, которая используется как повторитель напряжения с нагрузкой до 3 А. Питание микросхемы DA2должно быть повышенным +9…+12 В, хотя и не обязательно стабилизированным;


Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (продолжение):

к) высокое входное напряжение 60 В сначала понижается до 23 В (DA1), а затем до 5 В (DA2). Разность напряжений между входом и выходом микросхемы DAI не должна превышать 40 В. При большом токе нагрузки может потребоваться установка микросхем DAI, DA2 на радиаторы;

л) резистором RI плавно подстраивается напряжение в верхнем, более мощном канале. Если средний вывод резистора RI в результате вращения его движка электрически соединится с общим проводом, то в двух каналах будут идентичные напряжения +5 В. Стабилизаторы DAI, DA2 могут иметь как одинаковые, так и разные выходные напряжения;

м) блок питания с условным названием «Ступенька» состоит из последовательно включённых стабилизаторов напряжения DA1…DA3. Ток нагрузки, просуммированный по трём цепям + 12, +9 и +5 В, не должен превышать максимально допустимого тока для микросхемы DA1

н) получение двух одинаковых напряжений от одного общего источника +7. ..+15 В. Это полезно, например, для развязки аналоговых и цифровых цепей МК или для отдельного питания высокочувствительного входного усилителя;


Рис. 6.6. Схемы компенсационных интегральных стабилизаторов положительного напряжения (окончание):

о) получение трёх разных стабилизированных напряжений для питания процессорного ядра, а также внутренней и внешней периферии у новых современных МК. Помехозащитный фильтр FBI (фирма Murata Manufacturing) имеет малые габариты. Он может быть заменён однозвенным LC-фильтром на дискретных элементах;

п) получение хорошо стабилизированного напряжения +5 В и «квазистабилизированного» напряжения +2.8…+3.2 В. Диоды VD1…VD3 снижают выходное напряжение, но оно будет зависеть от протекающего через них тока и температуры окружающей среды. Диодов может быть не три, а два, причем как обычных, так и диодов Шоттки. Резистор R1 служит для начальной нагрузки потоку, чтобы зафиксировать рабочую точку диодов на крутой вертикальной ветви ВАХ, начиная с 10 мА;

р) двухканальный стабилизатор напряжения DA1 (фирма STMicroelectronics) обеспечивает питанием сразу два выходных тракта +5. 1 и +12 В. Ток нагрузки в каждом канале может составлять 0.75… 1 А.

Один из важных узлов радиоэлектронной аппаратуры — стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно большим, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация изменилась. Микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как толькс лгемпе- ратура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока. В настоящее время ассортимент отечественных и зарубежных стабилизаторов напряжения настолько широк, что ориентироваться в нем стало уже довольно трудно. Помещенные ниже табл. призваны облегчить предварительный выбор микросхемного стабилизатора для того или иного электронного устройства. В табл. 13.4 представлен перечень наиболее распространенных на отечественном рынке трехвыводных микросхем линейных стабилизаторов напряжения на фиксированное выходное напряжение и их основные параметры. На рис. 13.4 упрощенно показан внешний вид приборов, а также указана их цоколевка. В таблицу включены лишь стабилизаторы с выходным напряжением в пределах от 5 до 27 В — в этот интервал укладывается подавляющее большинство случаев из радиолюбительской практики. Конструктивное оформление зарубежных приборов может отличаться от показанного. Следует иметь в виду, что сведения о рассеиваемой мощности при работе микросхемы с теплоотводом в паспортах приборов обычно не указывают, поэтому в таблицах даны некоторые усредненные ее значения, полученные из графиков, имеющихся в документации. Отметим также, что микросхемы одной серии, но на разные значения напряжения, по рассеиваемой мощности могут различаться. Существует также иная маркировка, например, перед обозначением стабилизаторов групп 78, 79, 78L, 79L, 78М, 79М, перечисленных в таблице, в действительности могут присутствовать одна или две буквы, кодирующие, как правило, фирму-изготовитель. Позади указанных в таблице обозначений также могут быть буквы и цифры, указывающие на те или иные конструктивные или эксплуатационные особенности микросхемы. Типовая схема включения микросхемных стабилизаторов на фиксированное выходное напряжение показана на рис. 13.5 (а и б).

Для всех микросхем керамических или оксидных танталовых конденсаторов емкость входного конденсатора С1 должна быть не менее 2,2 мкФ, для алюминиевых оксидных конденсаторов — не менее 10 мкФ, а выходного конденсатора С2 — не менее 1 и 10 мкФ соответственно. Некоторые микросхемы допускают и меньшую емкость, но указанные значения гарантируют устойчивую работу любых стабилизаторов. Роль входного может исполнять конденсатор сглаживающего фильтра, если он расположен не далее 70 мм от корпуса микросхемы.


Если требуется нестандартное значение стабилизированного выходного напряжения или его плавное регулирование, удобно использовать специализированные регулируемые микросхемные стабилизаторы, поддерживающие напряжение 1,25 В между выходом и управляющим выводом. Их перечень представлен в табл. 13.5.


На рис. 13.6 изображена типовая схема включения для стабилизаторов с регулирующим элементом в плюсовом проводе. Резисторы R1 и R2 образуют внешний регулируемый делитель напряжения, который входит в цепь установки уровня выходного напряжения. Обратите внимание на то, что в отличие от стабилизаторов на фиксированное выходное напряжение регулируемые конденсаторы не работают без нагрузки. Минимальное значение выходного тока маломощных регулируемых стабилизаторов равно 2,5-5 мА, мощных — 5-10 мА. В большинстве случаев применения стабилизаторов нагрузкой служит резистивный делитель напряжения Rl, R2 на рис. 13.6. По такой схеме можно включать и стабилизаторы с фиксированным выходным напряжением. Однако, во-первых, потребляемый ими ток значительно больше B-4 мА), и, во- вторых, он менее стабилен при изменении выходного тока и входного напряжения. По этим причинам максимально возможного коэффициента стабилизации устройства достичь не удастся. Для снижения уровня пульсаций на выходе, особенно при большем выходном напряжении, рекомендуется включать сглаживающий конденсатор СЗ емкостью 10 мкФ и более. К конденсаторам С1 и С2 требования такие же, как и к соответствующим конденсаторам фиксированных стабилизаторов. Если стабилизатор работает при максимальном выходном напряжении, то при случайном замыкании входной цепи или отключении источника питания микросхема оказывается под большим обратным напряжением со стороны нагрузки и может быть выведена из строя. Для защиты микросхемы по выходу в таких ситуациях параллельно ей включают защитный диод VD1. Другой защитный диод VD2 защищает микросхему со стороны заряженного конденсатора СЗ. Диод быстро разряжает этот конденсатор при аварийном замыкании выходной или входной цепи стабилизатора.

Интегральные стабилизаторы напряжения из серии 142 не всегда имеют полную маркировку типа. В этом случае на корпусе стоит условный код обозначения который и позволяет определить тип микросхемы.

Примеры расшифровки кодовой маркировки на корпусе микросхем:

Микросхемы стабилизаторов с приставкой КР вместо К имеют те же параметры и отличаются только конструкцией корпуса. При маркировке этих микросхем часто используют укороченное обозначение, например вместо КР142ЕН5А наносят КРЕН5А.

Наименование
микросхемы
U стаб.,
В
I ст.макс.,
А
Р мах.,
Вт
I потр.,
мА
КорпусКод на
корпусе
(К)142ЕН1А3…12±0,30,150,84DIP-16(К)06
(К)142ЕН1Б3. ..12±0,1(К)07
К142ЕН1В3…12±0,5К27
К142ЕН1Г3…12±0,5К28
К142ЕН2А3…12±0,3К08
К142ЕН2Б3…12±0,1К09
142ЕНЗ3…30±0,051,061010
К142ЕНЗА3…30±0,051,0К10
К142ЕНЗБ5…30±0,050,75К31
142ЕН41.2…15±0,10,311
К142ЕН4А1.2…15±0,20,3К11
К142ЕН4Б3. ..15±0,40,3К32
(К)142ЕН5А5±0,13,0510(К)12
(К)142ЕН5Б6±0,123,0(К)13
(К)142ЕН5В5±0,182,0(К)14
(К)142ЕН5Г6±0,212,0(К)15
142ЕН6А±15±0,0150,257,516
К142ЕН6А±15±0,3К16
142ЕН6Б±15±0,0517
К142ЕН6Б±15±0,3К17
142ЕН6В±15±0,02542
К142ЕН6В±15±0,5КЗЗ
142ЕН6Г±15±0,0750,1557,543
К142ЕН6Г±15±0,5К34
К142ЕН6Д±15±1,0К48
К142ЕН6Е±15±1,0К49
(К)142ЕН8А9±0,151,5610(К)18
(К)142ЕН8Б12±0,27(К)19
(К)142ЕН8В15±0,36(К)20
К142ЕН8Г9±0,361,0610К35
К142ЕН8Д12±0,48К36
К142ЕН8Е15±0,6К37
142ЕН9А20±0. 21,561021
142ЕН9Б24±0,2522
142ЕН9В27±0,3523
К142ЕН9А20±0,41,5610К21
К142ЕН9Б24±0,481,5К22
К142ЕН9В27±0,541,5К23
К142ЕН9Г20±0,61,0К38
К142ЕН9Д24±0,721,0К39
К142ЕН9Е27±0,811,0К40
(К)142ЕН103. ..301,027(К)24
(К)142ЕН111 2…371 547(К)25
(К)142ЕН121.2…371 515КТ-28(К)47
КР142ЕН12А1,2…371,01
КР142ЕН15А±15±0,50,10,8DIP-16
КР142ЕН15Б±15±0,50,20,8
КР142ЕН18А-1,2…26,51,015КТ-28(LM337)
КР142ЕН18Б-1,2. ..26,51,51
КМ1114ЕУ1АК59
КР1157ЕН50250,10,55КТ-2678L05
КР1157ЕН602678L06
КР1157ЕН802878L08
КР1157ЕН902978L09
КР1157ЕН12021278L12
КР1157ЕН15021578L15
КР1157ЕН18021878L18
КР1157ЕН24022478L24
КР1157ЕН27022778L27
КР1170ЕНЗ30,10,51,5КТ-26См. рис
КР1170ЕН44
КР1170ЕН55
КР1170ЕН66
КР1170ЕН88
КР1170ЕН99
КР1170ЕН1212
КР1170ЕН1515
КР1168ЕН5-50,10,55КТ-2679L05
КР1168ЕН6-679L06
КР1168ЕН8-879L08
КР1168ЕН9-979L09
КР1168ЕН12-1279L12
КР1168ЕН15-1579L15
КР1168ЕН18-1879L18
КР1168ЕН24-2479L24
КР1168ЕН1-1,5. ..37

Сегодня для подключения аппаратуры к питанию редко применяют транзисторные стабилизаторы напряжения. Это обуславливается широкой популярностью использования интегральных приборов стабилизации.

Использование микросхем

Рассмотрим свойства импортных и отечественных микросхем, которые выступают вместо стабилизаторов напряжения. Они имеют параметры по таблице.

Зарубежные стабилизаторы серии 78… служат для выравнивания положительного, а серии 79… — отрицательного потенциала напряжения. Типовые микросхемы с обозначением L – маломощные приборы. Они сделаны в небольших пластиковых корпусах ТО 26. Стабилизаторы мощнее изготавливают в корпусе типа ТОТ, по подобию транзисторов КТ 805, и монтируются на теплоотводящие радиаторы.

Схема соединений микросхемы КР 142 ЕН5

Такая микросхема служит для создания стабильного напряжения 5-6 В, при силе тока 2-3 А. Электрод 2 микросхемы подключен к металлической основе кристалла. Микросхему фиксируют сразу на корпусе без изоляционных прокладок. Величина емкости зависит от наибольшего тока, протекающего через стабилизатор и при наименьших токах нагрузки – величину емкости нужно увеличить – конденсатор на входе должен быть не меньше 1000 мкФ, а на выходе не менее 200 мкФ. Рабочее значение напряжения емкостей должно подходить выпрямителю с резервом в 20%.

Если в схему электрода микросхемы (2) подключить стабилитрон, то напряжение выхода повысится до величины напряжения микросхемы, и к этому значению прибавляется напряжение стабилитрона.

Сопротивление на 200 Ом предназначено для повышения тока, протекающего через стабилитрон. Это оптимизирует стабильность напряжения. В нашем случае напряжение будет 5 + 4,7 = 9,7 В. Слабые стабилитроны подключаются подобным образом. Для повышения силы тока выхода стабилизатора можно применить транзисторы.


Микросхемы 79 типа служат для выравнивания отрицательного значения и в цепь подключаются подобным образом.

В серии микросхем есть прибор с изменяемым напряжением выхода – КР 142ЕН12 А:

Нужно учесть, что цоколевка ножек 79 типа микросхем и КР 142 ЕН 12 имеют отличия от типовой. Эта схема при напряжении входа 40 В может выдать напряжение 1,2-37 В при силе тока до 1,5 А.

Замена стабилитронам

Одними из основных компонентов электронной аппаратуры стали стабилизаторы напряжения. До недавнего времени такие компоненты включали в себя:

  • Транзисторы различных серий.
  • Стабилитроны.
  • Трансформаторы.

Суммарное количество деталей стабилизатора было немалое, особенно регулируемого прибора. При возникновении специальных микросхем все изменилось. Новые микросхемы для стабилизаторов изготавливаются для большого интервала напряжений, со встроенными опциями защиты.

В таблице указан список популярных микросхем стабилизаторов с обозначениями.



Если нужно нестандартное напряжение с регулировкой, то применяют 3-выводные микросхемы с напряжением 1,25 вольт выхода и вывода управления.
Типовая схема работы микросхем на определенное напряжение показана на рисунке. Емкость С1 не ниже 2,2 микрофарад.

Регулируемые микросхемы в отличие от фиксированных приборов, без нагрузки работать не могут.

Наименьший ток регулируемых микросхем 2,5-5 миллиампер для слабых моделей, и до 10 миллиампер для мощных. Для уменьшения пульсаций напряжения при повышенных напряжениях целесообразно подключать выравнивающий конденсатор величиной 10 мкФ. Диод VD 1 служит защитой микросхемы, если нет входного напряжения и подачи ее выхода к питанию. Диод VD 2 предназначен для разряжания емкости С2 при замыкании цепи входа или выхода.

Недостатки микросхем

Свойства микросхем остаются на уровне большинства использования в практике радиолюбителей. Из недостатков микросхем можно отметить:

  1. Повышенное наименьшее напряжение между выходом и входом, составляющее 2-3 вольта.
  2. Ограничения на наибольшие параметры: напряжение входа, рассеиваемая мощность, ток выхода.

Указанные недостатки не слишком заметны и быстро окупаются простым использованием и малой стоимостью.

В настоящее время тяжело найти какое-либо электронное устройство не использующее стабилизированный источник питания. В основном в качестве источника питания, для подавляющего большинства различных радиоэлектронных устройств, рассчитанных на работу от 5 вольт, наилучшим вариантом будет применение трехвыводного интегрального 78L05 .

Описание стабилизатора 78L05

Данный стабилизатор не дорогой () и прост в применении, что позволяет облегчить проектирование радиоэлектронных схем со значительным числом печатных плат, к которым подается нестабилизированное постоянное напряжение, и на каждой плате отдельно монтируется свой стабилизатор.

Микросхема — стабилизатор 78L05 (7805) имеет тепловую защиту, а также встроенную систему предохраняющую стабилизатор от перегрузки по току. Тем не менее, для более надежной работы желательно применять диод, позволяющий защитить стабилизатор от короткого замыкания во входной цепи.

Технические параметры и цоколевка стабилизатора 78L05:

  • Входное напряжение: от 7 до 20 вольт.
  • Выходное напряжение: от 4,5 до 5,5 вольт.
  • Выходной ток (максимальный): 100 мА.
  • Ток потребления (стабилизатором): 5,5 мА.
  • Допустимая разница напряжений вход-выход: 1,7 вольт.
  • Рабочая температура: от -40 до +125 °C.


Аналоги стабилизатора 78L05 (7805)

Существуют два типа данной микросхемы: мощный 7805 (ток нагрузки до 1А) и маломощный 78L05 (ток нагрузки до 0,1А). Зарубежным аналогом 7805 является ka7805. Отечественными аналогами являются для 78L05 — КР1157ЕН5, а для 7805 — 142ЕН5

Схема включения 78L05

Типовая схема включения стабилизатора 78L05 (по datasheet) легка и не требует большого количества дополнительных радиоэлементов.


Конденсатор С1 на входе необходим для ликвидации ВЧ помех при подачи входного напряжения. Конденсатор С2 на выходе стабилизатора, как и в любом другом источнике питания, обеспечивает стабильность блока питания при резком изменении тока нагрузки, а так же уменьшает степень пульсаций.

При разработке блока питания необходимо иметь в виду, что для устойчивой работы стабилизатора 78L05 напряжение на входе должно быть не менее 7 и не более 20 вольт.

Ниже приводятся несколько примеров использования интегрального стабилизатора 78L05.

Лабораторный блок питания на 78L05

Данная схема отличается своей оригинальностью, из-за нестандартного применения микросхемы , источником опорного напряжения которого служит стабилизатор 78L05. Поскольку максимально допустимое входное напряжение для 78L05 составляет 20 вольт, то для предотвращения выхода 78L05 из строя в схему добавлен параметрический стабилизатор на стабилитроне VD1 и резисторе R1.


Микросхема TDA2030 подключена по типу неинвертирующего усилителя. При таком подключении коэффициент усиления равен 1+R4/R3 (в данном случае 6). Таким образом, напряжение на выходе блока питания, при изменении сопротивления резистора R2, будет меняться от 0 и до 30 вольт (5 вольт х 6). Если нужно изменить максимальное выходное напряжение, то это можно сделать путем подбора подходящего сопротивления резистора R3 или R4.

Бестрансформаторный блок питания на 5 вольт

данная характеризуется повышенной стабильностью, отсутствием нагрева элементов и состоит из доступных радиодеталей.


Структура блока питания включает в себя: индикатор включения на светодиоде HL1, вместо обычного трансформатора — гасящая цепь на элементах C1 и R2, диодный выпрямительный мост VD1, конденсаторы для уменьшения пульсаций, стабилитрон VD2 на 9 вольт и интегральный стабилизатор напряжения 78L05 (DA1). Необходимость в стабилитроне вызвана тем, что напряжение с выхода диодного моста равно приблизительно 100 вольт и это может вывести стабилизатор 78L05 из строя. Можно использовать любой стабилитрон с напряжением стабилизации от 8…15 вольт.

Внимание! Так как схема не имеет гальванической развязки с электросетью, следует соблюдать осторожность при наладке и использовании блока питания.

Простой регулируемый источник питания на 78L05


Диапазон регулируемого напряжения в данной схеме составляет от 5 до 20 вольт. Изменение выходного напряжения производится при помощи переменного резистора R2. Максимальный ток нагрузки составляет 1,5 ампер. Стабилизатор 78L05 лучше всего заменить на 7805 или его отечественный аналог КР142ЕН5А. Транзистор VT1 можно заменить на . Мощный транзистор VT2 желательно разместить на радиаторе с площадью не менее 150 кв. см.

Схема универсального зарядного устройства

Эта схема зарядного устройства достаточно проста и универсальна. Зарядка позволяет заряжать всевозможные типы аккумуляторных батарей: литиевые, никелевые, а так же маленькие свинцовые аккумуляторы используемые в бесперебойниках.


Известно, что при зарядке аккумуляторов важен стабильный ток зарядки, который должен составлять примерно 1/10 часть от емкости аккумулятора. Постоянство зарядного тока обеспечивает стабилизатор 78L05 (7805). У зарядника 4-е диапазона тока зарядки: 50, 100, 150 и 200 мА, которые определяются сопротивлениями R4…R7 соответственно. Исходя из того, что на выходе стабилизатора 5 вольт, то для получения допустим 50 мА необходим резистор на 100 Ом (5В / 0,05 А = 100) и так для всех диапазонов.

Так же схема снабжена индикатором, построенном на двух транзисторах VT1, VT2 и светодиоде HL1. Светодиод гаснет при окончании зарядки аккумулятора.

Регулируемый источник тока

По причине отрицательно обратной связи, следующей через сопротивление нагрузки, на входе 2 (инвертирующий) микросхемы TDA2030 (DA2) находится напряжение Uвх. Под влиянием данного напряжения сквозь нагрузку течет ток: Ih = Uвх / R2. Исходя из данной формулы, ток, протекающий через нагрузку, не находится в зависимости от сопротивления этой нагрузки.


Таким образом, меняя напряжение поступающее с переменного резистора R1 на вход 1 DA2 от 0 и до 5 В, при постоянном значении резистора R2 (10 Ом), можно изменять ток протекающий через нагрузку в диапазоне от 0 до 0,5 А.

Подобная схема может быть с успехом применена в качестве зарядного устройства для зарядки всевозможных аккумуляторов. Зарядный ток постоянен во время всего процесса зарядки и не находится в зависимости от уровня разряженности аккумулятора или от непостоянства питающей сети. Предельный ток заряда, можно менять путем уменьшения или увеличения сопротивление резистора R2.

(161,0 Kb, скачано: 3 935)

Схема и модуль преобразователя 5 В в 3,3 В. Подробная схема

Некоторые электронные устройства, компоненты, микросхемы, датчики или микроконтроллеры, предназначенные для работы от источника постоянного тока 3,3 В в качестве источника питания.

При работе над некоторыми проектами со стандартным источником питания (скажем) 5 вольт или выше, для некоторых модулей/цепей потребуется напряжение ниже 3,3 вольта. Здесь, в этом посте, мы обсудим некоторые из простейших схем регулятора напряжения, разработанные с использованием линейных стабилизаторов IC LM/AMS1117, LM3940 и т. д.

Эти схемы также можно использовать для понижения или уменьшения доступного потенциала питания 5 В/9 В до 3,3 В, чтобы использовать его с микроконтроллером, модулями или любыми ИС.
Схема преобразователя 5 В в 3,3 В может быть реализована различными способами, например, с использованием линейного регулятора напряжения, повышающего преобразователя/импульсного преобразователя, резистора/делителя напряжения, стабилитрона и т. д. Вы можете выбрать правильную схему или модуль в соответствии с требованиями Приложения.

Всегда рекомендуется использовать надежные линейные преобразователи мощности, такие как ASM-LM1117/LM39.40/ XL6009 и т. д.

 

Преобразователь 5 В в 3,3 В с LM1117/ ASM1117

LM1117 3,3 В — это интегральная микросхема линейного регулятора фиксированного напряжения, которая снижает и регулирует более высокое входное напряжение до фиксированного 3,3 В постоянного тока. Он подходит для слаботочных приложений, а также для тока до 800 мА.

Микросхема AMS1117 поставляется в нескольких вариантах, поэтому выберите подходящую микросхему. Используя эту схему линейного регулятора напряжения, мы можем преобразовать 5 В в 3,3 В, не занимая много места на схеме.

IC LM1117 3,3 В.

  • Радиатор, провода и разъемы.
  • Особенности:

    • Эта ИС имеет встроенные функции, такие как ограничение тока и тепловая защита, а также тепловое отключение.
    • Регулировка низкого напряжения падения напряжения с падением напряжения 1,2 В
    • Обеспечивает выходной ток до 800 мА
    • Точность выходного напряжения в пределах ±1%
    • Меньшее количество внешних компонентов

    LM1117 — микросхема серии LM1117x; разные микросхемы этой серии предназначены для разных выходных напряжений. Обычно эти ИС используются в регулируемых цепях питания.

    Нажмите здесь, чтобы проверить схему преобразователя 9В в 5В

    ASM1117 является альтернативой LM1117, они могут использоваться как замена друг друга.

    Также доступна регулируемая версия LM1117, эта версия может быть настроена на выходное напряжение в диапазоне от 1,25 до 13,8 В, используя только два внешних резистора. Кроме того, он доступен в пяти вариантах фиксированного напряжения: 1,8 В, 2,5 В, 3,3 В и 5 В. контакт заземления, а контакт 2 — выходной контакт.

    Области применения:
    Модуль силового каскада привода переменного тока, промышленные приложения переменного/постоянного тока, ультразвуковые сканеры, модули управления сервоприводами.

    (видео только для справки, номинал конденсатора можно заменить в зависимости от применения и доступности)

    (прокрутите вниз для получения более подробной информации об этом модуле IC, см. техническое описание в конце страницы )

     

    LM3940 Схема преобразователя напряжения 5 В в 3,3 В:

    LM3940 представляет собой стабилизатор с малым падением напряжения на 1 ампер, предназначенный для обеспечения стабилизированного выходного напряжения 3,3 В от источника питания 5 В. Это полезно для среднего диапазона тока до 1 Ампера.

    LM3940 идеально подходит для систем, где требуется логика как 5 В, так и 3,3 В. Поскольку LM3940 имеет минимальное падение напряжения 1,2 В, он способен поддерживать стабилизированное выходное напряжение 3,3 В при входном напряжении всего 4,5 В. потребность в дополнительном радиаторе.

    Требуемые компоненты:

    • Источник питания 5 В
    • Конденсатор 10 мкФ
    • 33UF Конденсатор
    • IC LM3904- 3,3 В

    Особенности:

    • Широкий входной диапазон 4,5 В до 5,5 В
    • Указанный 1A Проток
    • Шорт.

    Контакт 3 является выходным контактом. Контакт 1 является входным контактом. Контакт 2 — это контакт заземления. Выходное напряжение на выводе №. 3 может варьироваться от 3,20 до 3,40 вольт. Типичное выходное напряжение будет 3,3 вольта при температуре перехода Tj=25℃.
    Для получения схемы выводов и подробной технической информации об этой ИС см. техническое описание в конце страницы.

    Применение:
    Материнские платы компьютеров/ноутбуков, логические системы, блоки питания микросхем, модулей и периферийных устройств.

    Вы можете быть заинтересованы в 3,7 В до 5 В 5 В., вы можете достичь стабильного выходного напряжения постоянного тока 3,3 В при уровне входного напряжения 5,0 В. Он включает в себя N-канальный силовой МОП-транзистор и генератор, а его архитектура режима тока обеспечивает стабильную работу в широком диапазоне входного напряжения.

    Требуемые компоненты:
    IC XL6009
    Индуктор L≥33UH
    Диод переключателя (Schottky Diode) D1 = SS34
    2 ✕ Конденсатор C≥22UF
    R5 = 1,65 Kom
    R6 = 1 Kω


    , требуемый для выхода
    для выхода
    R5 = 1,65 Kom
    R6 = 1 Kω


    для выхода
    R5 = 1.65 Kom
    R6 = 1 Kω


    для. эту программируемую ИС необходимо настроить, изменив напряжение обратной связи (FB), что делается путем изменения значения R5 и R6.

    Значение R5 и R6 можно определить по следующей формуле:
    Vo=1,25(1+R5/R6)
    Где 1,25= Vref (опорное напряжение микросхемы)
    Здесь нам нужно Vo = 3,3 В, затем примите значение R5 или R6, затем найдите другое.
    напр. выбираем R6=1,0кОм, подставляем значение в формулу, получаем R3=1,65кОм. Отсюда и ценности.

    Содержит функцию отключения при перегреве, предотвращающую перегрев модуля в случае отказа цепи. Работая в диапазоне частот 400-480 кГц, этот повышающий преобразователь обычно обеспечивает выходную эффективность 94%.

    Особенности:

    • Широкий диапазон входного напряжения от 5 В до 32 В
    • Регулировка пульсаций/напряжения: ± 0,5%.
    • Стандартная эффективность преобразования: ~94%.
    • Точные технические параметры см. в техническом описании/спецификации модуля.

    Применение:
    Высокоэффективное преобразование постоянного напряжения в постоянное, применение в электронных устройствах и т. д.0027

    Схема, показанная ниже схемы стабилитрона, полезна для цепей среднего тока, например. Светодиодные индикаторы, транзисторные переключатели, модули Arduino и т. д.

    Используйте эту схему стабилитрона от 5 В до 3,3 В (от постоянного тока до постоянного тока), чтобы получить требуемые 3,3 вольта. На выходе вы получите примерно 3,3 В.

    Требуемые компоненты:
    Резистор 20 Ом (≥10 Ом), стабилитрон 3,3 В (5 Вт), некоторые провода или разъемы.

    Важно:
    Нагрузка должна быть подключена к выходному концу, чтобы предотвратить повреждение стабилитрона. Последовательный резистор 20 Ом является токоограничивающим резистором, и когда потребляется большой ток, во избежание повреждения следует использовать резистор на 5 Вт.

    Рабочий:
    Наиболее распространенная схема стабилитрона в конфигурации регулятора напряжения. Для подробного расчета и формулы нажмите здесь > регулятор Зенера, часть этого поста.

     

    Цепь резистора от 5 В до 3,3 В в качестве делителя напряжения:

    Цепь делителя напряжения Резистор от 5 В до 3,3 В имеет несколько ограниченное применение. Схема, показанная ниже, представляет собой схему для слаботочных приложений, или для измерения опорного напряжения в цепи компаратора, или схемы слаботочного рисования светодиода (выходной ток также зависит от сопротивления нагрузки).

    Вы можете подключить светодиод через вывод резистора R2, если вы используете источник питания 5 В на входе.

    Требуемые компоненты:
    Резистор 590 Ом и резистор 1,15 кОм

    Это просто схема делителя напряжения. Вы можете получить результат в соответствии с вашими потребностями с помощью этой формулы:

    Принимая во внимание, что Vo — это напряжение o/p. Vin — входное напряжение. Выберите R1 или R2 в качестве номинала резистора и найдите другое значение. Затем выберите ближайшее стандартное значение резистора.

     

    Листы данных повышающего преобразователя IC:

    Диаграмма таблицы и расписка IC LM1117 3,3 V Схема

    Диаграмма DataShip и Pinout Semashlie компания)

     

    Заключение:

    Были предприняты совместные усилия для получения наилучшей упрощенной информации об этих интегральных схемах линейного преобразователя напряжения / повышающего преобразователя. ИС/модули, доступные на рынке.

    Регулятор напряжения — 3,3 В — COM-00526

    Этот продукт имеет ограничения на доставку, поэтому он может иметь ограниченные варианты доставки или не может быть отправлен в следующие страны:

      Избранное Любимый 38

      Список желаний

      • Описание
      • Функции
      • Документы

      Это базовый стабилизатор напряжения LD1117V33, положительный стабилизатор с малым падением напряжения и фиксированным выходным напряжением 3,3 В. Этот фиксированный стабилизатор обеспечивает большую стабильность и защиту для вашего проекта, а благодаря встроенной подстройке этот регулятор может достигать допуска выходного напряжения в пределах ± 1%. Каждый из этих регуляторов напряжения может выдавать максимальный ток 800 мА.

      • Выходное напряжение: 3,3 В
      • Выходной ток: 800 мА
      • Напряжение сброса: 1 В
      • Внутренний предел тока и температуры

      Регулятор напряжения — 3,3 В Справка и ресурсы по продукту

      • Учебники
      • Необходимые навыки

      Руководство по подключению RedStick

      28 января 2016 г.

      Узнайте о SparkFun RedStick, платформе разработки размером с флэш-накопитель USB, совместимой с Arduino.

      Избранное Любимый 6

      Руководство по идентификации комплекта деталей для начинающих

      22 марта 2019 г.

      Важные детали для начинающих (или даже опытных) любителей, которые содержат все основные сквозные компоненты, необходимые для начала работы со встроенными проектами. Мы определим несколько деталей в наборе и предоставим несколько основных схем для начала работы!

      Избранное Любимый 7

      Основной навык:

      Пайка

      Этот навык определяет сложность пайки конкретного изделия. Это может быть пара простых паяных соединений или потребуются специальные инструменты для оплавления.

      1 Пайка

      Уровень навыка: Нуб — Требуется некоторая базовая пайка, но она ограничена всего несколькими контактами, базовой пайкой через отверстие и парой (если есть) поляризованных компонентов. Обычный паяльник — это все, что вам нужно.
      Просмотреть все уровни навыков


      Основной навык:

      Электрические прототипы

      Если для этого требуется питание, вам нужно знать, сколько, что делают все контакты и как их подключить. Возможно, вам придется обращаться к таблицам данных, схемам и знать все тонкости электроники.

      3 Электрическое прототипирование

      Уровень навыков: Компетентный — Вам потребуется обратиться к таблице данных или схеме, чтобы знать, как использовать компонент. Ваше знание таблицы данных потребует только основных функций, таких как требования к питанию, распиновка или тип связи. Кроме того, вам может понадобиться блок питания с напряжением более 12 В или силой тока более 1 А.
      Просмотреть все уровни навыков


      • Комментарии 44
      • Отзывы 3 3

      5 из 5

      На основании 3 оценок:

      Сейчас просматриваются все отзывы покупателей.

      Отображение результатов со звездным рейтингом.

      3 из 3 нашел это полезным:

      Напряжение, регулируемое

      от MarmotXing проверенный покупатель

      Это превратило мои 5 В в 3,3 В! Как и ожидалось, конечно.

      2 из 2 нашел это полезным:

      Стабильный и полезный

      автор WemblyTinkerer проверенный покупатель

      Вот простой в использовании постоянный 3,3 вольта. Это полезно для питания более новой платы процессора и стада датчиков. За исключением замены контактов, он так же прост в использовании, как и 7805. Рекомендуемые.

      Повышающий/понижающий стабилизатор напряжения Pololu 3,3 В S7V8F3

      Обзор

      Повышающий/понижающий стабилизатор напряжения Pololu S7V8F3 представляет собой импульсный стабилизатор источник питания (SMPS) или преобразователь постоянного тока), который использует топологию buck-boost. Он принимает входное напряжение от 2,7 В до 11,8 В и увеличивает или уменьшает напряжение до фиксированного выхода 3,3 В с типичным КПД более 90%. Входное напряжение может быть выше, ниже или равно установленному выходному напряжению, а напряжение регулируется для достижения стабильного значения 3,3 В.

      Такая гибкость входного напряжения особенно хорошо подходит для приложений с батарейным питанием, в которых напряжение батареи начинается выше требуемого выходного напряжения и падает ниже целевого по мере разрядки батареи. Без типичного ограничения на то, что напряжение батареи остается выше требуемого напряжения в течение всего срока службы, можно рассматривать новые аккумуляторные блоки и форм-факторы. Например:

      • Держатель трехэлементной батареи, который может иметь выходное напряжение 4,5 В для новых щелочных элементов или выходное напряжение 3,0 В для частично разряженных элементов NiMH, можно использовать с этим регулятором для питания цепи на 3,3 В.
      • Один литий-полимерный элемент может обеспечить работу устройства с напряжением 3,3 В в течение всего цикла разрядки.

      В типичных приложениях этот регулятор может обеспечивать постоянный ток до 1 А, когда входное напряжение выше 3,3 В (снижение). Когда входное напряжение ниже 3,3 В (повышение), доступный ток уменьшается по мере увеличения разницы между напряжениями; пожалуйста, см. графики в нижней части этой страницы для более подробной характеристики. Регулятор имеет защиту от короткого замыкания, а термоотключение предотвращает повреждение от перегрева; доска делает , а не имеют защиту от обратного напряжения.

      Этот регулятор также доступен с фиксированным выходом 5 В и с регулируемым пользователем выходом.

      Характеристики

      • входное напряжение: от 2,7 В до 11,8 В
      • фиксированный выход 3,3 В с точностью +5/-3%
      • Стандартный непрерывный выходной ток
      • : от 500 мА до 1 А при большинстве комбинаций входного и выходного напряжения (фактический непрерывный выходной ток зависит от входного и выходного напряжения. См. Типовой КПД и выходной ток 9подробности в разделе 0011 ниже.)
      • Функция энергосбережения
      • поддерживает высокую эффективность при малых токах (ток покоя менее 0,1 мА)
      • встроенная защита от перегрева и короткого замыкания
      • маленький размер: 0,45″ × 0,65″ × 0,1″ (11 × 17 × 3 мм)

      Использование регулятора

      При нормальной работе этот продукт может сильно нагреться, чтобы обжечь вас. Будьте осторожны при обращении с этим продуктом или другими компонентами, связанными с ним.

      Соединения

      Повышающий/понижающий регулятор имеет четыре соединения: выключение (SHDN), входное напряжение (VIN), земля (GND) и выходное напряжение (VOUT).

      На вывод SHDN можно подать низкий уровень (ниже 0,4 В), чтобы отключить регулятор и перевести его в состояние пониженного энергопотребления. В токе покоя в этом спящем режиме преобладает ток в подтягивающем резисторе 100k от SHDN до VIN. Когда SHDN удерживается на низком уровне, этот резистор будет потреблять 10 мкА на вольт на VIN (например, ток ожидания при входном напряжении 5 В будет 50 мкА). На контакт SHDN можно подать высокий уровень (выше 1,2 В), чтобы включить плату, или его можно подключить к VIN или оставить отключенным, если вы хотите оставить плату постоянно включенной.

      Входное напряжение, VIN, должно быть в пределах от 2,7 В до 11,8 В. Более низкие входы могут отключить регулятор напряжения; более высокие входы могут разрушить регулятор, поэтому вы должны убедиться, что шум на вашем входе не является чрезмерным, и вам следует опасаться разрушительных пиков LC (дополнительную информацию см. Ниже).

      Выходное напряжение VOUT зафиксировано на уровне 3,3 В. Выходное напряжение может быть на 3 % выше нормального при малой нагрузке на регулятор или при ее отсутствии. Выходное напряжение также может падать в зависимости от потребляемого тока, особенно когда регулятор повышает от более низкого напряжения (повышает), хотя оно должно оставаться в пределах 5% от установленного выходного значения.

      Четыре разъема помечены на обратной стороне печатной платы и расположены с интервалом 0,1 дюйма вдоль края платы для совместимости со стандартными макетными платами без пайки и перфорированными платами, а также разъемами с сеткой 0,1 дюйма. Вы можете припаять провода непосредственно к плате или припаять либо к прямой вилке 4×1, либо к прямоугольной вилке 4×1, которая входит в комплект.

      Типовой КПД и выходной ток

      Эффективность регулятора напряжения, определяемая как (выходная мощность)/(входящая мощность), является важной мерой его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Как показано на графике ниже, этот импульсный стабилизатор имеет КПД от 80% до 95% для большинства применений. Функция энергосбережения поддерживает высокую эффективность даже при очень низком токе стабилизатора.

      Максимально достижимый выходной ток платы зависит от входного напряжения, но также зависит и от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод. На приведенном ниже графике показаны выходные токи, при которых защита от перегрева этого регулятора напряжения обычно срабатывает через несколько секунд. Эти токи представляют собой предел возможностей регулятора и не могут поддерживаться в течение длительного периода времени, поэтому непрерывные токи, которые может обеспечить регулятор, обычно на несколько сотен миллиампер ниже, и мы рекомендуем пытаться потреблять от этого регулятора не более 1 А на протяжении всего периода его эксплуатации. диапазон входного напряжения.

      Всплески напряжения LC

      При подключении напряжения к электронным схемам первоначальный скачок тока может вызвать всплески напряжения, которые намного превышают входное напряжение. Если эти всплески превышают максимальное напряжение регулятора, регулятор может выйти из строя. Если вы подключаете напряжение более 9 В, используете провода питания длиной более нескольких дюймов или используете источник питания с высокой индуктивностью, мы рекомендуем припаять электролитический конденсатор емкостью 33 мкФ или больше рядом с регулятором между VIN и GND. Конденсатор должен быть рассчитан не менее чем на 16 В.

      Дополнительную информацию о всплесках LC можно найти в наших рекомендациях по применению «Понимание разрушительных всплесков напряжения LC».

      Этот товар часто покупают вместе с:

      Регулируемый повышающий/понижающий регулятор напряжения Pololu S7V8A
      Повышающий/понижающий регулятор напряжения Pololu 5 В S7V7F5
      Повышающий/понижающий регулятор напряжения Pololu 5 В S7V8F5

      РЕГУЛЯТОР НАПРЯЖЕНИЯ | Мини проекты | Учебник по электронике |

      Главная > мини проекты > Регулятор напряжения

      Пред.

      След.

      РЕГУЛЯТОР НАПРЯЖЕНИЯ

      Аннотация -Целью проекта является разработка недорогого напряжения регулятор со следующими характеристиками: 1) Фиксированный выход напряжение в диапазоне от 2 до 7 Вольт, 2) Диапазон входного напряжения от 9 до 40 Вольт, 3) Низкий выходной ток в мА и 4) Короткое замыкание Защита. Это серия линейных регуляторов напряжения.

      ВВЕДЕНИЕ

      Регулятор напряжения – это стабилизатор напряжения, предназначенный для автоматически стабилизируют постоянный уровень напряжения. Регулятор напряжения схема также используется для изменения или стабилизации уровня напряжения в соответствии с к необходимости цепи. Таким образом, регулятор напряжения используется для две причины:-

      1. Регулировать или изменять выходное напряжение схемы.

      2. Чтобы поддерживать постоянное выходное напряжение на желаемом уровне, несмотря на изменения напряжения питания или тока нагрузки.

      Регуляторы напряжения находят свое применение в компьютерах, генераторах переменного тока, электростанции, где схема используется для управления выходной мощностью завода. Регуляторы напряжения можно отнести к электромеханическим. или электронный. Его также можно классифицировать как регуляторы переменного или постоянного тока. регуляторы.

      В целом эти регуляторы можно разделить на несколько классов:

      • Регуляторы линейной серии
      • Импульсные регуляторы

      В последовательных регуляторах используется силовой транзистор, соединенный последовательно между нерегулируемый вход постоянного тока и нагрузка. Выходное напряжение регулируется постоянным падением напряжения на последовательном проходе транзистор. Поскольку транзистор проводит в активном или линейном области, эти регуляторы также называются линейными регуляторами. Линейный Регуляторы могут иметь фиксированное или переменное выходное напряжение и могут быть положительный или отрицательный.

      Импульсные регуляторы, с другой стороны, управляют силовым транзистором как переключатель включения/выключения высокой частоты, так что силовой транзистор не постоянно проводить ток. Это дает повышенную эффективность по сравнению с серийный регулятор.


      II.

      ПРИНЦИПИАЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ СХЕМА

      Р3

      ВКЦ

      1кΩ

      ВКЦ

      12 В

      С2

      Д1

      12 В

      1N4737A

      7

      1

      5

      У1

      100 пФ

      Q1

      XMM1

      3

      6

      2N2222A

      И1

      2

      4

      У2

      Р4

      Р1

      10 мкА

      4

      741

      2k© 2

      100Ω

      0 кГц

      6

      Q2

      Д2

      1N4737A

      3

      2N2222A

      Р2

      7

      1

      5

      741

      3k©

      ВКЦ

      12 В

      РАБОТАЮЩИЙ:

      Стабилитрон, постоянный ток и опорный усилитель создают фиксированное напряжение около 7 вольт на клемме Vref.

      Источник постоянного тока заставляет стабилитрон работать при фиксированной точки так, чтобы стабилитрон выдавал фиксированное напряжение.

      Схема также состоит из усилителя ошибки, последовательного прохода транзистор Q1 и транзистор ограничения тока Q2. Усилитель ошибки сравнивает выборку выходного напряжения, подаваемого на вход Inv клемма к опорному напряжению Vref, поданному на вход NI Терминал. Сигнал ошибки управляет проводимостью Q1.

      Напряжение на выводе NI усилителя ошибки из-за R1,R2 делитель

      V NI = V ref x (R 2 /R 1 +R 2 )

      Разница между V NI и V или (выход Напряжение), которое возвращается непосредственно на клемму INV, усиливается усилитель ошибок. Выход усилителя ошибки управляет проходом транзистор Q1, чтобы минимизировать разницу между NI и INV входы усилителя ошибки. Поскольку Q1 работает как эмиттер последователь,

      V или = V ref x (R 2 /R 1 +R 2 )

      Если выходное напряжение становится низким, напряжение на клемме INV усилитель ошибки также падает. Это делает его выход более положительный, за счет того, что Q1 больше переходит в проводимость. Это снижает напряжение на Q1 и подает больший ток в нагрузку, вызывая напряжение при нагрузке увеличиваться. Таким образом, начальное падение напряжения на нагрузке были компенсированы. Точно так же любое увеличение напряжения нагрузки или изменение входное напряжение регулируется.

      Для защиты цепи мы предоставляем средство ограничения тока. Текущий ограничение относится к способности регулятора предотвращать нагрузку текущий от повышения выше текущего значения.


      Ограничение тока устанавливается подключением внешнего резистора R4 между эмиттеры Q1 и Q2.

      Ток нагрузки создает небольшое падение напряжения V4 на резисторе R4. Этот напряжение V4 прикладывается непосредственно к переходу база-эмиттер транзистора Q2. Когда это напряжение составляет примерно 0,5 В, начинает включаться Q2, теперь часть тока от усилителя ошибки поступает на коллектор Q2, там, уменьшая базовый ток Q1. Это, в свою очередь, снижает эмиттерный ток Q1. Таким образом, любое увеличение тока нагрузки приведет к аннулировано. Аналогично, если ток нагрузки уменьшается, Vbe Q2 падает. повторение цикла таким образом, чтобы ток нагрузки удерживался постоянным, чтобы создать напряжение на резисторе R4, достаточное для включения транзистора Q2. Этот напряжение обычно 0,5 вольта.

      I предел = V4/R4.

      Этот метод ограничения тока также называется измерением тока. Техника.

      А. КОД

      .subckt ОПЕРАТОР 1 2 6

      R1 1 2 10 мегабайт

      Р2 3 4 1к

      E1 3 0 2 1 100k

      С1 4 0 15у

      Е2 5 0 4 0 1

      Р3 5 6 10

      .ends операционный усилитель

      *Регулятор напряжения

      .include opamp_symbol.cir

      .модель 1N4737a D( IS=5.038e-012 BV=7.165 IBV=0.1902 EG=1.11 TNOM=27)

      .модель 2N2222A npn(IS=2.04566e-13 BF=300)

      Д1 1 2 1N4737а

      я 1 0 10у

      X1 1 0 2 операционный усилитель

      R1 2 3 0,38к

      R2 3 0 1k


      Vcc 8 0 15 В постоянного тока

      X2 4 3 5 операционный усилитель

      Р3 4 6 100

      Р4 7 6 100

      Рл 6 9 1к

      V2 9 0 пост. т. 0 В

      С1 4 5 100р

      Д2 0 7 1Н4737а

      Q1 8 5 7 2N2222A

      Q2 5 7 6 2N2222A

      .тран 1у 1м

      .контроль

      бежать

      отображать

      участок V(2)

      участок В(6)

      участок I (V2)

      установить цвет0 = белый

      установить цвет1 = черный

      .endc

      .конец

      *Регулировка нагрузки — изменение выходного напряжения в зависимости от тока изменение нагрузки

      .include opamp_symbol.cir

      .модель 1N4737a D( IS=5.038e-012 BV=7.165 IBV=0.1902 EG=1,11 TNOM=27)

      .модель 2N2222A npn(IS=2.04566e-13 BF=300)

      Д1 1 2 1N4737а

      я 1 0 10у

      X1 1 0 2 операционный усилитель

      Р1 2 3 2к

      R2 3 0 3k


      Vcc 8 0 15 В постоянного тока

      X2 4 3 5 операционный усилитель

      Р3 4 6 100

      Р4 7 6 100

      Рл 6 9

      V2 9 0 пост. т. 0 В

      С1 4 5 100р

      Д2 0 7 1Н4737а

      Q1 8 5 7 2N2222A

      Q2 5 7 6 2N2222A

      . dc Рл 1к 10к 100

      .контроль

      бежать

      отображать

      участок V(2)

      участок В(6)

      участок I (V2)

      участок В(7)

      участок V(6) против I(V2)

      установить цвет0 = белый

      установить цвет1 = черный

      .endc

      .конец

      РЕЗУЛЬТАТ И ЗАКЛЮЧЕНИЕ


      Опорное напряжение установлено для получения 6,91 В и, следовательно, выходного сигнала.

      напряжение получается в диапазоне изменения сопротивлений 2В-7В.

      V(2) – выходное напряжение регулятора напряжения,

      наблюдается постоянное 5В для сопротивлений 0,38кОм и

      1кОм.

      Ток в узле 2 составляет 5 мА. Когда выходное сопротивление варьируется от 1к до 10к, наблюдается изменение тока от 4мА до 0,5мА. Выходное напряжение изменяется от 4,145 В до 4,146 В при изменении тока от 0 до 4 мА.

      Предыдущая

      Следующая

      Как собрать блок питания на 5 В

      Первая часть любого электронного проекта — блок питания. В некоторых проектах используется порт USB на вашем компьютере, в то время как в других используется дешевый настенный адаптер. Одни питаются от батареек, другие от солнечных батарей. Со всеми этими различными вариантами, как можно питать свой проект электроники? Позвольте нам показать вам, как привести ваши проекты в действие!

      Это довольно просто; сначала я хочу объяснить, что делает блок питания, а затем покажу вам, как его собрать.

      Мы начнем с аккумулятора и доберемся до настенного адаптера. Блок питания отвечает за обеспечение цепи всей мощностью, необходимой для нормальной работы. Он обеспечивает цепь определенным напряжением и током.

      Лучше всего представить себе шланг, по которому течет вода. Давление воды на конце шланга — это напряжение, а количество воды, проходящей через шланг, — это ток. Большинству электронных устройств для работы требуется определенное количество напряжения и тока. Ради этого урока давайте сделаем это около 5 В и сохраним ток на потом. Для правильной работы нам нужно найти способ преобразовать напряжение нашего основного источника питания (батареи или сетевого адаптера) в 5 В.

      Здесь на помощь приходит регулятор. Регулятор — это устройство, которое преобразует нестабилизированное напряжение в стабильное 5 В, необходимое для питания нашего проекта. Его работа состоит в том, чтобы поддерживать постоянное напряжение 5 В независимо от того, что делает наша батарея. Единственное предостережение стандартного стабилизатора напряжения заключается в том, что основное питание должно быть немного выше, чем мы хотим достичь. Итак, если мы хотим 5 В, нам нужно как минимум 7 В, чтобы поддерживать стабильные 5 В, которые мы хотим. Этот блок питания не сможет преобразовать более низкие вольты в 5V. Так что, как только наша батарея разрядится, наш проект тоже разрядится.

      В этом уроке мы будем использовать (линейный стабилизатор напряжения) в качестве источника питания. Прежде чем мы начнем, нам нужно быстро просмотреть техническое описание и ознакомиться с рекомендуемыми условиями эксплуатации. Вы можете видеть на странице 3, что входное напряжение должно быть между 7В и 25В. Он имеет выходное напряжение 5 В и может подавать до 750 мА при коротком замыкании. Это означает, что ваша схема не может потреблять более 750 мА, иначе регулятор выключится. Большинство спецификаций также содержат общую информацию о приложении. На странице 7 вы можете увидеть, как должна выглядеть типичная схема приложения.

      Цепь приложения

      Что мы собираемся сделать, так это собрать этот блок питания с парой простых изменений. Для этого регулятора требуется конденсатор 0,33 мкФ на входе и конденсатор 0,1 мкФ на выходе. Конденсаторы помогают фильтровать вход и выход от шума, создаваемого источником питания и/или нагрузкой (т. е. вашим проектом). Мы добавим более крупные конденсаторы с обеих сторон, чтобы обеспечить чистоту и отсутствие помех в нашем блоке питания. Во-вторых, нет никакого способа узнать, работает ли наш блок питания, поэтому мы добавим небольшой светодиод в качестве индикатора питания.

      Наша трасса

      Вот наша переработанная схема. У нас есть 4 конденсатора вместо 2, и мы добавили наш красный индикатор питания с токоограничивающим резистором, который необходим для светодиода, чтобы он не сгорел. Если вам интересно, откуда взялось волшебное значение резистора 330 Ом, это простое применение уравнения V = IR. Сначала мы получаем требования к падению напряжения и току для нашего светодиода. Он имеет падение напряжения около 3 В и потребляет 20 мА при максимальной яркости.

      Уравнение

      При быстром расчете выше видно, что для максимальной яркости нашего красного светодиода нам нужен резистор 100 Ом. Так как меня не особо волнует максимальная яркость, я предпочитаю диммерный светодиод и экономлю батарею; поэтому я решил вместо этого использовать резистор на 330 Ом, который по-прежнему даст мне достаточную яркость и увеличит срок службы батареи.

      Запчасти

      Итак, теперь, когда мы это сделали, давайте приступим к строительству! Вот все части, которые мы будем использовать в этом уроке. На рисунке вы можете увидеть 3-контактный стабилизатор напряжения LM7805, два черных конденсатора по 10 мкФ, два синих конденсатора по 0,1 мкФ, один светодиод (прозрачная линза с двумя ножками), один резистор 330 Ом (часть с оранжевыми кольцами) и макетную плату. (белая доска с дырочками). Наконец, у нас есть батарея на 9 В и разъем. Я припаял несколько разъемов к концу, чтобы их было легко вставить в макетную плату.

      Аккумулятор и разъем

      Начнем с макетной платы. Макетная плата — отличный инструмент, который поможет вам создать прототип схемы еще до того, как вам понадобится изготовить печатную плату. Он имеет предварительно соединенные строки и столбцы, которые позволяют вам вставлять в них электронные компоненты для создания вашей схемы. На следующем изображении показано, какие из выводов обычно соединяются вместе (не все макетные платы одинаковы!).

      Макетная плата

      Внутри макетной платы находятся специально изготовленные металлические стержни и рельсы. Когда компонент размещается на макетной плате, эти стержни удерживают его на месте и позволяют электрически подключить к нему любой другой компонент, используя тот же стержень. Все еще не знаете, что с этим делать? Начнем с размещения разъема аккумулятора и регулятора на макетной плате.

      Шаг 1

      Теперь пришло время добавить немного проводки. Мы будем использовать некоторые из наших предварительно нарезанных перемычек, чтобы начать делать схему на макетной плате. Из таблицы данных мы знаем, что крайний левый штырек регулятора — это вход, а крайний правый — выход. Середина — это 0 В нашей батареи (мы будем называть ее землей в этом уроке). Таким образом, чтобы подключить вход регулятора к аккумулятору, мы поместим провод между контактами 1 и 5 и один между контактами 2 и 6.

      Шаг 2

      Далее мы подсоединим рельсы к выходу регулятора. Это позволит нам позже подключить 5В к любой детали.

      Шаг 3

      Основные соединения выполнены. Теперь добавим фильтрующие конденсаторы. Некоторые конденсаторы поляризованы, а некоторые нет. Используемые нами конденсаторы 10 мкФ поляризованы, поэтому нам нужно быть осторожными и размещать их в цепи в правильном направлении. Белая полоса на наших конденсаторах показывает отрицательную сторону конденсаторов и должна быть подключена к отрицательным частям цепи.

      Крышки

      На следующих двух рисунках показано, как оба конденсатора добавляются в схему. Мне пришлось обрезать длину одного из контактов, чтобы он поместился на макетной плате. Обычно один контакт всегда длиннее другого, чтобы показать полярность. Входные конденсаторы находятся сверху, а выходные конденсаторы — снизу.

      Шаг 5

      Вот снова выходные конденсаторы. Обратите внимание на белую полосу, подключенную к линии заземления. Я использую синюю рейку как отрицательную сторону моей батареи.

      Шаг 6

      Далее идут два конденсатора по 0,1 мкФ (маленькие синие на картинке). Они не поляризованы, поэтому мы можем разместить их так, как захотим.

      Шаг 7

      Для наглядности второй крупным планом.

      Шаг 8

      Цепь регулятора практически завершена. Давайте добавим индикатор питания, чтобы мы знали, когда он включен.

      Шаг 9

      Для источника питания нам просто нужно запитать светодиод напряжением 5 В, регулируемым нашей схемой. Здесь мы подключаем контакт 21 к 5V, а контакт 22 к земле. Теперь нам просто нужно добавить светодиод и резистор для защиты светодиода. У светодиодов есть полярность. Светодиод имеет анод и катод. Анод подключается к плюсу, а катод к минусу. Если светодиод поставить наоборот, он не загорится.

      Шаг 10

      На изображении выше изображен наш стандартный красный светодиод диаметром 5 мм. На картинке видно, что одна ножка светодиода длиннее другой. Это наш анод, и он должен быть подключен к положительной стороне источника питания. Короткий контакт является катодом и должен быть подключен к отрицательной стороне.

      Шаг 11

      Здесь мы подключили катод светодиода к отрицательному полюсу батареи. Все, что осталось, это резистор от анода до положительной шины 5 В, чтобы включить светодиод.

      Шаг 12

      Вот оно! Давайте подключим аккумулятор и посмотрим, загорится ли наш светодиод.

      Шаг 13

      Вот и все, работает! Я знаю, вы едва можете увидеть красный светодиод. Это из-за нашей вспышки камеры, поверьте мне, она включена и довольно яркая.

      Но подождите минутку. То, что светодиод горит, не означает, что мы получаем желаемые 5 В, верно? Было бы мудрым решением подключить мультиметр и проверить выход, прежде чем подключать что-либо к этому источнику питания. Как мы это делаем? Я рад, что вы спросили.

      Начнем с проверки напряжения аккумулятора.

      Шаг 14

      Для измерения напряжения мультиметром необходимо подключить мультиметр параллельно цепи. Итак, что мы сделали выше, добавили пару перемычек на макетную плату. Красный подключен к контакту 1, который является тем же контактом, что и наша положительная сторона батареи. Второй подключен к нашей синей шине, которая подключена к отрицательной стороне аккумулятора. Теперь мы можем подключить мультиметр, установленный в режим напряжения, к нашим перемычкам и измерить напряжение свежей 9батарея В.

      Шаг 15

      А вот мультиметр показывает напряжение аккумулятора. Убедитесь, что ваш мультиметр настроен на режим постоянного напряжения, а красный щуп подключен к правильной клемме.

      Шаг 16

      Итак, наша новая батарея 9 В обеспечивает нашу схему напряжением 9,37 В! Скорее всего, это будет ближе к 90,0 В, как только мы применим некоторую реальную нагрузку к цепи.

      Теперь давайте измерим выход нашего регулятора. Переместим красную перемычку на красную рейку, которая подключена к выходу регулятора.

      Шаг 13

       И, наконец, вот результат работы схемы.

      Шаг 16

      Получаем 4,96В! Это вполне соответствует характеристикам нашего регулятора, и наша схема работает отлично. Теперь мы готовы обеспечить наш проект мощностью до 750 мА!

      Регулятор с радостью снабдит ваш проект током до 750 мА, но будьте осторожны. Металлический язычок регулятора предназначен для соединения с радиатором. Если вы планируете использовать эту схему или любую другую схему регулятора напряжения в соответствии со спецификациями максимального тока, обязательно используйте радиатор и вентилятор для охлаждения компонента.

      Надеюсь, вам понравился этот урок.

      Дайте нам знать, если у вас есть какие-либо вопросы на нашем форуме, или вы можете связаться с нами.

      Эта статья была опубликована командой Jaycon. Узнайте больше о том, как мы можем вывести дизайн вашего продукта и аппаратное обеспечение на новый уровень, здесь.

      УчебникиJaycon Systems

      0 лайков

      LM7912 Схема контактов, техническое описание, применение, примеры, характеристики

      LM7912 представляет собой микросхему стабилизатора напряжения с отрицательным напряжением 12 В с тремя выводами. Для работы большинства приложений требуется как положительное, так и отрицательное напряжение. Отрицательные напряжения должны быть стабильными, иначе они могут повредить цепь или сократить срок службы компонентов, используемых в цепи. Следовательно, стабилизаторы отрицательного напряжения лишают эту цель приложения. ЛМ7912 IC — регулятор отрицательного напряжения питания отрицательного напряжения. Он состоит из трех контактов и имеет фиксированное выходное напряжение -12В. Он используется в случае флуктуирующих входных сигналов для стабилизации выходного сигнала.

      Описание конфигурации контактов

      Это трехконтактное устройство, информация о контактах которого приведена ниже.

      Номер контакта Имя  Описание
      1 ЗАЗЕМЛЕНИЕ Штырь заземления подключен к земле цепи.
      2 ВВОД На входной контакт подается сигнал нестабилизированного напряжения. Диапазон входного сигнала от 5В до 24В.
      3 ВЫХОД На выходе отражается стабильный и регулируемый сигнал фиксированного напряжения -12 В.

      Блок-схема LM7912

      Блок-схема внутренней схемы микросхемы LM7912 представлена ​​на рисунке.

      LM7912 Регулятор отрицательного напряжения Характеристики

      • Имеет фиксированное выходное напряжение -12 В
      • Входное напряжение должно находиться в диапазоне от -27 В до -14,5 В
      • Схемы защиты от коротких замыканий и тепловых перегрузок встроены в эту ИС.
      • Защита безопасной зоны предусмотрена для выходных транзисторов.
      • Обладает высоким коэффициентом отклонения источника питания и низким уровнем шума.
      • Выходной ток 1,5 А
      • Допустимое отклонение выходного напряжения составляет ± 4 %.
      • Имеет низкий ток покоя, что обеспечивает хорошую стабилизацию.

      Где использовать?

      Микросхема LM7912 используется при разработке аналоговых схем, требующих отрицательного напряжения. Вы можете использовать эту микросхему для получения -12 вольт. Микроконтроллерам для бесперебойной работы требуется плавное и регулируемое напряжение на входе. Следовательно, ЛМ7912 IC используется для формирования плавного напряжения. Это также полезно при разработке раздельных источников питания и датчиков. Самое главное, он может работать в диапазоне температур от 0 до 50 °C. Кроме того, он подходит для использования в приложениях с фиксированным напряжением.

      Как использовать регулятор отрицательного напряжения LM7912?

      Базовая схема этой ИС приведена ниже. Для стабильной работы требуется всего два конденсатора. Один конденсатор подключен к входу, а другой к выходу. Они используются для фильтрации шума. Чтобы избежать чрезмерного рассеивания мощности, внутри микросхемы встроена система защиты от тепловой перегрузки.

      Предусмотрена защита от короткого замыкания, чтобы удерживать ток в определенных пределах, в противном случае это может привести к повреждению ИС. На контакт 2 подается отрицательный входной сигнал в диапазоне от – 5 В до – 24 В. LM7912 состоит из проходного транзистора. Выходной ток уменьшается, когда напряжение на этом транзисторе увеличивается. Поэтому для компенсации потерь предусмотрена компенсация безопасной зоны. Срок службы этого устройства можно увеличить с помощью радиатора, который увеличивает рассеиваемую мощность.

      Регулятор отрицательного напряжения -12 с использованием LM7912

      В этой схеме мы подаем 14 В постоянного тока на вход 7912. Конденсаторы C1 и C2 являются конденсаторами фильтра. Эти конденсаторы предотвращают колебания напряжения на входных и выходных клеммах. Чем больше номинал конденсатора, тем меньше будут колебания напряжения. Но мы всегда используем оптимальные и легкодоступные номиналы конденсаторов.

      Подключаем на выходе вольтметр для измерения выходного напряжения. Как видно из принципиальной схемы, на выходе минус 12 вольт.

      Пример схемы

      Эту микросхему можно использовать для разработки двойного симметричного источника питания 12 В. В этом проекте используются регулятор положительного напряжения (LM7812) и регулятор отрицательного напряжения (LM7912). Схема цепи приведена ниже.

      Эквивалентные регуляторы отрицательного напряжения

      Иногда мы не можем найти электронные компоненты на рынке, мы можем использовать альтернативные/эквивалентные регуляторы.

      • LM7905
      • ЛМ7915
      • ЛМ7918

      LM7912 Применение

      Используется в приложениях с фиксированным напряжением. Вот несколько вариантов применения микросхемы LM7912:

      • Она может использоваться в качестве источника опорного или силового напряжения в аналоговых и цифровых схемах, а также в качестве источника тока в некоторых приложениях.
      • LM7912 может проектировать двойное регулируемое питание.
      • Эта ИС может разрабатывать ограничитель тока для различных приложений.
      • Этот высокостабильный регулятор используется в высокочувствительных регуляторах освещения
      • Он также имеет схему защиты от неправильной полярности выхода.

      2D-диаграмма

      Микросхема LM7912 доступна только в корпусе TO-220. Размеры и 2D-схема этого пакета приведены ниже.

      LM7912 Технический паспорт

      LM7912 12 ИС регулятора отрицательного напряжения

      Рубрики Компоненты электроники

      Подписаться на блог по электронной почте

      Введите адрес электронной почты, чтобы подписаться на этот блог и получать уведомления о новых сообщениях по электронной почте.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *