Site Loader

Содержание

Тиристорная схема регулятора тока для сварочного аппарата

В этом материале рассмотрим способы регулировки сварочного тока. Схемы регуляторов тока для сварочного аппарата разнообразны. Они имеют свои достоинства и недостатки. Постараемся помочь читателю выбрать регулятор тока для сварочного аппарата.

Схема сварочного аппарата.

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную.

Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Вернуться к оглавлению

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Вернуться к оглавлению

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания.

Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением.

Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Вернуться к оглавлению

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Вернуться к оглавлению

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться.

Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Вернуться к оглавлению

Полупроводники в схеме регулировки тока

Рисунок 1. Схема регулятора сварочного тока.

Полупроводниковые приборы совершили настоящий прорыв в сварочном деле. Современная схемотехника позволяет использовать мощные полупроводниковые ключи. Особенно распространены тиристорные схемы регулировки сварочного тока. Применение полупроводниковых приборов вытесняет неэффективные схемы управления. Данные решения повышают пределы регулировки тока. Габаритные и тяжелые сварочные трансформаторы, содержащие огромное количество дорогой меди, заменены на легкие и компактные.

Электронный тиристорный регулятор – это электронная схема, необходимая для контроля и настройки напряжения и силы тока, которые подводятся к электроду в месте сварки.

Для примера рассмотрим регулятор на тиристорах. Схема регулятора сварочного тока представлена на рис. 1.

В основу схемы положен принцип фазового регулятора тока.

Регулировка осуществляется подачей управляющего напряжения на твердотельные реле – тиристоры. Тиристоры VS1 и VS2 открываются поочередно при поступлении сигналов на управляющие электроды. Напряжение питания схемы формирования управляющих импульсов снимается с отдельной обмотки. Далее преобразуется в постоянное напряжение диодным мостом на VD5-VD8.

Положительная полуволна заряжает емкость С1. Время заряда электролитического конденсатора формируется резисторами R1, R2. Когда напряжение достигнет необходимой величины (более 5,6 В), происходит открытие динистора, образованного стабилитроном VD6 и тиристором VS3. Далее сигнал проходит через диод VD3 или VD4. При положительной полуволне открывается тиристор VS1, при отрицательной – VS2. Конденсатор С1 разрядится. После начала следующего полупериода тиристор VS1 закрывается, происходит зарядка емкости. В этот момент открывается ключ VS2, который продолжает подачу напряжения на электрическую дугу.

Наладка сводится к установке диапазона сварочного тока подстроечным сопротивлением R1. Как видим, схема регулировки сварочного тока довольно-таки проста. Доступность элементной базы, простота наладки и управления регулятора допускают изготовление такого сварочного аппарата самостоятельно.

Вернуться к оглавлению

Инверторные сварочные аппараты

Устройство инверторного сварочного аппарата.

Особое место среди сварочного оборудования занимают инверторы. Инверторный сварочный аппарат – это устройство, которое способно обеспечить устойчивое питание сварочной дуги. Малые габариты и небольшой вес придают аппарату мобильность. Сильной стороной инвертора является возможность применять электроды переменного и постоянного тока. Сварка позволяет стыковать цветные металлы и чугун.

Главные преимущества использования инвертора:

  • защита от нагрева деталей;
  • устойчивость к возмущениям сети;
  • независимость от колебаний и перегрузок по току;
  • независимость от перепадов промышленной сети;
  • способность скреплять цветной металл;
  • стабильность сварочного тока;
  • качественный шов;
  • ровное горение дуги;
  • малый вес и габариты.

К недостаткам сварочных инверторов относят высокую стоимость. Электронные детали следует оберегать от воздействия влаги, пыли, жары и сильных морозов (ниже 15оС).

Инверторное сварочное оборудование сегодня присутствует практически во всех слесарных и авторемонтных мастерских.

Простой и надежный регулятор постоянного тока для сварки и зарядки

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50…90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик» для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но». Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной» ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных» элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

А.ЧЕРНОВ, г. Саратов. Моделист-конструктор 1994 №9.

виды, подбор оптимального, как изготовить самому

Для создания точного шва, важно правильно и точно настроить варочный ток, который будет соответствовать работе.

Мастера с опытом часто сталкиваются с варкой металла разной толщины, поэтому, иногда, стандартной настройки на минимум и максимум порой не хватает, чтобы качественно работать.

Тогда необходимо настраивать электроток поэтапно, достигая нужного ампеража. Для решения этой задачи подключают к цепи вспомогательный прибор — регулятор напряжения.

Это позволяет регулировать напряжение по энергии преобразованного переменного тока, а также по энергии преобразуемого переменного тока. Каждый метод настройки преобразователя энергии для варки различается, все тонкости надо принимать во внимание.

Поговорим, как регулировать электроток в инверторах. Рассмотрим схемы аппаратов регулировки для полуавтоматических инверторов. Подскажем, как подбирать регулятор по преобразуемому переменному току для варочного преобразователя энергии.

Содержание статьиПоказать

Методы настройки

Есть разнообразные методы настройки напряжения, ранее мы рассказывали об энергии преобразованного переменного тока и преобразуемого.

В действительности, это слишком обширное разделение, потому что настройка еще имеет подвиды. У нас не получится детально рассказать о подвидах в этой статье, поэтому обсудим более популярные.

Основной в работе метод настройки регулятора тока для сварочного аппарата — это прибавление баластника на выходе энергии преобразованного переменного тока.

Такой метод считают безопасным и выносливым, баластник просто сделать самостоятельно и применять для работы без вспомогательных аппаратов. В основном, баластник применяют только для понижения напряжения.

Мы уже детально рассказывали о тонкостях работы и использовании баластника для полуавтоматического инвертора. Там есть важные рекомендации по изготовлению электроприбора дома и способах его применения для работы.

Кроме достоинств, способ настройки по энергии преобразованного переменного тока, используемый вместе с преобразователем энергии. Для варки бывает не таким удобным, тем более неопытным мастерам.

Во-первых, баластник достаточного большого размера — до 1 м длиной. В основном, такое электроустройство размещают под ногами, он может сильно нагреться, что нарушает правила безопасности.

Если вас не устраивают такие качества, то лучше выбрать способ, включающий в себя настройку варочного напряжения по энергии преобразуемого переменного тока.

Для этого часто применяют электрический регулятор тока для сварочного аппарата, который легко смастерить самостоятельно. Такой прибор легко настроить по энергии преобразуемого переменного тока и будет удобен для мастера в работе.

Электрический регулятор тока для сварочного аппарата будет первым помощником в работе на даче, где зачастую электроснабжение подается с перебоями.

Бывает, что в домах невозможно применение электрических приборов больше 4 кВт, что делает выполнение работ ограниченным.

С прибором регулировки возможно отрегулировать прибор так, что он будет работать безостановочно при отсутствии достойного напряжения.

Еще одним плюсом регулятора тока для сварочного аппарата выступает то, что с ним просто работать, когда надо часто менять место для выполнения работы. Устройство регулятор нет надобности брать с собой, как баластник, оно не будет вас травмировать.

Поговорим о самостоятельном изготовлении электрического прибора регулировки из тиристоров.

Чертеж регулирующего прибора из тиристоров

Показываем вам чертеж простого регулирующего прибора и пары тиристоров с минимальным набором общедоступных элементов.

Можно изготовить регулятор тока для сварочного аппарата на симисторе, но по опыту известно, что прибор регулировки напряжения на тиристорах работает дольше и без перебоев.

Метод сборки прост и вы можете быстро сконструировать устройство настройки, для которого необходим минимальный опыт варки.

Основа работы этого регулирующего прибора тоже простая. Берем цепь энергии преобразуемого переменного тока, куда подключаем регулирующий аппарат. Само устройство включает в себя транзисторы VS1 и VS2.

RC-цепочка вычисляет точку открытия тиристоров, что меняет сопротивление R7. В конце получается возможным менять напряжение по энергии преобразуемого переменного тока в преобразователе энергии.

После этого, изменяется и по энергии преобразованного переменного тока.

Внимание! Устройство регулирования настраивают под напряжением, что важно помнить. Чтобы избежать серьезных проблем и не травмироваться, важно отделить все радиоэлементы.

Можно применять радиоэлементы старого типа. Это позволит излишне не потратиться, потому что такие радиоэлементы доступны в комиссионке приборов.

Помните, что такие радиоэлементы используются на подаче тока более 500 В. В случае необходимости, можно поставить динисторы на место филдистора и резистеров, изображенных на чертеже.

В данном случае, денисторы не использовались, потому что в этом случае, они не дают стабильной работы. В общем, этот чертеж устройства по регулированию напряжения варки на тиристорах дал хорошие результаты.

По нему изготовили много устройств регулировки, работающих без перебоев и справляющихся со своей задачей.

Если вы заметили, на рынке устройство регулирования контактной сварки РКС-801 и устройство регулирования контактной сварки РКС 15-1.

Их лучше не делать своими руками, потому что на это придется потратить много времени и результат получиться дорогим, но, при желании, можно собрать РКС 801. Дальше изображен чертеж устройства регулирования и чертеж его присоединения к инвертору.

Замер напряжения для сварки

После изготовления и настройки устройства регулирования, его можно применять в работе. При этом необходим еще одно устройство, которое будет делать замеры напряжения для сварки. Жаль, но не будет возможности применять домашние амперметры.

Они не могут применяться в работе с полуавтоматическими инверторами мощностью больше 250 А. Поэтому, лучше применять клещи, измеряющие напряжение. Это достаточно дешевый и простой способ определить силу тока, управлять клещами просто и понятно.

Такое приспособление в верхней зоне оборудования прикрепляются к фидеру и меряют напряжение. На каркасе оборудования есть тумблер предельного значения тока.

Исходя из модели и стоимости, изготовители выпускают клещи для измерения напряжения. Они могут работать при 150-550 А. Необходимо подбирать устройство с идентичными параметрами инвертора.

Клещи, измеряющие ток — хороший вариант, когда надо срочно померять показатели напряжения, что не повлияет на цепь и не требует подключать к нему вспомогательные элементы.

Есть одно отрицательное качество: они вообще не подходят для измерения значений при постоянном токе. Это происходит по причине, что постоянный ток не делает переменное электромагнитное поле, и устройство просто не распознает его.

При работе с переменным током, такое устройство-регулятор справляется отлично.

Есть еще один метод, измеряющий напряжение, он радикальнее. В цепь полуавтоматического инвертора присоединить индустриальный измеритель ампер, который может измерить высокие показатели напряжения.

Также допустимо не надолго присоединять амперметр в разрыв цепи варочных фидеров. Предоставляем вам чертеж такого устройства, который поможет вам его соорудить.

Это недорогой и действенный метод определения значений тока, но применение амперметра при работе инвертором имеет свои тонкости.

В цепь присоединяют не сам прибор измерения ампер, а его варистор или проводник, одновременно с этим, указатель в виде стрелок подключается к варистору или проводнику.

При отклонении от очередности, устройство может не работать или еще хуже — выйти из строя.

Заключение

Настройка регулятора тока для сварочного аппарата не полуавтоматическом инверторе — задача несложная, как кажется сначала.

При наличии небольшой практики с электрической техникой, можно легко соорудить устройство регулирования электротока инвертора самостоятельно при помощи тримисторов, не покупая готовый прибор.

Устройства регулирования тока для сварочного аппарата, сделанные своими руками, иногда необходимы мастерам, работающим дома, которые не хотят тратиться на лишний прибор.

Поделитесь своим опытом сборки и примененеия устройства регулирования напряжения в отзывах и расскажите об этой статье в соцсетях. Успеха в работе!

Как регулировать ток трансформатора в сварочном полуавтомате: схемы управления тиристорами для сварки

Тиристорный регулятор сварочного тока

Регулятор тока для сварочного аппарата


Приветствую, Самоделкины!
Не так давно у автора YouTube канала «AKA KASYAN» оказался вот такой трехфазный силовой трансформатор от глубинного вибратора для укладки бетона.

Минусом данного трансформатора является то, что его обмотки намотаны алюминиевым проводом. А плюс заключается в том, что напряжение вторичных обмоток составляет порядка 36В.

В общем автор решил сделать из этого трансформатора самодельный сварочный аппарат. Выходное напряжение достаточно для нормального розжига дуги.
Трансформаторные сварочные аппараты были вытеснены более компактными и имеющими меньший вес инверторными сварочными аппаратами. Но неоспоримым плюсом трансформаторных сварочных аппаратов является предельно высокая надежность и долговременная постоянная нагрузка.
Сам же сварочный аппарат состоит из 2-ух основных частей: силового трансформатора и системы регулировки тока сварки.


Если аппарат постоянного тока, то в его состав входит еще и выпрямитель.

Ниже представлена достаточно известная схема регулировки сварочного тока на основе тиристоров:

Регулировка сварочного тока может осуществляться несколькими способами, например, нагрузочным балластом или сопротивлением, переключая отводы на первичные обмотки трансформатора, ну и наконец электронный способ регулировки, выполняемый, как правило, с помощью тиристоров.

Регуляторы тока на основе тиристоров являются предельно надежными и к тому же обладают высоким КПД из-за импульсного принципа регулировки. Что еще немаловажно, при регулировке мощности выходное напряжение сварочного аппарата без нагрузки остается неизменным, а это значит, что будет уверенный розжиг дуги в любом диапазоне выходного тока.
Регуляторы мощности можно устанавливать, как на входе по первичной цепи:
Так и на выходе, после вторичной обмотки:
Проблема состоит в том, что принцип регулировки мощности с помощью регулятора данного типа основывается на обрезании начального синусоидального сигнала, то есть, на нагрузку поступают части синусоиды, и если регулятор установлен по первичной цепи, то на трансформатор пойдут импульсы неправильной формы, что приводит к образованию своеобразного звука, дополнительной вибрации и перегреву обмоток.
Но несмотря ни на что данные системы вполне успешно справляются с индуктивной нагрузкой, а если к тому же под рукой имеется хороший и достаточно надежный трансформатор, то попробовать повторить, думаю, стоит.
В данном примере система регулировки тока установлена по вторичной цепи.
Это позволяет нам управлять сварочным током непосредственно. Плюс к тому такая система помимо регулировки сварочного тока будет служить еще и выпрямителем, то есть, дополняя сварочный трансформатор таким регулятором, вы получаете сварку постоянным током с возможностью регулировки.
Теперь подробней разберем схему будущего устройства. Она состоит из регулируемого выпрямителя:
В его состав входят пара диодов и пара тиристоров:
Далее идет система управления тиристорами:
Система управления в данном примере запитана от отдельного маломощного трансформатора с напряжением вторичной обмотки от 24 до 30В с током не менее 1А.

Конечно можно было на основном силовом трансформаторе намотать обмотку с необходимыми характеристиками и использовать его для запитки системы управления.
Сама схема выполнена на небольшой печатной плате. Ее вы можете скачать , вместе с общим архивом проекта.
Тиристор можно использовать любой с током не менее 1А.
В данном примере автор использовал 10-амперный, но в этом нет никакого смысла, просто такой был под рукой. То же самое и с диодами, хватит и 1-амперных, но запас по току никогда не будет лишним.
Верхний регулятор позволят настраивать пределы выходного тока.
Второй регулятор служит для регулировки основного тока сварки, тут уже необходимо использовать проволочные переменные резисторы желательно на 10 и более ватт.
Изначально автор установил вот такого монстра:
Но потом он был заменен на вот такой, менее мощный:
А сейчас давайте рассмотрим силовой выпрямитель:
Диоды и тиристоры, использованные здесь, несмотря на монструозный вид и прекрасные характеристики были куплены на барахолке буквально за копейки.
Данные диоды типа В200 с током в 200А, обратное напряжение зависит и от индекса. В данном случае 1400В. А вот тиристоры более мощныеТ171-320.
Такие тиристоры рассчитаны на ток аж в 320А. Ток в ударном режиме может доходить до 10000А. Конечно данные диоды и тиристоры способны на большее, и они не сгорят даже при токах в 300-400А. А еще эти компоненты произведены еще в СССР, то есть, их характеристики никак не завышены заводом изготовителем.
К недостаткам такого регулятора можно отнести разве что большой вес и приличные размеры.
Для всех силовых соединений автор применил луженые медные клеммы. Такие без труда можно приобрести практически в любом строительном магазине, стоят они не дорого.
Провода 2 по 6 квадратов параллельно, мало конечно, но зато они медные.
Держатель для электродов автор нашел в ближайшем строительном магазине, не совсем удобный конечно, да и качество изготовления оставляет желать лучшего, но какой был.
Теперь вернемся к трансформатору. Так как силовой трансформатор у нас трехфазный, а работать ему предстоит в однофазной сети, то нам придется пере коммутировать обмотки. На каждой катушке имеется своя первичная и вторичная обмотка.
Центральную катушку автор исключил.
Две крайние катушки подключены параллельно, как по первичной, так и по вторичной обмотке для работы от однофазной сети.
Но в ходе экспериментов выяснилось, что с учетом потерь на выпрямителе, напряжения недостаточно для нормального розжига дуги, поэтому вторичные обмотки пришлось подключить последовательно для увеличения общего напряжения, ток при этом будет соответственно в 2 раза меньше, но что поделать.
При токах 75-80А данный трансформатор начинает перегреваться и вонять, а так система управления именно в таком исполнении спокойно может быть использована для токов в 200 и даже больше ампер.
Спалив 3 электрода, автор понял, что трансформатор сильно перегрелся, все-таки он не предназначен для таких задач, но мы в данном случае проверяли систему регулировки тока, а она работает неплохо.

На этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Источник: https://USamodelkina.ru/14882-reguljator-toka-dlja-svarochnogo-apparata.html

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания. Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением. Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться. Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Полупроводники в схеме регулировки тока

Рисунок 1. Схема регулятора сварочного тока.

Полупроводниковые приборы совершили настоящий прорыв в сварочном деле. Современная схемотехника позволяет использовать мощные полупроводниковые ключи. Особенно распространены тиристорные схемы регулировки сварочного тока. Применение полупроводниковых приборов вытесняет неэффективные схемы управления. Данные решения повышают пределы регулировки тока. Габаритные и тяжелые сварочные трансформаторы, содержащие огромное количество дорогой меди, заменены на легкие и компактные.

Электронный тиристорный регулятор – это электронная схема, необходимая для контроля и настройки напряжения и силы тока, которые подводятся к электроду в месте сварки.

Для примера рассмотрим регулятор на тиристорах. Схема регулятора сварочного тока представлена на рис. 1.

В основу схемы положен принцип фазового регулятора тока.

Регулировка осуществляется подачей управляющего напряжения на твердотельные реле – тиристоры. Тиристоры VS1 и VS2 открываются поочередно при поступлении сигналов на управляющие электроды. Напряжение питания схемы формирования управляющих импульсов снимается с отдельной обмотки. Далее преобразуется в постоянное напряжение диодным мостом на VD5-VD8.

Положительная полуволна заряжает емкость С1. Время заряда электролитического конденсатора формируется резисторами R1, R2. Когда напряжение достигнет необходимой величины (более 5,6 В), происходит открытие динистора, образованного стабилитроном VD6 и тиристором VS3. Далее сигнал проходит через диод VD3 или VD4. При положительной полуволне открывается тиристор VS1, при отрицательной – VS2. Конденсатор С1 разрядится. После начала следующего полупериода тиристор VS1 закрывается, происходит зарядка емкости. В этот момент открывается ключ VS2, который продолжает подачу напряжения на электрическую дугу.

Наладка сводится к установке диапазона сварочного тока подстроечным сопротивлением R1. Как видим, схема регулировки сварочного тока довольно-таки проста. Доступность элементной базы, простота наладки и управления регулятора допускают изготовление такого сварочного аппарата самостоятельно.

Инверторные сварочные аппараты

Устройство инверторного сварочного аппарата.

Особое место среди сварочного оборудования занимают инверторы. Инверторный сварочный аппарат – это устройство, которое способно обеспечить устойчивое питание сварочной дуги. Малые габариты и небольшой вес придают аппарату мобильность. Сильной стороной инвертора является возможность применять электроды переменного и постоянного тока. Сварка позволяет стыковать цветные металлы и чугун.

Главные преимущества использования инвертора:

  • защита от нагрева деталей;
  • устойчивость к возмущениям сети;
  • независимость от колебаний и перегрузок по току;
  • независимость от перепадов промышленной сети;
  • способность скреплять цветной металл;
  • стабильность сварочного тока;
  • качественный шов;
  • ровное горение дуги;
  • малый вес и габариты.

К недостаткам сварочных инверторов относят высокую стоимость. Электронные детали следует оберегать от воздействия влаги, пыли, жары и сильных морозов (ниже 15оС).

Инверторное сварочное оборудование сегодня присутствует практически во всех слесарных и авторемонтных мастерских.

Источник: https://expertsvarki.ru/oborudovanie/sxema-regulyatora-toka-dlya-svarochnogo-apparata.html

Электронный регулятор тока для сварочного трансформатора. — Конструкции простой сложности — Схемы для начинающих

Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. известны такие способы регулировки тока в сварочных трансформаторах: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. Все эти способы имеют как свои преимущества, так и недостатки. Например, недостатком последнего способа, является сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальным является способ ступенчатой регулировки тока, с помощью изменения количества витков, например, подключаясь к отводам, сделанным при намотке вторичной обмотки трансформатора. Однако, этот способ не позволяет производить регулировку тока в широких пределах, поэтому им обычно пользуются для подстройки тока. Помимо прочего, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. В этом случае, через регулирующее устройство проходят значительные токи, что является причиной увеличения ее габаритов. Для вторичной цепи практически не удается подобрать мощные стандартные переключатели, которые бы выдерживали ток величиной до 260 А.

Если сравнить токи в первичной и вторичной обмотках, то оказывается, что в цепи первичной обмотки сила тока в пять раз меньше, чем во вторичной обмотке. Это наталкивает на мысль поместить регулятор сварочного тока в первичную обмотку трансформатора, применив для этой цели тиристоры. На рис. 20 приведена схема регулятора сварочного тока на тиристорах. При предельной простоте и доступности элементной базы этот регулятор прост в управлении и не требует настройки.

Рис. 1 Принципиальная схема регулятора тока сварочного трансформатора:
VT1, VT2 -П416

VS1, VS2 — Е122-25-3

С1, С2 — 0,1 мкФ 400 В

R1, R2 — 200

R3, R4 — 220

R5, R6 — 1 кОм

R7 — 68 кОм

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается. Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2.

При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора. Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети.

Изменением сопротивления резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами (рис. 2)

Рис. 2 Принципиальная схема замены транзистора с резистором на динистор, в схеме регулятора тока сварочного трансформатора.
Aноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308, однако эти транзисторы, при желании, можно заменить современными маломощными высокочастотными транзисторами, имеющими близкие параметры. Переменный резистор типа СП-2, а постоянные резисторы типа МЛТ. Конденсаторы типа МБМ или К73-17 на рабочее напряжение не менее 400 В.

Все детали устройства с помощью навесного монтажа собираются на текстолитовой пластине толщиной 1…1,5 мм. Устройство имеет гальваническую связь с сетью, поэтому все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Правильно собранный регулятор сварочного тока особой наладки не требует, необходимо только убедиться в стабильной работе транзисторов в лавинном режиме или, при использовании динисторов, в стабильном их включении.

Регулятор тока для сварочного аппарата

Каждый способ регулирования способен положительно сказываться на работе сварочного агрегата, но есть у каждого метода и свои недостатки, которые желательно знать и уметь избегать неприятных ситуаций. Сварочный процесс является ответственной процедурой, поэтому становится определяющим практически любое отклонение от норм.

При помощи специальных регуляторов:

  • Настраивается рабочий ток,
  • Меняется магнитный поток.

Поэтому регулятор тока для сварочного аппарата выполняет важную функцию и в качестве основных методов регулировки используют: магнитное шунтирование, подвижность обмоток, а так же дроссели разных видов.

Способы регулировки параметров сварки

Если подключится к отводам, которые выполняются на второй обмотке трансформатора, то есть возможность для ступенчатого регулирования электрического тока. При использовании данного способа меняется количество витков, таким образом, происходит уменьшение или увеличение тока.

Но есть недостатки в этом методе, которые заключаются в минимальных диапазонах регулировки. И придется делать приличные габариты регулирующего устройства, чтобы выдерживать серьезные электрические перегрузки. Также предстоит пользоваться мощными переключателями, способными выдерживать большие токи.

Вторичная обмотка принимает значительно большие нагрузки, чем вторичная обмотка, поэтому это приспособление быстро изнашивается. Для улучшения показателей подобной конструкции применяются тиристоры, которые интегрируются в первичную обмотку.

С помощью такого прибора осуществляется настройка сварочного аппарата, причем делать это очень просто. Чтобы сделать регулятор тока для сварочного аппарата, нужно правильно подбирать сопротивления и прочие элементы, входящие в схему данного устройства.

Схема регулятора тока для сварочного агрегата

Тиристоры в устройстве устанавливаются параллельно, так что они открываются при помощи тока, который создается двумя транзисторами. Когда регулятор включается в схему, тиристоры находятся в закрытом состоянии, а заряд принимают конденсаторы благодаря переменному сопротивлению.

И при достижении конденсатором определенного напряжения происходит движение тока разряда. После транзистора происходит открытие тиристора, подключающего нагрузку.

Меняя сопротивление резистора, будет можно осуществлять регулировку подключения тиристоров. В связи с этим происходит изменение общего тока на изначальной трансформаторной обмотке.

Чтобы добиться увеличения или снижения диапазона регулировки, меняется сопротивление резистора в нужном направлении. Если нет в наличии транзисторов, допустимым условием является применение динисторов.

Схема регулятора с динисторами и транзисторами

Монтируется регулятор тока для сварочного аппарата не только на транзисторах, предназначенных для получения лавинного напряжения, но и с использованием динисторов.

Данный элемент нужно подключить анодами к выводам сопротивления, а катодами он должен быть присоединен к другим двум резисторам. Используются для регуляторов сварочных приборов транзисторы моделей П416, ГТ308, но есть еще возможность для подключения маломощных транзисторов с похожими характеристиками.

Резисторы переменного типа могут быть использованы СП-2, а в качестве постоянных элементов применяются МБМ. При этом нужно подбирать такое сопротивление, которое будет обладать подходящим рабочим напряжением.

Чтобы качественно собрать регулирующее устройство для сварочного аппарата, нужно воспользоваться текстолитовым основанием, имеющим толщину 1,5 – 2 миллиметра, тогда процесс монтажа получится более удобным.

Необходимо предусмотреть изоляцию всех деталей, участвующих в схеме, от корпуса, так как возможны короткие замыкания и увеличение температуры. Серьезные перегрузки способны приводить к негативным последствиям и выходу из строя, как отдельных элементов, так и всего устройства.

Если при сборке регулирующего устройства соблюдались все правила, и детали были подобраны по оптимальным параметрам, то регулятор не обязательно настраивать.

Но перед тем как эксплуатировать приспособление в полном объеме, нужно проконтролировать работу транзисторов, включенных в схему, потому что они могут не выдержать лавинного режима.

Благодаря стабильной работе устройства сварочные аппараты смогут нормально работать с разными свариваемыми материалами и конструкциями.


Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):

Делаем регулятор тока для сварочного аппарата своими руками

Одна из главных составляющих по-настоящему качественного шва — это правильная и точная настройка сварочного тока в соответствии с поставленной задачей. Опытным сварщикам часто приходится работать с металлом разной толщины, и порой стандартной регулировки min/max недостаточно для полноценной работы. В таких случаях возникает необходимость многоступенчатой регулировки тока, с точностью до ампера. Эту проблему можно легко решить путем включения в цепь дополнительного прибора — регулятора тока.

Ток можно регулировать по вторичке (вторичной обмотке) и по первичке (первичной обмотке). При этом каждый из способов настройки трансформатора для сварки имеет свои особенности, которые важно учитывать. В этой статье мы расскажем, как осуществляется регулировка тока в сварочных аппаратах, приведем схемы регуляторов для сварочного полуавтомата, поможем грамотно выбрать регулятор сварочного тока по первичной обмотке для сварочного трансформатора.

Содержание статьи

Способы регулировки тока

Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.

Один из самых часто применяемых методов регулировки тока — это добавление баластника на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.

В этой статье мы подробно описывали принцип работы и особенности использования баластника для сварочного полуавтомата. Там вы найдете подробную инструкцию, как изготовить прибор в домашних условиях и как использовать его в своей работе.

Несмотря на множество достоинств, метод регулировки тока по вторичной обмотке при использовании в связке с трансформатором для сварки может быть не очень удобен, особенно для начинающих сварщиков. Прежде всего, баластник довольно громоздкий и его размер может достигать метра в длину. Еще прибор часто находится под ногами и при этом сильно нагревается, а это грубое нарушение техники безопасности.

Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками. Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.

Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.

Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.

Схема тиристорного регулятора

Выше вы можете видеть схему простейшего регулятор на 2 тиристорах с минимумов недефицитных деталей. Вы также можете сделать регулятор на симисторе, но наша практика показала, что тиристорный регулятор мощности долговечнее и работает более стабильно. Схема для сборки очень простая и по ней вы сможете довольно быстро собрать регулятор, имея минимальные навыки пайки.

Принцип действия данного регулятора тоже прост. У нас есть цепь первичной обмотки, в которую подключается регулятор. Регулятор состоит из транзисторов VS1 и VS2 (для каждой полуволны). RC-цепочка определяет момент, когда откроются тиристоры, вместе с тем меняется сопротивление R7. В результате мы получаем возможность изменять ток по первичке трансформатора, после чего ток меняется и во вторичке.

Обратите внимание! Настройка регулятора осуществляется под напряжением, об этом не стоит забывать. Чтобы избежать фатальных ошибок и не получить травму нужно обязательно изолировать все радиоэлементы.

В принципе, вы можете использовать транзисторы старого образца. Это отличный способ сэкономить, поскольку такие транзисторы можно без проблем найти в старом радиоприемнике или на барахолке. Но учтите, что такие транзисторы должны использоваться на рабочем напряжении не менее 400 В. Если вы посчитаете нужным, можете поставить динисторы вместо транзисторов и резисторов, показанных на схеме. Мы динисторы не использовали, поскольку в данном варианте они работают не очень стабильно. В целом, эта схема регулятора сварочного тока на тиристорах неплохо зарекомендовала себя и на ее основе было изготовлено множество регуляторов, которые стабильно работают и хорошо выполняют свою функцию.

Также вы могли видеть в магазинах регулятор контактной сварки РКС-801 и регулятор контактной сварки РКС-15-1. Мы не рекомендуем изготавливать их самостоятельно, поскольку это займет много времени и несильно сэкономит вам деньги, но если есть такое желание, то можете изготовить РКС-801. Ниже вы видите схему регулятора и схему его подключения к сварочнику. Откройте картинки в новом окне, чтобы лучше видеть текст.

Измерение сварочного тока

После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.

Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.

Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.

Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.

Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.

Вместо заключения

Регулирование сварочного тока на полуавтомате — это не так сложно, как может показаться на первый взгляд. Если вы обладаете минимальными знаниями в области электротехники, то сможете без проблем собрать своими силами регулятор тока для сварочного аппарата на тримисторах, сэкономив на покупке этого прибора в магазине. Самодельные регуляторы особенно важны для домашних мастеров, которые не готовы к дополнительным тратам на оборудование. Расскажите о своем опыте изготовления и использования регулятора тока в комментариях и делитесь этой статьей в своих социальных сетях. Желаем удачи в работе!

Сварочный трансформатор

: принцип, требования и типы

Прочитав эту статью, вы узнаете: — 1. Принципы работы сварочного трансформатора 2. Требования к сварочному трансформатору 3. Типы.

Принцип работы сварочного трансформатора:

В сварочной дуге переменного тока ток остается почти синусоидальным, а напряжение искажается, как показано на рис. 4.9.

Принимая во внимание эти переходные процессы, точка M указывает напряжение, необходимое для зажигания дуги.Время, в течение которого напряжение повышается от нуля до напряжения, достаточного для повторного зажигания дуги, называется ВРЕМЯ ВОССТАНОВЛЕНИЯ ДУГИ. В переходном процессе напряжения дуги это обозначается как Если дуга должна быть устойчивой и тихой, время Y должно быть как можно короче, потому что в противном случае в течение промежуточного интервала катод может стать слишком холодным, чтобы испустить достаточное количество электронов и ионов для повторно зажгите и поддержите дугу.

Одним из способов уменьшения t 1 является повышение напряжения холостого хода источника сварочного тока, как видно из рис.4.10. Кривая напряжения 2 имеет более низкое пиковое значение, чем кривая напряжения 2. Для кривой 1 напряжение зажигания дуги равно E, а время восстановления дуги составляет t 1 . В случае кривой 2 при том же напряжении повторного зажигания E дуга время восстановления t 2 значительно больше, чем t 1 .

Для поддержания продолжительной дуги переменного тока сварочная цепь должна иметь индуктивность *, которая будет создавать разность фаз между переходными процессами напряжения и тока порядка от 0-35 до 0-45.

При сварке малыми токами катод теряет больше тепла, чем при сварке большими токами. Следовательно, в первом случае время восстановления дуги должно быть как можно короче. Например, при токе от 160 до 250 ампер дуга легко возникает, когда трансформатор имеет напряжение холостого хода от 55 до 60 вольт, а при малых токах, скажем, от 60 до 70 ампер, напряжение холостого хода трансформатора должно составлять 70 до 80 вольт.

Однако повышение напряжения холостого хода может поставить под угрозу безопасность сварщика и снизить коэффициент мощности (т.е.е. Напряжение дуги / напряжение холостого хода) сварочного трансформатора. Поэтому крайне важно поддерживать напряжение холостого хода как можно более низким в рамках установленных ограничений.

Требования к сварочному трансформатору:

Сварочный трансформатор должен удовлетворять следующим требованиям:

1. Он должен иметь падающую статическую вольт-амперную характеристику.

2. Чтобы избежать разбрызгивания, скачок сварочного тока во время короткого замыкания должен быть ограничен до минимально возможного значения, превышающего нормальный ток дуги.

3. Напряжение холостого хода обычно не должно превышать 80 вольт и ни в коем случае не должно превышать 100 вольт.

4. Выходной ток должен постоянно регулироваться во всем доступном диапазоне.

5. Напряжение холостого хода должно быть достаточно высоким для быстрого зажигания дуги и не слишком высоким, чтобы снизить экономичность сварки.

Основные типы сварочных трансформаторов:

Четыре основных типа сварочных трансформаторов:

1.Тип с высоким реактивным сопротивлением,

2. Реактор внешний,

3. Реактор интегрального типа, а

4. Реактор насыщающегося типа.

1. Сварочный трансформатор с высоким реактивным сопротивлением:

Когда трансформатор подает ток, вокруг его обмоток возникают магнитные потоки.

Линии результирующего магнитного потока пересекают магнитную цепь и отсекают первичную (I) и вторичную (II) обмотки, как показано на рис.4.11. Однако не все линии магнитного потока делают это. Некоторые из линий магнитного потока из-за первичного тока не обрезают вторичные витки и наоборот, так как оба имеют свои пути в воздухе.

На схеме эти парциальные потоки обозначены как ɸ L1 и ɸ L2 . Другими словами, они отвечают за реактивное сопротивление * катушек и соответствующее падение реактивного напряжения на них. По мере увеличения тока потоки утечки также увеличиваются, как и e.м.ф. самоиндукции. Вот почему увеличение первичного или вторичного тока приводит к увеличению падения реактивного напряжения на соответствующих обмотках.

Чтобы сварочный трансформатор имел круто падающую вольт-амперную характеристику, как первичная, так и вторичная обмотки должны иметь высокое реактивное сопротивление, т.е. они должны иметь значительные потоки рассеяния. Это условие выполняется путем размещения первичной и вторичной обмоток либо на разных ответвлениях, либо на одном и том же ответвлении, но на некотором расстоянии друг от друга, например, расстояние «b» на приведенном выше рисунке.

На регулирование тока в сварочных трансформаторах с высоким реактивным сопротивлением можно воздействовать тремя способами. Один из них включает движущуюся первичную обмотку, как показано на рис. 4.12. Поскольку расстояние между обмотками меняется, меняется и реактивное сопротивление, а следовательно, и выходной сварочный ток.

Второй метод основан на использовании обмоток с ответвлениями либо на первичной, либо на вторичной стороне, и изменение коэффициента трансформации может быть выполнено путем включения или отключения необходимого количества витков, как показано на рис.4.13.

В третьем методе используется подвижный магнитный шунт. Расположение шунта на путях потоков утечки, как показано на рис. 4.14, регулирует выходной сварочный ток посредством управления реактивным сопротивлением.

2. Сварочный трансформатор с внешним реактором:

Этот тип сварочного трансформатора состоит из однофазного понижающего трансформатора с нормальным реактивным сопротивлением и отдельного реактора или дросселя.

Индуктивное реактивное сопротивление и сопротивление обмоток в таком сварочном трансформаторе низкие, поэтому его вторичное напряжение незначительно изменяется в зависимости от сварочного тока.Требуемая падающая или отрицательная вольт-амперная характеристика обеспечивается реактором, размещенным во вторичной обмотке сварочной цепи. Реактор состоит из стального сердечника и обмотки, намотанной проволокой, рассчитанной на максимально допустимый ток.

Если вторичное напряжение сварочного трансформатора составляет В 2 , напряжение дуги составляет В, дуга , а общее сопротивление вместе с реактивным падением на реакторе составляет В 2 , тогда эти три величины могут быть схематично показаны, как на рис.4.15 и связаны математически следующим образом.

Таким образом, напряжение дуги уменьшается с увеличением тока или с увеличением падения напряжения на реакторе. Это дает отрицательную или падающую вольт-амперную характеристику.

Управление сварочным током может быть достигнуто двумя способами, а именно изменением сопротивления реактора (реактор с подвижной активной зоной) или изменением количества витков обмотки, включенной в цепь (реактор с отводом).

Активная зона реактора с подвижной активной зоной, как показано на рис. 4.16, состоит из неподвижной части, несущей обмотку, и подвижной части, которую можно смещать к неподвижной активной зоне или от нее с помощью подходящего устройства, таким образом изменяя воздух. разрыв между ними. Увеличение воздушного зазора увеличивает сопротивление магнитной цепи реактора, в то время как его самоиндукция и индуктивное реактивное сопротивление падают, так что сварочный ток увеличивается.

Когда воздушный зазор уменьшается, сопротивление магнитной цепи также уменьшается, магнитный поток увеличивается, как и индуктивное сопротивление катушки, и сварочный ток падает.Таким образом можно очень точно и непрерывно регулировать сварочный ток.

В реакторе с отводом сердечник выполнен сплошным, но змеевик разделен на несколько секций, каждая из которых имеет отвод, выведенный к точке регулятора, как показано на рис. 4.17. Перемещение контактного рычага через ответвители будет изменять количество витков в цепи, а вместе с тем и величину сварочного тока. Таким образом, ток регулируется пошагово.

3. Сварочный трансформатор со встроенным реактором:

Сварочный трансформатор интегрального реакторного типа, изображенный на рис.4.18 имеет первичную обмотку I, вторичную обмотку II и обмотку реактора III. Помимо основных ветвей, у активной зоны есть дополнительные ветви, несущие обмотку реактора. Сила тока регулируется с помощью подвижного сердечника C, помещенного между дополнительными ветвями.

Часть, несущая обмотку I и II, является, таким образом, собственно трансформатором, а часть, несущая обмотку III, является реактором.

Реактор может быть подключен к вторичной обмотке либо последовательно, либо последовательно.

Когда реактор включен последовательно, рисунок 4.18 (a), напряжение холостого хода трансформатора будет

.

E т + E 2 + E r

, где E 2 — вторичное напряжение трансформатора, а E r — напряжение реактора.

Вспомогательное соединение серии

создает стабильную дугу при малых токах и используется для сварки тонких пластин.

Когда реактор включен последовательно, противоположно, как показано на рис.4.18 (б), его напряжение вычитается из напряжения холостого хода трансформатора, то есть

E т + E 2 — E r

Оппозиционное соединение серии

используется для сварки толстых листов на больших токах.

4. Сварочный трансформатор с реактором насыщения:

В этом сварочном трансформаторе используется изолированная низковольтная цепь постоянного тока с низким током для изменения эффективных магнитных характеристик магнитопровода.Таким образом, большое количество переменного тока регулируется с помощью относительно небольшого количества постоянного тока, что позволяет регулировать выходную вольтамперную характеристическую кривую от минимума до максимума. Например, когда в катушке реактора нет постоянного тока, она имеет минимальный импеданс и, следовательно, максимальную выходную мощность сварочного трансформатора.

Поскольку величина постоянного тока увеличивается с помощью реостата в цепи постоянного тока, появляется больше непрерывных магнитных силовых линий, поэтому сопротивление реактора увеличивается, а выходной ток сварочного трансформатора уменьшается.Преимущество этого метода заключается в том, что он удаляет подвижные части и изгибаются проводники, и его часто используют для источников питания для газо-вольфрамовой дуговой сварки.

На рис. 4.19 показаны основы схемы для простого источника питания с насыщаемым реактором. Для достижения желаемой цели низкого напряжения и высокого тока катушки реактора подключаются напротив управляющей катушки постоянного тока.

При работе на переменном токе очень важна форма волны для дуговой сварки вольфрамовым электродом в газе. Насыщаемый реактор имеет тенденцию вызывать серьезные искажения синусоидальной волны, поступающей от трансформатора.Размещение воздушного зазора в активной зоне реактора, как показано на рис. 4.19, является одним из способов уменьшения этого искажения. В качестве альтернативы в цепь управления постоянным током можно вставить большой дроссель. Любой из методов или их комбинация даст желаемый результат.

Параллельная работа сварочных трансформаторов:

При сварке иногда возникает потребность в токе, превышающем максимальный сварочный ток, получаемый от одного трансформатора. В этом случае желаемый сварочный ток может быть получен путем параллельной работы двух или более сварочных трансформаторов.

Меры предосторожности, необходимые для такой параллельной работы, состоят в том, чтобы напряжения холостого хода или холостого хода трансформаторов были одинаковыми. Это особенно важно в случае сварочных трансформаторов с высоким реактивным сопротивлением, где напряжение холостого хода и коэффициент трансформации в некоторой степени изменяются в зависимости от условий регулировки и шага регулирования.

Когда два трансформатора подключены для параллельной работы, как показано на рис. 4.20, одинаковые выводы первичных обмоток должны быть подключены к идентичным линейным проводам A, B, C питающей сети, таким образом обеспечивая совпадение e.м.ф. фазы во вторичных обмотках. Затем аналогичные клеммы вторичных обмоток должны быть соединены попарно, как показано. Такие трехфазные двухоператорные трансформаторы продаются в Индии компанией M / s ES AB India Limited.

Многооператорные сварочные трансформаторы:

В системе сварочного трансформатора с несколькими дугами или несколькими операторами используется сильноточный источник постоянного напряжения для одновременного обеспечения нескольких сварочных цепей. Такая система используется, когда имеется большая концентрация точек сварки на относительно небольшой рабочей площади, например, в судостроении, на строительных площадках для электростанций, нефтеперерабатывающих и химических заводов.

Многооперационный сварочный трансформатор с плоской вольт-амперной характеристикой может быть однофазным или трехфазным. Недостатком однофазного сварочного трансформатора с несколькими операторами является то, что он создает несимметричную нагрузку на трехфазную сеть питания. Если многопозиционный сварочный трансформатор должен иметь напряжение, которое не будет изменяться в зависимости от нагрузки (максимальное отклонение не должно превышать 5%), он должен иметь низкую магнитную утечку, то есть низкое индуктивное реактивное сопротивление.

Число дуг или сварочных цепей, которые могут быть подключены к сварочному трансформатору, можно найти по соотношению

n = I т / I a .K

где,

n = количество дуг или сварочных контуров,

I t = номинальный выходной ток сварочного трансформатора,

I a = средний ток дуги в каждой сварочной цепи,

K = коэффициент разнообразия.

Коэффициент разнообразия K учитывает тот факт, что все сварочные аппараты, работающие от одного и того же источника питания, не работают одновременно. Коэффициент разнообразия связан со средним рабочим циклом и законами вероятности, но уменьшается по мере увеличения числа сварщиков, работающих от одного и того же трансформатора.Обычно предполагается, что K находится в диапазоне от 0 ∙ 6 до 0 ∙ 8.

Каждая сварочная станция подключается через отдельный регулируемый дроссель (регулятор тока), который обеспечивает круто падающую статическую вольт-амперную характеристику для каждой сварочной цепи. Сварочные цепи подключаются параллельно, поскольку при таком расположении источник лучше используется при сварке малыми токами порядка 70–100 ампер.

Примечание:

Следует отметить, что сварочные трансформаторы имеют довольно низкий коэффициент мощности из-за того, что они содержат катушки с высоким индуктивным сопротивлением.Поэтому сварочные трансформаторы не должны иметь номинальную мощность выше, чем это необходимо для выполнения порученной работы. Они также не должны работать на холостом ходу в течение длительного времени.

Урок 1 — Основы дуговой сварки

Урок 1 — Основы дуговой сварки © АВТОРСКИЕ ПРАВА 1999 УРОК ГРУППЫ ЭСАБ, ИНК. I, ЧАСТЬ B 1.9.3.1.1 Трансформатор типа производят только переменный ток. Они обычно называется «Сварочные трансформаторы». Все типы переменного тока используют однофазное первичное питание и имеют тип постоянного тока. 1.9.3.1.2 Выпрямитель типы обычно называются «Сварочные выпрямители» и производят DC или, AC и Сварочный ток постоянного тока. Они могут использовать как однофазные, так и трехфазные входная мощность. Они содержат трансформатор, но исправляют переменный или постоянный ток с помощью селена выпрямители, кремниевые диоды или кремний управляемые выпрямители.Доступен либо в константе ток или постоянное напряжение, некоторые производители предлагают устройства, которые представляют собой комбинацию оба и могут использоваться для сварки покрытым электродом, сварки неплавящимся электродом и для сварки твердым телом или флюсом порошковая проволока. 1.9.3.2 Вращающийся Типы — Источники питания вращающегося типа можно разделить на две классификации: 1. Мотор-генераторы 2. Двигатель Управляемый 1.9.3.2.1 Мотор-генератор типы состоят из электродвигателя, соединенного с генератором или генератор, который производит желаемый мощность сварки.Эти машины давали отличные сварные швы, но из-за движущихся частей требовал значительного обслуживания. Мало, если любые, сейчас построен сегодня. 1.9.3.2.2 Двигатель приводные типы состоят из бензинового или дизельного двигателя, соединенного с генератором. или генератор, который производит желаемый мощность сварки. Они широко используются в других сферах. коммерческие линии электропередач, а также мобильные ремонтные предприятия. Оба вращающихся типа может доставить либо Сварочная мощность на переменном или постоянном токе или их комбинация.Доступны оба типа как постоянный ток или постоянное напряжение модели. 1.9.4 Мощность Управление источниками — источники сварочного тока различаются также в методе контроля выходной ток или напряжение. Производительностью можно управлять механически как в машинах, имеющих реактор с отводом, подвижный шунт или дивертер, или подвижная катушка. Элект- три типа управления, например, магнитное усилители или насыщаемые реакторы, также используются и самые современные типы, содержащие выпрямители с кремниевым управлением, дают точные электронное управление.1.9.4.1 А подробное обсуждение многих типов источников сварочного тока на рынке сегодня слишком длинная тема для этого курса, хотя дополнительная информация о типе Источники питания для различных сварочных процессов будут рассмотрены в Уроке II. 1.9.4.2 Отлично литературу можно получить у производителей источников питания, и следует проконсультироваться для получения дополнительной информации.

Постоянный ток vs.Выход постоянного напряжения

У меня дома есть небольшой сварщик MIG. Я хочу использовать его для сварки штангой, но мне сказали, что я не могу. Почему это? В работе у нас есть несколько разных типов сварочных аппаратов. Почему некоторые из них могут использоваться только для сварки штучной сваркой, а некоторые — только для сварки проволокой, а другие аппараты могут использоваться и для того, и для другого? Я слышал термины CC и CV, но что они означают и почему они важны? Наконец, у нашей компании есть несколько переносных механизмов подачи проволоки с переключателем «CV / CC» внутри них.Значит ли это, что их можно использовать с любым сварочным аппаратом?


Это очень хорошие вопросы, и я уверен, что их задавали многие сварщики. С точки зрения конструкции и управления дугой существует два принципиально разных типа источников сварочного тока. К ним относятся источники питания, вырабатывающие на выходе постоянный ток (CC), и источники питания, которые производят постоянное выходное напряжение (CV). Многопроцессорные источники питания — это те, которые содержат дополнительные схемы и компоненты, которые позволяют им выдавать как CC, так и CV выход в зависимости от выбранного режима.

Обратите внимание, что сварочная дуга является динамической, в которой ток (A) и напряжение (V) постоянно меняются. Источник питания контролирует дугу и вносит изменения в миллисекунды, чтобы поддерживать стабильное состояние дуги. Термин «постоянный» относителен. Источник питания CC будет поддерживать ток на относительно постоянном уровне, несмотря на довольно большие изменения напряжения, в то время как источник питания CV будет поддерживать напряжение на относительно постоянном уровне, независимо от довольно больших изменений тока. Рисунок 1 содержит графики типичных выходных кривых источников питания CC и CV. Обратите внимание, что в различных рабочих точках кривой выхода на каждом графике наблюдается относительно небольшое изменение одной переменной и довольно большие изменения другой переменной («Δ» (дельта) = разница).

Рисунок 1: Выходные кривые для источников питания постоянного и постоянного тока

Также следует отметить, что в этой статье обсуждаются только обычные типы источников сварочного тока.При импульсной сварке с использованием многих новейших источников питания с технологией управления формой волны вы действительно не можете рассматривать выход как строго CC или CV. Скорее, источники питания отслеживают и изменяют напряжение и ток с чрезвычайно высокой скоростью (намного быстрее, чем источники питания с традиционной технологией), чтобы обеспечить очень стабильные условия дуговой сварки.

Прежде чем обсуждать вопрос о CC и CV, мы должны сначала понять эффекты как тока, так и напряжения при дуговой сварке.Ток влияет на скорость плавления или скорость расхода электрода, будь то стержневой электрод или проволочный электрод. Чем выше уровень тока, тем быстрее плавится электрод или тем выше скорость плавления, измеряемая в фунтах в час (фунт / час) или килограммах в час (кг / час). Чем ниже ток, тем ниже становится скорость плавления электрода. Напряжение регулирует длину сварочной дуги, а также ширину и объем дугового конуса. По мере увеличения напряжения длина дуги становится больше (и конус дуги шире), а по мере ее уменьшения длина дуги становится короче (и конус дуги уже). Рисунок 2 иллюстрирует влияние напряжения на дугу.

Рисунок 2: Влияние напряжения дуги

Теперь тип используемого сварочного процесса и связанный с ним уровень автоматизации определяют, какой тип сварочной мощности является наиболее стабильным и, следовательно, предпочтительным. Процессы дуговой сварки защищенного металла (SMAW) (также известные как MMAW или Stick) и газо-вольфрамовая дуговая сварка (GTAW) (также известные как TIG) обычно считаются ручными процессами.Это означает, что вы управляете всеми параметрами сварки вручную. Вы держите электрододержатель или горелку TIG в руке и вручную управляете углом перемещения, рабочим углом, скоростью перемещения, длиной дуги и скоростью подачи электрода в соединение. В процессах SMAW и GTAW (т. Е. Ручных процессах) CC является предпочтительным типом выхода от источника питания.

И наоборот, процесс газовой дуговой сварки (GMAW) (он же MIG) и процесс дуговой сварки порошковой проволокой (FCAW) (он же флюсовый сердечник) обычно считаются полуавтоматическими процессами.Это означает, что вы по-прежнему держите сварочный пистолет в руке и вручную контролируете угол перемещения, рабочий угол, скорость перемещения и расстояние между контактным наконечником и рабочим расстоянием (CTWD). Однако скорость подачи электрода в соединение (известная как скорость подачи проволоки (WFS)) автоматически регулируется устройством подачи проволоки с постоянной скоростью. Для процессов GMAW и FCAW (то есть полуавтоматических процессов) предпочтительным выходом является CV.

Таблица 1 содержит сводку рекомендуемых типов вывода по процессу сварки.

Таблица 1: Рекомендуемый тип выхода источника питания для процесса дуговой сварки

Чтобы использовать более простую конструкцию и снизить затраты на закупку, источники сварочного тока обычно проектируются для использования только с одним или двумя типами сварочных процессов. Таким образом, базовая машина для стержневой сварки будет иметь мощность только CC, поскольку она предназначена только для сварки стержнем.Аппарат TIG также будет иметь выход только CC, так как он предназначен только для сварки TIG и электродной сварки. И наоборот, базовая машина MIG будет иметь только выходное напряжение CV, поскольку она предназначена только для сварки MIG и сердечника под флюсом. Что касается вашего первого вопроса: «Почему я не могу выполнять сварку с помощью сварочного шва на моем аппарате MIG», то ответ заключается в том, что ваш аппарат MIG имеет только выходное напряжение CV, что не предназначено и не рекомендуется для сварки штангой. И наоборот, вы, как правило, не можете выполнять сварку MIG на ручном станке с выходом CC, потому что это неправильный тип мощности для сварки MIG.Как упоминалось ранее, существуют источники питания для многопроцессорной сварки, которые могут обеспечивать выход как CC, так и CV. Однако они, как правило, более сложные, имеют более высокую производительность, предназначены для промышленного применения и не имеют цены в базовом ценовом диапазоне сварочных аппаратов начального уровня. На рис. 3 показаны примеры типичных сварочных аппаратов CC, CV и многопроцессорных сварочных аппаратов.

Рисунок 3: Пример источников сварочного тока по типу выхода

Вы можете создать сварочную дугу с помощью любого из сварочных процессов на выходе типа CC или CV (если вы можете настроить сварочное оборудование для этого).Однако, когда вы используете предпочтительный тип выхода для каждого соответствующего процесса, условия дуги очень стабильны. Однако, когда вы используете неправильный тип вывода для каждого соответствующего процесса, условия дуги могут быть очень нестабильными. В большинстве случаев они настолько нестабильны, что поддерживать дугу невозможно.

Теперь давайте обсудим, почему эти последние утверждения верны. С помощью двух ручных процессов, SMAW и GTAW, вы контролируете все переменные вручную (вот почему они являются двумя процессами, требующими наибольшего количества навыков оператора).Вам необходимо, чтобы электрод плавился с постоянной скоростью, чтобы вы могли подавать его в соединение с постоянной скоростью. Для этого сварочная мощность должна поддерживать постоянный ток (т. Е. CC), чтобы результирующая скорость плавления была постоянной. Напряжение — менее контролируемая переменная. При ручных процессах очень трудно постоянно поддерживать одну и ту же длину дуги, потому что вы также постоянно вводите электрод в соединение. Напряжение меняется в результате изменения длины дуги.С выходом CC ток — это ваша предварительная установка, регулирующая переменная и напряжение просто измеряются (обычно как среднее значение) во время сварки.

Если вы попытаетесь выполнить сварку методом SMAW, например, используя выходное напряжение CV, ток и итоговая скорость плавления будут слишком сильно отличаться. Когда вы двигались вдоль стыка (пытаясь согласоваться со всеми другими параметрами сварки), электрод плавился бы быстрее, затем с меньшей скоростью, затем с большей скоростью и т. Д. вы вставили электрод в стык.Это невыполнимое условие, поэтому выход CV нежелателен.

Когда вы переключаетесь на полуавтоматический процесс, такой как GMAW или FCAW, что-то меняется. Хотя вы все еще управляете многими параметрами сварки вручную, электрод подается в соединение с постоянной скоростью (в зависимости от конкретной WFS, установленной на механизме подачи проволоки). Теперь вы хотите, чтобы длина дуги была одинаковой. Для этого сварочная мощность должна поддерживать напряжение на постоянном уровне (т.е.е., CV), так что результирующая длина дуги согласована. Ток — менее контролирующая переменная. Он пропорционален WFS или является его результатом. По мере увеличения WFS увеличивается и ток, и наоборот. С выходом CV напряжение и WFS являются вашими предустановками, а управляющие переменные и ток просто измеряются во время сварки.

Если вы попытаетесь выполнить сварку с использованием процессов GMAW или FCAW, используя выход CC, напряжение и результирующая длина дуги будут слишком сильно отличаться. При уменьшении напряжения длина дуги станет очень короткой, и электрод войдет в пластину.Затем по мере увеличения напряжения длина дуги станет очень большой, и электрод сгорит обратно к контактному наконечнику. Электрод будет постоянно врезаться в пластину, затем сгорать обратно к кончику, затем врезаться в пластину и т. Д. Это невыполнимое условие, что делает выход CC нежелательным.

В качестве примечания, также принято полностью автоматизировать процессы сварки GTAW, GMAW и FCAW. В случае полной автоматизации все переменные контролируются машиной и удерживаются под постоянным углом, расстоянием или скоростью.Следовательно, меньше изменений в условиях дуги. Однако предпочтительным типом вывода для автоматизированной GTAW по-прежнему является CC, а для автоматизированных GMAW и FCAW — по-прежнему CV. Пятый распространенный процесс дуговой сварки, сварка под флюсом (SAW) (также известный как поддуговая сварка), также обычно является автоматизированным процессом. Для SAW обычно используется выход CC или CV. Определяющими факторами, определяющими, какой тип вывода является наилучший, обычно являются диаметр электрода, скорость перемещения и размер сварочной ванны. Для полуавтоматической резки SAW предпочтительным типом вывода является CV.

Ваш последний вопрос касался переносных механизмов подачи проволоки (см. Пример на , рис. 4 ). Это оборудование, которое позволяет вам идти вразрез с основными правилами, описанными в этой статье… в некоторой степени. Они разработаны в первую очередь для сварки в полевых условиях и обладают тремя уникальными особенностями по сравнению с традиционными механизмами подачи проволоки в заводских условиях. Во-первых, провод заключен в жесткий пластиковый футляр для лучшей защиты и долговечности в полевых условиях. Во-вторых, им не нужен кабель управления для питания приводного двигателя, а скорее используется провод измерения напряжения от механизма подачи проволоки.Таким образом, подключение выполняется просто, для этого достаточно использовать имеющийся сварочный кабель источника питания (и добавить газовый шланг). В-третьих, они могут работать с источником питания CC, но с ОГРАНИЧЕННЫМ успехом. У них есть тумблер «CC / CV», с помощью которого вы выбираете тип выхода от источника питания.

Когда впервые появились эти портативные механизмы подачи проволоки, теория заключалась в том, что они могут использоваться с большой существующей базой источников питания CC, уже используемых в полевых условиях (в основном, сварочных аппаратов с приводом от двигателя), и, таким образом, теперь дают производителям GMAW и FCAW (т.е. проволочная сварка) возможность. Вместо того, чтобы покупать новый источник питания постоянного тока, им нужно было только получить механизм подачи проволоки. Чтобы компенсировать колебания напряжения, которые вы получаете на выходе CC, эти механизмы подачи проволоки имеют дополнительную схему, которая замедляет реакцию скорости подачи проволоки на изменения напряжения, чтобы помочь стабилизировать дугу (обратите внимание, что на CC скорость подачи проволоки равна больше не является постоянным, а, скорее, постоянно увеличивается и уменьшается в попытке сохранить ток на постоянном выходе).

Рисунок 4: Пример переносного устройства подачи проволоки

Реальность сварки проволокой с выходом CC состоит в том, что она довольно хорошо работает с одними приложениями и плохо работает с другими. Относительно хорошая стабильность дуги достигается при использовании процесса порошковой сварки в среде защитного газа (FCAW-G) и процесса GMAW в режиме струйной дуги или импульсной струйной дуги для переноса металла. Однако стабильность дуги по-прежнему очень неустойчива и неприемлема для самозащитной порошковой проволоки (FCAW-S) и процесса GMAW в режиме передачи металла при коротком замыкании.В то время как напряжение изменяется в зависимости от выхода CC, процессы, которые обычно работают при более высоких напряжениях (например, 24 В или более), такие как FCAW-G и струйная дуга или импульсная дуга MIG со струйным распылением, менее чувствительны к изменениям напряжения, возникающим при выходе CC. Поэтому стабильность дуги довольно хорошая. В то время как такие процессы, как короткое замыкание MIG и FCAW-S, которые обычно работают при более низких настройках напряжения (т. Е. 22 В или меньше), более чувствительны к колебаниям напряжения. Поэтому стабильность дуги намного хуже и обычно считается неприемлемой.Другой фактор, связанный с использованием электродов FCAW-S на выходе CC, заключается в том, что чрезмерное напряжение дуги и, как следствие, большая длина дуги, по сути, могут привести к чрезмерному попаданию дуги в атмосферу. Это потенциально может привести к пористости сварного шва и / или резкому снижению ударной вязкости металла шва при низких температурах.

В заключение, выход CV ВСЕГДА рекомендуется для сварки проволокой. Поэтому при использовании этих переносных механизмов подачи проволоки с источником питания с выходом CV используйте его вместо выхода CC.Наконец, хотя выход CC может быть приемлемым для общего назначения FCAW-G, а также для струйной дуги и импульсной сварки MIG со струйной дугой, он не рекомендуется для работы с качеством кода.

Дуговая сварка постоянным током: Maine Welding Company

Источник питания — это сердце всего процесса дуговой сварки. Два основных типа источников питания выражаются их вольт-амперными выходными характеристиками. В этом параграфе рассматривается машина постоянного тока. Другой источник питания, машина постоянного напряжения, обсуждается в параграфе 10-3.Кривая статической выходной характеристики, полученная обоими источниками, показана на рисунке 10-1. Характеристическая кривая сварочного аппарата получается путем измерения и построения графика выходного напряжения и выходного тока при статической загрузке аппарата.

а. Обычная машина известна как машина постоянного тока (CC) или тип переменного напряжения. Аппарат CC имеет характеристическую падающую вольт-амперную кривую (рис. 10-1) и много лет используется для дуговой сварки экранированного металла.Аппарат для дуговой сварки постоянным током — это аппарат, который имеет средства регулировки тока дуги. Он также имеет статическую вольт-амперную кривую, которая дает относительно постоянный выходной ток. Напряжение дуги при заданном сварочном токе зависит от скорости подачи плавящегося электрода в дугу. Когда используется неплавящийся электрод, напряжение дуги зависит от расстояния от электрода до изделия. Аппарат для дуговой сварки постоянным током обычно используется в сварочных процессах, в которых используются электроды, удерживаемые вручную, плавящиеся электроды с непрерывной подачей или неплавящиеся электроды.Если длина дуги изменяется из-за внешних воздействий и возникают небольшие изменения напряжения дуги, сварочный ток остается постоянным.

г. Источник питания обычного или постоянного тока (CC) может иметь выход постоянного или переменного тока. Он используется для дуговой сварки в среде защитного металла, дуговой сварки и строжки углем, дуговой сварки газом вольфрамовым электродом и плазменной дуговой сварки. Он используется для приварки шпилек и может использоваться для процессов непрерывной проволоки, когда используются относительно большие электродные проволоки.

г. Есть две системы управления для сварочных аппаратов с постоянным током: аппарат с одним управлением и аппарат с двойным управлением.

(1) Машина с одним управлением имеет одну регулировку, которая изменяет выходной ток с минимального на максимальный, который обычно превышает номинальную мощность машины. Характеристическая вольт-амперная кривая показана на рисунке 10-2. Заштрихованная область — это нормальный диапазон напряжения дуги. Регулируя текущий контроль, можно получить большое количество выходных кривых.Пунктирными линиями показаны промежуточные регулировки машины. Для кранов или съемных машин количество крышек будет соответствовать количеству доступных смесителей или вставных комбинаций. Большинство трансформаторных и трансформаторно-выпрямительных аппаратов — это сварочные аппараты с одним управлением.

(2) Машины с двойным управлением имеют регуляторы как по току, так и по напряжению. У них есть две регулировки: одна для управления грубым током, а другая — для точного регулирования тока, которая также действует как регулировка напряжения холостого хода.Генераторные сварочные аппараты обычно имеют двойное управление. Они предлагают сварщику максимальную гибкость для различных требований к сварке. Эти машины по своей сути имеют контроль наклона. Наклон характеристической кривой может быть изменен с мелкого на крутой в соответствии с требованиями сварки. На рис. 10-3 показаны некоторые из различных кривых, которые можно получить. Остальные кривые получены при промежуточных настройках напряжения холостого хода. Наклон изменяется путем изменения напряжения холостого хода с помощью ручки регулировки точного тока.Грубая настройка устанавливает выходной ток машины ступенчато от минимального до максимального тока. Регулятор точного тока изменяет напряжение холостого хода примерно с 55 до 85 вольт. Однако при сварке эта регулировка не влияет на напряжение дуги. Напряжение дуги контролируется сварщиком путем изменения длины сварочной дуги. Напряжение холостого хода влияет на возможность зажигания дуги. Если напряжение холостого хода намного ниже 60 вольт, дугу сложно зажечь.

(a) Различные наклоны, возможные для машины с двойным управлением, имеют важное влияние на сварочные характеристики дуги. Длина дуги может варьироваться в зависимости от техники сварки. Короткая дуга имеет более низкое напряжение, а длинная — более высокое. При короткой дуге (более низкое напряжение) источник питания вырабатывает больший ток, а при более длинной дуге (более высокое напряжение) источник питания обеспечивает меньший сварочный ток. Это показано на рисунке 10-4, на котором показаны три кривые дуги и две характеристические кривые сварочного аппарата с двойным управлением.Три дуговые кривые предназначены для длинной дуги, нормальной дуги, а нижняя кривая — для короткой дуги. Пересечение кривой дуги и характеристической кривой сварочного аппарата называется рабочей точкой. Рабочая точка постоянно меняется во время сварки. Во время сварки и без изменения управления на аппарате сварщик может удлинять или укорачивать дугу и изменять напряжение дуги с 35 до 25 вольт. При одинаковых настройках машины короткая дуга (более низкое напряжение) является сильноточной.И наоборот, длинная дуга (высокое напряжение) — это дуга с меньшим током. Это позволяет сварщику контролировать размер лужи расплава во время сварки. Когда сварщик намеренно и ненадолго удлиняет дугу, сила тока уменьшается, дуга расширяется, и лужа замерзает быстрее. Количество расплавленного металла уменьшается, что обеспечивает контроль, необходимый для работы вне рабочего места. Этот тип управления встроен в обычные машины постоянного тока, одно- или двойное управление, переменного или постоянного тока.

(b) С помощью аппарата с двойным управлением сварщик может настроить аппарат для большего или меньшего изменения тока при заданном изменении напряжения дуги.Обе кривые на рисунке 10-4 получены на машине с двойным управлением путем регулировки ручки точного управления. Верхняя кривая показывает напряжение холостого хода 80 В, а нижняя кривая показывает напряжение холостого хода 60 В. При любой настройке соотношение напряжения и тока останется на той же кривой или линии. Рассмотрим сначала 80-вольтовую кривую холостого хода, которая дает более крутой наклон. Когда дуга длинная с 35 вольт и сокращается до 25 вольт, ток увеличивается. Это делается без прикосновения к системе управления машиной.Сварщик манипулирует дугой. При более пологой кривой холостого хода 60 вольт, когда дуга сокращается с 35 вольт до 25 вольт, сварочный ток увеличивается почти вдвое больше, чем при следовании кривой холостого хода 80 вольт. Более пологая кривая наклона обеспечивает дугу копания, при которой одинаковое изменение напряжения дуги вызывает большее изменение тока дуги. Кривая с более крутым наклоном имеет меньшее изменение тока при таком же изменении длины дуги и обеспечивает более мягкую дугу. Между кривыми напряжения холостого хода 80 и 60 имеется множество характеристических кривых, каждая из которых допускает различное изменение тока для одного и того же изменения напряжения дуги.Это преимущество сварочного аппарата с двойным управлением перед сварочным аппаратом с одним управлением, поскольку наклон кривой в диапазоне напряжения дуги можно регулировать только на аппарате с двойным управлением. Сварочный генератор с двойным управлением является наиболее гибким из всех типов источников сварочного тока, поскольку он позволяет сварщику переключаться на более сильноточную дугу для глубокого проплавления или на более низкотоковую и менее проникающую дугу путем изменения длины дуги. . Эта способность управлять током дуги в довольно широком диапазоне чрезвычайно полезна при сварке труб.d. Выпрямительный сварочный аппарат, технически известный как трансформатор-выпрямитель, вырабатывает постоянный ток для сварки. Эти машины по существу представляют собой машины с одним управлением и имеют статическую кривую выходной характеристики вольт-ампер, аналогичную показанной на рис.

рисунок 10-4 выше. Эти аппараты, хотя и не такие гибкие, как двигатель-генератор с двойным управлением, могут использоваться для всех типов дуговой сварки защищенным металлом, где требуется постоянный ток. Наклон вольт-амперной кривой в диапазоне сварки обычно находится посередине между максимумом и минимумом для аппарата с двойным управлением.е. Переменный ток для сварки обычно вырабатывается сварочным аппаратом трансформаторного типа, хотя сварочные машины с генератором переменного тока с приводом от двигателя доступны для портативного использования. Статическая вольт-амперная характеристика источника переменного тока такая же, как показано на рисунке 10-4 выше. Некоторые источники сварочного тока с трансформатором имеют ручки точной и грубой регулировки, но это не машины с двойным управлением, если только напряжение холостого хода не изменяется заметно. Разница между сваркой на переменном и постоянном токе заключается в том, что напряжение и ток проходят через ноль 100 или 120 раз в секунду, в зависимости от частоты сети или при каждом изменении направления тока.Реактивное сопротивление, заложенное в машину, вызывает сдвиг фаз между напряжением и током, так что они оба не проходят через ноль в один и тот же момент. Когда ток проходит через ноль, дуга гаснет, но из-за разницы фаз присутствует напряжение, которое помогает быстро восстановить дугу. Степень ионизации дуги влияет на напряжение, необходимое для восстановления дуги, и на общую стабильность дуги. Стабилизаторы дуги (ионизаторы) включены в покрытия электродов, предназначенных для сварки на переменном токе, чтобы обеспечить стабильную дугу.

ф. Сварочный аппарат постоянного тока может использоваться для некоторых автоматических сварочных процессов. Механизм подачи проволоки и устройство управления должны дублировать движения сварщика для запуска и поддержания дуги. Это требует сложной системы с обратной связью по напряжению дуги для компенсации изменений длины дуги. Источники питания постоянного тока редко используются для сварки электродной проволокой очень малых размеров.

г. Машины для дуговой сварки были разработаны с истинными вольт-амперными статическими характеристиками постоянного тока в диапазоне напряжения дуги, как показано на рисунке 10-5.Сварщик, использующий этот тип аппарата, практически не может контролировать сварочный ток путем укорачивания или удлинения дуги, поскольку сварочный ток остается неизменным независимо от того, короткая или длинная дуга. Это большое преимущество для газо-вольфрамового тока за счет укорачивания или удлинения дуги, поскольку сварочный ток остается неизменным независимо от того, короткая или длинная дуга. Это большое преимущество для дуговой сварки вольфрамовым электродом в газе, поскольку длина рабочей дуги вольфрамовой дуги ограничена. При сварке металлической дугой в защитной оболочке для обеспечения контроля сварочной ванны необходимо иметь возможность изменять уровень тока во время сварки.Это делается с помощью аппарата, который можно запрограммировать на периодическое переключение с высокого тока (HC) на низкий (LC), известного как импульсная сварка. При сварке импульсным током существует два уровня тока: большой ток и слабый ток, иногда называемый фоновым током. При программировании схемы управления выход машины постоянно переключается с высокого на низкий ток, как показано на рисунке 10-6. Уровень высокого и низкого тока регулируется. Кроме того, регулируется длительность импульсов высокого и низкого тока.Это дает сварщику необходимый контроль над дугой и сварочной лужей. Сварка импульсным током полезна для дуговой сварки труб с защитным металлом при использовании определенных типов электродов. Импульсная дуга очень полезна при сварке газо-вольфрамовой дугой.


Сварочный трансформатор типа регулятора

Купить Сварочный трансформатор типа регулятора

Сварочный трансформатор регулятора типа (регулятор типа Weldi)

Сварочные трансформаторы регулируемого типа

являются основным продуктом нашего производственного предприятия.Изготовленный из качественных металлов и обладающий множеством полезных функций, предлагаемый нами ассортимент уже произвел сенсацию своим присутствием на рынках. Основываясь на этом, мы включены в список известных производителей и экспортеров сварочных трансформаторов регулирующего типа. характеристики: шаг меньше; плавное регулирование сварочного тока с помощью современного магнитного шунтирующего механизма с подвижным сердечником. Которые позволяют использовать более длинный сварочный кабель без проблем с падением сопротивления сварочного кабеля, надежная динамическая характеристика выходного тока для лучшей скорости переноса металла с минимальным разбрызгиванием, отличное удобство для сварщика благодаря высокотехнологичной конструкции трансформатора, экономия электроэнергии, когда машина не используется, благодаря низким потерям без нагрузки и мощности сети двухпозиционный выключатель современный и прочный механизм с подвижным сердечником, рассчитанный на годы безотказной службы, оцинкованная и покрытая эпоксидной порошковой краской конструкция для длительного срока службы без ржавчины: широко используется для легких / средних / тяжелых / тяжелых структурных работ.Производство и машиностроение. Естественная конструкция с воздушным охлаждением обеспечивает бесперебойную работу даже в самых нестабильных сложных условиях. Идеально подходит для работы на объекте и в мастерской. Технические характеристики: modelswac 15 wac 20 wac 25 wac 30 wac 40wac 408wac 60 входное питание 230 В 1 ø 415 В 2 øac, 50 Гц 415 В 2 øac, 50 Гц Напряжение холостого хода 50 В переменного тока 60 В переменного тока Диапазон сварочного тока 80 В переменного тока 45- 150, 50-200, 50-250, 70-300, 80-400, 100-600, макс. Постоянный ток ручной сварки при рабочем цикле 60% 120a 170 a 200 a 300 a 400a600 Тип механизма регулирования сварочного тока с подвижным сердечником (бесступенчатое управление) охлаждение естественное воздушное охлаждение цена в рупиях.(приблизительно) 58006970775013750158501775027000цена в долларах США (приблизительно) 123.4148.3164.89292.55373.23377.65574.46размеры (Д x Ш x В) мм 600x 380 x 465 660x440x480925 x 525 x 590 1000x525x50x650x5000 кг

(PDF) ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ СВАРОЧНОЙ МАШИНЫ С ПЕРЕМЕННЫМ СЕЛЕКТОРОМ ТОКА

International Journal of Pure & Applied Sciences Vol.6No.2.

Опубликовано Oxford Research and Publications, январь 2016 г.

62

ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ СВАРОЧНОЙ МАШИНЫ С ПЕРЕМЕННОЙ

СЕЛЕКТОР ТОКА

1 * I.И.Ибрагим и 2Б. I. Adamu

1 и 2 Кафедра физики, Федеральный университет, Дутсе, штат Джигава

Электронная почта для корреспондента автора: [email protected],

+2348036826053

Реферат

Был разработан двухполюсный сварочный аппарат переменного тока. и построен. Первый полюс

является первичной цепью и был спроектирован так, чтобы иметь четырехступенчатую катушку SA, AB, BC и CE с

с тремя петлями A, B, C для переменного выбора токовой нагрузки.Первичные цепи были

, намотанные медным проводом калибра 13, и им были даны витки по 80, 20, 20 и 20 витков для

ступеней SA, AB, BC и CD соответственно. Второй полюс — это сторона вторичной цепи, конструкция которой была выполнена по

, чтобы первичная цепь и вторичная цепь перекрывали друг друга. Первичная цепь

на вторичном полюсе была намотана медным проводом калибра 13 и составляла

при одном витке ступенчатой ​​обмотки из 114 витков, в то время как вторичная цепь внахлестку имела один ступень

витка из 40 витков с клещевым медным проводом. калибра 8.Стиль соединения «начало-начало» был

,

использовался для первичных цепей, в то время как пусковые и конечные стрелки вторичной цепи были подключены к

заземлению и клещу сварочного аппарата соответственно.

Ключевые слова: вторичный контур, первичный контур, катушка, сварка

1.0 ВВЕДЕНИЕ

Сварка — это производственный процесс, в ходе которого соединяются материалы, обычно металлы или термопласты,

вызывая слияние. Как правило, для большинства свариваемых обычных сталей предпочтительнее соединение

методом сварки.[1] Самый популярный из сварочных аппаратов использует методы дуговой сварки

, которые включают (i) SMAW — сварку штучной сваркой или дуговую сварку в защитном металлическом корпусе

(ii) GMAM — сварка вольфрамовым электродом в газовой среде (iii ) GTAM — TIG

сварка или дуговая сварка вольфрамовым электродом в газовой среде [2]. Другие — пайка, пайка и сварка ацетиленом

. В автомобильной промышленности точечная контактная сварка (RSM) является одним из

наиболее эффективных процессов соединения материалов, в нем используются токи в диапазоне 1 — 200 кА с длительностью

в диапазоне от нескольких циклов до одной секунды для генерации джоулева нагрева. .Трансформаторы RSM

работают в диапазоне средних частот около 1 кГц [3].

В этом исследовании построенная сварочная система использует низкочастотный трансформатор, который

работает на частоте электросети 50 или 60 Гц с переключателями переменного тока до

, чтобы избежать проблем с качеством электроэнергии. Проблема качества электроэнергии связана с отклонением тока напряжения и

частоты от номинального значения в системе распределения и использования электроэнергии.

Что такое регуляторы напряжения | Статьи

T&D Guardian

Заявка

Поскольку изменение напряжения, вызванное одним переключением ответвлений, составляет 0,625% при 120 В или 0,75 В, для правильной работы требуется настройка полосы пропускания. Возможные настройки полосы пропускания на регуляторе напряжения определяются размером шага регулятора, потому что меньший шаг вызовет чрезмерное переключение отводов, когда блок ищет номинальное напряжение (это называется «поиском»).

Одношаговая полоса пропускания нецелесообразна, потому что любое небольшое увеличение размера шага — например, из-за увеличения напряжения возбуждения — также приводит к колебаниям. Таким образом, наименьшая практическая ширина полосы несколько больше, чем одно- или двухступенчатый диапазон напряжения. Для регуляторов с шагом 0,625% полоса пропускания будет 1,5% или +/- 0,75 В.

Многие колебания напряжения в системе исправляются сами собой. Пример: когда двигатель запускается, он потребляет большой ток, который вызывает падение напряжения; однако по мере того, как двигатель набирает скорость, ток уменьшается, а напряжение увеличивается.Чтобы регулятор не «преследовал» этот тип колебаний, в систему управления вводится временная задержка, которая позволяет регулятору «ждать и наблюдать», прежде чем инициировать переключение ответвлений. Для большей гибкости время задержки регулируется с шагом 10 секунд от 10 до 180 секунд.

Как правило, регуляторы располагаются как можно ближе к центру нагрузки. Чем дальше от нагрузки, тем большее падение напряжения может возникнуть между регулятором и нагрузкой.Но из практических соображений может потребоваться, чтобы регулятор располагался на некотором расстоянии от нагрузки. В этом случае необходимо добавить в схему управления компенсатор падения напряжения для компенсации падения напряжения. С помощью компенсатора падения напряжения в линии стабилизатор сводит к минимуму влияние падений сопротивления и реактивного сопротивления в линии и улучшает напряжение в центре нагрузки. Также получается среднее напряжение в других точках распределительной линии.

Обратите внимание, что падение напряжения является функцией тока нагрузки; поэтому регулятор должен уметь измерять ток и оценивать соответствующее падение напряжения.Помимо трансформатора тока, в схему компенсатора управления регулятором добавлены резистор и дроссель. Эти два элемента схемы являются переменными и настраиваются для обеспечения необходимых значений для каждого отдельного приложения.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.