Site Loader

Содержание

Реверс двигателя постоянного и переменного тока: схемы подключения

Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока, асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.

  • Реверсивное включение двигателей постоянного тока
  • Изменение направления вращения ротора асинхронного двигателя
  • Схема подключения коллекторного двигателя с реверсом
  • Схема реверса электродвигателя на ардуино

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html.

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

Схема подключения коллекторного двигателя с реверсом

Чтобы осуществить реверс коллекторного двигателя, необходимо знать:

  1. Не на каждом коллекторном моторе можно осуществить реверс.
    Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
  2. Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
  3. У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.

На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.

Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.

Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.

Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.

Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.

Зависит от типа двигателя:

  • Два идут на щетки коллектора.
  • От таходатчика на колодку приходит пара проводов.
  • Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.

Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения.

Если имеется третий вывод, то его не используют.

Схема реверса электродвигателя на ардуино

В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.

Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.

В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.

В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.

В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.

Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Как сделать простейший электродвигатель своими руками
  • Чем отличается переменный ток от постоянного
  • Что такое фаза, ноль и заземление

Реверсивное управление двигателем постоянного тока схема

В статье «Регуляторы оборотов электродвигателей » речь шла о регулировке оборотов коллекторных двигателей электроинструментов. Нередко возникает и другая задача: реверс двигателя постоянного тока, т.е. требуется обеспечить его вращение в одну и другую стороны. Это может понадобиться, например, для привода ворот в гараже или коттедже, в различных моделях и пр.

Проще всего такая задача с реверсом решается с помощью мостовой схемы, которая в общем виде представлена на рис.1 . Схема реверса состоит из четырех ключей, двигателя и источника питания. Когда все ключи разомкнуты ( рис.1а ), ток через двигатель не течет. При коммутации первого и четвертого ключа ток через двигатель Iд течет слева направо ( рис.1б ), и двигатель вращается в одном направлении. А при коммутации второго и третьего ключей — течет справа налево ( рис.1в ), и двигатель вращается в обратном направлении. Понятно, что руками коммутировать для реверса четыре переключателя неудобно, поэтому вместо ключей используем транзисторы ( рис.2 ). Транзисторы могут быть разной проводимости, полевыми или биполярными. Работают они в ключевом режиме. Обратно включенные диоды VD1. VD4 защищают транзисторы от выхода из строя, так как в момент выключения электродвигателя возникает достаточно большая ЭДС самоиндукции. Силовая часть устройства реверса на биполярных транзисторах приведена на рис.3 . Она состоит из четырех силовых и двух управляющих транзисторов; резисторов, ограничивающих базовые токи; шунтирующих диодов и гальванической развязки в виде двух оптопар. Питание моста происходит от блока питания, подающего постоянное напряжение +50 В относительно земли. В cостоянии покоя на оба канала (А и Б) подается 0 В. Все транзисторы закрыты, на концах обмоток потенциал 0 В. Вал двигателя не вращается. Для вращения двигателя в одну сторону на канал А подается постоянное напряжение +5 В или ШИМ-сигнал, на канал Б — 0 В. Открывается оптрон VU1, следом управляющий VТ5; при этом VТ6 закрыт. Через резистор R2 протекает ток, открывающий силовые VТ1 и VТ4, а VТ2 и VТЗ закрыты. Таким образом, на конце обмотки Я1 потенциал составляет +50 В, на конце обмотки Я2 — 0 В. Вал двигателя вращается (например, по часовой стрелке). Чтобы включить реверс двигателя, на канал Б подается напряжение +5 В (ШИМ-сигнал), на канал А — 0 В. Управляющий VТ6 открыт, VТ5 — закрыт. Через резистор R4 в цепи коллектора VТ6 протекает ток, открывающий VТ2 и VТ3, а VТ1 и VТ4 закрыты. На конце обмотки Я1 потенциал составляет 0 В, на конце обмотки Я2 — +50 В. Вал двигателя вращается против часовой стрелки. В случае подачи полoжительного напряжения на оба канала (А и Б) произойдет короткое замыкание, поэтому такой режим предотвращается управляющей частью устройства. Реверс двигателя постоянного тока можно выполнить и на МОП-транзисторах ( рис.4 ). На входе схемы реверса последовательно установлены два инвертора так, что выход одного одновременно является входом другого. При этом сигнал управления (высокий или низкий логический уровень) на входе DD1.1 инвертируется и подается на вход DD1.2. Выходы инверторов управляют полевыми транзисторами. При высоком уровне на входе, на выходе DD1.1 — низкий уровень, а на выходе DD1.2. — высокий. Благодаря этому VТ2 и VТЗ открыты и пропускают ток от отрицательного к положительному полюсу источника питания. Двигатель М1 вращается против часовой стрелки. Если на вход схемы реверса подать низкий уровень, на выходе DD1.1 появится высокий уровень и откроются VT1 и VТ4, замыкая другую диагональ моста. Теперь ток потечет в другую сторону, и двигатель изменит направление вращения. Для управления устройством для реверса необходим логический сигнал МОП-уровня (0/+12 В).

С двумя кнопками

Этой схемой Интернет буквально завален. Ведь она позволяет запускать двигатель и управлять направлением его вращения всего двумя обычными кнопками! Нажал на одну – мотор крутится влево. Нажал на другую – вправо. Не нажал – все отключено.

Теоретически все верно. Для питания электродвигателя М1 используется переменный ток. Пока ни одна из кнопок не нажата, двигатель не вращается, поскольку он подключен к питанию через диоды D1, D2, соединенные встречно-последовательно.

Как только мы нажмем на одну из кнопок, один из диодов окажется закорочен, а второй начнет работать как однополупериодный выпрямитель, подавая на мотор выпрямленное напряжение. Полярность этого напряжения, а значит, и направление вращения двигателя, будут зависеть от того, какая из кнопок нажата.

На практике же такая конструкция имеет огромный недостаток. Мощность электромотора, питаемого таким «криво» выпрямленным напряжением, составит не более 40 % от его номинала. Если учесть то, что КПД самого мотора обычно составляет порядка 50%, то нам останется только погрустить.

Еще один существенный недостаток – отсутствие «защиты от дурака». Если нажать на обе кнопки одновременно, к электродвигателю будет приложено переменное напряжение, да еще и удвоенной амплитуды. Вполне очевидно, что после такой оплошности от мотора останутся ножки и частично рожки.

Изменение направления вращения ротора асинхронного двигателя

Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.

Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».

При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.

После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.

Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.

Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.

Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.

В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: .

Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.

При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.

На сдвоенном со средним положением

Если управление двумя кнопками все же неудобно, то можно воспользоваться конструкцией, в которой используется двухполюсной тумблер со средним положением. Подойдет, к примеру, П2Т-5.

Как видно из схемы, конструкция предельно проста. В среднем положении флажка тумблера S1 двигатель отключен от питания. При повороте флажка в ту или иную сторону, на обмотку электродвигателя будет подаваться напряжение той или иной полярности, обеспечивая вращение ротора в ту или другую сторону.

Тумблеры со средним положением бывают с фиксацией и без. В первом случае при повороте флажок «залипает» и его нужно отключать вручную. У тумблеров без фиксации флажок самостоятельно устанавливается в «нейтральное» положение после окончания воздействия на него.

Реверсивное включение двигателей постоянного тока

Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.

Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.

Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.

Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.

На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.

КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.

На тумблере с автоматическим отключением

Предыдущая схема проста и удобна в управлении и ее, к примеру, можно использовать для управления моторами стеклоподъемников в автомобиле. Но для этого конструкцию придется немного доработать. Ведь управляя стеклоподъемником вручную, сложно определить, что стекло уже полностью открылось/закрылось и пора останавливать мотор. Взглянем на схему ниже.

Перед нами все та же конструкция с тумблером, но она дополнена двумя диодами и двумя концевыми выключателями. Предположим, наш мотор управляет приводом стеклоподъемника автомобиля. Стекло полуоткрыто, концевые выключатели S2 и S1, расположенные в верхней и нижней части окна, замкнуты, диоды D1 и D2 закорочены.

Переводим флажок S1 в одно из положений. К примеру, в верхнее по схеме. На мотор M1 начинает поступать напряжение – «плюс» на верхний вывод, «минус» на нижний. Стекло поднимается и, в конце концов, нажимает на толкатель концевика S2, заставляя его сработать. Контакты S2 размыкаются, и в работу включается диод D1. Поскольку он включен в обратном направлении, то тут же запирается, запрещая работу двигателя. Теперь сколько бы мы ни давили на флажок, мотор не запустится и не даст разнести стеклоподъемный механизм.

Переводим флажок S1 в нижнее по схеме положение. Теперь «плюс» подается на нижний по схеме вывод обмотки мотора и диод D1 оказывается включенным в прямом направлении. Он свободно пропускает ток, несмотря на то, что S2 разомкнут и разрешает работу электромотора, который опускает стекло. Как только стекло будет полностью опущено, сработает S2, останавливая М1. Ниже опустить его мы не сможем, но сможем поднять, поскольку опускаясь, стекло отпустило S2 и он снова замкнут.

Вот вроде и все. Схемы, конечно, исключительно просты и для тех, кто более-менее знаком с электроникой, не являются откровением. Но тех, кто только начал познавать электромир, эти схемы, возможно, чему-нибудь научат.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

электромотор 12в . как сделать реверсивным?

мотор автомобильный с вентилятора отопителя, будет использоваться в детской игрушке-автомобильчике,тракторе. кнопка включения от шуруповёрта.

Свистунов Л. написал: мотор автомобильный с вентилятора отопителя,

Alex___dr написал: Модель? Фото?

Я бы скорее спросил: сколько проводов идет к двигателю. Я не автомобилист, к сожалению своего авто никогда не было. Но встречаться приходилось. Обычно это ДПТ с независимым возбуждением. Для реверса нужно просто поменять провода местами (+ с -).

МЭ226-б 12/40. вывод один, второй-корпус.

Если есть постоянный магнит — полярность

Если нет — будет крутится одинаково в обеих полярностях. Тогда надо вывести отдельно провода от обмотки статора и коллекторов

По любому надо вскрыть и убедится, что там коллекторы не сделаны так что они механически сломаются если крутить назад

Для чего нужен реверс двигателя?

Многие механические действия в бытовых и промышленных устройствах, осуществляются с помощью асинхронного движка. В связи, с чем часто возникает необходимость изменения направления движения, исходя из выполняемых задач. Иногда функция реверса для механизма является постоянной, а иногда — временной.

  1. К первой разновидности относятся все грузоподъемные механизмы краны, электроприводы запорно-регулирующих устройств и исполнительных механизмов, работающих в режиме «открыть/закрыть».
  2. К другой разновидности реверса, относят механизмы, в которых данная функция используется очень редко, обычно в аварийных случаях: конвейеры, эскалаторы, насосные агрегаты.

Функцию реверса в электродвигателе иногда используют для торможения, поскольку при отсоединении его от электросети, ротор, располагая значительной инерционностью, продолжает свою работу. Такой кратковременный пуск реверса вызывает процесс торможения движка. Данный способ еще называют противовключением.

Схема регулятора

Схема очень простая и может быть легко собрана даже начинающими радиолюбителями. Из плюсов сборки этого устройства могу назвать его низкую себестоимость и возможность подогнать под нужные потребности. На рисунке приведена печатная плата регулятора:

Но область применения данного регулятора не ограничивается одними слайдерами, его легко можно применить в качестве регулятора оборотов, например бор машинки, самодельного дремеля, с питанием от 12 вольт, либо компьютерного кулера, например, размерами 80 х 80 или 120 х 120 мм. Также мною была разработана схема реверса двигателя, или говоря другими словами, быстрой смены вращения вала в другую сторону. Для этого использовал шестиконтактный тумблер на 2 положения. На следующем рисунке изображена схема его подключения:

Средние контакты тумблера, обозначенные (+) и (-) подключают к контактам на плате обозначенным М1.1 и М1.2, полярность не имеет значения. Всем известно, что компьютерные кулеры, при снижении напряжения питания и, соответственно, оборотов, издают в работе намного меньший шум. На следующем фото, транзистор КТ805АМ на радиаторе:

В схеме можно использовать почти любой транзистор средней и большой мощности n-p-n структуры. Диод также можно заменить на подходящие по току аналоги, например 1N4001, 1N4007 и другие. Выводы двигателя зашунтированы диодом в обратном включении, это было сделано для защиты транзистора в моменты включения — отключения схемы, так как двигатель у нас нагрузка индуктивная. Также, в схеме предусмотрена индикация включения слайдера на светодиоде, включенном последовательно с резистором.

При использовании двигателя большей мощности, чем изображен на фото, транзистор для улучшения охлаждения нужно прикрепить к радиатору. Фото получившейся платы приведено ниже:

Плата регулятора была изготовлена методом ЛУТ. Увидеть, что получилось в итоге, можно на видеоролике.

Как реализовать схему реверса?

Для перемены направленности вращения ротора, нужно поменять местами 2 из 3 фазы его обмотки. Тогда электромагнитное поле статора меняет свою направленность движения, при этом ротор в первоначальный период времени, двигаясь по инерции, станет притормаживаться, пока окончательно не остановится. И только потом он будет крутиться в другом направлении.

Замену полярности электро-пусковой обмотки возможно сделать с управляющим тумблером по схеме. Его можно подобрать с 2 или 3 зафиксированными положениями и 6 выходами. Выбирать такое устройство нужно по токовой нагрузке и разрешенному напряжению.

Пропускать ток на тумблер предпочтительнее от вспомогательной обмотки, которая работает непродолжительно. Перечисленное, даст возможность значительно увеличить рабочий ресурс контактной группы.

Реверс асинхронного двигателя с конденсаторным запуском лучше выполнять по следующей схеме:

  • При тяжелом пуске параллельно к главному конденсатору, используя средний контакт с самовозвратом ПНВ, подсоединяют добавочный конденсатор.
  • В таком примере переключают тумблер реверса только при заторможенном роторе, и никак не при его вращении.
  • Случайная перемена направленности работы мотора под напряжением, сопряжена с огромными скачками тока, что истощает его мото-ресурс. По этой причине посадочное место тумблера реверса на оборудовании нужно подбирать таким образом, чтобы сделать невозможным случайное включение его во время работы. Лучше установить его в каком-то углубленном месте конструкции.

Если электродвигатель не работает должным образом после сборки схемы, потребуется дважды перепроверить, что провода идут к правильным клеммам переключателя. И также удостоверится, что проводка не ослаблена или не повреждена.

Рекомендуется использовать увеличительное стекло, чтобы убедиться, что соединения выполнены правильно и даже самая тонкая нить провода случайно не касается другого проводка или клеммы.

Вариант 2: переподключение пусковой намотки

Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

  1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
  2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

Схема подключения двигателя постоянного тока с реверсом

Предистория
Иногда я «по просьбам трудящихся» 🙂 в свободное время помогаю составить различные схемы. В ряде случаев я получаю отклик, в ряде — все «уходит в пучину» и не знаю: вышла схема или нет. Таких схем получилось достаточно прилично и вот решил выложить их «в открытый доступ» — может кому что понравится и он попробует собрать — заодно и расскажет, как все вышло.

Задача
Сформулировано задание было так : » Имеется моторчик 12в. Нужна схема для изменения полярности на выходах моторчика, чтоб работал от кнопки без фиксации то в одну сторону, то в другую. Кнопка без фиксации должна подавать минусовой сигнал.

Включил зажигание моторчик крутит в одну сторону, нажал кнопку крутит в другую сторону, выключил зажигание моторчик не крутит»

Конечно схема былабы проще, если бы не требование только минусового сигнала на кнопке, то таково «требование заказчика»

«Схема переключения»
Пояснять тут особо нечего — по сути это схема управления нагрузкой при помощи одной кнопки.
Реализована на микросхеме CD4013, представляющую собой два D- триггера в одном корпусе.

Тут также все просто — мостовая схема на биполярных транзисторах VT1- VT4, на схеме изображены Tip41 и Tip42 — эти транзисторы позволят подать на мотор до 65 Вт нагрузки.
При подаче управляющего сигнала на вход двигатель будет вращаться в одну сторону, при отсутствии — в противоположную.

Если кто решит повторить схему или ее часть — просьба отписаться: пришлось ли что то дорабатывать или нет и если да, то что.

PS. а вообще предельно просто данная система управления собирается из волговского реле РС711 и двух 5-контактных обычных реле, но «заказчик» просил именно электронную схему 😉

PS2. Если честно, то делая для себя, я не сталбы пускать двигатель в другую сторону, не дождавшись его полной остановки

Релейная схема реверса

Для переключения направления вращения, плюсовой сигнал нужно подать всего лишь на катушку одного из реле.

Мостовая схема на биполярных транзисторах

Применены однотипные транзисторы с обратной проводимостью NPN— проводят от коллектора к эмиттеру, открываются плюсом. Сопротивление перехода обратных NPN транзисторов немного меньше, чем упрямых PNP, потому используют их, чтобы несколько увеличить КПД устройства.

Мостовая схема на полевых транзисторах

Применены полевые транзисторы с разной проводимостью канала. Регулировку можно сделать, заменив постоянные резисторы R3, R4 на переменные, подстроечные.

Мостовая схема на транзисторах,управляемая от микроконтроллера

Применены транзисторы разной проводимости. Диоды нужны для защиты PIC контроллера управления от зависания или сброса.

Гасят всплески напряжения при коммутации обмоток электродвигателя. Микроконтроллер L293D.

Заводской сборки мостовая схема на транзисторах, управляемая от микроконтроллера

Автор: Виталий Петрович. Украина, Лисичанск.

При использовании двигателя постоянного тока в различных устройствах иногда возникает необходимость остановки двигателя в любом положении, а также в крайних положениях позиционирования с последующим реверсом.

Эту задачу решает предлагаемая схема.

В1 — тумблер со средним положением для реверса двигателя. В зависимости от задачи он может иметь фиксацию в крайних положениях или без неё.

Диоды Д1 и Д2 подбираются по максимальному току двигателя при его нагрузке.

SA– концевики, установленные в устройстве.

Работа схемы.

В исходном состоянии питание на двигатель не поступает и он не вращается.

Если тумблер перевести в верхнее по схеме положение двигатель вращается (допустим) влево. В крайнем левом положении SAлевыйразмыкается и диод

Д1 не пропускает напряжение питания. Двигатель останавливается.

Если тумблер перевести в нижнее положение — то происходит переполюсовка напряжения питания. Двигатель тогда вращается в правую сторону. Д1 этому уже не препятствует.

Далее концевик SAлевый замыкается. При достижении крайнего правого положения SAправыйразмыкается и диод Д2не пропускает напряжение питания. Двигатель останавливается.

Переключением положения тумблера меняется направление вращения двигателя.

Схему можно применить для вращения антенн, КПЕ, вариометров и т.п.

us3ut. Матвийчук Валерий.098-553-7459

Поделиться с друзьями:

Твитнуть

Поделиться

Поделиться

Отправить

Класснуть

Adblock detector

переключатели — Цепь для двигателя постоянного тока с 2 микропереключателями реверсивного направления

Спросил

Изменено 2 года, 2 месяца назад

Просмотрено 41k раз

\$\начало группы\$

Итак, вот что я пытаюсь сделать. .. подключить двигатель постоянного тока к выключателю и 2 микропереключателям. Каждый переключатель меняет направление вращения двигателя, поэтому один переключатель указывает двигателю двигаться вперед, а другой — назад. Моя цель состоит в том, чтобы иметь гусеницу, на которой мотор будет тянуть платформу в одном направлении, затем, когда он дойдет до конца гусеницы, он нажмет на переключатель, а затем заставит ее двигаться по дорожке в другую сторону. И я также хотел бы включить выключатель для всей схемы.

Мне просто любопытно, какая схема лучше всего подходит для этого.

Моя первоначальная мысль — использовать переключатель DPDT, но я не совсем уверен, как заставить его работать или какова правильная схема для него.

Это схема моей основной идеи, но (поправьте меня, если я ошибаюсь) двигатель будет вращаться только в прямом/обратном направлении, если переключатель постоянно нажат.

  • переключатели
  • двигатель постоянного тока
  • dpdt

\$\конечная группа\$

4

\$\начало группы\$

Вам потребуется элемент памяти, такой как реле, для сохранения текущего направления вращения двигателя.

имитация этой цепи – Схема создана с помощью CircuitLab

Здесь используются реле DPDT и два микропереключателя. Двигатель M1 движется «влево», когда верхний вывод положительный, и вправо, когда верхний вывод отрицательный.

Предположим, выпало реле. Верхняя клемма положительная, SW2 и SW3 находятся в показанных положениях. Когда двигатель достигает левого предела, срабатывает SW2, активируя реле. Двигатель немедленно реверсирует, но верхний контакт втягивается, удерживая реле под напряжением через D2. Двигатель работает до тех пор, пока не сработает SW3, который прерывает подачу тока на реле (D3 улавливает обратноходовое напряжение). Реле выпадает, освобождая удерживающий контакт, и он остается выпавшим, и мы возвращаемся к тому, с чего начали.

Прервите V1, чтобы все выключить (и он всегда будет двигаться влево при подаче питания). Прервите только ток на M1, и память о предыдущем направлении будет сохраняться до тех пор, пока применяется V1 (что означает непрерывную тягу, если реле находится под напряжением).

Твердотельное решение может использовать один блок вентилей CMOS (например, 1/2 от CD4011B) и H-мост MOSFET для управления двигателем:

имитация этой схемы \$\конечная группа\$

10

\$\начало группы\$

Настройка так, чтобы каждая сторона могла изменить направление. Переключатели DPDT с каждой стороны.

имитация этой схемы – Схема создана с помощью CircuitLab

\$\конечная группа\$

\$\начало группы\$

Я знаю, что этому сообщению уже 6 лет, но я надеюсь, что оно каким-то образом поможет вам или, по крайней мере, поможет тем, кто его увидит и в нем нуждается?

Схема на самом деле очень проста, но ее трудно объяснить. Использование реле 3PDT (Triple Pole Double Throw),

  • Подсоедините первые два полюса, как если бы это было реверсивное реле DPDT.
  • Подключите положительное питание к катушке реле.
  • Минус катушки идет на Н.О. (нормально открытый) первого LS (концевой выключатель).
  • Минус катушки также идет на COM (общий) третьего полюса 3PDT.
  • Подключите отрицательное питание к обоим COM-портам LS.
  • Соедините НЗ (нормально замкнутый) второго LS с Н.О. третьего полюса 3PDT.

Это также можно сделать с помощью DPDT и реле SPDT.

Добавление этого на @Transistor . Надеюсь это работает. Circuitlab хочет, чтобы я платил за использование и экономию. Поэтому я его не использую. Я также не использую его, потому что в нем очень мало деталей, как в трехполюсных двухпозиционных реле. Но так как я добавил опцию DPDT и SPDT, я подумал, почему бы и нет. Итак, вот оно.

имитация этой схемы – Схема создана с помощью CircuitLab

\$\конечная группа\$

\$\начало группы\$

Переключатель DPDT — это то, что вам нужно, потому что, если два микропереключателя не работают вместе идеально, произойдет короткое замыкание и пожар. Макет DPDT точно такой же, как у вас. Представьте, что вы склеили два переключателя рядом друг с другом. DPDT сделан именно так.

\$\конечная группа\$

2

\$\начало группы\$

Минимальная реверсивная схема. Он не запускается сам по себе, вы должны нажать концевой выключатель. У него нет блокировки или кнопки остановки, но все это можно добавить к нему. Блокировки особенно важны, потому что, если оба реле включены, это может привести к короткому замыканию. В схеме используются 2 реле, 2 концевых выключателя и двигатель постоянного тока. Как показано, реле должны быть постоянного тока с тем же напряжением катушки, что и двигатель, но дно можно отделить и запитать от другого напряжения.

\$\конечная группа\$

\$\начало группы\$

Это можно решить с помощью очень оригинальной схемы Sphero или, как вы сказали, с помощью Arduino. В случае, если ваше движение не имеет большого количества параметров, таких как регулировка скорости, случайная калибровка или любые другие, Arduino может быть излишним.

Золотая середина может быть достигнута с помощью бистабильного мультивибратора с использованием таймера IC, а именно 555. В нем вы можете иметь определенные настройки параметров, такие как чувствительность входных переключателей или устранение дребезга. Но опять же, все зависит от целевой стоимости оборудования конкретного проекта.

В подобном проекте я собираюсь использовать простую схему реле DPDT.

\$\конечная группа\$

\$\начало группы\$

используйте переключатель dpdt с «отключением по центру», есть шесть клемм 1-6 1 и 2 подключаются к питанию, также установите перемычку с 1 на 6 и другую с 2 на 5, образуя «X». 3 и 4 — это подключение к двигателю, поэтому протяните провод от этих двух к двигателю . .. вам нужен переключатель с отключенным центром, чтобы предотвратить короткое замыкание и перегорание предохранителя. Реле dpdt не имеет центра, поэтому одно положение перегорит предохранитель, а другой будет запускать двигатель, не используйте реле, если вы не разработали специальную схему с задержкой или что-то еще, чтобы предотвратить короткое замыкание. Нарисуйте его, и вы увидите, насколько это просто. У Макмастер-Карр есть этот переключатель.

\$\конечная группа\$

\$\начало группы\$

Я собираюсь добавить это, потому что кто-то упомянул бистабильные реле. Если кто-то хочет облегчить себе задачу всего за несколько долларов, вы можете использовать этот модуль. Реле является самоблокирующимся и нуждается только в отрицательном триггере.

  • В+ Подключение положительного напряжения
  • S1 Set1 — отрицательное напряжение от концевого выключателя 1
  • R1 Reset1 — ваше отрицательное напряжение от концевого выключателя 2
  • SX SetX положительное напряжение
  • SY SetY отрицательное напряжение
  • RX ResetX отрицательное напряжение
  • RY Сброс Y положительное напряжение
  • CX CommonX Провод к двигателю
  • CY Общий провод к двигателю
  • Общие контакты на концевых выключателях становятся отрицательными
  • Возможно, вам придется перевернуть двигатель, поэтому сделайте это до того, как установите его на место, чтобы избежать столкновения с платформой. Переключатель не реверсирует двигатель, если установка и сброс идут к неправильным переключателям. Произойдет повреждение.

\$\конечная группа\$

5

Управление двигателем вперед и назад с помощью концевых выключателей

Эта статья посвящена управлению двигателем в прямом и обратном направлении с помощью концевых выключателей и кнопок.

Как правило, это соединение в основном используется в конвейерных системах в промышленности. Всякий раз, когда нажимается кнопка пуска, двигатель начинает вращаться либо вперед, либо назад, в зависимости от входа, после получения сигнала от концевых выключателей двигатель останавливается.

Основным пунктом уведомления в этом соединении является система блокировки, т. е. когда двигатель вращается в прямом направлении, вы не можете заставить двигатель вращаться в обратном направлении, если вы не остановите двигатель перед изменением его направления и наоборот.

Компоненты

Ниже показаны необходимые компоненты для цепей прямого и обратного хода двигателя.

  1. Миниатюрный автоматический выключатель (MCB)
  2. Контактор
  3. Концевые выключатели
  4. Кнопки
  5. Кнопка «Пуск»
  6. Кнопка «Стоп»
  7. Мультиметр
  8. Токоизмерительные клещи

Схемы цепей

Этот регулятор прямого и обратного хода имеет две цепи.

Это:

  • Цепь питания
  • Цепь управления

Цепь питания

Основными компонентами, используемыми в силовой цепи, являются 3-полюсный автоматический выключатель и два контактора для прямого и обратного управления двигателем.

MCB защищает двигатель от перегрузок и неравномерных колебаний. Контакторы используются для замыкания и размыкания контакта с нагрузкой (двигателем).

В этой связи важно отметить, что любая из двух фаз была перепутана для противоположных направлений вращения двигателя.

Цепь управления

 Двигатель в цепи питания управляется компонентами в цепи управления.

Основными компонентами цепи управления были кнопки пуска и останова, катушки контактора и концевые выключатели.

Концевые выключатели использовались для определения конечного положения, а катушки контактора использовались для включения контактора в силовой цепи.

Управление двигателем в прямом и обратном направлении

Трехфазное питание 440 В подается на силовую цепь для управления двигателем. Данный источник питания проходит через 3-полюсный автоматический выключатель.

MCB, электромеханическое устройство с ручным управлением для подачи питания на контактор и нагрузку.

Для схемы управления подано напряжение 240 В для управления нагрузкой через Контактор. Затем нажимается кнопка Forward Start.

Питание управления подается на размыкающие (нормально замкнутые) контакты концевого выключателя 1 и контактора реверса, что приводит в действие контактор прямого хода.

При подаче питания на катушку контактора прямого хода в цепи управления срабатывает контактор прямого хода в силовой цепи, что заставляет двигатель вращаться в прямом (по часовой стрелке) направлении.

Как только концевой выключатель 1 получает сигнал, его состояние изменяется с NC (нормально замкнутый) на NO (нормально разомкнутый), что обесточит катушку контактора прямого хода.

Катушка контактора прямого хода в цепи управления была обесточена в цепи управления, поэтому контактор прямого хода был деактивирован.

Итак, питание двигателя было отключено. Теперь двигатель перестал вращаться.

Поскольку прямое и обратное управление использовалось в основном на конвейерах, после достижения предела его следует реверсировать.

Таким образом, для реверсивного управления нажимается кнопка реверсивного пуска, чтобы включить реверсивный контактор.

Здесь на катушку контактора реверса подается питание в цепи управления, что приводит к срабатыванию контактора реверса в силовой цепи.

Контактором реверса питание подано на двигатель, теперь двигатель начинает вращаться в обратном (против часовой) направлении

В этом реверсивном управлении также после получения сигнала от концевого выключателя 2 контактор реверса обесточивается.

Итак, обесточивание катушки контактора реверса в цепи управления приводит к отключению контактора реверса в силовой цепи.

Итак, питание двигателя было прекращено, и двигатель перестал вращаться.

Итак, процесс продолжается. После достижения предела нажимается Пуск вперед, и двигатель начинает вращаться в прямом направлении. Этот цикл продолжается до тех пор, пока не будет нажата кнопка остановки.

Напряжение и ток измеряются с помощью мультиметра и клещей соответственно. Напряжение и ток будут одинаковыми как в прямом, так и в обратном направлении.

Для измерения напряжения два щупа мультиметра помещались на любую из двух линий цепи. Это может быть L1, L2 или L2, L3 или L1, L3.

Значение напряжения измеряется и отображается на дисплее. Это трехфазное питание, поэтому полученное значение напряжения составляет ~ 440 В.

Ток измеряется клещами. Токоизмерительные клещи также известны как трансформаторы с разъемным сердечником, железный сердечник трансформатора шарнирно закреплен, как и в случае плоскогубцев.

С помощью трансформатора тока с разъемным сердечником и присоединенного амперметра можно измерять переменный ток без разрыва цепи.

Для измерения тока плоскогубцы счетчика помещаются в любой из проводников. L1 или L2 или L3. Измеренное значение отображается на дисплее.

Применение

  1. Для перемещения материалов на конвейере
  2. Автоматическое открытие и закрытие ворот
  3. Подъем материалов в системе управления подъемным механизмом

Если вам понравилась эта статья, подпишитесь на наш канал YouTube для видеоуроков по КИПиА, электрике, ПЛК и SCADA.

Вы также можете подписаться на нас в Facebook и Twitter, чтобы получать ежедневные обновления.

Читать дальше:

Будьте первым, кто получит эксклюзивный контент прямо на вашу электронную почту.

Обещаем не спамить. Вы можете отписаться в любое время.

Неверный адрес электронной почты

Цепь реверсирования двигателя постоянного тока | Таймер или пульт дистанционного управления

Если вам нужно изменить направление вращения двигателя постоянного тока или полярность напряжения постоянного тока, у нас есть решения…

У нас есть ряд плат, которые позволяют вам делать это автоматически или вручную. От ручного кнопочного управления до автоматического и радиочастотного дистанционного управления.

Здесь вы найдете решения для ваших нужд.

Как это работает

Подход, используемый этими решениями для изменения полярности напряжения питания постоянного тока, использует два реле SPDT, которые подключены, как показано ниже (щелкните, чтобы увеличить изображение в новой вкладке).

Двигатель будет находиться в состоянии покоя, когда оба реле выключены или оба реле включены. Двигатель постоянного тока будет двигаться в одном направлении, когда включено только реле-1, и в другом направлении, когда включено только реле-2. Примечание: Пожалуйста, имейте в виду более высокий ток, потребляемый, если двигатель реверсируется без предварительной остановки, и убедитесь, что он не превышает номинальное значение, указанное для платы.

Автоматический синхронизированный переключатель напряжения постоянного тока/реверса двигателя

Если вы хотите, чтобы двигатель автоматически переключал направление каждые несколько секунд или каждые несколько часов, у нас есть несколько релейных плат, которые сделают это за вас. Вы просто подключаете реле, как показано на схеме ниже (щелкните, чтобы увеличить изображение в новой вкладке).

Вот несколько плат, которые можно использовать для этой установки. Пожалуйста, ознакомьтесь с информацией о максимальном напряжении и токе реле на странице отдельного продукта, а также о дополнительных платах таймера, необходимых для повторения цикла.

  • 2-канальный модуль последовательного реле времени, 1–180 секунд (CI027)
  • 2-канальный модуль последовательного реле времени, 2–45 минут (CI028)

Альтернативным решением может быть управление 2-канальным реле плата, такая как 8045 или CT005, с использованием циклического таймера, такого как VM188.

На общий вывод реле VM188 подается положительный сигнал. NO и NC подключаются соответственно к положительным входам реле 1 и 2 на плате 8045 или CT005, а отрицательный вывод подключается к обеим клеммам входа (-) реле. Двигатель подключается к релейным выходам 8045/CT005 в соответствии с приведенной выше схемой.

Дистанционное управление (ВЧ или ИК) Напряжение постоянного тока / Переключатель реверса двигателя

Если вы хотите вручную переключать направление вращения двигателя, вы можете использовать одну из наших 2-канальных релейных плат дистанционного управления. Плата приемника 8157 также включает входы сброса, поэтому вы можете использовать концевые выключатели для предотвращения перегрузки двигателя. Вы просто подключаете реле, как показано на схеме ниже (щелкните, чтобы увеличить изображение в новой вкладке).

Вот несколько плат, которые можно использовать для этой установки. Пожалуйста, ознакомьтесь с максимальным напряжением реле и номинальным током на страницах отдельных продуктов.

  • 2-канальная релейная плата дистанционного радиоуправления с высоким током (8157) — дистанционное управление 1 двигателем постоянного тока (с входами концевых выключателей) входы концевых выключателей)
  • 2-канальный радиочастотный пульт дистанционного управления (VM130) — на этой плате нет входов концевых выключателей
  • КОМПЛЕКТ 2-канального ИК-приемника дистанционного управления (MK161) с 2-канальным комплектом дистанционного ИК-передатчика (MK162) — на этой плате нет входов концевых выключателей плата реле канала SPDT с внешним управляющим сигналом для последовательного включения каждого реле для изменения полярности постоянного напряжения. Некоторые платы, на которые следует обратить внимание:

    • 2-канальный изолированный релейный модуль IO SPDT, 12 В пост. 0024

    При использовании реле DPDT необходимо поменять местами подключения к NC2 и NO2, как показано на схемах выше. Двигатель с включенным питанием включается в одном направлении, а при подаче управляющего сигнала меняет направление. Пожалуйста, имейте в виду более высокий ток, потребляемый при реверсировании двигателя без предварительной остановки, и убедитесь, что он не превышает номинальное значение, указанное для платы.

    Программируемый / компьютерный сигнал управления напряжением постоянного тока / реверсивным переключателем двигателя

    Любую пару реле SPDT можно использовать для изменения полярности напряжения постоянного тока, просто последовательно активируя каждое реле. Некоторые платы, которые следует учитывать:

    • 2-канальный релейный модуль программируемого последовательного контроллера (CI210)
    • 8-канальный последовательный релейный контроллер RS232 Изолированная плата ввода-вывода (3108) — управление до 4 двигателей VM8090) — управление до 4 двигателей

    Плата реле DPDT Напряжение постоянного тока / Переключатель реверса двигателя

    Эта установка может иметь ограниченное применение, но вы можете использовать 1-канальную релейную плату DPDT и внешний управляющий сигнал для изменения полярности постоянного напряжения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *