МОЩНЫЙ БЛОК ПИТАНИЯ
Это достаточно мощный блок питания на выходное напряжение 12V. В источнике питания используется обычная микросхема LM7812, но выходной ток может достигать 30A, он усиливается с помощью TIP2955 — транзисторов Дарлингтона (составных). Каждый из транзисторов может выдавать до 5 ампер, а при установке шести в итоге суммарный выходной ток 30 А. Вы можете увеличить или уменьшить число TIP2955, чтобы получить больше или меньше мощности на выходе.
Схема устройства
Принципиальная схема мощного БП на 30 А
Сама микросхема обеспечивает около 800 мА. Предохранитель подключен после LM7812 для защиты м/с от высоких бросков тока. Транзисторы и микросхема требуют адекватных радиаторов. В прекрасно понимаете, что большой ток нагрузки — это высокая мощность. Рассеиваемая транзисторами мощность также увеличивается, и избыток тепла может вызвать пробой транзисторов.
Для тока 30 ампер вам будет нужен очень большой радиатор или даже вентилятор охлаждения. 100 ОМ резисторы в эмиттерных цепях используются для стабильности и выравнивания токов каждого плеча, ведь уровень усиления будет различным для каждого транзистора. Может получиться, что один тянет на себя 8 А, а другой «отдыхает» с 3-мя амперами:)) Выпрямительные диоды, должны быть способны выдерживать ток не менее 60 ампер. Двойной запас не помешает. Сетевой трансформатор на ток вторички 30 ампер является наиболее дорогостоящей частью проекта. Входное напряжение стабилизатора должно быть, по крайней мере, на несколько вольт выше выходного напряжения 12 В.
Внешний вид самодельного МБП
Ещё раз напоминаем, что при сборке этого мощного БП закладывайте в конструкцию большой радиатор, ещё лучше оснастить его вентилятором или водяным охлаждением радиатора. Если хотя бы пара силовых транзисторов выйдет из строя, то результаты будут плачевны. Не используйте схему без предохранителей!
Испытания мощного блока питания
Для начального тестирования можно не подключать нагрузку. Сначала с помощью вольтметра через выходные клеммы, вы должны измерить 12 Вольт на выходе схемы, или напряжение к этому значению. Затем Подключите 100 ом, 3 Вт резистор или другую небольшую нагрузку. Показания вольтметра не должны меняться. Если отсутствует 12 вольт — выключите питание и внимательно проверьте все соединения. Внимание! Перед установкой деталей (диодов, транзисторов, резисторов) не поленитесь проверить их с помощью мультиметра.
Форум по мощным источникам питания
Схемы блоков питанияБЛОК ПИТАНИЯ НА 13,8 ВОЛЬТ 30 АМПЕР
Неизвестно на сколько ватт может потребоваться источник питания, поэтому лучше всегда делать с запасом. В этой самодельной конструкции выходное напряжение стандартное для питания приёмо-передающей аппаратуры — 13,8 В, ток 25 А (хотя конечно регулируется, при необходимости), его сборка на базе имеющегося трансформатора — для более «чистого» выходного напряжения и тока. Схема старенькая, но без всяких дорогих микросхем стабилизаторов, поэтому заслуживает внимания.
Схема мощного простого БП на транзисторах
Транзистор BUV21 может рассеивать до 40 ампер, а мощность 250 Вт. Они позволяют блоку питания выдерживать требуемую мощность в течение долгого времени. Их можно заменить на 2N5886, 2N5686, 2N5302 или даже 2N3771. Следует отметить, что они немного слабее.
Детали в блоке питания
- R 1 2,2 к
- R 2 2,2 Ом — 2 W
- R 3 47 к
- R 4 2,7 к
- R 5 820 Ом
- R 6 56 Ом — 5 W
- R 7 0,05 Ом — 5 W
- R 8 0,05 Ом — 5 W
- R 9 220 Ом — 2 W
- R 10 120 Ом
- C 1 10 nF
- C 2 10 nF
- C 3 10 nF
- C 4 4700 µF/25 В
- C 5 4700 µF/25 В
- C 6 4700 µF/16 В
- C 7 47 nF
- C 8 10 nF
- D 1 1N5402
- D 2 1N5402
- D 3 1N4007
- D 4 стабилитрон 9,1 В
- Подстроечный здесь многооборотный 500 Ом
- T1 2SC945, T2 TIP-32.
Трансформатор на 500 ВА защищен предохранителем. Расчет его номинала выглядит следующим образом:
Выходное напряжение трансформатора 16,5 В переменного тока, входное напряжение 220 В переменного тока, значит 16,5 / 220 = 0,075. Предполагая, что 30 ампер это максимум, 30 х 0,075 = 2,25 А, то есть можно использовать сетевой предохранитель со значением от 3 до 4 А.
Схема узла защиты
Силовые транзисторы BUV21 обдуваются вентилятором. Кроме того, есть защита по перенапряжению на тиристоре: если выходное напряжение превышает 15 вольт, оно будет управлять стабилитроном (проходить через него). Когда тиристор включен, он закорачивает входное напряжение источника питания и выбивает предохранитель 25 А.
Дорогой и труднодоступный конденсатор емкостью 60 000 мкФ легко заменяется конденсаторной батареей емкостью по 10 000 мкФ, установленной на печатной плате.
Диодный мост должен выдерживать минимум 35 ампер, лучше 50. Для шунтирующих конденсаторов диодного моста используйте только керамику 10 нФ / 400 вольт.
Транзистор 2SC945 был выбран не случайно. Производитель указывает, что он защищен множеством способов (ток, тепловой перегруз и так далее). Его также можно заменить на BC237 или BC546, но это будет хуже. Для эмиттерных резисторов 0,05 Ом предпочтительно использовать 2 резистора по 0,1 Ом и спаять их параллельно, по одному на каждой стороне печатной платы.
Вентилятор 12 В от старого блока питания ПК стоит с последовательно включенным резистором 120 Ом, чтобы он вращался как можно медленнее, поскольку для надлежащего охлаждения силовых транзисторов требуется мало воздуха, а лишний шум никому не нужен.
Форум по БП
Обсудить статью БЛОК ПИТАНИЯ НА 13,8 ВОЛЬТ 30 АМПЕР
|
Опять блок питания, на этот раз 12 Вольт 50 Ампер или 600 Ватт
Этот обзор планировался еще в начале апреля, но я все как-то откладывал и откладывал и вот наконец то дошли руки протестировать этот блок питания.Как я писал в прошлый раз, блок питания заказывался по просьбам некоторых читателей, которым интересен обзор мощного БП, в основном для применения с 3D принтерами.
Заказал, осмотрел, протестировал, а теперь пришла очередь рассказать об этом.
Данный блок питания был заказан в паре с своим 24 Вольта 20 Ампер «собратом», а так как блоки питания ну очень похожи, то я буду иногда ссылаться на его обзор, потому сразу дам ссылку.
Данный обзор будет написан в более привычном для моих читателей стиле, хотя и с некоторыми изменениями.
Впрочем перейду к описанию.
Этот блок питания пришел в точно такой же упаковке, как и предыдущий, внешне они отличаются только надписью, которая видна сквозь окошко коробки.
Конструкция и размеры блока питания полностью совпадают с предыдущим, а также с блоком питания мощностью 360 Ватт, обзор которого я также недавно делал.
Слева направо — 360-480-600 Ватт.
В прошлый раз я написал, что крышка клеммника открывалась не полностью. Дело в том, что у предыдущего БП слегка погнулась сама металлическая часть крышки БП и не давала полностью открыть клеммник.
В этот раз все нормально, значит проблема была не в блоке питания, а в упаковке или доставке.
Кстати, не в первый раз замечаю, что у получаемых мною блоков питания гнется в процессе доставки один из выступающих углов нижней части корпуса, хотя я бы не сказал, что они хлипкие.
Судя по этикетке блок питания имеет мощность в 600 Ватт при 12 Вольт, собственно эта информация указана в заголовке обзора.
Но если посмотреть на вторую этикетку внимательно, то можно прочитать, что производитель не рекомендует нагружать его более 80% от максимальной мощности. Попросту говоря, можно сказать что 600 Ватт это максимальная, а 480 длительная, но к этому я еще вернусь.
Присутствует и гарантийная пломба, но в поврежденном виде. Я не думаю что блок питания кто-то открывал, скорее она пострадала в процессе перевозки. Произведен БП в январе, получен мною в марте, потому можно сказать, что вполне свеженький.
Клеммник имеет три пары выходов, хотя как по мне, то при таких токах это уже маловато, выходит около 16-17 Ампер на пару.
Слева от клеммника находится подстроечный резистор для установки выходного напряжения.
Как и в прошлый раз, блок питания оборудован активным охлаждением. Заявлена регулировка оборотов, но по факту работает он в двух режимах, малой и большой мощности, причем большая мощность включается при мощности нагрузки около 50 Ватт.
Вентилятор довольно мощный, по крайней мере для таких габаритов. По уровню шума тяжело сказать, он однозначно заметен, хотя и шумным назвать тяжело.
Выкручиваем пару винтов и снимаем верхнюю крышку.
Вообще у меня было подозрение, что предыдущий блок питания и этот очень похожи, но чтобы настолько… Они просто близнецы-братья.
Хотя нет, если посмотреть внимательно, то можно увидеть небольшой но при этом существенное отличие, выходной нагрузочный резистор перенесен в другое место, это должно сказаться на большей стабильности выходного напряжения от прогрева, в прошлом обзоре я указывал на эту недоработку. Впрочем проявлялось это при работе без вентилятора, в штатном режиме проблем не было.
Сравнительное фото блоков питания 360, 480 и 600 Ватт.
Первый собран по классической двухтактной схемотехнике с полумостом, второй и третий однотактные прямоходовые.
Наученный горьким опытом, перед дальнейшей разборкой я теперь всегда проверяю насколько качественно прижаты к корпусу транзисторы и диодные сборки. В данном случае проблем не было, также присутствует теплопроводящая паста между корпусом элементов и теплопроводящей резиной.
Но перейдем к конструкции.
Входной фильтр есть, правда сразу должен отметить, что входной диодный мост совсем в эконом варианте. Дискретные диоды рассчитанные на ток 3 Ампера и это при условии, что ток по входу у БП также около 3 Ампер. Правда на самом деле в мосте поочередно работают две пары диодов, но не буду лезть в дебри, скажу просто — диодный мост впритык.
Входной фильтр я бы также не назвал совсем уж хорошим, но сам факт, что он есть уже неплохо.
Как и в прошлый раз установлены конденсаторы с заявленной емкостью в 470мкФ. Установлены по схеме 2S2P, т.е. последовательно-параллельно. Емкость фильтра в таком включении равняется емкости одного конденсатора, т.е. 470мкФ, что для мощности в 600 Ватт мало.
В выходном фильтре используется три конденсатора емкостью 3300мкФ и напряжением 25 Вольт. Также на конденсаторах заявлено LowESR, правда производитель конденсаторов явно не относится к брендам, потому к указанному я отнесся с некоторой долей скепсиса.
Напряжение 25 Вольт это нормально, но вот емкость явно маловата, около 10000мкФ при токе в 50 Ампер.
Ладно, выковыриваем черепаху из панциря плату из корпуса и продолжаем осмотр.
В прошлый раз на этом этапе у меня из корпуса вывалился винтик, здесь все было нормально, что впрочем не отменяет необходимости предварительного осмотра любых безымянных блоков питания.
В цепях, ответственных за безопасность применены правильные Y конденсаторы, здесь вопросов нет. Но между минусом выхода и заземляющим проводником установлен простой высоковольтный (на фото он в самом верху), что также встречается довольно часто и в данном применении безопасно.
В инверторе использованы два высоковольтных транзистора SPW20N60S5 производства Infineon. Транзисторы неплохие, одно расстраивает, запаса по напряжению почти нет, так как транзисторы рассчитаны на 600 Вольт. И опять они разные. Хотя с другой стороны, в прошлый раз были IRFP460, которые вообще рассчитаны на 500 Вольт и БП нормально прошел тест.
А вот к выходным диодным сборкам есть вопросы. Установлены MBR4060PT, которые согласно даташиту рассчитаны на 60 Вольт и ток 40 Ампер. Вопрос в том, что я не смог найти информации насчет этих 40 Ампер, ток на всю сборку или на один диод, так как бывает по разному.
Вы конечно спросите, так сборок же две. Но все дело в том, что в блоках питания с такой топологией диодные сборки включены не параллельно, а работают поочередно и через каждую течет полный выходной ток и даже больше.
Если ток считать на каждый вывод, то запаса почти не будет, а если на всю сборку, то будет существенная перегрузка.
Хотя мощность блока питания заявлена как 600 Ватт, выходной дроссель имеет точно такие же габариты, что и 480 Ватт версии. Мало того, он также намотан в четыре провода примерно похожего сечения, вот только в прошлый раз ток был 20 Ампер, а сейчас 50.
Снизу изменений вообще нет, «сердцем» блока питания также является известный ШИМ контроллер UC2845.
Как и в прошлый раз, к схемотехнике входной части и цепи обратной связи вопросов не возникло, зато возник вопрос к безопасности.
На фото я выделил проблемный участок, он был и в прошлый раз, но я не обратил на него внимание.
Если присмотреться, то становится видно, что дорожки первичной части расположены довольно близко к минусовому проводнику выхода блока питания (он почти в центре выделенного участка).
Правее высоковольтная и низковольтная часть разделена земляным проводником и по большому счету безопасна при наличии заземления, но вот небольшой участок оставили незащищенным.
Зато в плане увеличения сечения дорожек производитель оторвался от души, поверх напаяно несколько проводов большого сечения.
В этот раз я не перечерчивал схему блока питания, так как она практически один в один соответствует 480 Ватт варианту. Отличия только в некоторых компонентах, я их отметил цветом.
Допускаю, что есть еще мелкие отличия, потому не могу гарантировать 100% соответствие, но большую часть я все таки проверил.
Конечно же тесты, но сначала предварительная проверка.
Напряжение при первом включении было немного завышено, но диапазон перестройки оказался довольно мал, меньше чем 12 Вольт выставить не получится.
Вверх также сильно поднять не удалось, при выходном напряжении выше чем 13.5 Вольта БП начинал издавать подозрительные звуки, хотя максимум смог выдать около 16 Вольт, но я делал это кратковременно, так как не хотелось вывести БП из строя раньше времени.
Из положительных изменений отмечу очень малый дрейф выходного напряжения, через пять минут напряжение изменилось всего на 0.003 Вольта.
Как я писал выше, емкость входных конденсаторов была заявлена как 470мкФ и я жаловался что «маловато будет». Реальная емкость оказалась еще меньше, всего около 350мкФ, что для 600 Ватт ну совсем грустно.
Емкость выходных конденсаторов соответствует указанному значению и в сумме показала около 10500мкФ.
Самой большой проблемой при подготовке обзора стал тест под нагрузкой. Моя штатная электронная нагрузка имеет длительную мощность около 350 Ватт, или до 500-600 кратковременно. Но кратковременный тест меня не интересовал и надо было чем то нагрузить блок питания.
Первая мысль была сделать четыре простейших стабилизатора тока на базе мощных транзисторов КТ825 и это было бы правильным решением. И я даже нашел дома эти транзисторы (хотя мне было удобнее применить КТ827, но он был один) и четыре больших радиатора, но нужны были еще низкоомные резисторы 0.1 Ома и мощностью около 5 Ватт, а их дома не оказалось.
И тут я вспомнил, что когда лет 9 назад делали ремонт и освещение, то я разжился про запас некоторым количеством галогенок. В итоге так вышло, что за эти 9 лет галогенки перегорать отказались и запас просто лежал.
В общем взял я четыре лампы на 12 Вольт и 50 Ватт, что в сумме должно было дать недостающие 200 Ватт.
В итоге получился у меня такой «стенд», даже радиаторы пригодились, правда в несколько другом качестве, в виде опоры для лампочек, чтобы не спалили чего случайно.
Первый тест без нагрузки, во втором я подключил четыре лампы.
Сначала нагрузка в виде ламп показала около 18.2 Ампера, но повторное измерение через несколько минут выдало ровно 18 Ампер, что при напряжении в 12 Вольт дает 216 Ватт.
Примерно через 20 минут в действие вступила электронная нагрузка, при помощи которой я добавил еще почти 16.8 Ампера. итого суммарный ток нагрузки составил 34.8 Ампера. Хотя через время я проводил тесты и склонен считать, что на самом деле ток был около 34.7 Ампера.
При напряжении 11.95 Вольта это дает 414 Ватт.
Еще через 20 минут я поднял ток нагрузки до максимального для этого блока питания.
Так как напряжение немного просело, то ток через лампы упал до 17.8 Ампера, именно это я и имел в виду как коррекцию при предыдущем измерении. Если изначально было 18, при полной нагрузке 17.8, то среднее 17.9.
В общем лампы давали 17.8 и при помощи электронной нагрузки я накрутил недостающие 32.2 итого 50 Ампер. Выходное напряжение снизилось до 11.91 и суммарная мощность была 595 Ватт.
В таком режиме я прогнал тест еще около 20 минут, всего получился 1 час тестирования.
Обычно в процессе теста я измеряю температуру компонентов, но в этот раз мне пришлось отступить от своей привычки, так как открывать крышку блока питания, который мало того что включен и лежит между электронной нагрузкой и четырьмя лампами, так еще и на время измерения останется без охлаждения. Скажу честно, я не стал это делать по двум причинам:
1. Как минимум это небезопасно
2. Как максимум это не имеет смысла, так как компоненты без охлаждения начинают сразу сильно нагреваться и измерю я все что угодно, только не реальную температуру.
Да и вообще, когда рядом на столе гудит 700 Ватт обогреватель и когда постоянно ждешь сюрпризов, то экспериментировать не очень тянет 🙂
Но в итоге измерения я все таки проводил, но чуть под другому.
Сначала я «посмотрел» тепловизором температуру через щелки в корпусе.
1. При мощности нагрузки около 400 Ватт
2. При максимальной мощности.
3. Уже в конце теста я снял нагрузку, быстро открыл крышку (она была не привинчена) и сделал несколько термофото.
Сначала просто общий вид.
Ну и затем прошелся по разным компонентам. Так как БП все таки уже остывал, то и измеренные температуры снижались.
1. Сердечник трансформатора 77 градусов, обмотка 107
2. Выходной дроссель 87.
3. Здесь я пытался посмотреть выходные диодные сборки, но их температура была заметно ниже, чем у остальных компонентов.
Общее впечатление по нагреву. Воздух из БП шел ощутимо теплый, также в работе присутствовал запах перегретого лака, но запах могли еще давать лампы и электронная нагрузка.
Проявлялось все это при максимальной мощности. При 2/3 от максимума все было в принципе вполне пристойно.
В плане пульсаций можно сначала сказать, что их уровень довольно высок и достигает 250мВ, но если учесть, что ток на выходе был 50 Ампер и мощность в 600 Ватт, то на мой взгляд даже вполне пристойно, я ожидал худшего.
1. Холостой ход.
2. 1/3 мощности
3. 2/3
4. Максимальная мощность.
И последний тест, или точнее расчет, в данном случае КПД блока питания.
1. Холостой ход.
2. 1/3 мощности — выходная 216 Ватт, входная 243, КПД 88%
3. 2/3 мощности — выходная 414 Ватт, входная 473, КПД 87%
4. 100% мощности — выходная 595 Ватт, входная 709, КПД 84%.
Конечно такое измерение имеет довольно большую погрешность, но как по мне, то КПД держится на довольно приличном уровне.
На этом с осмотром и тестами все, пора вывести резюме.
На мой взгляд производитель явно завысил мощность своего изделия и корректнее было бы сказать, что это блок питания с длительной мощностью 450-480 Ватт, но способный некоторое время отдавать до 600 Ватт. Как вариант применения, нагрев чего либо, где сначала тратится большая мощность на прогрев, а потом меньшая, на поддержание температуры.
Но стоит отметить не очень высокую долговременную надежность этого блока питания и первые кандидаты на выход из строя, это выходные конденсаторы и вентилятор. Как и многие другие бюджетные блоки питания, данный экземпляр также не имеет средств для контроля перегрева и работоспособности вентилятора. Выход из строя системы охлаждения под нагрузкой более 50% чреват печальными последствиями.
Несколько удивило то, что выходной дроссель работает явно с перегрузкой по току, так как сечение проводов его обмотки явно мало для токов в 40-50 Ампер, я бы даже сказал что его рабочий ток ближе к 30 Ампер, но блок питания прошел тест и это факт.
В плане электрических характеристик блок питания показал, что способен выдавать даже заявленные 600 Ватт, не говоря о оговорке насчет 80% от максимума, указанных на этикетке, но режим работы некоторых компонентов находится на грани безопасной работы.
Если дорабатывать такой блок питания, то следует:
1. Добавить емкость входного фильтра
2. Заменить диодный мост на более мощный
3. Перемотать выходной дроссель
4. Заменить выходные конденсаторы на более качественные, возможно попутно увеличив емкость.
Почему я это все расписал. Как по мне, то при цене в 27 долларов данный БП возможно заинтересует кого-то как объект для доработки, но это лично мое мнение.
Вот теперь все, как всегда жду вопросов и комментариев, надеюсь что обзор был полезен.
Небольшой бонус
Решил я снять небольшое видео на тему конденсаторов типа Y, возможно будет полезно. постарался ответить на самые популярные вопросы.Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Источник питания 12 В, 30 А — электрические схемы
Описание
Используя один стабилизатор напряжения 7812 IC и несколько внешних транзисторов, этот источник питания может обеспечивать выходные токи нагрузки до 30 ампер. Дизайн показан ниже:
Примечания
Входной трансформатор, вероятно, будет самой дорогой частью всего проекта. В качестве альтернативы можно использовать пару автомобильных аккумуляторов на 12 В. Входное напряжение регулятора должно быть как минимум на несколько вольт выше выходного напряжения (12 В), чтобы регулятор мог поддерживать свою выходную мощность.Если используется трансформатор, то выпрямительные диоды должны быть способны пропускать очень высокий пиковый прямой ток, обычно 100 ампер или более. Микросхема 7812 пропускает только 1 ампер или меньше выходного тока, остальная часть обеспечивается внешними проходными транзисторами. Поскольку схема рассчитана на нагрузку до 30 ампер, шесть TIP2955 подключаются параллельно, чтобы удовлетворить эту потребность. Рассеивание в каждом силовом транзисторе составляет одну шестую от общей нагрузки, но все же требуется адекватный отвод тепла.Максимальный ток нагрузки приведет к максимальному рассеиванию, поэтому требуется очень большой радиатор. Рассматривая радиатор, может быть хорошей идеей поискать либо вентилятор, либо радиатор с водяным охлаждением. В случае выхода из строя силовых транзисторов, стабилизатор должен будет обеспечивать ток полной нагрузки, что приведет к катастрофическим последствиям. Предохранитель на 1 А на выходе регулятора предотвращает защиту. Нагрузка 400 МОм предназначена только для целей тестирования и не должна включаться в окончательную схему.Смоделированная производительность показана ниже:
Расчеты
Эта схема является прекрасным примером законов Кирхгофа по току и напряжению. Подводя итог, сумма токов, входящих в переход, должна равняться току, выходящему из перехода, а напряжения вокруг контура должны равняться нулю. Например, на диаграмме выше входное напряжение составляет 24 вольта. 4 Вольт падает на R7 и 20 Вольт на входе регулятора, 24-4-20 = 0. На выходе: — общий ток нагрузки 30 ампер, регулятор выдает 0.866 А и 6 транзисторов по 4,855 А каждый, 30 = 6 * 4,855 + 0,866. Каждый силовой транзистор дает нагрузке около 4,86 А. Базовый ток составляет около 138 мА на транзистор. Требуется усиление постоянного тока 35 при токе коллектора 6 А. Это вполне укладывается в рамки TIP2955. Резисторы от R1 до R6 включены для обеспечения стабильности и предотвращения перегрузки по току, поскольку производственные допуски усиления постоянного тока будут разными для каждого транзистора. Резистор R7 составляет 100 Ом и развивает 4 В при максимальной нагрузке.2) / 200 или около 160 мВт. Я рекомендую использовать резистор на 0,5 Вт для R7. Входной ток в регулятор подается через эмиттерный резистор и переходы база-эмиттер силовых транзисторов. Опять же, используя законы Кирхгофа, входной ток регулятора 871 мА выводится из базовой цепи, а 40,3 мА протекает через резистор 100 Ом. 871,18 = 40,3 + 830. 88. Ток от самого регулятора не может быть больше входного. Как видно, регулятор потребляет всего около 5 мА и должен работать в холодном состоянии.
Начальное тестирование и неисправность
Для начального теста не подключайте нагрузку. Сначала используйте вольтметр на выходных клеммах, вы должны измерить
12 Вольт или очень близко к нему. Затем подключите резистор на 100 Ом, 3 Вт или другую небольшую нагрузку. Показания вольтметра не должны измениться. Если вы не видите «12 Вольт», выключите питание и проверьте все соединения.
Я слышал от одного читателя, у которого было напряжение 35 Вольт, а не регулируемые 12 Вольт. Это было вызвано коротким замыканием силового транзистора.В случае короткого замыкания на любом из выходных транзисторов все 6 необходимо распаять.
Проверить с помощью мультиметра сопротивление и измерить сопротивление между выводами коллектора и эмиттера. Силовые транзисторы обычно выходят из строя при коротком замыкании, поэтому найти неисправный будет несложно.
Готовый блок питания от Ryan Laurencia
Я недавно получил известие от Райана Лауренсиана из Филиппин, который построил себе блок питания 12 В 30 А. Ниже приведены изображения блока питания Ryans.
Готовый блок питания Алехандро из Венесуэлы
Ниже приведены фотографии Алехандро из Каракаса, Венесуэла.Блок питания Алехандро используется для управления его усилителем.
.
12V 1A Схема источника питания SMPS на печатной плате
Каждое электронное устройство или продукт требует надежного блока питания (PSU) для работы. Почти все устройства в нашем доме, такие как телевизор, принтер, музыкальный проигрыватель и т. Д., Состоят из встроенного блока питания, который преобразует сетевое напряжение переменного тока в подходящий уровень постоянного напряжения для их работы. Наиболее часто используемым типом цепи питания является SMPS (импульсный источник питания) , вы можете легко найти этот тип цепей в своем адаптере 12 В или зарядном устройстве для мобильных устройств / ноутбуков.В этом руководстве мы изучим , как построить схему 12 В SMPS , которая преобразует мощность переменного тока в 12 В постоянного тока с максимальным номинальным током 1,25 А. Эту схему можно использовать для питания небольших нагрузок или даже приспособить к зарядному устройству для зарядки свинцово-кислотных и литиевых батарей. Если эта схема блока питания 12 В 15 Вт не соответствует вашим требованиям, вы можете проверить различные цепи питания с разными номиналами.
Цепь источника питания 12 В — Соображения по проектированию
Прежде чем приступить к проектированию любого источника питания, необходимо провести анализ требований в зависимости от среды, в которой будет использоваться наш источник питания.Различные типы источников питания работают в разных средах и с определенными границами ввода-вывода.
Входные данные
Начнем с ввода. Входное напряжение питания — это первое, что будет использоваться SMPS и будет преобразовано в полезное значение для питания нагрузки. Поскольку эта конструкция предназначена для преобразования AC-DC , на входе будет переменный ток (AC). Для Индии входной переменный ток составляет 220–230 вольт, для США он рассчитан на 110 вольт.Есть также другие страны, которые используют другие уровни напряжения. Как правило, SMPS работает с универсальным входным напряжением в диапазоне . Это означает, что входное напряжение может отличаться от 85 до 265 В переменного тока. SMPS может использоваться в любой стране и может обеспечить стабильную выходную мощность при полной нагрузке, если напряжение находится в пределах 85-265 В переменного тока. SMPS также должен нормально работать при частотах 50 Гц и 60 Гц. По этой причине мы можем использовать зарядные устройства для телефонов и ноутбуков в любой стране.
Технические характеристики выхода
На выходной стороне мало нагрузок резистивных, мало индуктивных.В зависимости от нагрузки конструкция ИИП может быть разной. Для этого SMPS нагрузка принята как резистивная нагрузка . Однако нет ничего лучше резистивной нагрузки, каждая нагрузка состоит, по крайней мере, из некоторой величины индуктивности и емкости; здесь предполагается, что индуктивность и емкость нагрузки незначительны.
Выходные характеристики ИИП сильно зависят от нагрузки, например, от того, сколько напряжения и тока потребуются нагрузке во всех рабочих условиях.Для этого проекта SMPS может обеспечить выходную мощность 15 Вт . Это 12 В и 1,25 А. Целевое значение пульсации выходного сигнала выбрано как меньше 30 мВ пик-пик при полосе пропускания 20000 Гц .
В зависимости от выходной нагрузки мы также должны выбрать между проектированием ИИП постоянного напряжения или ИИП постоянного тока . Постоянное напряжение означает, что напряжение на нагрузке будет постоянным, а ток будет изменяться в соответствии с изменениями сопротивления нагрузки.С другой стороны, режим постоянного тока позволяет току быть постоянным, но изменяет напряжение соответственно с изменениями сопротивления нагрузки. Кроме того, в SMPS могут быть доступны как CV, так и CC, но они не могут работать одновременно. Когда в SMPS существуют обе опции, должен быть диапазон, в котором SMPS изменит свою выходную операцию с CV на CC и наоборот. Обычно зарядные устройства с режимами CC и CV используются для зарядки свинцово-кислотных или литиевых батарей.
Функции защиты входа и выхода
Существуют различные схемы защиты, которые могут использоваться в SMPS для более безопасной и надежной работы.Схема защиты защищает SMPS, а также подключенную нагрузку. В зависимости от расположения схема защиты может быть подключена к входу или выходу. Наиболее распространенная защита входа — это Защита от перенапряжения и Фильтры электромагнитных помех . Защита от перенапряжения защищает ИИП от скачков напряжения на входе или перенапряжения переменного тока . Фильтр EMI защищает SMPS от генерации EMI на входной линии. В этом проекте будут доступны обе функции. Защита выхода включает защиту от короткого замыкания , защиту от перенапряжения и защиту от перенапряжения .Эта конструкция SMPS также будет включать все эти схемы защиты.
Выбор микросхемы управления питанием
Для каждой цепи SMPS требуется ИС управления питанием, также известная как ИС переключения, ИС SMPS или ИС осушителя. Давайте подведем итоги проектных соображений, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашей конструкции. Наши требования к дизайну:
- Выход 15 Вт. 12 В, 1,25 А, пульсации пик-пик менее 30 мВ при полной нагрузке.
- Универсальный входной рейтинг.
- Защита от перенапряжения на входе.
- Защита от короткого замыкания на выходе, перенапряжения и перегрузки по току.
- Работа с постоянным напряжением.
Из вышеперечисленных требований существует широкий выбор ИС, но для этого проекта мы выбрали Power integration . Power Integration — это компания, производящая полупроводники, которая предлагает широкий спектр микросхем драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из семейства крошечных коммутаторов II.
На изображении выше показана максимальная мощность 15 Вт. Однако мы сделаем ИИП в открытом корпусе и для универсального входного рейтинга. В таком сегменте TNY268PN может обеспечить выходную мощность 15 Вт. Давайте посмотрим на схему контактов.
Проектирование цепи ИИП на 12 В, 1 А
Лучший способ построить схему — использовать экспертное программное обеспечение PI Power Integration. Это отличное программное обеспечение для проектирования источников питания.Схема построена с использованием интегральной схемы питания. Процедура проектирования объясняется ниже, или вы также можете прокрутить вниз, чтобы увидеть видео, объясняющее то же самое.
Шаг -1: Выберите Tiny switch II , а также желаемый пакет. Мы выбрали пакет DIP. Выберите тип корпуса, адаптер или открытую раму. Здесь выбран Open Frame.
Затем выберите тип обратной связи. Это важно, поскольку используется топология Flyback .TL431 — отличный выбор для обратной связи. TL431 — это шунтирующий стабилизатор, обеспечивающий отличную защиту от перенапряжения и точное выходное напряжение.
Step-2: Выберите диапазон входного напряжения. Поскольку это будет универсальный входной ИИП, входное напряжение выбрано 85-265В переменного тока. Частота сети 50 Гц.
Шаг — 3:
Выберите выходное напряжение, ток и мощность.Номинал SMPS будет 12 В 1,25 А. Мощность показывает 15 Вт. Рабочий режим также выбран как CV, что означает режим работы с постоянным напряжением. Наконец, все делается в три простых шага, и схема создается.
Схема и объяснение 12 В SMPS
Схема ниже немного изменена для соответствия нашему проекту.
Прежде чем приступить к созданию прототипа, давайте исследуем принципиальную схему 12 В SMPS и его работу.Схема имеет следующие участки
- Защита от перенапряжения и отказа SMPS
- Преобразование переменного тока в постоянное
- ПИ-фильтр
- Схема драйвера или схема переключения
- Защита от пониженного напряжения.
- Цепь зажима
- Магниты и гальваническая развязка
- Фильтр электромагнитных помех
- Вторичный выпрямитель и демпферная цепь
- Секция фильтра
- Раздел обратной связи.
Защита от перенапряжения и отказа SMPS
Эта секция состоит из двух компонентов, F1 и RV1.F1 — это плавкий предохранитель с задержкой срабатывания 1 А, 250 В переменного тока, а RV1 — это 7-миллиметровый варистор на 275 В. Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель. Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.
Преобразование переменного тока в постоянное
Этот участок управляется диодным мостом. Эти четыре диода (внутри DB107) составляют полный мостовой выпрямитель. Диоды — 1N4006, но стандартный 1N4007 справится с этой задачей отлично.В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.
ПИ-фильтр
В разных штатах разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 , а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех . Этот раздел создается с использованием C1, C2 и L1. C1 и C2 — конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В.L1 — это синфазный дроссель, который принимает дифференциальный сигнал электромагнитных помех для устранения обоих.
Схема драйвера или схема переключения
Это сердце ИИП. Первичная обмотка трансформатора управляется схемой переключения TNY268PN. Частота переключения 120-132 кГц. Благодаря этой высокой частоте коммутации можно использовать трансформаторы меньшего размера. Схема переключения состоит из двух компонентов: U1 и C3. U1 — основной драйвер IC TNY268PN.C3 — это байпасный конденсатор , который необходим для работы нашей микросхемы драйвера.
Защита от пониженного напряжения
Защита от блокировки при пониженном напряжении обеспечивается резисторами R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет линейное напряжение.
Зажимная цепь
D1 и D2 — цепь зажима. D1 — это TVS-диод , а D2 — — сверхбыстрый восстанавливающийся диод .Трансформатор действует через большую индуктивность на интегральную схему драйвера питания TNY268PN. Следовательно, во время выключения трансформатор создает скачков напряжения из-за индуктивности рассеяния трансформатора . Эти высокочастотные всплески напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS.
Магнит и гальваническая развязка
Трансформатор представляет собой ферромагнитный трансформатор, который не только преобразует высокое напряжение переменного тока в низкое, но также обеспечивает гальваническую развязку.
Фильтр электромагнитных помех
Фильтрация электромагнитных помех осуществляется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI.
Вторичный выпрямитель и демпферная цепь
Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью выпрямительного диода Шоттки D6. Демпферная цепь на D6 обеспечивает подавление переходных процессов напряжения во время операций переключения.Демпферная цепь состоит из одного резистора и одного конденсатора, R3 и C5.
Секция фильтра
Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.
Отдел обратной связи
Выходное напряжение измеряется U3 TL431 и R6 и R7. После измерения линии U2 оптопара управляется и гальванически изолирует часть измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет внутри транзистор и светодиод. Управляя светодиодом, можно управлять транзистором. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, что обеспечивает гальваническую развязку цепи обратной связи.
Теперь, когда светодиод напрямую управляет транзистором, обеспечивая достаточное смещение через светодиод оптопары, можно управлять транзистором оптопары , а точнее схемой драйвера. Эта система управления используется TL431.По мере того как параллельный стабилизатор имеет резистор делитель через ее опорный штифт, он может контролировать оптрон светодиод, который подключен через него. Контактная обратная связь имеет опорное напряжение 2.5V . Следовательно, TL431 может быть активен только при достаточном напряжении на делителе. В нашем случае делитель напряжения установлен на значение 12В. Следовательно, когда выход достигает 12 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно управляет TNY268PN.Если напряжение на выходе недостаточное, цикл переключения немедленно приостанавливается.
Сначала TNY268PN активирует первый цикл переключения, а затем определяет свой вывод EN. Если все в порядке, он продолжит переключение, если нет, он будет пытаться еще раз через некоторое время. Этот цикл продолжается до тех пор, пока все не нормализуется, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему это называется обратноходовой топологией, поскольку выходное напряжение возвращается к драйверу для определения связанных операций.Кроме того, цикл попыток называется режимом сбоя работы в случае отказа.
D3 представляет собой диод с барьером Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. Диод Шоттки 3A 60V выбран для надежной работы. R4 и R5 выбираются и рассчитываются PI Expert. Он создает делитель напряжения и передает ток на светодиод оптопары от TL431.
R6 и R7 — это простой делитель напряжения, рассчитываемый по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение 2.5V и Vout является 12V. Выбрав значение R6 23,7k, R7 стал примерно 9,09k.
Изготовление печатной платы для цепи SMPS 12 В, 1 А
Теперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего SMPS. Поскольку это схема SMPS, рекомендуется использовать печатную плату, так как она может решить проблему шума и изоляции. Макет печатной платы для указанной выше схемы также доступен для загрузки как Gerber по ссылке
.Теперь, когда наш дизайн готов, пришло время изготовить их с помощью файла Gerber.Сделать печатную плату довольно просто, просто следуйте инструкциям ниже
Шаг 1: Зайдите на сайт www.pcbgogo.com, зарегистрируйтесь, если это ваш первый раз. Затем на вкладке прототипа печатной платы введите размеры вашей печатной платы, количество слоев и количество требуемых печатных плат. Предполагая, что размер печатной платы составляет 80 см × 80 см, вы можете установить размеры, как показано ниже.
Шаг 2: Продолжите, нажав кнопку Quote Now .Вы попадете на страницу, где при необходимости установите несколько дополнительных параметров, например, используемый материал, расстояние между дорожками и т. Д. Но в большинстве случаев значения по умолчанию будут работать нормально. Единственное, что мы должны здесь учитывать, — это цена и время. Как видите, время сборки составляет всего 2-3 дня, а для нашего PSB это всего лишь 5 долларов. Затем вы можете выбрать предпочтительный способ доставки в зависимости от ваших требований.
Шаг 3: Последний шаг — загрузить файл Gerber и продолжить оплату.Чтобы убедиться, что процесс проходит гладко, PCBGOGO проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату. Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена вам в установленном порядке.
Сборка печатной платы
После того, как плата была заказана, она пришла ко мне через несколько дней, правда, курьером в аккуратно маркированной, хорошо упакованной коробке, и, как всегда, качество печатной платы было потрясающим. Печатная плата, которую я получил, показана ниже
.
Включил паяльник и начал сборку платы.Поскольку посадочные места, контактные площадки, переходные отверстия и шелкография идеально подходят по форме и размеру, у меня не было проблем со сборкой платы. Моя печатная плата, прикрепленная к тискам для пайки, показана ниже.
Закупка комплектующих
Все компоненты для этой схемы 12 В 15 Вт SMPS приобретаются в соответствии со схемой. Подробную спецификацию можно найти в приведенном ниже файле Excel для загрузки.
Почти все компоненты доступны для использования в готовом виде.Вы можете столкнуться с проблемами при поиске подходящего трансформатора для этого проекта. Обычно обратный трансформатор для коммутации цепей SMPS не доступен напрямую от поставщиков, в большинстве случаев вам придется наматывать собственный трансформатор, если вам нужны эффективные результаты. Однако также можно использовать аналогичный обратный трансформатор, и ваша схема все равно будет работать. Идеальная спецификация для нашего трансформатора будет обеспечена программным обеспечением PI Expert, которое мы использовали ранее.
Механическая и электрическая схема трансформатора, полученная от PI Expert, показана ниже.
Если вы не можете найти подходящего поставщика, вы можете восстановить трансформатор от адаптера 12 В или других цепей SMPS. В качестве альтернативы вы также можете купить трансформатор самостоятельно, используя следующие материалы и инструкции по намотке.
Как только все компоненты будут закуплены, их сборка должна быть легкой. Вы можете использовать файл Gerber и спецификацию для справки и собрать плату PCB.После этого моя передняя и задняя сторона печатной платы выглядят примерно так, как показано ниже
.
Тестирование нашей цепи ИИП мощностью 15 Вт
Теперь, когда наша трасса готова, пора ее испытать. Мы подключим плату к нашей сети переменного тока через VARIAC, загрузим на выходную сторону нагрузочную машину и измерим пульсирующее напряжение, чтобы проверить работоспособность нашей схемы. Полное видео процедуры тестирования также можно найти в конце этой страницы.На изображении ниже показана схема, испытанная с входным напряжением переменного тока 230 В переменного тока, для которого мы получаем выход 12,08 В
.
Измерение пульсаций напряжения с помощью осциллографа
Чтобы измерить пульсирующее напряжение осциллографом, измените вход осциллографа на переменный ток с коэффициентом усиления 1x. Затем подключите электролитический конденсатор с низкой стоимостью и керамический конденсатор с низкой стоимостью для снижения шума из-за проводки. Вы можете обратиться к странице 40 этого документа RDR-295 от Power Integration для получения дополнительной информации об этой процедуре.
Приведенный ниже снимок был сделан при отсутствии нагрузки при напряжении 85 и 230 В переменного тока. Шкала установлена на 10 мВ на деление, и, как вы можете видеть, пульсация составляет почти 10 мВ пик-пик.
При входном напряжении 90 В переменного тока и полной нагрузке пульсации можно увидеть на уровне около 20 мВ пик-пик
При 230 В переменного тока и при полной нагрузке пульсации напряжения измеряются на уровне около 30 мВ от пика до пика, что является наихудшим сценарием
Вот и все; вот как вы можете разработать свою собственную схему 12 В SMPS .После того, как вы поймете принцип работы, вы можете изменить принципиальную схему 12 В SMPS в соответствии с вашими требованиями к напряжению и питанию. Надеюсь, вы поняли руководство и получили удовольствие от изучения чего-то полезного. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом для технических обсуждений. Увидимся снова с еще одним интересным дизайном SMPS, а пока подпишусь….
.Схема цепи двойного источника питания+ 12В и -12В
Целью этого проекта является преобразование источника переменного тока 220В в источник питания +12В и -12В постоянного тока , поэтому он назван Dual Power Supply , как мы получаем положительный и отрицательный источник питания 12 В. одновременно.
Этого можно достичь за три простых шага:
- Во-первых, 220 В переменного тока преобразуется в 12 В переменного тока с помощью простого понижающего трансформатора (220 В / 12 В).
- Во-вторых, выход этого трансформатора передается на схему выпрямителя, которая преобразует источник переменного тока в источник постоянного тока.На выходе схемы выпрямителя, которая является постоянным током, наблюдаются колебания выходного напряжения. Для фильтрации этих пульсаций используется конденсатор на 2200 мкФ, 25 В.
- Наконец, выходной сигнал конденсатора, являющийся чистым постоянным током, подается на регуляторы напряжения IC 7812 и IC7912, которые будут регулировать выходное напряжение на уровне 12 В и -12 В постоянного тока, несмотря на изменение входного напряжения.
Требуемые компоненты:
- Трансформатор с центральным ответвлением (220В / 12В)
- Силовые диоды (6А) — 4 шт.
- Конденсатор (2200 мкФ, 25 В) — 2 шт.
- Регулятор напряжения (IC 7812 и 7912)
- Тумблер
- Нагрузка постоянного тока (двигатель постоянного тока)
Принципиальная схема:
Создание двойной цепи питания:
Шаг-I: преобразование 220 В переменного тока в 12 В переменного тока с помощью понижающего трансформатора
Первичные выводы трансформатора с центральным ответвлением подключены к бытовой электросети (220 В, переменного тока, , 50 Гц), а выход берется с вторичных выводов трансформатора.Центральное ответвление описывает выходное напряжение трансформатора с центральным ответвлением. Например: трансформатор с центральным ответвлением 24 В будет измерять 24 В переменного тока на двух внешних отводах (обмотка в целом) и 12 В переменного тока от каждого внешнего отвода до центрального отвода (половина обмотки). Эти два источника питания 12 В переменного тока и сдвинуты по фазе на 180 градусов друг к другу, что упрощает получение из них положительного и отрицательного 12-вольтных источников питания постоянного тока и . Преимущество использования трансформатора с центральным ответвлением состоит в том, что мы можем получить питание как + 12В, так и -12В постоянного тока , используя только один трансформатор.
ВХОД : 220 В переменного тока , 50 Гц
ВЫХОД : Между внешней клеммой и средней клеммой: 12 В переменного тока, 50 Гц
Между двумя внешними клеммами: 24 В перем. 50 Гц
Шаг — II: Преобразование 12 В переменного тока в 12 В постоянного тока с использованием мостового выпрямителя
Две внешние клеммы трансформатора с центральным ответвлением подключены к схеме мостового выпрямителя.Схема выпрямителя представляет собой преобразователь, который преобразует источник ac в источник dc . Обычно он состоит из диодных переключателей, как показано на принципиальной схеме.
Чтобы преобразовать ac в dc , мы можем сделать два типа выпрямителей: один — полумостовой выпрямитель, а второй — полный мостовой выпрямитель. В полумостовом выпрямителе выходное напряжение составляет половину входного напряжения. Например, если входное напряжение составляет 24 В, то выходное напряжение постоянного тока и составляет 12 В, а количество диодов, используемых в этом типе выпрямителя, равно 2.В полномостовом выпрямителе количество диодов равно 4, и он подключен, как показано на рисунке, а выходное напряжение совпадает с входным.
Здесь используется полный мостовой выпрямитель . Итак, количество диодов равно 4, входное напряжение (24 В, переменного тока, ) и выходное напряжение также равно 24 В, постоянного тока, , с пульсациями в нем.
Для выходного напряжения полного мостового выпрямителя,
V DC = 2Vm / Π, где Vm = пиковое значение напряжения питания переменного тока, а Π Pi
Форма сигнала входного и выходного напряжения полного мостового выпрямителя показана ниже.
В этой схеме двойного источника питания диодный мостовой выпрямитель состоит из четырех силовых диодов на 6 А. Номинал этого диода составляет 6 А и 400 В. Нет необходимости использовать такое количество диодов с высокой токовой нагрузкой, но из соображений безопасности и гибкости используется диод с высокой токовой нагрузкой. Как правило, из-за скачков тока возможно повреждение диода, если мы используем диод с малым током.
Выход выпрямителя не чистый dc , но на нем есть пульсации.
ВХОД: 12 В переменного тока
ВЫХОД: 24 В пик (с волнами)
Шаг-III: Отфильтруйте рябь на выходе:
Теперь выход 24V dc , который содержит пульсации от пика до пика, не может быть подключен напрямую к нагрузке. Так, чтобы убрать рябь с питания , используются конденсаторы фильтра. Теперь используются два фильтрующих конденсатора номиналом 2200 мкФ и 25 В, как показано на принципиальной схеме.Оба конденсатора подключаются таким образом, что общий вывод конденсаторов подключается непосредственно к центральному выводу центрального трансформатора с ответвлениями. Теперь этот конденсатор будет заряжаться до 12 В постоянного тока , поскольку оба подключены к общей клемме трансформатора. Кроме того, конденсаторы удаляют пульсации от источника постоянного тока и дают чистый выходной сигнал постоянного тока . Но выход обоих конденсаторов не регулируется. Итак, чтобы сделать питание регулируемым, выходные конденсаторы передаются на микросхемы регулятора напряжения, что объясняется в следующем шаге.
ВХОД: 12 В постоянного тока (с волнами, не чисто)
ВЫХОД: Напряжение на конденсаторе C 1 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)
Напряжение на конденсаторе C 2 = 12 В постоянного тока (чистый постоянного тока, , но не регулируемый)
Шаг IV: Отрегулируйте источник питания постоянного тока 12 В
Следующим важным моментом является регулировка выходного напряжения конденсаторов, которое в противном случае будет изменяться в соответствии с изменением входного напряжения.Для этого в зависимости от требований к выходному напряжению используются микросхемы стабилизатора . Если нам нужно выходное напряжение +12 В, то используется IC 7812. Если требуемое выходное напряжение + 5В, то используется 7805 IC. Последние две цифры IC обозначают номинальное выходное напряжение. Третья последняя цифра показывает положительное или отрицательное напряжение. Для положительного напряжения (8) и для отрицательного напряжения (9) используется число. Таким образом, IC7812 используется для регулирования напряжения +12 В, а IC7912 — для регулирования напряжения -12 В.
Теперь соединение двух микросхем выполняется, как показано на принципиальной схеме.Клемма заземления обоих микросхем соединены с центральным отводом выводом трансформатора для создания ссылки. Теперь выходные напряжения измеряются между выходной клеммой и клеммой заземления для обеих ИС.
ВХОД: 12 В постоянного тока (чистый постоянного тока , но не регулируемый)
ВЫХОД: + 12V dc между выходной клеммой 7812 и землей (чистый dc и регулируемый)
-12V dc между выходной клеммой 7912 и землей (чистый dc и регулируемый)
Применения двойной цепи питания:
- Для операционных усилителей требуются два источника питания (обычно один положительный и один отрицательный), потому что операционный усилитель должен работать при обеих полярностях входящего сигнала.Без отрицательного источника операционный усилитель не сработает во время отрицательного цикла сигнала. Таким образом, выход этой сигнальной части будет «ограничен», то есть сам останется на земле; что явно не рекомендуется.
- Если в качестве нагрузки используются двигатели постоянного тока, то при +12 В он будет вращаться по часовой стрелке, а при -12В — в противоположном направлении. Например, двигатели, которые используются в игрушках (автомобиль, автобус и т. Д.), Будут двигаться вперед при напряжении +12 В и двигаться назад при напряжении -12 В.Мы показали вращение двигателя в обоих направлениях, используя эту схему двойного источника питания, в видео ниже .
Проверьте нашу другую цепь питания :
.Высокое качество 12 вольт 30 ампер переменного тока в постоянный ток smps / 350 Вт светодиодный трансформаторный источник питания 12 в тонкий контур smps | |
Описание продукта
Характеристики
Диапазон входного переменного тока выбирается переключателем
Защита: от короткого замыкания / перегрузки / перенапряжения / перегрева
Принудительное воздушное охлаждение с помощью встроенного вентилятора постоянного тока
Встроенный вентилятор охлаждения Управление ВКЛ / ВЫКЛ
Испытание на выгорание при 100% полной нагрузке
Фиксированная частота переключения при 25 кГц
Модель | С-350-5 | С-350-12 | С-350-24 | С-350-48 | |
Вывод | Напряжение постоянного тока | 5В | 12 В | 24В | 48В |
Номинальный ток | 50А | 29А | 14.6А | 7.3A | |
Текущий диапазон | 0 ~ 50 А | 0 ~ 12 А | 0 ~ 14,6 А | 0 ~ 7,3 А | |
Номинальная мощность | 250 Вт | 348 Вт | 350,4 Вт | 350,4 Вт | |
Пульсация и шум (макс.) | 150 мВпик-пик | 150 мВпик-пик | 150 мВпик-пик | 240 мВпик-пик | |
Voltage Adj.Ассортимент | 4,5 ~ 5,6 В | 10 ~ 13,2 В | 20 ~ 26,4 В | 41 ~ 56 В | |
Допуск напряжения | ± 2,0% | ± 1,0% | ± 1,0% | ± 1,0% | |
Регулирование линии | ± 0,5% | ± 0,5% | ± 0,5% | ± 0.5% | |
Регулирование нагрузки | ± 1,0% | ± 0,5% | ± 0,5% | ± 0,5% | |
Настройка, подъем, время удержания | 200 мс, 50 мс, 20 мс при полной нагрузке | ||||
Ввод | Диапазон напряжения | 90 ~ 132 В переменного тока / 180 ~ 264 В переменного тока с помощью переключателя 254 ~ 370 В постоянного тока | |||
Частотный диапазон | 47 ~ 63 Гц | ||||
КПД (Тип.) | 78% | 84% | 87% | 87% | |
Переменный ток | 6,5 А / 115 В переменного тока 4 А / 230 В переменного тока | ||||
Пусковой ток (макс.) | 50A / 115VAC 50A / 230VAC | ||||
Ток утечки | <3,5 мА / 240 В переменного тока | ||||
Защита | Перегрузка | 105 ~ 135% номинальной выходной мощности | |||
Тип защиты: режим икоты, автоматически восстанавливается после устранения неисправности. | |||||
Перенапряжение | 5.75 ~ 6,75 В | 13,8 В ~ 16,2 В | 27,6 В ~ 32,4 В | 57,6 ~ 67,2 В | |
Тип защиты: режим икоты, автоматически восстанавливается после устранения неисправности. | |||||
Функция | Управление включением / выключением вентилятора | RTh4 55 ° C ВЕНТИЛЯТОР ВКЛ., 45 ° C ВЕНТИЛЯТОР ВЫКЛ., Отключение выхода 80 ° C (5 ~ 7,5 В) | |||
RTh4 65 ° C ВЕНТИЛЯТОР ВКЛ., 55 ° C ВЕНТИЛЯТОР ВЫКЛ., Отключение выхода 80 ° C (12 ~ 15 В) | |||||
RTh4 70 ° C ВЕНТИЛЯТОР ВКЛ., 60 ° C ВЕНТИЛЯТОР ВЫКЛ., Отключение выхода 85 ° C (24 ~ 48 В) | |||||
Окружающая среда | Рабочая температура | -10 ~ + 50 ° C (см. Кривую снижения выходной нагрузки) | |||
Рабочая влажность | 20 ~ 90% относительной влажности без конденсации | ||||
Температура хранения.И влажность | -20 ~ + 85 ° C, 10 ~ 95% относительной влажности | ||||
Темп. коэффициент | ± 0,03% / ° C (0 ~ 50 ° C) | ||||
Вибрация | 10 ~ 500 Гц, 2G 10 мин / 1 цикл, 60 мин каждая по осям X, Y, Z | ||||
Другие | MTBF | 234,3 тыс. Часов мин. MIL-HDBK-217F (25 ° C) | |||
Размер | 215 * 115 * 50 мм (Д * Ш * В) | ||||
Упаковка | 0.95 кг; 20шт / 19кг / 0.92CUFT |
.