Site Loader

Содержание

NPN, PNP без выпаивания с платы

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра. 

Содержание статьи

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

    Проверка биполярного PNP транзистора мультиметром

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

 

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Как проверить транзистор мультиметром — технология

Работоспособность радиотехнических схем во многом зависит от правильно произведенной сборки, а также проверочных действий над ее элементами. У многих радиолюбителей самостоятельно собирать схемы часто возникает вопрос: как проверить транзистор мультиметром, особенно когда он уже установлен и идет настройка работоспособности собранного устройства? Для того чтобы настраивать радиотехнические схемы, надо понимать, что такое транзистор и как он работает. Рассмотрим вопросы тестирования схемы и проверки транзисторов.

Типы транзисторов

Проверка транзистора для специалиста начинается с определения элемента по его типу, это действие выполняется в случае ремонтных работ, а также в процессе проверки приобретенных схем на работоспособность.

Полупроводниковый триод, который сделан из материала с полупроводимыми свойствами, имеющий три вывода, когда он может от незначительного входного сигнала управлять в схеме большим током на выходе цепи, называется ТРАНЗИСТОРОМ. Его применяют в устройствах генерации энергии, в коммутирующих схемах, в усилительных приборах для усиления электрических сигналов, а также их преобразования.

В радиотехнике различают два типа часто встречающихся транзисторов — полевые и биполярные радиотехнические элементы.

Основные виды:

Основные виды транзисторов

Биполярные транзисторы характеризуются созданием величины электротока на выходе электронами и дырками, иными словами, обоими носителями знаков. Полевые варианты используют для формирования тока на выходе устройства только один носитель. С помощью прозвонки на мультиметре можно проверить работоспособность биполярного элемента, который имеет три вывода и два p-n перехода. Работа этого элемента в схеме предусматривает применение зарядов электронов и дырок, через управляющий ток происходит управление протекающим через транзистор током. Биполярный транзистор имеет полупроводниковые слои N-P-N и P-N-P и два p-n перехода, соединяются слои при помощи контактов: средний слой — это база, два крайних слоя — это эмиттер и коллектор. В радиотехнике вывод со стрелкой в элементе на схеме обозначает эмиттер и направление протекающего тока.

Устройство биполярного транзистора

Разные по типу транзисторы имеют разные функции носителей зарядов, чаще встречаются N-P-N типы, которые имеют лучшие характеристики и параметры. Из-за подвижности электроны играют в элементах «первую роль», улучшается работа устройства и с увеличением площади коллекторного перехода.

Как проверить транзистор мультиметром

Специалисты предлагают пошаговые действия, как проверить работоспособность радиотехнического элемента:

  • определяем по стрелке эмиттера структуру полупроводникового прибора;
  • если стрелка показывает в сторону базы, переход — P-N-P;
  • когда стрелка направлена от базы прибора — N-P-N проводимость.

Различные типы по проводимости:

Типы транзисторов по проводимости

После определения проводимости элемента схемы выполняем последовательно следующие действия:

  • измеряем наличие обратного сопротивления — щуп мультиметра (+) прикладываем к контакту базы;
  • проверяем переход на эмиттере — щуп прибора (-) прикладываем к контакту эмиттера.

Результатом этих манипуляций будет значение = 1, когда элемент работоспособный, затем проверяем прямое сопротивление:

  • щуп мультиметра (-) переносим от эмиттера на базу;
  • положительный щуп (+) по очереди прикладываем к коллектору и эмиттеру.

В рабочем транзисторе мультиметр при этих манипуляциях должен показывать сопротивление от 500 до 1000 Ом, что говорит о целостности компонента.

Проверка мультиметром транзистора:

Проверка мультиметром транзистора

Когда возникает вопрос, как мультиметром проверить транзистор, специалисты предлагают радиолюбителям определять базу, так как часто именно с ней происходят трудности в определении. Для этого необходимо выполнить следующие действия:

  • черный (-) щуп подключаем к первому контакту, а плюсовой — ко второму;
  • затем измеряем — черный на первом контакте (+) на третий контакт;
  • когда напряжение на дисплее падает, это означает, что определена пара «эмиттер – база» или «коллектор – база»;
  • следующим шагом определяем вторую пару, а общий контакт и есть база.

Как можно убедиться в работоспособности транзистора в схеме?

Каждый раз проверять работу элементов, применяя выпаивание их из схемы, сложно, в некоторых случаях это трудно сделать, по этой причине специалисты рекомендуют использовать пробник, который поможет проверить исправность транзистора.

Схема пробника (R1=20 кОм, C1= 20 мкФ, Д2-Д7 –ж):

Схема пробника (R1=20 кОм, C1= 20 мкФ, Д2-Д7 –ж)

Данный прибор является блокинг-генератором, проверка npn транзистора — это выполнение им задания активного устройства, индикаторы в сложной схеме показывают, пробит полупроводниковый прибор или нет. Есть много решений по изготовлению пробников, их варианты хорошо представлены в сети. Чтобы прозвонить триод, пошагово надо произвести следующие действия:

  1. Проверяем работу пробника на исправном транзисторе, должна быть генерация, затем продолжаем тестировать пробник. Если генерации нет, надо поменять выводы обмоток местами.
  2. Обращаем внимание на Л1, лампу, работающую на размыкание щупов, она должна гореть, если лампа не реагирует, пробуем поменять местами выводы на обмотках трансформатора.
  3. Когда пробник проверен, начинаем работу со схемой — проверяем pnp транзистор в схеме, не выпаивая на плате, подключаем к выводам пробник, а переключатель переходов устанавливаем в один из режимов — P-N-P или N-P-N, включаем питание.

Когда Л1 горит, это означает, что элемент работоспособный, если загорается Л2, то это свидетельство о какой-то неисправности, возможно, пробит один из переходов. Если не горит ни Л1, ни Л2, это означает, что полупроводниковый прибор не работает.

Когда нет возможности проверить транзистор мультиметром, не стоит отчаиваться, есть пробники, не требующие предварительной наладки, у них более простая схема — это обыкновенная батарейка и лампочка, можно использовать светодиод. Когда попеременным касанием контактов транзистора щупами простого устройства определяется пара, в которой загорается светодиод, а в другом варианте нет — элемент радиотехники (транзистор) рабочий. Этот способ прозванивать схему рекомендуется на платах, где нет силовой величины тока. Можно выполнить проверку тестером.

По какой причине не работает транзистор

Наиболее вероятные причины, по мнению специалистов, выхода из строя триода в схеме следующие:

  • когда пропадает (обрывается) один из переходов;
  • пробой перехода;
  • пробой на одном из участков эмиттера или коллектора;
  • потеря мощности полупроводниковым прибором в работе;
  • визуальные повреждения выводов транзистора.

Признаки, по которым можно определить визуально поломку триода в схеме: потемнение или изменение первоначального цвета полупроводникового прибора, изменение его формы «выпуклость», наличие черного пятна.

Каким образом проверяется составной транзистор

Устройством Дарлингтона называется составной транзистор, который может в своей схеме объединять несколько биполярных полупроводниковых приборов, что позволяет в схеме решать такие задачи, как двукратное или большее увеличение по току. Обычно составные транзисторы применяются в схемах, в которых протекает большой ток: стабилизаторы, мощностные усилители. В этих устройствах нужен высокий уровень входного импеданса, иными словами, комплексного сопротивления в полном объеме. Проверить составной транзистор можно таким же образом, как и N-P-N элемент — прибором мультиметр, как обычный биполярный прибор.

Вывод

Прежде чем разбираться в вопросе, как проверить исправность работы триода, надо, по мнению специалистов, понимать, как он устроен и как должен работать. Следующим шагом рекомендуется ответственно подойти к выбору методики проверки работоспособности транзистора мультиметром. Кроме определения неисправного элемента в схеме надо понимать причину появления этой неисправности, мало заменить транзистор, надо искоренить причину, которая привела его в неработающее состояние.

Похожие статьи:

P channel mosfet схема включения. Как проверить транзистор мультиметром, не выпаивая их схемы

Инструкция

Проверить полевой транзистор, когда он впаян в электронную схему не получится, поэтому перед проверкой выпаяйте его. Осмотрите корпус. Если на корпусе есть дырка от расплавления кристалла, то проверять транзистор нет смысла. Если же корпус целый, то можно приступать к проверке.

Подавляющее большинство мощных полевых транзисторов имеют структуру MOS-FET и n-канал с изолированным затвором. Реже встречаются с p-каналом, в основном в оконечных каскадах звуковых усилителей. Разные структуры полевых транзисторов требуют разных способов их проверки.

Выпаяв транзистор, дайте ему остыть.

Положите транзистор на сухой лист бумаги. Вставьте провода омметра красный в плюсовой разъем, а черный в минусовой. Установите предел измерений на 1кОм. Сопротивление канала открытого транзистора зависит от приложенного напряжения к затвору относительно истока, поэтому в процессе работы с транзистором, вы можете установить более удобный для вас предел измерения. Подключение электродов внутри корпуса показано на фото.

Коснитесь черным щупом электрода «исток» транзистора, а красным прикоснитесь к электроду «сток». Если прибор покажет короткое замыкание, уберите щупы и соедините все три электрода плоской отверткой. Цель – разрядить емкостный переход затвора, возможно, он был заряжен. После этого повторите измерение сопротивления канала. Если прибор по-прежнему показывает короткое замыкание, значит, транзистор неисправен и подлежит замене.

Если прибор показал сопротивление близкое к бесконечности, то проверьте переход затвора. Она проверяется аналогично переходу канала. Коснитесь любым щупом электрода «исток» транзистора, а другим прикоснитесь к электроду «затвор». Сопротивление должно быть бесконечно большим. Изолированный затвор электрически не связан с каналом транзистора и любое обнаруженное сопротивление в этой цепи говорит о неисправности транзистора.

Методика проверки полностью исправного транзистора выглядит так: Прикоснитесь черным щупом омметра к электроду «исток» транзистора, коснитесь красным щупом электрода «затвор». Сопротивление должно быть бесконечно большим, затем, не замыкая «затвор» на другие электроды, коснитесь красным щупом электрода «сток». Прибор покажет маленькое сопротивление на этом участке. Величина этого сопротивления зависит от напряжения между щупами омметра. Теперь коснитесь красным щупом электрода «исток», повторите вышеописанную процедуру. Сопротивление канала будет очень большое, близкое к бесконечности. Способ проверки MOS-FET транзистора с p-каналом отличается тем, что при измерениях надо поменять между собой красный и черный щупы омметра.

Отказ системы, в которой используется одновременно множество электромагнитных реле , может быть вызван неисправностью всего одного из них. Не допустить такой ситуации можно лишь путем их регулярной проверки.

Инструкция

Независимо от способа проверки реле , на время его испытания обязательно подключите параллельно его обмотке диод типа 1N4007 в обратной полярности. Такой же диод желательно установить и в схему, где оно работает постоянно, если только по алгоритму ее работы на обмотку не подается по очереди напряжение различной полярности. Извлечение реле и установку его в устройство производите тогда, когда последнее обесточено.

Если необходимо провести проверку реле в статическом режиме, просто подавайте на его обмотку напряжение, равное минимальному напряжению срабатывания. Когда оно подано, должны гарантированно размыкаться все нормально замкнутые контакты и замыкаться все нормально разомкнутые. При снятия напряжения с обмотки ситуация должны меняться на противоположную в отношении всех контактных групп. Для проверки состояния контактов используйте обычный омметр или даже пробник с батарейкой и лампочкой.

Проверку реле в динамическом режиме осуществляйте при помощи обычного мультивибратора на двух транзисторах. Подключите его в качестве нагрузки одного из транзисторов. Меняя номиналы частотозадающих элементов, сделайте частоту срабатывания реле близкой к предельной для него (она указана в документации). Чтобы проверить ту или иную контактную группу, подайте на нее напряжение через лампочку или мощный резистор таким образом, чтобы ток через нее не превышал предельный. Параллельно группе подключите осциллограф. Убедитесь по изображению на его экране, что в срабатывании контактов отсутствуют перебои. Проверьте таким образом поочередно все группы. Не держите реле в таком режиме слишком долго, поскольку при быстром срабатывании оно изнашивается.

В случае выявления неисправности реле дальнейшие действия осуществляйте в зависимости от его типа. Если оно допускает регулировку контактов, осуществите таковую, если же нет, замените реле целиком. В случае, если неправильно функционирует только одна контактная группа, просто задействуйте вместо нее другую либо переставьте реле в такой узел, где она не задействована.

Видео по теме

Некоторые модели тестеров оснащены встроенными измерителями коэффициента усиления маломощных транзисторов . Если же вы таким прибором не обладаете, то исправность транзисторов можно проверить обычным тестером в режиме омметра, либо же при помощи цифрового тестера в режиме проверки диодов.


Инструкция

Для проверки биполярных транзисторов присоедините один щуп мультиметра подключите к базе транзистора, второй щуп подносите поочередно к эмиттеру и коллектору, потом поменяйте щупы местами повторите те же действия. Обратите внимание, что внутри электродов многих цифровых либо же мощных транзисторов могут располагаться защитные диоды между коллектором и эмиттером и встроенные резисторы между базой и эмиттером или в цепи базы, если вы этого не знаете, то по ошибке можете посчитать этот элемент неисправным.

При проверке полевых транзисторов учитывайте тот факт, что они бывают самых разнообразных видов. К примеру, проверка транзисторов , имеющих затвор на основе запорного слоя p-n-перехода, осуществляется так. Возьмите обычный стрелочный омметр или цифровой (второй более удобный).

Измерьте сопротивление между стоком и истоком, оно должно иметь небольшую величину и быть приблизительно равным в обоих направлениях. Теперь измерьте прямое и обратное сопротивление перехода, для этого подключите щупы к затвору и стоку (либо истоку). Если транзистор исправен, сопротивление будет разным в обоих направлениях.

Когда проверяете сопротивление между стоком и истоком, снимите заряд с затвора, для этого в течение пар секунд замкните его с истоком, если этого не сделать – вы получите неповторяющийся результат. Большинство маломощных полевых транзисторов крайне чувствительно к статике. Потому перед тем, как взять транзистор в руки, убедитесь, что на вашем теле не осталось зарядов. Чтобы освободиться от них, коснитесь рукой любого заземленного прибора (подойдет батарея отопления). Мощные полевые транзисторы чаще всего оснащены защитой от статики, но даже несмотря на это защита при работе с ними также не повредит.

Красивое и романтичное название полевого цветка иван-да-марья связано с древними славянскими легендами о запретной и нерушимой любви. Этот цветок собирали в числе прочих в купальскую ночь и использовали для различных обрядов.

Какой полевой цветок называют Иван-да-Марья

На самом деле этим именем называют несколько совершенно различных растений, относящихся к разным семействам. Поэтому довольно сложно сказать точно, какой именно цветок звали так наши предки. Во всяком случае, известно, что это название носит двухцветный цветок, обычно желтый с фиолетовым.

Чаще всего иваном-да-марьей называют растение, известное в ботанике как марьянник дубравный – однолетнее дикорастущее растение, отличающееся ярко-желтыми цветками с фиолетовыми прицветниками. Другие названия этого растения – иванова трава, брат с сестрой.

Иногда иваном-да-марьей зовут также фиалку трехцветную (анютины глазки) или луговой шалфей, реже – барвинок малый.

Легенды об Иване-да-Марье

Наиболее распространенная версия легенды, объясняющей название цветка, связана с именем Ивана Купалы.

Родились когда-то в одной семье близнецы – мальчик и девочка, Купала и Кострома. Когда они были еще маленькими детьми, Купалу унесла в далекие края птица Сирин. Спустя много лет молодой человек плыл по реке на лодке, странствуя в незнакомых землях. Тем часом мимо его лодки проплывал девичий венок. Купала подобрал его, а сойдя на берег, встретил и его хозяйку – красавицу Кострому. Молодые люди всем сердцем полюбили друг друга. Они поженились по славянскому обычаю. И лишь потом, придя в родную деревню, узнали о том, что приходятся друг другу родными братом и сестрой.

Согласно одной из версий легенды, боги покарали Кострому и Купалу за их запретную любовь, обратив их в цветок. По другой версии, несчастные влюбленные сами попросили об этом богов, чтобы никогда не разлучаться.

Еще один вариант предания рассказывает о том, что Кострома, не вынеся позора, пошла топиться в реке и превратилась в русалку, мару.

Самая жестокая легенда повествует о сестре, которая попыталась соблазнить своего брата, за что и была им убита. Перед смертью же она попросила посадить этот цветок на ее могиле.

Более «мягкая» история – о брате и сестре, которые жили на берегу реки. Однажды сестру заманили русалки и превратили в мару, жену водяного. Тогда ее брат собрал полынь-траву и с ее помощью одолел водяного.

Символика растения

Иван-да-марья – один из главных символов праздника Ивана Купалы, знак нерушимой любви.

Кроме того, считается, что желтый цвет символизирует огонь, а фиолетовый – воду (росу). Таким образом, иван-да-марья – символ единения противоположностей, знак огня и воды.

Видео по теме

Источники:

  • как проверить полевые транзисторы
Содержание:

В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

Устройство и принцип действия полевых транзисторов

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод — затвор выполняет функцию регулировки поперечного сечения канала.

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.


Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка — полупроводниковая пластина, имеющая относительно высокое . В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод — исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.


Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток — Drain, исток — Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью , но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.


Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки — стоку D, а положительным красным щупом — вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка». Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.


Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом. Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Проверка без выпаивания

Если у вас нет уверенности, что проверять нужно именно этот транзистор, измерить его параметры можно и на плате, не выпаивая. Но при этом мультиметр должен показывать значения в пределах 500-1200 Ом. Если они измеряются единицами или даже десятками Ом — схема зашунтирована низкоомными резисторами. Для точной проверки транзистор придется выпаять.

Полевой

Полевой, он же — mosfet транзистор отличается от биполярного тем, что в нем может протекать либо только положительный заряд, либо только отрицательный («дырка» или электрон). Его контакты имеют иное значение — затвор, сток, исток.


Как проверить полевой транзистор мультиметром? Методика проверки почти та же, что и в предыдущем случае, но предварительно, во избежание выхода элемента из строя, необходимо снять с себя заряд статического электричества, так как полевик очень чувствителен к статике. Используйте антистатический браслет либо просто коснитесь рукой заземленного металлического элемента, например корпуса приборного шкафа.

Полевики всегда имеют небольшую проводимость между стоком и истоком, которая выявляется на экране мультиметра как сопротивление порядка 400-700 Ом. Если поменять полярность, сопротивление незначительно изменится, возрастет или упадет на 40-60 Ом. Перед этим необходимо закоротить исток и сток между собой, чтобы «обнулить» емкости переходов.

Если при проверке с помощью мультиметра между истоком и стоком обнаруживается бесконечно большое сопротивление, полевой транзистор неисправен.
Между истоком и затвором либо стоком и затвором также будет обнаруживаться проводимость, но только в одну сторону. Плюс, приложенный к затвору, а минус — к истоку, вызовет открытие перехода и, соответственно, значение на экране в границах 400-700 Ом. Обратная схема — плюс к истоку, минус к затвору — у исправного полевика даст «1», то есть. очень большое сопротивление.

Проверка линии сток-затвор проходит аналогично. Если же линия исток-затвор или сток-затвор имеет проводимость в обе стороны, это значит, что полевой транзистор пробит.

В заключение надо сказать несколько слов о составном типе. Составной транзистор — это элемент, соединяющий в себе два обычных биполярных транзистора (иногда три и более). Проверка мультиметром производится аналогично методологии для простого «биполярника».

Полевые транзисторы — полупроводниковые приборы, в которых управление переходными процессами, а также величиной выходного тока осуществляется изменением величины электрического поля. Существует два вида данных устройств: с (в свою очередь делятся на транзисторы со встроенным каналом и с индукционным каналом) и с управляемым переходом. Полевые транзисторы благодаря своим уникальным характеристикам находят широкое применение в радиоэлектронной аппаратуре: блоках питания, телевизорах, компьютерах и др.

При ремонте такой техники наверняка каждый начинающий радиолюбитель сталкивался с таким вопросом: как проверить полевой транзистор? Чаще всего с проверкой таких элементов можно столкнуться при ремонте импульсных блоков питания. В этой статье мы подробно расскажем, как это правильно сделать.

Как проверить полевой транзистор омметром

В первую очередь, чтобы приступить к проверке полевого транзистора, необходимо разобраться с его «цоколевкой», то есть с расположением выводов. На сегодняшний день существует множество различных исполнений таких элементов, соответственно, расположение электродов у них отличается. Часто можно встретить полупроводниковые транзисторы с подписанными контактами. Для маркировки используют латинские литеры G, D, S. Если же подписи нет, то необходимо воспользоваться справочной литературой.

Итак, разобравшись с маркировкой контактов, рассмотрим, как проверить полевой транзистор. Следующим шагом будет принятие необходимых мер безопасности, потому что полевые приборы очень чувствительны к статическому напряжению, и чтобы предотвратить выход из строя такого элемента, необходимо организовать заземление. Чтобы снять с себя накопленный статический заряд, обычно надевают на запястье антистатический заземляющий браслет.

Не следует также забывать, что хранить полевые транзисторы необходимо с замкнутыми выводами. Сняв статическое напряжение, можно переходить к процедуре проверки. Для этого понадобится простой омметр. У исправного элемента между всеми выводами сопротивление должно стремиться к бесконечности, но при этом существуют некоторые исключения. Сейчас мы рассмотрим, как проверить полевой транзистор n-типа.

Прикладываем положительный щуп прибора к электроду затвора (G), а отрицательный щуп к контакту истока (S). В этот момент начинает заряжаться емкость затвора и элемент открывается. При измерении сопротивления между истоком и стоком (D) омметр покажет некоторую величину сопротивления. В разных типах транзисторов эта величина различна. Если закоротить выводы транзистора, то сопротивление между стоком и истоком снова будет стремиться к бесконечности. Если этого не произошло, значит, транзистор неисправен.

Если вы спросите, как проверить полевой транзистор P-типа, то ответ прост: повторяем вышеописанную процедуру, только меняем полярность. Не следует также забывать, что современные мощные полевые транзисторы между истоком и стоком имеют встроенный диод, соответственно «прозванивается» он только в одну сторону.

Проверка полевого транзистора мультиметром

При наличии прибора «мультиметра», можно проверить полевой транзистор. Для этого выставляем в режим «прозвонки» диодов и вводим полевой элемент в режим насыщения. Если транзистор N-типа, то минусовым щупом касаемся стока, а плюсовым — затвора. Исправный транзистор в таком случае открывается. Переносим плюсовой щуп, не отрывая минусового, на исток, и мультиметр показывает какое-то значение сопротивления. После этого запираем транзистор: не отрывая щупа от истока, минусовым касаемся затвора и возвращаем на сток. Транзистор заперт, и сопротивление стремится к бесконечности.


Многие радиолюбители спрашивают: «Как проверить полевой транзистор, не выпаивая?» Сразу ответим, что стопроцентного способа не существует. Для этого используют мультиметр с колодкой HFE, но этот метод часто дает сбой, и можно потратить много времени впустую.

Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Технологии проверки

Биполярный

Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.

Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.

Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.

Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:

  • База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
  • База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
  • Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.

При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.

На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:

Полевой

Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.

На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.

Рисунок 3 – Структурная схема ПТ

Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.

Рисунок 4 – Антистатический браслет

Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.

«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».

Технология проверки полевого транзистора показана на видео:

Составной

Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.

Как проверить igbt транзистор мультиметром не выпаивая

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

Отклонения от этих значений говорят о неисправности компонента.

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Тестирование производится следующим образом:

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Как проверить транзистор мультиметром

В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и принцип работы транзисторов.

Основные типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта – исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета – с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный – к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы – затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в импульсных блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный – к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Как проверить составной транзистор мультиметром

Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.

Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.

типы, режимы и инструкции, разбивка

Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.

Типы, классификация транзисторов

Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:

Устройство транзисторов

  1. Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор – два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
  2. Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.

Схема проверки транзистора

При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:

  1. B – база (англ. Base).
  2. С – коллектор (англ. Collector).
  3. E – эмиттер (англ. Emitter).

Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.

Проверка биполярного транзистора мультиметром в штатном режиме

Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h – касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие – просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).

Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.

h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.

Проверка транзисторов мультиметром: нештатный режим

Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.

  • Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
  • Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.

Подготовка к проверке транзистора

Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:

  • Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
  • Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).

Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.

Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.

Разбить биполярный транзистор на диоды

Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).

Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.

Проверка диода

Проверка условных диодов, замещающих транзистор

Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.

Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.

Как проверить мультиметром транзистор: испытание различных типов устройств

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Статья по теме:

Электрический мультиметр: тестер для различных электротехнических измерений
Тестер для измерения электротехнических показателей. Использование прибора для автомобиля и в быту. Принцип измерения электрических характеристик.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Тестирование транзисторов в схемах с помощью мультиметров, омметра и измерителя кривой

Транзистор — это небольшое полупроводниковое устройство, которое может быть повреждено при неправильном подключении. Транзистор также может выйти из строя, если на входе будет подаваться более высокий ток или напряжение. Предлагается проверить транзистор. Эффект горения транзистора можно наблюдать, взглянув на схему. Тестирование транзисторов в схемах с помощью мультиметров — хорошая идея, если на печатной плате не наблюдается визуального эффекта.

В зависимости от функциональности цифрового мультиметра, транзистор может быть проверен на его работу в виде «прошел» и «не прошел». Другие мультиметры также могут проверить коэффициент усиления транзистора, установив его в режим hFE.

  • Как рассчитать кВА трансформатора: Калькулятор кВА трансформатора
  • Классификация трансформаторов тока на основе четырех параметров

Транзистор также можно проверить с помощью омметра и измерителя кривой. Омметр проверяет подключение двух клемм.Трассировщик кривой использует разные точки тока и напряжения для построения VI-характеристик транзистора.

Тестирование транзисторов в цепи с помощью мультиметра

Этапы тестирования транзисторов в цепях с помощью мультиметра

Выполните следующие шаги для тестирования транзистора в цепи с помощью мультиметра.

Отсоедините

Отсоедините транзистор, который вы хотите проверить, от печатной платы. В противном случае мультиметр может выйти из строя, и правильный результат не будет отображаться.

Установка транзистора

Если в вашем цифровом мультиметре есть порт для проверки транзисторов, используйте его. И вставьте транзистор в специальный порт для тестирования транзисторов. Вставьте транзистор в соответствии с обозначениями NPN или PNP. Если нет порта для транзистора, проверьте транзистор омметром.

Вставка транзистора в порт для тестирования транзисторов
Настройка режима

Теперь поверните ручку, чтобы правильно установить режим проверки транзистора. Используйте символ hFE, чтобы получить коэффициент усиления транзистора.

Считывание

На этом этапе на экране цифрового мультиметра будет считываться усиление транзистора. Если показания не отображаются, измените конфигурацию транзистора с E-B-C на B-C-E.

Разные конфигурации портов NPN и PNP

Тестирование транзисторов с помощью омметра

Тестирование транзистора с помощью омметра — это старый способ тестирования транзистора. Омметр для тестирования транзистора имеет два PN перехода база-эмиттер и база-коллектор.Рассмотрение этих двух переходов как отдельных диодов может помочь в определении работы транзистора.

  • Тестирование транзисторов в схемах с помощью мультиметров, омметра и измерителя кривой
  • Что такое полевой транзистор? Основы полевого транзистора, конструкция, символы, характеристики, кривые и типы

Этапы тестирования транзистора с помощью омметра

Прежде всего, убедитесь, что вы удалили транзистор из схемы.

Шаг 1: Проверка эмиттера база-эмиттер

Для NPN-транзистора подключите положительный вывод к базе, а отрицательный — к эмиттеру транзистора.Хороший транзистор должен иметь возможность подключения. И наоборот для транзистора PNP.

Для транзистора NPN, теперь меняем местами выводы, т. Е. Соединяем положительный полюс с эмиттером, а отрицательный — с базой транзистора. В этом случае не будет возможности подключения хорошего транзистора.

Тестирование транзистора омметром
Шаг 2: проверка база-коллектор

Для NPN-транзистора подключите положительный провод к базе, а отрицательный — к коллектору. Хороший транзистор должен иметь возможность подключения.И наоборот для транзистора PNP.

  • Аналоговая и цифровая электроника для инженеров pdf Книга
  • Справочник по силовой электронике Мухаммада Х. Рашида

Для NPN-транзистора, теперь меняем полярность, т. Е. Подключая положительный провод к коллектору, а отрицательный — к базе транзистора. . Хороший транзистор не должен иметь возможности подключения.

Тестирующий транзистор с измерителем кривой

Тестовый транзистор с измерителем кривой

Измеритель кривой похож на осциллограф с различными функциями, такими как дискретизация по времени, развертка по списку и многоканальная развертка.Индикаторы кривой используются для анализа диодов, транзисторов, тиристоров и т. Д. Используйте правильную настройку, установите напряжение и проанализируйте ток коллектора. Точно так же используйте различные базовые токи, проанализируйте ток коллектора и нарисуйте кривые характеристик VI.

Как проверить транзистор с помощью мультиметра (DMM + AVO) — NPN и PNP

Как найти базу, коллектор, эмиттер, направление и состояние транзистора с помощью мультиметра

Как запомнить направление PNP и NPN-транзистор и идентификация контактов, проверьте, хорошо это или плохо.

Если вы выберете эту простую тему с помощью цифрового (DMM) или аналогового (AVO) мультиметра, вы сможете:

  • Запомнить направление транзисторов NPN и PNP
  • Определить базу, коллектор и эмиттер Транзистор
  • Проверьте транзистор, исправен он или плохой.

Запомните направление транзисторов PNP и NPN

PNP = заостренный
NPN = не заостренный.
, если вам кажется, что это немного сложно, попробуйте этот..это проще.

Щелкните изображение, чтобы увеличить.

PNP NPN
P = Точки N = Никогда
N = IN P = Точки
P = Постоянно N = iN

Проверить транзистор с цифровым мультиметром в режиме диода или непрерывности

Сделать Итак, следуйте инструкциям, приведенным ниже.

  1. Удалите транзистор из цепи, т.е. отключите питание от транзистора, который необходимо проверить. Разрядите весь конденсатор (закоротив выводы конденсатора) в цепи (если есть).
  2. Установите мультиметр в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
  3. Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод — ко 2-й клемме (рис. Ниже). Вы должны выполнить 6 тестов, подключив черный (-Ve) тестовый провод и красный (+ Ve) тестовый провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно. просто замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).Цифры красного цвета — это красный измерительный провод, а номера черного цвета — это черный (-Ve) измерительный провод мультиметра.
  4. Проверьте, измерьте и запишите показания дисплея мультиметра в таблице ниже.

У нас есть следующие данные из приведенной ниже таблицы.

Из 6 тестов мы получили данные и результаты только по двум тестам, то есть в точках со 2 по 1 и со 2 по 3. В точках со 2 по 1 мы получили 0,733 В постоянного тока и 2–3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также их коллектор, базу и эмиттер.

  1. Точка 2 — это база транзистора в транзисторе BC55.
  2. BC 557 — это PNP-транзистор, в котором 2 nd (средний вывод — база) подключен к красному (+ Ve) измерительному проводу мультиметра.
  3. Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 557 PNP), потому что результат теста для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, т. Е. 2-1 > 2-3.
901 902 9014 0149 .733 В постоянного тока
BC 557 PNP Точки измерения Результат
1-2 OL
1-3 OL
2-3 0,728 В постоянного тока
3-1 OL
3-2 OL
000 Находка BASE транзистора 9 : В приведенном выше руководстве общее число, найденное в приведенных выше тестах, является базовым. В нашем случае 2 терминала и являются базовым, а 2 — общим из 1-2 и 2-3.

2
nd Метод с использованием цифрового мультиметра для поиска базы транзистора.

Если вы следуете той же схеме и способу подключения выводов мультиметра и клемм транзисторов один за другим на рисунке, показанном выше, на рисунках «c» и «d», красный (+ Ve) измерительный провод подключается к среднему. я.е. 2 вывода nd , а черный (-Ve) измерительный провод подключается к 1 выводу транзистора 1 st .

Опять же, красный (+ Ve) измерительный провод подключается к среднему, то есть к 2 клемме и провода, а черный (-Ve) измерительный провод подключается к 3 rd одной клемме транзистора, и мультиметр показывает некоторое показание, например 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.

Общий провод — это 2 и , подключенный к красному (+ Ve) измерительному проводу (т.е.е. P и да, два других вывода — это N), который является базовым. В случае транзистора BC 557 PNP все наоборот.

NPN или PNP?

Все просто. Если черный (-Ve) измерительный провод мультиметра подключен к базе транзистора (в нашем случае 2 клеммы и ), то это PNP-транзистор , а когда красный (+ Ve) измерительный провод подключен к База терминала, это NPN транзистор .

Эмиттер или коллектор?

Прямое смещение EB (излучатель — база) больше, чем CB (коллектор — база) i.е. EB> CB в транзисторе PNP, например BC 557 NPN. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), то есть BE> BC, например BC 547 PNP.

Вот вывод.

  1. Точка 2 — база транзистора в транзисторе BC547.
  2. BC 547 — это транзистор NPN, где 2 nd (средняя клемма — база) подключена к красному (+ Ve) щупу мультиметра.
  3. Вообще, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор BC 547 NPN), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т.е. 1-2> 2-3.
BC 547 NPN Точки измерения Результат
1-2 0,717 В пост. OL
1-3 OL
2-3 OL
2-3 0,711 В постоянного тока

Проверить транзистор с аналоговым или цифровым мультиметром в Ом (Ом) Режим диапазона:

Шаги:

  1. Отключите источник питания от цепи и удалите транзистор из схемы.
  2. Поверните переключатель и установите ручку мультиметра в положение Ом.
  3. Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный провод — ко 2-й клемме ( Рис. 1 (a). (Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод к 1–2, 1–3, 2–1, 2–3, 3–1, 3–2 соответственно, всего лишь замените измерительные провода мультиметра или переверните клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показанной ниже).(Цифры красного цвета показывают выводы транзистора, подключенные к измерительному выводу Red (+ Ve) мультиметра, а числа в черном цвете показывают выводы транзистора, подключенные к измерительному выводу Black (-Ve) мультиметра (лучше). объяснение в таблице и на рис. ниже)
  4. Если мультиметр показывает высокое сопротивление как в первом, так и во втором тестах, изменив полярность транзистора или мультиметра, как показано на рис. результат будет показан только для 2 тестов из 6, как указано выше).т.е. в нашем случае клемма 2 nd транзистора является BASE, потому что она показывает высокое сопротивление в обоих тестах с 2 по 3 и с 3 по 2, где измерительный провод Red (+ Ve) мультиметра подключен к 2 nd Вывод транзистора. Другими словами, обычное число в тестах — это Base, что составляет 2 из 1, 2 и 3.

Щелкните изображение, чтобы увеличить

PNP или NPN?

Теперь это транзистор NPN, потому что он показывает чтение только тогда, когда КРАСНЫЙ (+ Ve) измерительный провод (т.е.е. Клемма P, где P = положительный) подключена к базе транзистора (см. Рис. Ниже). Если вы сделаете обратное, то есть черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра подключен к клемме транзистора в последовательности (от 1 до 2 и от 2 до 3) и покажет показания в обоих тестах, как указано выше. , Клемма 2 nd по-прежнему БАЗА, но транзистор — PNP (см. Рис. Ниже).

Проверить транзистор в цифровом мультиметре с транзистором или hFE или бета-режимом

hFE, также известный как beta is dc gain, означает «гибридный параметр прямого усиления по току, общий эмиттер», используемый для измерения hFE транзистора, который можно найти по следующей формуле.

h FE = β DC = I C / I B

Его также можно использовать для проверки транзистора и его выводов, как показано на рис. 1.

Для проверки транзистор в режиме hFE, в мультиметре есть 8-контактный разъем, обозначенный PNP и NPN, а также ECB (эмиттер, коллектор и база). Просто вставьте три контакта транзистора в слот мультиметра один за другим в разные разъемы, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).

Если они отображают показания (это будет h FE показания транзистора), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (положение CBE), текущее положение на C, B, Слот E — это точные выводы транзистора (т. Е. Коллектор, база и эмиттер), а транзистор находится в хорошем положении, в противном случае замените его новым.

Похожие сообщения:

Как проверить транзистор с помощью мультиметра

Транзисторы действуют как затвор или переключатель для электрических сигналов с возможностью регулирования напряжения или тока.Обычно они имеют три слоя, которые сделаны из полупроводниковых материалов, которые могут проводить ток. Такими полупроводниковыми материалами являются:

Как работает транзистор

Если небольшое изменение напряжения или тока происходит на внутренних слоях полупроводника транзистора, происходит быстрое и сильное изменение тока, которое передается на весь компонент. Затем транзисторы действуют как переключатель, многократно замыкаясь и открываясь, а также как электрический затвор.

  • Транзисторы используются в обеих комбинациях, называемых интегральными и одиночными схемами.
  • Транзисторы, используемые в комбинированных / интегральных схемах, можно найти в таком оборудовании, как высокопроизводительные компьютеры, сотовые телефоны, планшеты, ноутбуки и настольные компьютеры.
  • В этой статье вы услышите о различных типах транзисторов, таких как PNP и NPN.
  • Транзистор PNP — положительный, отрицательный, положительный. Это также известно как поиск источников.
  • Транзистор NPN означает отрицательный, положительный и отрицательный. Это также известно как опускание.

Итак, в чем разница между этими двумя транзисторами?

В транзисторе NPN ток обычно течет от коллектора к выводу эмиттера.С другой стороны, PNP-транзистор обычно включается, когда на выводе базы транзистора нет тока. В транзисторе PNP ток часто течет от эмиттера к клемме коллектора.

Транзистор NPN включается при высоком уровне сигнала, в то время как транзистор PNP обычно включается при очень низком уровне сигнала.

Основное различие между NPN-транзистором и PNP транзистором обычно заключается в правильном смещении их транзисторных соединений.Полярности напряжения и направления тока обычно постоянно противоположны друг другу.

Когда дело доходит до мультиметров, технические специалисты и профессионалы используют их чаще всего. От цифрового мультиметра до аналогового мультиметра — этот электрический инструмент используется для диагностики и тестирования многих электрических компонентов и цепей широкого диапазона.

Когда дело доходит до тестирования или проверки транзисторов, этот универсальный компонент — мультиметр — лучше всего подходит для этой работы.Большинство цифровых мультиметров имеют встроенную функцию тестирования транзисторов. В таких случаях тестирование транзисторов становится очень быстрым и простым.

Как проверить транзистор с помощью мультиметра со встроенными функциями транзистора

Если ваш цифровой мультиметр имеет встроенную функцию тестирования транзисторов, все, что вам нужно, это выполнить следующие простые шаги:

  1. Первый шаг — вставить транзистор в гнездо цифрового мультиметра.
  2. После этого вам нужно установить мультиметр в правильный режим.
  3. После завершения вы получите такие показания, как усиление (hFE). Имея это значение, вы можете перепроверять показания «не прошел / прошел» и таблицы данных.

Проверка транзистора мультиметром (настройки диодов)

Для мультиметров без встроенной функции тестирования транзисторов вы можете проверить свои транзисторы с помощью функции тестирования диодов.

Для получения точных и правильных показаний вам необходимо удалить транзистор из схемы.Ниже приведены шаги, которые необходимо выполнить:

1. Подключение базы к излучателю

Первое, что нужно сделать на этом этапе, — это подключить положительный вывод цифрового мультиметра к БАЗУ транзистора (B).

После этого подсоедините отрицательный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

Если ваш NPN-транзистор в идеальном состоянии, цифровой мультиметр должен показать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

2. Подсоединение базы к коллектору

На этом этапе вам нужно, чтобы цифровой мультиметр оставался положительным, провод к ОСНОВАНИЮ (B), а затем подключил отрицательный провод цифрового мультиметра к КОЛЛЕКТОРУ (C).

Для правильно функционирующего транзистора NPN цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

3. Подключение излучателя к базе

Первое, что нужно сделать на этом шаге, — это подключить положительный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

После этого подсоедините отрицательный вывод цифрового мультиметра к БАЗУ транзистора (B)

.

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

4. Подключение коллектора к базе

На этом этапе вам нужно будет подсоединить положительный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный вывод цифрового мультиметра к ОСНОВАНИЮ (B).

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

5. Подключение коллектора к эмиттеру

На этом этапе вам нужно будет подсоединить положительный провод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный провод цифрового мультиметра к ЭМИТТЕРУ (E).

Для исправного функционирования транзисторов NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).

6. Подключение эмиттера к коллектору

Наконец, вам нужно будет держать положительный вывод цифрового мультиметра на ЭМИТТЕРЕ (E), а затем подключить отрицательный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C)

.

Для исправного функционирования транзисторов NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).

Для любого неисправного транзистора показания цифрового мультиметра будут отличаться от приведенных выше результатов.

ПРИМЕЧАНИЕ

Проверка транзистора мультиметром позволит определить только неисправность транзистора; он не определит, работает ли ваш транзистор в том диапазоне, в котором они должны работать.

подсказки

В наши дни, когда у вас неисправный транзистор, его можно заменить на Mosfet. Хотя и МОП-транзистор, и транзистор могут иметь похожие стили, функции и могут выглядеть одинаково, они оба отличаются по своей конфигурации и характеристикам.

Основное различие между ними заключается в том, что транзисторы зависят от тока и должны увеличиваться пропорционально нагрузке, в то время как Mosfet зависит от напряжения.

Тестирование и поиск неисправностей транзисторных цепей мультиметра

»Электроника

Обнаружение неисправностей в транзисторных схемах с помощью мультиметра можно упростить, если принять логический подход, а также использовать некоторые подсказки и подсказки, полученные из опыта.


Руководство по мультиметру Включает в себя:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Одно из основных применений мультиметров, будь то аналоговые мультиметры или цифровые мультиметры, цифровые мультиметры — это проверка и поиск неисправностей в схемах, подобных тем, что используются в транзисторных радиоприемниках.Мультиметры являются идеальным оборудованием для тестирования для поиска многих неисправностей в транзисторах или других электронных схемах.

Однако, чтобы использовать мультиметр для проверки цепи и поиска неисправностей, необходимо иметь некоторые знания об этой цепи, а также принять логический подход к отслеживанию любых неисправностей, которые могут существовать.

Также помогает небольшой опыт в понимании вероятных неисправностей и отказов, возникающих в различных типах оборудования. Измеритель может использоваться для их проверки и часто очень быстро обнаруживает неисправность.

Для этих простых тестов можно использовать как аналоговые мультиметры, так и цифровые мультиметры — выбор обычно делается в зависимости от того, что есть в наличии.

Предупреждение

Некоторое электрическое и электронное оборудование может работать от сети. Только квалифицированный персонал должен пытаться ремонтировать оборудование с питанием от сети или оборудование, которое содержит высокое или опасное напряжение. Кроме того, там, где присутствует высокое напряжение, следует использовать только подходящее испытательное оборудование с соответствующими сертификатами и способное работать с высокими напряжениями.Высокое напряжение может убить , поэтому имейте в виду!

Ищите явные неисправности

Первым шагом при поиске любых неисправностей и тестировании транзисторной схемы любого типа является поиск очевидных или серьезных неисправностей. Это один из ключевых этапов ремонта любого оборудования.

К счастью, большинство неисправностей электронного оборудования, такого как транзисторные радиоприемники, относительно легко обнаружить — многие из них очевидны, а некоторые могут даже не нуждаться в каком-либо испытательном оборудовании. Они часто возникают в результате движения или физического повреждения, поэтому часто бывает легко найти эти неисправности и проблемы.

Соответственно, первым шагом в поиске неисправностей является поиск основных проблем.

  • Проверьте питание цепи: Первые шаги при проверке цепи — убедиться, что на нее подается питание. Это легко сделать с помощью мультиметра, настроенного на диапазон напряжения. Измерьте напряжение с помощью тестового измерителя в точках, где источник питания входит в печатную плату. Если мультиметр показывает, что напряжение питания отсутствует, существует ряд возможностей для исследования:

    • Аккумулятор может разрядиться, если оборудование работает от аккумулятора.Иногда это может быть очевидно, так как батарея может протекать. В этом случае извлеките аккумулятор и удалите все остатки, которые могли протечь на держателе аккумулятора, в частности, на контактах. Остаток может вызвать коррозию контактов, поэтому необходимо хорошо очистить контакты. Следите за тем, чтобы не прикасаться к остатку, так как он может вызвать коррозию.

      Если состояние батареи не так очевидно, то простое измерение напряжения с помощью тестового прибора может выявить проблему.Проверить напряжение тестером при включенном радио. Если аккумулятор не может обеспечить необходимый ток, то при включении радио напряжение упадет.

    • Двухпозиционный выключатель неисправен. Это можно проверить, отключив любой источник питания — шнур питания должен быть отключен от источника питания, чтобы полностью изолировать оборудование. Затем проверьте целостность цепи переключателя, проверяя его как во включенном, так и в выключенном положении — для этого используйте диапазон Ом на мультиметре. Также помните, что переключатель может переключать обе стороны входящего питания, т.е.е. под напряжением и нейтралью, и любая из этих сторон переключателя может быть нефункциональной.
    • Если есть предохранитель, то стоит его проверить. В идеале удалите предохранитель и проверьте целостность с помощью мультиметра. Его сопротивление должно быть меньше Ом.
    • Корродированный разъем. Одна из распространенных проблем заключается в том, что разъемы со временем корродируют, и соединения могут стать очень плохими, особенно если оборудование не использовалось в течение некоторого времени. Чтобы решить эту проблему, можно отсоединить, а затем снова подключить разъем.
    • Проверьте, нет ли обрывов проводки, которые могут помешать подаче питания на печатную плату. Со временем и при движении оборудования провода могут сломаться. Одной конкретной областью может быть вывод батареи — эти выводы особенно подвержены повреждению из-за необходимости перемещать, и если батарея была заменена грубо, это может привести к поломке провода. Проверьте визуальные признаки, а также используйте диапазон Ом мультиметра.
  • Проверьте выходы платы: Точно так же, как разорванные соединения могут существовать для линии питания, то же самое может быть верно и для выходов с платы.Опять же, стоит проверить все разъемы, которые со временем могли подвергнуться коррозии или окислению, а также проверить наличие сломанных соединений.
  • Проверьте входы схемы: Аналогичным образом, если входные сигналы не достигают платы, она не сможет работать. Снова следует проверить все переключатели и разъемы, а также любые оборванные провода. Часто мультиметр можно использовать для проверки целостности проводов, но сначала убедитесь, что на цепь не подается питание.

  • Проверьте работу любых других выключателей: Главный выключатель питания, очевидно, важен, как и любые другие выключатели в оборудовании.

  • Проверьте работу других переключателей: Хотя упомянутый выше переключатель питания может быть одной из возможных проблем, в цепи могут быть другие переключатели, которые могут вызвать неисправность оборудования. Со временем переключатели могут выйти из строя из-за скопления грязи и коррозии на контактах переключателя.Грязь и смола могут быть особой проблемой, если оборудование находится в среде, где присутствуют курильщики.

    Можно проверить переключатель с помощью мультиметра, но иногда простое нажатие переключателя может помочь очистить контакты. Очиститель переключателей также может помочь.

Используя мультиметр для поиска неисправностей, можно обнаружить многие очевидные неисправности, которые могут возникнуть. Если проблема не может быть обнаружена, и кажется, что правильная мощность достигает транзисторной схемы, и все входы подключены и присутствуют, а выходные линии не повреждены, тогда может потребоваться дальнейшая диагностика на самой плате транзистора. .В этом снова может помочь мультиметр.

Поиск места неисправности

Если неисправность не является одной из очень очевидных, тогда может потребоваться немного больше знаний о схемах вместе с некоторыми простыми тестовыми приборами. Измеритель является одним из ключевых элементов тестового оборудования, но для тестирования можно использовать и другие профессиональные приемы.

Одним из ключевых методов является систематический подход, позволяющий сосредоточиться на проблеме.

Часто лучше работать от края внутрь.Для радиоприемников часто полезно работать от громкоговорителя в обратном направлении, поскольку можно вводить сигналы и видеть, как они выходят из громкоговорителя, постепенно возвращаясь через радиоприемник, чтобы увидеть, где сигнал больше не работает.

Для других элементов может быть лучше работать другим способом, но каждый из них должен быть определен в соответствии с ремонтируемым элементом.

Рассматривая пример транзисторного радиоприемника, можно было бы провести одно испытание с работающим радиоприемником, прикоснувшись щупом измерительного прибора к центральному контакту регулятора громкости (с регулятором громкости, повернутым наполовину вверх.При прикосновении щупа мультиметра к центральному штифту должен быть слышен небольшой щелчок.

Такие радиоприемники часто нуждаются в ремонте — тестовые счетчики являются одним из основных тестовых инструментов, используемых при обнаружении неисправностей.

Если доступен какой-либо другой вид инжектора аудиосигнала, генератора сигналов и т. Д., То его тоже можно использовать, но часто тестовый измерительный зонд намного проще для быстрой проверки.

Если аудиоусилитель работает, то нужно сдвинуть сцену назад. Большинство радиоприемников являются супергетеродинными, поэтому затем можно проверить каскады усилителя ПЧ.Установите генератор сигналов на промежуточную частоту (обычно около 455 кГц для старых радиостанций AM и 10,7 МГц для радиоприемников FM). Если возможно, введите модуляцию, в противном случае слушайте несущую.

Примечание о супергетеродинном радио:

В супергетеродинном радио используется метод, при котором входящие сигналы смешиваются или умножаются с сигналом внутреннего гетеродина. Таким образом, сигналы могут быть преобразованы по частоте в промежуточную частоту, где они могут быть отфильтрованы.Используя гетеродин с переменной частотой, можно использовать фильтр промежуточной частоты с фиксированной частотой.

Подробнее о супергетеродинном радио .

Если можно доказать, что этапы IF работают, переместите этап назад. Убедитесь, что гетеродин работает. Можно услышать гетеродин на другом радиоприемнике поблизости, настроив его на ожидаемую частоту гетеродина. Обычно это на 455 кГц выше принимаемой частоты для AM-радио.Для FM-радио она, скорее всего, будет отличаться от принимаемой частоты на 10,7 МГц.

Если LO работает, то проблема, скорее всего, в этапах RF. Опять же, введите сигнал и посмотрите, что произойдет. Возможно, сцена вообще не работает, или она может быть нечувствительной.

Приняв логический подход, подобный тому, который использовался для радио в приведенном выше примере, можно определить область неисправности. Фактический подход будет зависеть от испытуемого объекта, но зачастую дорогостоящее испытательное оборудование не требуется, и можно использовать измерительный прибор, такой как аналоговый измерительный прибор или цифровой мультиметр.

Как только область, в которой находится неисправность, была обнаружена, можно начинать тестирование цепи с помощью мультиметра.

Ожидаемые напряжения в цепи транзистора

При тестировании конкретной транзисторной схемы можно использовать мультиметр, чтобы определить правильность напряжения в цепи. Чтобы проверить и найти неисправность конкретной транзисторной схемы, необходимо иметь представление о том, какими должны быть установившиеся напряжения. Схема ниже представляет собой типичную базовую транзисторную схему.Многие схемы похожи на него, и он дает хорошую отправную точку для объяснения некоторых моментов, которые следует отметить.

Ожидаемые показания напряжения при проверке транзисторной схемы с помощью мультиметра

На схеме показаны несколько точек, в которых можно измерить напряжение в цепи. Большинство из них измеряются относительно земли. Это самый простой способ измерения напряжения, потому что «общий» или отрицательный щуп может быть прикреплен к подходящей точке заземления (многие черные щупы, используемые для отрицательной линии, имеют для этой цели зажим типа «крокодил» или «крокодил»).Тогда все измерения можно будет производить относительно земли.

Обычно вокруг транзисторной схемы есть несколько точек, которые легко измерить, и ожидаемые напряжения можно ожидать по большей части, если сделать несколько предположений:

  • Предположим, что схема работает в линейном режиме, т. Е. Не является схемой переключения.
  • Предположим, что схема работает в режиме общего эмиттера, как показано на схеме.
  • Предположим, что цепь имеет резистивную коллекторную нагрузку.

Если вышеприведенные предположения верны, то можно ожидать следующих напряжений. В противном случае необходимо сделать поправку на изменения.

  1. Напряжение коллектора должно составлять примерно половину напряжения шины. В частности, он должен составлять половину напряжения шины меньше напряжения эмиттера. Таким образом можно получить наибольший перепад напряжения. Если транзистор имеет индуктивную нагрузку, как в случае усилителя промежуточной частоты в радиоприемнике, который может иметь трансформатор промежуточной частоты в цепи коллектора, то на коллекторе должно быть практически то же напряжение, что и напряжение на шине.
  2. Напряжение эмиттера должно быть около 1-2 вольт. В большинстве схем с общим эмиттером класса А включен эмиттерный резистор, обеспечивающий некоторую обратную связь по постоянному току. Напряжение на этом резисторе обычно составляет вольт или около того.
  3. Базовое напряжение должно соответствовать напряжению включения PN-перехода выше эмиттера. Для кремниевого транзистора, который является наиболее распространенным типом, это составляет около 0,6 вольт.

Обозначения ожидаемых типов напряжения можно увидеть на принципиальной схеме.

В дополнение к этому существует много других типов цепей, для которых может потребоваться поиск неисправностей. В наши дни довольно распространены коммутационные схемы, в которых транзисторы используются для управления другими элементами, такими как реле или другие устройства. Они не работают в линейном режиме. Вместо этого все напряжения либо включены, либо выключены. Напряжение коллектора будет либо приблизительно равным нулю, когда транзистор включен, либо приблизительно напряжением шины, когда он выключен. Эмиттер обычно подключается к земле, и базовое напряжение будет высоким, т.е.е. приблизительно 0,6 вольт для кремниевого транзистора, когда транзистор включен (т. е. коллектор близок к нулю), и низкий (ноль вольт), когда транзистор выключен, а уровень коллектора высокий.

Измеритель, аналоговый или цифровой мультиметр, является идеальным испытательным оборудованием для поиска неисправностей в цепи электронного транзистора. Часто схемы, такие как транзисторные радиоприемники, выходят из строя после того, как они использовались в течение многих лет, и полезно иметь возможность их починить. Кроме того, при сборке оборудования схемы не всегда работают с первого раза, и эти схемы необходимо устранять.Хотя с помощью мультиметра невозможно решить все проблемы, это один из самых полезных базовых инструментов для любой работы по поиску неисправностей.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG Получение данных
Вернуться в меню тестирования.. .

транзисторов

транзисторов Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой
На этой странице описаны практические вопросы, такие как меры предосторожности при пайке. и выявление потенциальных клиентов. Эксплуатация и использование транзисторов регулируется Страница «Транзисторные схемы».

Типы | Подключение | Пайка | Радиаторы | Тестирование | Коды | Выбор | Дарлингтон пара

См. Также: Радиаторы | Транзисторные схемы

Функция

Транзисторы усиливают ток , например, их можно использовать для усиления небольшого выхода ток от логической микросхемы, чтобы он мог управлять лампой, реле или другим сильноточным устройством. Во многих схемах используется резистор для преобразования изменяющегося тока в изменяющееся напряжение, поэтому транзистор используется для усиления напряжения .

Транзистор может использоваться как переключатель (либо полностью включен с максимальным током, либо полностью выключен с нет тока) и как усилитель (всегда частично включен).

Величина усиления тока называется коэффициентом усиления по току , символ h FE .
Для получения дополнительной информации см. Страницу «Транзисторные схемы».


Типы транзисторов

Обозначения схемы транзистора
Есть два типа стандартных транзисторов, NPN и PNP , с разными обозначениями схем.Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Если вы новичок в электронике, лучше всего начать с изучения того, как использовать транзисторы NPN.

Выводы обозначены как база (B), коллектор (C) и эмиттер (E).
Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, так что относитесь к ним как к ярлыкам!

Пара Дарлингтона — это два транзистора, соединенных вместе чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярных) транзисторов, есть полевые транзисторы , которые обычно обозначаются как FET s. У них разные символы схем и свойства, и они (пока) не рассматриваются на этой странице.


Выводы транзистора для некоторых распространенных стилей корпуса.

Подключение

Транзисторы имеют три вывода, которые должны быть подключены правильно.Пожалуйста, будьте осторожны, потому что неправильно подключенный транзистор может повреждается мгновенно при включении.

Если вам повезет, ориентация транзистора будет видна на печатной плате или схема макета стрипборда, в противном случае вам нужно будет обратиться к каталогу поставщика для определения потенциальных клиентов.

На рисунках справа показаны отведения для некоторых из наиболее распространенных стилей корпусов.

Обратите внимание, что схемы выводов транзисторов показывают вид от до с ведет к вам.Это противоположно схемам выводов микросхем (микросхем), которые показывают вид сверху.

См. Ниже таблицу, в которой показаны стили корпуса некоторые общие транзисторы.


Пайка

Транзисторы могут быть повреждены нагреванием при пайке, поэтому, если вы не являетесь экспертом, это Целесообразно использовать радиатор, прикрепленный к проводу между соединением и корпусом транзистора. В качестве радиатора можно использовать стандартный зажим типа «крокодил».

Не путайте этот временный радиатор с постоянным радиатором (описанным ниже) что может потребоваться для силового транзистора, чтобы предотвратить его перегрев во время работы.


Радиаторы

Из-за протекающего через них тока в транзисторах выделяется лишнее тепло. Радиаторы необходимы силовым транзисторам, потому что они пропускают большие токи. Если вы обнаружите, что транзистор становится слишком горячим, чтобы к нему прикасаться, обязательно радиатор! Радиатор помогает рассеивать (отводить) тепло, передавая это в окружающий воздух.

Для получения дополнительной информации см. Страницу «Радиаторы».


Тестирование транзистора

Транзисторы могут быть повреждены нагреванием при пайке или неправильным использованием в цепи. Если вы подозреваете, что транзистор может быть поврежден, есть два простых способа его проверить:
Проверка транзистора NPN
1. Проверка мультиметром
Используйте мультиметр или простой тестер (аккумулятор, резистор и светодиод) чтобы проверить каждую пару проводов на проводимость.Установите цифровой мультиметр на проверку диодов и аналоговый мультиметр для диапазона низкого сопротивления.

Проверить каждую пару проводов в обе стороны (всего шесть тестов):

  • Переход база-эмиттер (BE) должен вести себя как диод и вести только в одну сторону.
  • Переход база-коллектор (BC) должен вести себя как диод и вести только в одну сторону.
  • Коллектор-эмиттер (CE) ни в коем случае не должен проводить ток.
На схеме показано, как ведут себя переходы в NPN-транзисторе. В транзисторе PNP диоды перевернуты, но можно использовать ту же процедуру тестирования.
Простая схема переключения
для проверки транзистора NPN
2. Тестирование в простой схеме переключения
Подключите транзистор к схеме, показанной справа, которая использует транзистор в качестве переключателя. Напряжение питания не критично, подходит от 5 до 12 В.Эту схему можно быстро построить, например, на макетной плате. Позаботьтесь о включении 10k резистор в соединении с базой, иначе вы разрушите транзистор, когда будете его проверять!

Если транзистор в порядке, светодиод должен загореться при нажатии переключателя. и не загорается при отпускании переключателя.

Для проверки транзистора PNP используйте ту же схему, но поменяйте местами светодиод и напряжение питания.

Некоторые мультиметры имеют функцию «проверки транзисторов», которая обеспечивает известный базовый ток и измеряет ток коллектора, чтобы отобразить Коэффициент усиления по постоянному току транзистора h FE .


Коды транзисторов

В Великобритании используются три основных серии кодов транзисторов:
  • Коды, начинающиеся с B (или A), например BC108, BC478
    Первая буква B — кремний, A — германий (сейчас используется редко). Вторая буква указывает на тип; например, C означает звуковую частоту малой мощности; D означает звуковую частоту высокой мощности; F означает низкую мощность и высокую частоту. Остальная часть кода идентифицирует конкретный транзистор.В системе нумерации нет очевидной логики. Иногда в конце добавляется буква (например, BC108C) для обозначения специальной версии. основного типа, например, с более высоким коэффициентом усиления по току или другим типом корпуса. Если в проекте указана версия с более высоким коэффициентом усиления (BC108C), ее необходимо использовать, но если указан общий код (BC108), подходит любой транзистор с этим кодом.
  • Коды, начинающиеся с TIP, например TIP31A
    СОВЕТ относится к производителю: силовой транзистор Texas Instruments.Буква в конце обозначает версии с разным номинальным напряжением.
  • Коды, начинающиеся с 2N, например 2N3053
    Начальное «2N» идентифицирует деталь как транзистор, а остальную часть кода обозначает конкретный транзистор. В системе нумерации нет очевидной логики.

Выбор транзистора

В большинстве проектов указывается конкретный транзистор, но при необходимости обычно можно замените эквивалентный транзистор из широкого ассортимента.Самое важное свойства, которые следует искать, — это максимальный ток коллектора I C и коэффициент усиления по току h FE . Чтобы упростить выбор, большинство поставщиков группируют свои транзисторы в категориях, определяемых их типовым использованием или максимальная мощность рейтинг.

Чтобы сделать окончательный выбор, вам необходимо обратиться к таблицам технических данных, которые обычно представлены в каталогах. Они содержат много полезной информации но их может быть трудно понять, если вы не знакомы с сокращениями использовал.В таблице ниже приведены наиболее важные технические данные некоторых популярных транзисторов. таблицы в каталогах и справочниках обычно содержат дополнительную информацию, но это вряд ли будет полезно, если у вас нет опыта. Количества, указанные в таблице, поясняются ниже.

NPN транзисторы
Код Структура Корпус
стиль
I C
макс.
V CE
макс.
ч FE
мин.
P tot
макс.
Категория
(стандартное использование)
Возможные замены
BC107 НПН TO18 100 мА 45V 110 300 мВт Аудиосистема с низким энергопотреблением BC182 BC547
BC108 НПН TO18 100 мА 20 В 110 300 мВт Общего назначения, малой мощности BC108C BC183 BC548
BC108C НПН TO18 100 мА 20 В 420 600 мВт Общего назначения, малой мощности
BC109 НПН TO18 200 мА 20 В 200 300 мВт Аудио (низкий уровень шума), малое энергопотребление BC184 BC549
BC182 НПН TO92C 100 мА 50 В 100 350 мВт Общего назначения, малой мощности BC107 BC182L
BC182L НПН TO92A 100 мА 50 В 100 350 мВт Общего назначения, малой мощности BC107 BC182
BC547B НПН TO92C 100 мА 45V 200 500 мВт Аудиосистема с низким энергопотреблением BC107B
BC548B НПН TO92C 100 мА 30 В 220 500 мВт Общего назначения, малой мощности BC108B
BC549B НПН TO92C 100 мА 30 В 240 625 мВт Аудио (низкий уровень шума), малое энергопотребление BC109
2N3053 НПН TO39 700 мА 40 В 50 500 мВт Общего назначения, малой мощности BFY51
BFY51 НПН TO39 1A 30 В 40 800 мВт Общего назначения, средней мощности BC639
BC639 НПН TO92A 1A 80V 40 800 мВт Общего назначения, средней мощности BFY51
TIP29A НПН TO220 1A 60 В 40 30 Вт Общего назначения, большой мощности
TIP31A НПН TO220 3A 60 В 10 40 Вт Общего назначения, большой мощности TIP31C TIP41A
TIP31C НПН TO220 3A 100 В 10 40 Вт Общего назначения, большой мощности TIP31A TIP41A
TIP41A НПН TO220 6A 60 В 15 65 Вт Общего назначения, большой мощности
2N3055 НПН ТО3 15A 60 В 20 117 Вт Общего назначения, большой мощности
Обратите внимание: данные в этой таблице были составлен из нескольких источников, которые не совсем согласованы! Большинство расхождений незначительны, но, пожалуйста, обратитесь к информации у вашего поставщика, если вам требуются точные данные.
Транзисторы PNP
Код Структура Корпус
стиль
I C
макс.
V CE
макс.
ч FE
мин.
P tot
макс.
Категория
(стандартное использование)
Возможные замены
BC177 PNP TO18 100 мА 45V 125 300 мВт Аудиосистема с низким энергопотреблением BC477
BC178 PNP TO18 200 мА 25V 120 600 мВт Общего назначения, малой мощности BC478
BC179 PNP TO18 200 мА 20 В 180 600 мВт Аудио (низкий уровень шума), малое энергопотребление
BC477 PNP TO18 150 мА 80V 125 360 мВт Аудиосистема с низким энергопотреблением BC177
BC478 PNP TO18 150 мА 40 В 125 360 мВт Общего назначения, малой мощности BC178
TIP32A PNP TO220 3A 60 В 25 40 Вт Общего назначения, большой мощности TIP32C
TIP32C PNP TO220 3A 100 В 10 40 Вт Общего назначения, большой мощности TIP32A
Обратите внимание: данные в этой таблице были составлен из нескольких источников, которые не совсем согласованы! Большинство расхождений незначительны, но, пожалуйста, обратитесь к информации у вашего поставщика, если вам требуются точные данные.
Структура Показывает тип транзистора: NPN или PNP. Полярности двух типов разные, поэтому, если вы ищете замену, она должна быть того же типа.
Стиль корпуса На схеме показаны отведения для некоторых из наиболее распространенных стилей корпуса. в разделе «Подключение» выше. Эта информация также имеется в каталогах поставщиков.
I C макс. Максимальный ток коллектора.
V CE макс. Максимальное напряжение на переходе коллектор-эмиттер.
Вы можете игнорировать это значение в цепях низкого напряжения.
h FE Это усиление по току , (строго по постоянному току). Гарантированное минимальное значение дано, потому что фактическое значение варьируется от транзистор на транзистор — даже для однотипных! Обратите внимание, что текущий коэффициент усиления — это просто число, поэтому у него нет единиц измерения.
Коэффициент усиления часто указывается при определенном токе коллектора I C который обычно находится в середине диапазона транзистора, например «100 @ 20 мА». означает, что усиление составляет не менее 100 при 20 мА. Иногда указываются минимальные и максимальные значения. Поскольку коэффициент усиления примерно постоянный для разных токов, но он меняется в зависимости от транзистора. к транзистору эта деталь действительно интересует только специалистов.
Почему h FE ? Это один из целого ряда параметров транзисторов, каждый со своим собственным символом.Здесь слишком много объяснений.
P до макс. Максимальная общая мощность, которую может развивать транзистор, обратите внимание, что радиатор потребуется для достижения максимального рейтинга. Этот рейтинг важен для транзисторов, работающих как усилители, мощность примерно равна I C × V CE . Для транзисторов, работающих как переключатели, максимальное ток коллектора (I C макс.) важнее.
Категория Это показывает типичное использование транзистора, это хорошая отправная точка при поиске заменитель. В каталогах могут быть отдельные таблицы для разных категорий.
Возможные заменители Это транзисторы с аналогичными электрическими свойствами, которые подойдут заменители в большинстве схем. Однако у них может быть другой стиль корпуса. поэтому будьте осторожны при размещении их на печатной плате.

Дарлингтон пара

Это два транзистора, соединенных между собой так, что усиленный ток с первого усиливается вторым транзистором. Это дает паре Дарлингтонов очень высокий коэффициент усиления по току, например 10000. Пары Дарлингтона продаются в виде полных пакетов, содержащих два транзистора. У них есть три вывода ( B , C и E ) которые эквивалентны выводам стандартного отдельного транзистора.

Вы можете составить свою собственную пару Дарлингтона из двух транзисторов.
Например:

  • Для TR1 используйте BC548B с h FE1 = 220.
  • Для TR2 используйте BC639 с h FE2 = 40.
Общий коэффициент усиления этой пары составляет h FE1 × h FE2 = 220 × 40 = 8800.
Максимальный ток коллектора пары I C (макс.) Такой же, как у TR2.

Главная | Конденсатор | Разъем | Диод | IC | Лампа | LED | Реле | Резистор | Переключатель | Транзистор | Переменный резистор | Другой

© Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker.

Как проверить транзистор?

Отдельный транзистор можно проверить в цепи или вне цепи с помощью тестера транзисторов. Например, предположим, что усилитель на конкретной печатной плате неисправен. Хорошая практика устранения неполадок требует, чтобы вы не распаивали компонент с печатной платы, если вы не уверены, что он неисправен, или вы просто не можете изолировать проблему до одного компонента.При снятии компонентов существует риск повреждения контактов и следов на печатной плате.

Вы можете выполнить внутрисхемную проверку транзистора с помощью тестера транзисторов, аналогичного показанному на рисунке ниже. Три зажима подключаются к клеммам транзистора, и тестер дает положительную информацию о том, исправен ли транзистор.

Тесты в цепи и вне цепи

Корпус 1

Если транзистор неисправен, его следует осторожно удалить и заменить на заведомо исправный.Проверка заменяемого устройства без отключения цепи обычно является хорошей идеей, просто чтобы убедиться, что все в порядке. Транзистор вставляется в гнездо на тестере транзисторов для проверки вне цепи.

Корпус 2

Если транзистор в цепи исправен, но цепь не работает должным образом, проверьте печатную плату на предмет плохого контакта с контактной площадкой коллектора или обрыва в соединительной дорожке. Плохое паяное соединение часто приводит к открытому или высокому сопротивлению контакта.В этом случае очень важна физическая точка, в которой вы фактически измеряете напряжение. Например, если вы измеряете провод коллектора, когда на контактной площадке коллектора есть открытый разрыв, вы будете измерять с плавающей точкой. Если вы измеряете на соединительной дорожке или на проводе R C , вы увидите V CC . Эта ситуация проиллюстрирована на рисунке ниже.

Важность точки измерения при поиске и устранении неисправностей

В случае 2, если бы вы выполнили первоначальное измерение на самом выводе транзистора и открытое отверстие было внутренним по отношению к транзистору, как показано на рисунке ниже, вы бы измерили VCC.Это указывает на неисправность транзистора еще до использования тестера, если предположить, что напряжение между базой и эмиттером в норме. Эта простая концепция подчеркивает важность точки измерения в определенных ситуациях поиска и устранения неисправностей.

идентификация неисправности транзистора

Измерение утечек

Очень малые токи утечки существуют во всех транзисторах, и в большинстве случаев они достаточно малы, чтобы ими можно было пренебречь (обычно нА). Когда транзистор подключен к открытой базе (I B = 0), он находится в отсечке.В идеале I C = 0; но на самом деле существует небольшой ток от коллектора к эмиттеру, как упоминалось ранее, который называется I CEO (ток от коллектора к эмиттеру при разомкнутой базе). Этот ток утечки обычно находится в диапазоне нА. Неисправный транзистор часто имеет чрезмерный ток утечки, и его можно проверить с помощью тестера транзисторов. Другой ток утечки в транзисторах — это обратный ток коллектор-база, I CBO . Измеряется при открытом эмиттере. Если он чрезмерный, вероятно короткое замыкание коллектор-база.

Измерение усиления

В дополнение к тестам на утечку, обычный тестер транзисторов также проверяет β DC . Применяется известное значение I B , и измеряется полученное значение I C . Показание будет показывать значение отношения I C / I B , хотя в некоторых единицах указывается только относительное значение. Большинство тестеров предусматривают внутрисхемную проверку β DC , так что подозрительное устройство не нужно удалять из схемы для тестирования.

Измерители кривых

Измеритель кривой — это прибор осциллографического типа, который может отображать характеристики транзистора, такие как семейство кривых коллектора. В дополнение к измерению и отображению различных характеристик транзистора также могут отображаться диодные кривые.

Как узнать, неисправен ли транзистор

Транзистор — активная электронная часть. Активная электронная часть — это что-то, что может выполнять усиление или обработку сигнала.Транзисторы являются основными элементами усилителей мощности, аудиоусилителей, импульсных преобразователей, источников питания и т. Д. Термин транзистор является довольно общим. Это может быть BJT, MOSFET или JFET. Но для обычных людей (любителей электроники) это обычно относится к BJT. Итак, в этом руководстве мы сосредоточимся на том, как узнать, неисправен ли транзистор, относящийся к BJT.

Если вам интересно узнать о MOSFET, прочтите статью «Как узнать, неисправен ли MOSFET». BJT — это сокращение от Bipolar Junction Transistor.Транзистор может быть типа NPN или PNP. Это активное устройство, способное усиливать и даже переключать действие.

Ниже приведена простая иллюстрация того, как NPN и PNP отличаются друг от друга. Если вам интересно узнать больше об основах, прочтите статью «Принципы и практическое применение NPN-транзисторов».

Конфигурации транзисторов NPN и PNP

Как узнать, неисправен ли транзистор — NPN

Если известно, что транзистор относится к типу NPN, ниже приведены шаги по устранению неполадок, чтобы узнать, неисправен ли транзистор.

Шагов:

1. Достаньте цифровой мультиметр и установите его в диодный режим

2. Подключите положительный щуп цифрового мультиметра к основанию, букве «P» или основанию на приведенном выше рисунке для типа NPN. Подключите отрицательный щуп к «N» или эмиттеру. Хороший транзистор показывает напряжение около 0,7 В. В противном случае плохой транзистор будет читать. В противном случае означает значение, которое находится далеко от уровня 0,7 В. Хороший транзистор обычно показывает около 0,3–0,7 В. для германиевых и кремниевых вариантов.

3. Подключите отрицательный датчик цифрового мультиметра к другому «N» или штырю коллектора. Решение должно быть таким же, как в пункте 2 выше.

4. Попробуйте поменять местами подключения датчиков, указанные в пунктах 2 и 3, теперь показание должно быть 0 В. Это означает, что переход транзистора не проводит, так как он находится в состоянии обратного смещения. Если показание иное, значит, транзистор неисправен.

5. Неисправный транзистор может иметь нулевое сопротивление при измерении через коллектор-эмиттер.

Как узнать, неисправен ли транзистор — PNP

Если известно, что транзистор относится к типу PNP, ниже приведены шаги по поиску и устранению неисправностей, чтобы узнать, неисправен ли транзистор.

Шагов:

1. Достаньте цифровой мультиметр и установите его в диодный режим

2. Подключите положительный щуп цифрового мультиметра к базе или «P» или эмиттеру, как показано на рисунке выше для типа PNP. Подключите отрицательный щуп к «N» или базе. Хороший транзистор показывает напряжение около 0,7 В. В противном случае плохой транзистор будет читать. В противном случае означает значение, которое находится далеко от уровня 0,7 В. Хороший транзистор обычно показывает около 0,3–0,7 В. для германиевых и кремниевых вариантов.

3.Подключите положительный щуп цифрового мультиметра к другому «P» или штифту коллектора. Решение должно быть таким же, как в пункте 2 выше.

4. Попробуйте поменять местами подключения датчиков, указанные в пунктах 2 и 3, теперь показание должно быть 0 В. Это означает, что переход транзистора не проводит, так как он смещен в обратном направлении. Если показание иное, значит, транзистор неисправен.

5. Неисправный транзистор может иметь нулевое сопротивление при измерении через коллектор-эмиттер.

Если тип транзистора неизвестен, как начать диагностику?

В настоящее время легко получить техническое описание любого электронного компонента, если известен номер детали или маркировка корпуса.Однако без них это будет сложно. Возможное решение — разобраться в принципиальной схеме, если она имеется. Типы NPN и PNP имеют разную конфигурацию смещения. Тип NPN всегда имеет положительное питание в своей базовой секции, в то время как заземление на эмиттере и положительное питание снова на коллекторе. С другой стороны, тип PNP имеет заземление на базовой секции и положительный источник на эмиттерной секции.

Примеры схем NPN и PNP

Как насчет отсутствия принципиальной схемы? Подойдет метод проб и ошибок.Следуйте инструкциям ниже.

Шаги по идентификации транзистора NPN:
  1. Подключите положительный щуп цифрового мультиметра к любому выводу или ножке транзистора. Также подключите отрицательный щуп к любой ножке или выводу транзистора, но не к выводу / ножке, на которой установлен положительный пробник. Убедитесь, что цифровой мультиметр установлен в диодном режиме. Наблюдайте за показаниями цифрового мультиметра.
  2. Если показание цифрового мультиметра находится в пределах 0,3–0,7 В, это означает, что один из диодов на переходах транзистора может иметь прямое смещение.
  3. Не снимайте положительный зонд на его месте, пока отсоединяйте отрицательный зонд от ножки / штифта, к которому нет соединения зонда. Если показание цифрового мультиметра по-прежнему составляет около 0,3–0,7 В, то транзистор имеет тип NPN.
  4. Если приведенные выше тесты приводят к обратному, рассмотрите следующие шаги.

Шаги по идентификации PNP-транзистора:
  1. Подключите положительный щуп цифрового мультиметра к любому выводу или ножке транзистора. Также подключите отрицательный щуп к любой ножке или выводу транзистора, но не к выводу / ножке, на которой установлен положительный пробник.Убедитесь, что цифровой мультиметр установлен в диодном режиме. Наблюдайте за показаниями цифрового мультиметра.
  2. Если показание цифрового мультиметра находится в пределах 0,3–0,7 В, это означает, что один из диодов на переходах транзистора может иметь прямое смещение.
  3. Не снимайте отрицательный зонд на его месте, пока снимите положительный зонд с ножки / штифта, который не имеет соединения зонда. Если показание цифрового мультиметра по-прежнему составляет около 0,3–0,7 В, то транзистор относится к типу PNP.

Если вышеуказанные испытания не привели к обратному, транзистор может быть неисправен.Стоит заменить. Вышеупомянутые уроки могут быть только базовыми. Опыт покажет, как узнать, неисправен ли транзистор.

Режим отказа транзистора

Общие режимы отказа транзистора — это закороченный переход база-эмиттер, закороченный переход база-коллектор, закороченный коллектор-эмиттер, открытый коллектор-эмиттер, открытый переход база-эмиттер или открытый переход база-коллектор.

Если вы хотите узнать, как смещать транзистор, прочтите статьи «Полный анализ схемы с фиксированным смещением с использованием транзистора NPN», «Как выбрать транзистор для коммутации и линейных приложений», «Определение режима работы транзистора», «Как Выбор транзистора для коммутации и линейных приложений »,« Как насытить транзистор PNP »,« Как узнать, насыщен ли транзистор? »,« Как довести транзистор до жесткого насыщения ».

Подписаться на electronicsbeliever.com

https://www.facebook.com/electronicsbeliever

Связанные

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *