Site Loader

Содержание

Схемы зарядных устройств


     Классическая зарядка литиевых аккумуляторов, на основе популярной, и одной из самой доступной микросхемы.

13.12.2014 Читали: 72076


     Простое самодельное устройство, предназначенное для недопускания глубокого разряда аккумуляторных батарей различного напряжения и ёмкости.

06.12.2014 Читали: 37106


     Электрическая схема несложной зарядки для 12 В свинцово-кислотных аккумуляторов. Имеется автоматический режим — светодиод мигает, когда батарея заряжена.

03.11.2014 Читали: 38483


     Обзор зарядного устройства BL-12SL. Небольшая китайская зарядка, предназначенная для работы с гелевыми свинцовыми аккумуляторами ёмкостью до 15 ампер.

 

03.04.2014 Читали: 21130


     Схема устройства для подзарядки маленьких дисковых часовых батареек формата AG0 – AG13.
 

26.03.2014 Читали: 33800


     Очередное самодельное зарядное устройство для 12-вольтового аккумулятора авто, собранное на отечественных радиодеталях.

04.03.2014 Читали: 63023


     Мощное самодельное пуско-зарядное на тиристорах, для 24-х вольтовых аккумуляторов.

13.02.2014 Читали: 66426



Лабораторный БП 0-30 вольт

Драгметаллы в микросхемах

Металлоискатель с дискримом

Ремонт фонарика с АКБ

Восстановление БП ПК ATX

Кодировка SMD деталей

Справочник по диодам

Аналоги стабилитронов

Зарядные устройства — полный список схем и документации на QRZ.RU

1Alinco EDC-64 Ni-Cd battery charger1012421.03.2009
2Автоматическая подзарядка аккумуляторов.3109116.06.2003
3Автоматическая подзарядка аккумуляторов. 1785726.03.2006
4Автоматическая приставка к зарядному устройству для авто аккумулятора 180116.11.2016
5Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 204316.11.2016
6Автоматическое зарядное и восстанавливающее устройство (0-10А) 284716.11.2016
7Автоматическое зарядное устройство 138216.11.2016
8Автоматическое зарядное устройство + режим десульфатации для аккумулятора 218816.11.2016
9Автоматическое зарядное устройство для кислотных аккумуляторов 172916.11.2016
10Автоматическое зарядное устройство на микросхеме К561ЛЕ5 157016.11.2016
11Автоматическое зарядное устройство с бестрансформаторным питанием 147016.11.2016
12Автоматическое импульсное зарядное устройство для аккумуляторов 12В 182116.11.2016
13Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов5445817.09.2005
14Автоматическое устройство длязарядки аккумуляторов. 1836517.09.2002
15Бестрансформаторное зарядное устройство для аккумулятора 139116.11.2016
16Бестрансформаторный блок питания большой мощности для любительского передатчика 120416.11.2016
17Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 118516.11.2016
18Бестрансформаторный блок питания с регулируемым выходным напряжением 124116.11.2016
19Бестрансформаторный стабилизированный источник питания на КР142ЕН8 108316.11.2016
20Блок питания 0-12В/300мА 109216.11.2016
21Блок питания 1-29В/2А (КТ908) 129616.11.2016
22Блок питания 12В 6А (КТ827) 148916.11.2016
23Блок питания 60В 100мА 64316.11.2016
24Блок питания Senao-5681044152011.07.2016
25Блок питания Senao-8681116160111.07.2016
26Блок питания автомобильной радиостанции (13.8В, ЗА ) 38616.11.2016
27Блок питания для аналоговых и цифровых микросхем 28916.11.2016
28Блок питания для ионизатора (Люстра Чижевского) 40416.11.2016
29Блок питания для персонального компьютера «РАДИО 86 РК» 31816.11.2016
30Блок питания для телевизора 250В 54316.11.2016
31Блок питания на ТВК-110 ЛМ 5-25В/1А 37516.11.2016
32Блок питания с автоматическим зарядным устройством на компараторе 35616.11.2016
33Блок питания с гасящим конденсатором 38516.11.2016
34Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 40316.11.2016
35Блок питания Ступенька 5 — 9 — 12В на ток 1A 32616.11.2016
36Блок питания усилителя ЗЧ (18В, 12В) 26916.11.2016
37ВСА-5К, ВСА-111К2561948714.03.2010
38Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 45516.11.2016
39Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 27616.11.2016
40Выпрямитель с малым уровнем пульсаций 37016.11.2016
41Высококачественный блок питания на транзисторах (0-12В) 59016.11.2016
42Высокоэффективное зарядное устройство для аккумуляторов 53716.11.2016
43Высокоэффективное зарядное устройство для батарей2168822.11.2004
44Два бестрансформаторных блока питания 34016.11.2016
45Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 30416.11.2016
46Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 38316.11.2016
47Зарядка аккумуляторов с помощью солнечных батарей4716503.02.2003
48Зарядно-пусковое уст-во «Импульс ЗП-02»6741927614.08.2009
49Зарядно-пусковое устройство Старт УПЗУ-У3180154911.03.2017
50Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 89116.11.2016
51Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 64016.11.2016
52Зарядное устройство91887112.07.2007
53Зарядное устройство для Ni-Cd аккумуляторов 48016.11.2016
54Зарядное устройство «КЕДР-АВТО»72162205.10.2009
55Зарядное устройство HAMA TA03C397362407.10.2016
56Зарядное устройство \»Квант\»411337022.10.2008
57Зарядное устройство \»Рассвет-2\»11850123.12.2009
58Зарядное устройство для автомобильного аккумулятора3069721.04.2006
59Зарядное устройство для автомобильного аккумулятора 59616.11.2016
60Зарядное устройство для аккумулятором с током заряда 300 мА 33216.11.2016
61Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 36716.11.2016
62Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов3983204.05.2009
63Зарядное устройство для фонарей ФОС-1451032303.12.2006
64Зарядное устройство до 5 А.311391610.02.2009
65Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 38016.11.2016
66Зарядное устройство с таймером для Ni-Cd аккумуляторов 29016.11.2016
67Зарядное устройство с температурной компенсацией 35616.11.2016
68Зарядное устройство шуруповёрта P.I.T.466240414.07.2016
69Звуковой индикатор разряда 12V аккумулятора1415815.10.2002
70Измеритель заряда для автомобильного аккумулятора 42716.11.2016
71Импульсные источники питания на микросхемах и транзисторах 56916.11.2016
72Импульсные источники питания, теория и простые схемы 98716.11.2016
73Импульсный блок питания 5В 0,2А 44116.11.2016
74Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 25916.11.2016
75Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 41616.11.2016
76Импульсный блок питания УНЧ 4х30В 200Вт 45116.11.2016
77Импульсный источник питания (5В 6А) 26216.11.2016
78Импульсный источник питания на 40 Вт 32016.11.2016
79Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 20916.11.2016
80Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 33216.11.2016
81Импульсный источник питания УМЗЧ (60В) 28916.11.2016
82Импульсный сетевой блок питания 9В 3А (КТ839) 32816.11.2016
83Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 27416.11.2016
84Индикатор ёмкости батарей 37816.11.2016
85Интеллектуальное зарядное устройство1494963022.09.2008
86Источник питания 14В 12А (завод «Фотон», Ташкент)1321101511.07.2016
87Источник питания для автомобильного трансивера 13В 20А 43316.11.2016
88Источник питания для гибридного (лампы, транзисторы) трансивера 27216.11.2016
89Источник питания для детских электрофицированных игрушек 12В 27316.11.2016
90Источник питания для измерительного прибора на микросхемах 27816.11.2016
91Источник питания для измерительных приборов 29716.11.2016
92Источник питания для компьютера 32716.11.2016
93Источник питания для логических микросхем (5В) 27616.11.2016
94Источник питания для трехвольтовых аудиоплейеров 26916.11.2016
95Источник питания для часов на БИС 27516.11.2016
96Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 46016.11.2016
97Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 47116.11.2016
98Источник питания повышенной мощности 14 В, 100 Ватт 34916.11.2016
99Источник питания с плавным изменением полярности +/- 12В 31016.11.2016
100Источник питания со стабилизацией на UL7523 (3В) 27816.11.2016
101Источники питания для варикапа 28116.11.2016
102Квазирезонансные преобразователи с высоким КПД 36016.11.2016
103Кедр-М781526418.11.2007
104Комбинированный блок питания 0-215В/0-12В/0,5А 34816.11.2016
105Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 38316.11.2016
106Конденсаторно-стабилитронный выпрямитель 35316.11.2016
107Лабораторный блок питания для рабочего места (3-18В 4А) 40616.11.2016
108Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 41016.11.2016
109Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 34916.11.2016
110Малогабаритное универсальное зарядное устройство для аккумуляторов 37316.11.2016
111Маломощный источник питания (9В, 70мА) 26216.11.2016
112Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 33816.11.2016
113Маломощный регулируемый двуполярный источник питания (LM317, LM337) 22116.11.2016
114Маломощный сетевой блок питания (9В) 36616.11.2016
115Маломощный сетевой источник питания — выпрямитель на 9В 23616.11.2016
116Миниатюрный импульсный блок питания 5…12 В 38616.11.2016
117Миниатюрный импульсный сетевой блок питания 5В 0,5А 35116.11.2016
118Миниатюрный сетевой блок питания (5В, 200мА) 20316.11.2016
119Мощный блок питания для усилителя НЧ (27В/3А) 31816.11.2016
120Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 74916.11.2016
121Мощный импульсный блок питания для УНЧ (2х50В, 12В) 33216.11.2016
122Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 55816.11.2016
123Мощный лабораторный источник питания 0-25В, 7А 52016.11.2016
124Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 35116.11.2016
125Обзор схем восстановления заряда у батареек 39016.11.2016
126Однополярный источник питания УНЧ (40В) 25616.11.2016
127Питание будильника 1,5В от сети 220В 37616.11.2016
128Питание микроконтролерных устройств от сети 220В 31216.11.2016
129Питание микроконтроллеров от сети 220В через трансформатор 24516.11.2016
130Питание микроконтроллеров от телефонной линии 26616.11.2016
131Питание низковольтной радиоаппаратуры от сети 25816.11.2016
132Поддержание аккумуляторов в рабочем состоянии811804.10.2002
133Подключение таймера к зарядному устройству аварийного аккумулятора 26316.11.2016
134Прецизионное зарядное устройство для аккумуляторов 36216.11.2016
135Прибор для измерения параметров аккумуляторов. 927310.06.2002
136Приставка-контроллер к зарядному устройству аккумулятора 12В 42816.11.2016
137Приставка-регулятор к зарядному устройству аккумулятора 44716.11.2016
138Простейшие пусковые устройства 12В для авто на основе ЛАТРа 53916.11.2016
139Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 49716.11.2016
140Простое зарядное устройство для аккумуляторов (до 55Ач) 44716.11.2016
141Простое зарядное устройство для аккумуляторов и батарей 38916.11.2016
142Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов3264927.06.2006
143Простой блок питания 5В/0,5А (КТ807) 39316.11.2016
144Простой двуполярный источник питания (14-20В, 2А) 27116.11.2016
145Простой импульсный блок питания мощностью 15Вт 31816.11.2016
146Простой импульсный блок питания на ИМС 37116.11.2016
147Простой импульсный источник питания 5В 4А 34716.11.2016
148Пятивольтовый блок питания с ШИ стабилизатором 30316.11.2016
149Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 49116.11.2016
150Регулируемый двуполярный источник питания из однополярного 31816.11.2016
151Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 44916.11.2016
152Регулируемый источник питания на LM317T (1-37В 1,5А) 37716.11.2016
153Регулируемый источник питания на ток до 1 А (К142ЕН12А) 34216.11.2016
154Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 36916.11.2016
155Регуляторы заряда аккумуляторов от солнечных батарей 33516.11.2016
156Самодельное пусковое устройство130215925.06.2017
157Самодельный лабораторный источник питания с регулировкой 0-20В 37916.11.2016
158Сетевая «Крона» 9В/25мА 36616.11.2016
159Симметричный динистор в бестрансформаторном блоке питания 36516.11.2016
160Солнечное зарядное устройство13235147216.04.2014
161Стабилизатор напряжения сети СПН-400 \»Рубин\»261128.06.2012
162Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 31616.11.2016
163Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 32816.11.2016
164Стабилизированный источник питания с автоматической защитой от коротких замыканий 31816.11.2016
165Стабилизированный лабораторный источник питания (0-27В, 500мА) 30616.11.2016
166Схема автоматического зарядного устройства (на LM555) 38216.11.2016
167Схема автоматического зарядного устройства для сотовых телефонов 70116.11.2016
168Схема блока питания и зарядного устройства для iPod4218422.03.2012
169Схема блока питания с напряжением 12В и током 6А 36816.11.2016
170Схема высоковольтного преобразователя (вход 12В, вых — 700В) 33016.11.2016
171Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 45016.11.2016
172Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 54816.11.2016
173Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 23916.11.2016
174Схема зарядного устройства для батарей 35016.11.2016
175Схема зарядного устройства с повышающим преобразователем 31816.11.2016
176Схема измерителя выходного сопротивления батарей 30116.11.2016
177Схема импульсного стабилизатора для зарядки телефона 33416.11.2016
178Схема источника питания 12В, с током в нагрузке до 10 А 45916.11.2016
179Схема контроллера заряда батарей 29316.11.2016
180Схема непрерывного подзаряда батарей 32416.11.2016
181Схема простого зарядного устройства на диодах 30816.11.2016
182Схема стабилизированного источника питания 40В, 1.2А 31816.11.2016
183Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 53916.11.2016
184Схема универсального лабораторного источника питания 36716.11.2016
185Схема устройства для подзаряда батарей 18916.11.2016
186Схемы бестрансформаторного сетевого питания микроконтроллеров 35116.11.2016
187Схемы бестрансформаторных зарядных устройств 33416.11.2016
188Схемы нетрадиционных источников питания для микроконтроллеров 34916.11.2016
189Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 40716.11.2016
190Схемы питания микроконтроллеров от солнечных элементов 36316.11.2016
191Схемы подзарядки маломощных аккумуляторных батарей для питания МК 34016.11.2016
192Схемы простых выпрямителей для зарядки аккумуляторов 45916.11.2016
193Таймер-индикатор разрядки батареи 29516.11.2016
194Тиристорное зарядное устройство на КУ202Е 58016.11.2016
195Универсальное зарядное устройство для маломощных аккумуляторов 36616.11.2016
196Универсальный блок питания с несколькими напряжениями 33416.11.2016
197Устройство автоматической подзарядки аккумулятора1084430.10.2005
198Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 52316.11.2016
199Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 50316.11.2016
200Устройство для поддержания заряда батареи 6СТ-9 32416.11.2016
201Устройство для хранения никель-кадмиевых аккумуляторов 29216.11.2016
202Устройство зарядное автоматическое УЗ-А-12-4,51341571819.04.2006
203Устройство контроля заряда и разряда аккумулятора 12В 46216.11.2016
204Экономичный импульсный блок питания 2×25В 3,5А 40516.11.2016
205Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 32216.11.2016
206Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах617106.10.2002
207Эксплуатация никелево-кадмиевых аккумуляторов при повышенных разрядных токах 292210.06.2002
208Электронный стабилизатор тока для зарядки аккумуляторных батарей 51716.11.2016

Схема автоматического зарядного устройства 12В » Паятель.Ру


Устройство предназначено для поддержания, в заряженном состоянии аккумуляторной батареи 6СТ-9 (номинальное напряжение 12V), которая используется для питания автомобильной СВ-радиостанции за пределами автомобиля. Батарея 6СТ-9 — кислотная, мотоциклетная, емкостью 9 А/час, отличается от автомобильной тем, что значительно меньше и легче.


Опытные автомобилисты знают, что если аккумулятором длительное время не пользоваться он может прийти в негодность.

Поскольку, в конкретном случае, автомобильная СВ-радиостанция в основном работает как стационарная, а в летнее время и для работы с лодки, то система питания построена таким образом: основной источник питания рации это 6СТ-9, во время стационарной работы к этой батареи подключается зарядное устройство, которое включается автоматически при помощи автомата, описанного в этой статье. Таким образом, батарея работает круглый год на режиме «заряд-разряд», то есть в нормальном режиме, на который она рассчитана.

Пока напряжение на аккумуляторной батареи G1 более 11 V напряжение на точке соединения R5 и R6 лежит в пределах логической единицы и на выходе триггера Шмитта D1.1-D1.2 будет единица. Единица инвертируется элементом D1.3 и на вход транзисторного ключа на VT1 и VT2 поступает ноль. Транзисторы закрыты, реле Р1 обесточено и его контакты разомкнуты. Зарядное устройство отключено от электросети.

Как только напряжение на батареи станет 11V и ниже, напряжение в точке соединения R5 и R6 станет ниже порогового и будет восприниматься микросхемой как логический ноль. На выходе элемента D1.2 установится так же ноль, и, под действием R1, напряжение на входе D1.1 станет еще ниже.

На выходе элемента D1.3 будет логическая единица. Это приведет к открыванию транзисторного ключа на VT1 и VT2, далее сработает реле, и его контакты включат зарядное устройство. Аккумулятор начнет заряжаться, и напряжение на нем станет постепенно расти.

Теперь триггер Шмитта находится в устойчивом нулевом состоянии, и он переключится в единичное только тогда, когда напряжение на G1 будет более 13,5 V. В этот момент зарядное зарядное устройство выключится, и будет снова включено только после того, как напряжение на G1 упадет до 11 V и ниже.

Такой режим удобен еще и тем, что позволяет для питания рации, потребляющей ток во время передачи до 10А, использовать сетевой источник (в качестве зарядного устройства), выдающий ток 1-1.5А, и напряжение 15V, при условии, что суммарное время передачи за 12 часов не более 1 часа.

Микросхема D1 питается от подконтрольной батареи, чтобы её изменение напряжения не оказывапо влияние на триггер Шмитта, питание на D1 поступает через параметрический стабилизатор на VD1 и R4. Диод VD2 (Д243) служит препятствием для разрядки батареи через цепи выключенного зарядного устройства.

Микросхему K561ЛA7 можно заменить на любую микросхему К561, К1561 или К176, содержащую не менее 3-х инверторов (К561ЛЕ5, К561ЛН2, К561ЛА9 и т.п.). Стабилитрон VD1 — любой маломощный стабилитрон на напряжение 7… 10 V. Каскад на транзисторах VT1 и VT2 можно заменить одним составным транзистором КТ972.

Реле Р1 — стандартное реле от монтажного блока автомобиля ВАЗ-08-099 (тип 3747.10 или аналогичное). Можно использовать и другое реле с обмоткой на 8-12V и достаточно мощными контактами. Диод Д243 можно заменить на любой другой диод с максимальным прямым током не ниже 3 А.

В качестве зарядного устройства можно использовать зарядное устройство для зарядки автомобильных аккумуляторов, переключенное на ток до 1 -1,5 А, или любой сетевой нестаби-лизированный источник питания, выдающий напряжение +14..16V при токе не ниже 1 А.

Настройка. Нужно отключить зарядное устройство и аккумулятор, вместо аккумулятора подключить лабораторный источник питания с регулируемым выходным напряжением. Поочередно подстраивая R6 и R2, и изменяя напряжение источника от 11 до 16 V, нужно добиться, чтобы реле Р1 включалось при уменьшении напряжения от 14 V до 11 V, а выключалось, при последующем увеличении напряжения до 13,5 V.

Это устройство можно использовать для автоматической зарядки более мощной автомобильной батареи, применив другой VD2, на соответствующий ток зарядки.

Автоматическое зарядное устройство 12 В

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня — отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?


Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства — полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства



Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен — 14,4 В.
Схему можете скачать здесь — http://www.mediafire.com/file/0ldtxs4ma6mt2q2/12V-Auto-Cut-Off-Charger_circuit_By_hawkar_Fariq.pdf Источник: https://sdelaysam-svoimirukami.ru/?do=lastcomments

Печатная плата



Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка


Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.

Смотрите видео работы зарядного устройства



В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.
Original article in English

Схемы зарядных устройств (с использованием LM317, LM338)

В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

этом обладают высокой точностью в поддержании выходного напряжения и тока.
Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

Простейшее зарядное устройство для аккумуляторов 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет.
При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В.
А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока?

Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором.
Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

Как это работает?

Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора.
Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор.
Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

Формула для расчета Rc:

R = 0.6/I, где I — максимальная величина требуемого выходного тока.

Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

Принципиальная схема № 1

Список элементов

Для изготовления описанной выше схемы требуются следующие элементы;
R1 = 240 Ом
R2 = 10 кОм с предварительной установкой
C1 = 1000 мкФ/25 В
Диоды = 1N4007
TR1 = 0-14 В, 1 А

Как подсоединить потенциометр к схеме с LM317 или LM338?

Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.

схема 2

Компактное зарядное устройство аккумуляторов 12В на базе LM338

Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

Почему именно ИС LM338 ?

Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током.
Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338.
Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения.
LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт.
Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока.
Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы.
Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора.
Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

Функционирования схемы (согласно объяснениям +ElectronLover)

«После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

Согласно моим предположениям:
V+ = VCC — 74 мВ
V- = VCC — Ток зарядки x R6
VCC= напряжение на контакте 7 усилителя

Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED.
Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

Схемы простых мощных зарядных устройств для аккумуляторов

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В).
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.

Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.

Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1… VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24… 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.


Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Рис.6

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16… 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Рис.7

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.


В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Рис.8

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

 

АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

   Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор вручную или выбрать уже заложенные в управляющей программе. 

   Основные режимы работы устройства для заложенных в программу предустановок. 

 >>
Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:

первый этап — зарядка стабильным током 0.1С до достижения напряжения14.6В 

второй этап -зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С 

третий этап — поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач. 

четвёртый этап — дозарядка. На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала. 

   Для стартерных АКБ применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается дозарядка.

 >> Режим десульфатации — меню «Тренировка». Здесь осуществляется тренировочный цикл: 10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд. 

 >>
Режим теста батареи позволяет оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ. 

 >> Контрольно-тренировочный цикл. Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда). 

Схема зарядного автомата для 12В АКБ



Принципиальная схема автоматического автомобильного ЗУ



Рисунок платы автоматического автомобильного ЗУ

   Основа схемы — микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

   Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

   Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11. 


   Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. 

   Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. 

   В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

О деталях схемы автоматической зарядки


   Резистор R8 – керамический или проволочный, мощностью не менее 10 Вт, R12 — тоже 10Вт. Остальные — 0.125Вт. Резисторы R5, R6, R10 и R11 нужно применять с допустимым отклонением не хуже 0.5%. От этого будет зависеть точность измерений. Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 


   Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Звукоизлучатель — со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13. 

   ЖКИ – Wh2602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр 


   Налаживание заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «». Нажимаем «Выбор». 


   Далее идет калибровка по току при КУ=10. Теми же кнопками «» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5, R6, R10, R11, R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 секунды устройство перейдет в главное меню. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно подобрать другие резисторы делителя R5, R6, R10, R11, R8, иначе в работе устройства возможны сбои. При точных резисторах поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Переделка БП АТХ под зарядное устройство



Схема электрическая доработки стандартного ATX

   В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.


   Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы — Slon, сборка и тестирование — sterc.

   Форум по АЗУ на МК

   Форум по обсуждению материала АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

Durable and Advanced 12v 1a power supply circuit on Deals

О продуктах и ​​поставщиках:
 Выберите из обширного ассортимента высокопроизводительных, оригинальных, надежных и мощных цепей питания  12v 1a  на Alibaba.com для нескольких жилых и коммерческие нужды. Все продукты, предлагаемые на сайте, имеют высокое качество и сертифицированы регулирующими органами. Продукты, перечисленные на сайте, ориентированы не только на производительность, но и чрезвычайно долговечны, могут выдерживать все виды суровых условий эксплуатации и обеспечивать стабильную производительность на протяжении многих лет.Ведущие  12v 1a цепи питания  поставщиков и оптовиков на сайте предлагают эти продукты по невероятным ценам и огромным скидкам. 

Разнообразная коллекция этих невероятных цепей питания 12 В 1A включает различные разновидности продуктов, которые могут включать и управлять всеми типами бытовых и коммерческих приборов. Эти продукты являются энергоэффективными и, следовательно, помогают сэкономить на счетах за электроэнергию. Эти расходные материалы являются экологически чистыми, а также имеют варианты с покрытием из никеля, меди, стали и золота.Эти продукты оснащены модернизированными функциями, такими как защита от перегрева, защита от перегрузки, контроль напряжения, термостойкость и многое другое, в зависимости от продуктов.

Цепи питания 12v 1a , предлагаемые на Alibaba.com, имеют разную емкость напряжения и имеют разряды высокой интенсивности. Эти продукты имеют принудительное воздушное охлаждение и гибкий режим управления, режим внешнего управления и многое другое. Они используются в таких приложениях, как водородные лампы, холодильники, инверторы, телевизоры, выпрямители, генераторы, плоские светодиодные панели и многое другое.

Просмотрите различные схемы блока питания 12v 1a на Alibaba.com и купите эти продукты по доступной цене. Эти продукты также имеют УФ-регулируемые режимы питания и могут быть настроены по индивидуальному заказу. На некоторых моделях предусмотрен большой ЖК-экран для мониторинга состояния.

схема% 20diagram% 20smps% 2012v% 201a% 20dm0265r техническое описание и примечания по применению

Схема платы питания жк-дисплея

Аннотация: Схема жесткого диска samsung, СХЕМА ОСНОВНОЙ ПЛАТЫ ICh5-M hdd, схема, схема последовательности электропитания, схема samsung, схема зарядного устройства, ddr, схема
Текст: нет текста в файле


Оригинал
PDF 47ент жк-схема платы питания схема samsung hdd ГЛАВНАЯ ПЛАТА ИЧ5-М схема жесткого диска последовательность мощности схематический принципиальная схема samsung принципиальная схема зарядного устройства схема ddr
Принципиальная схема
S

Реферат: 911p «Схема» Схема samsung 943
Текст: нет текста в файле


Оригинал
PDF
Схема платы питания жк-дисплея

Реферат: ICh5-M принципиальная схема lcd samsung samsung dmb samsung ddr принципиальная схема зарядного устройства samsung hdd схема схема датчика ac ddr схема
Текст: нет текста в файле


Оригинал
PDF
СХЕМА VGA плата

Аннотация: Схема телевизора samsung Схема главной платы телевизора Схема телевизора samsung Схема телевизора samsung
Текст: нет текста в файле


Оригинал
PDF
SAMSUNG 834

Аннотация: b527 EXF-0023-05 конфиденциальная информация samsung SHORT13 SAMSUNG 840 схема samsung 822
Текст: нет текста в файле


Оригинал
PDF
Схема
samsung

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Схема клавиатуры и тачпада

Аннотация: Схема сенсорной панели Схема Схема платы модема ЖК-схема платы питания RB5C478 RJ11 4-контактный разъем печатной платы 4.Резистор 7кОм ВА41-00037А К935У
Текст: нет текста в файле


Оригинал
PDF S630 / S670 W48S87-72HTR схема клавиатуры и тачпада схема тачпада Схематические диаграммы схематическая плата модема жк-схема платы питания RB5C478 4-контактный разъем для печатной платы RJ11 4,7 кОм резистор BA41-00037A K935U
Принципиальные схемы

Аннотация: SHEET30 Samsung P40 samsung 943 «Принципиальные схемы» принципиальной платы
Текст: нет текста в файле


Оригинал
PDF
условные обозначения

Аннотация: Навигатор проекта ispLEVER с использованием иерархии в схеме интерфейса lpc дизайна VHDL
Текст: нет текста в файле


Оригинал
PDF
2008 — КОД VHDL К ИНТЕРФЕЙСУ ШИНЫ LPC

Аннотация: условные обозначения FD1S3IX LCMXO256C TQFP100 простой проект vhdl
Текст: нет текста в файле


Оригинал
PDF
Схема
samsung

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
samsung

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF
Схема карты
pci

Аннотация: s850 pc card memory schematic s820 schematic s820
Текст: нет текста в файле


Оригинал
PDF S820 / S850 схема карты pci s850 схема памяти карты ПК схема s820 s820
6143

Аннотация: Схема телефонного интерфейса Схема входа SPDIF Схема подключения монитора аудиоустройства Электронная схема WM8350 Eh21
Текст: нет текста в файле


Оригинал
PDF 6143-EV1-REV3 WM8350 6143 схема телефонного интерфейса ввод spdif схематический принципиальная схема аудиоустройства схема монитора электронная схема Eh21
2005 — Полный отчет по счетчику объекта

Аннотация: решетчатая логика Полный отчет по счетчику объектов с использованием семисегментного дисплея LC4256V Руководство по проектированию ABEL Руководство по проектированию ABEL-HDL Справочное руководство по ABEL-HDL
Текст: нет текста в файле


Оригинал
PDF
Схема
светодиодная лампа samsung

Аннотация: samsung p28 Samsung 546 схема платы питания жк-дисплея СХЕМА Плата VGA Схема платы жк-контроллера Схема самсунг жк-дисплей samsung GFX 49 жк-схемы samsung северный мост
Текст: нет текста в файле


Оригинал
PDF
схема

Аннотация: принципиальная электронная схема D-10 D-12 D-16 D-18 конструкция LXD9784
Текст: нет текста в файле


Оригинал
PDF LXD9784 схематический схемы электронная схема D-10 D-12 D-16 D-18 дизайн
Поворотные переключатели

Аннотация: Ползунковые переключатели EG1218 EG1206A EG1206 EG1205A EG1205 EG1201A EG1201 EG-2215
Текст: нет текста в файле


Оригинал
PDF 500 В постоянного тока EG4319 EG4319A Поворотные переключатели Ползунковые переключатели EG1218 EG1206A EG1206 EG1205A EG1205 EG1201A EG1201 EG-2215
2008 — WM8741

Аннотация: WM8741-6060-DS28-EV2-REV1 wolfson microelectronics wm8741 схема WM8741-6060-DS28EV2-REV1 DS28 Eh21
Текст: нет текста в файле


Оригинал
PDF WM8741-6060-DS28-EV2-REV1 WM8741 WM8741-6060-DS28-EV2-REVдля WM8741 WM8741-6060-DS28-EV2-REV1 wolfson microelectronics wm8741 схематический WM8741-6060-DS28EV2-REV1 DS28 Eh21
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF EG1206A EG1206 EG4319 EG4319A
2009 — 6220-EV1-REV1

Аннотация: Принципиальная схема аудиоустройства Eh21 6220e WM8993
Текст: нет текста в файле


Оригинал
PDF 6220-EV1-REV1 WM8993 2009бл 6220-EV1-REV1 WM8993 принципиальная схема аудиоустройства Eh21 6220e
Поворотные переключатели

Аннотация: eg1271a EG2210A EG2201B EG2201A EG2201 EG1271 EG1206A EG1206 TACT SWITCH лист данных
Текст: нет текста в файле


Оригинал
PDF EG1206A EG1206 EG4319 EG4319A Поворотные переключатели eg1271a EG2210A EG2201B EG2201A EG2201 EG1271 EG1206A EG1206 Техническое описание TACT SWITCH
1997 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF EPE6087A EPE6165S EPE6173S EPE6046S EPE6062S EPE6065S EPE6141S EPE6172AS EPE6174 EPE6177
dffeas

Аннотация: техническое описание конечного автомата Verilog code обработка изображений, фильтрация, серия RTL, ИБП, схематическая диаграмма QII51013-7.
Текст: нет текста в файле


Оригинал
PDF QII51013-7 dffeas таблица конечного автомата Verilog код обработка изображений фильтрация серия RTL принципиальная схема ИБП Органы управления станком карта Карно СХЕМА FLIPFLOP принципиальная схема счетчика
2009 — RTL серии

Аннотация: принципиальная схема TTL OR Gates UG685
Текст: нет текста в файле


Оригинал
PDF UG685 серия RTL схематический схема TTL OR Gates UG685

Схема автоматического 12-вольтового портативного зарядного устройства с использованием LM317

Вы когда-нибудь пытались разработать зарядное устройство, которое заряжает аккумулятор автоматически, когда напряжение аккумулятора ниже заданного напряжения? В этой статье объясняется, как разработать автоматическое зарядное устройство.

Зарядное устройство, расположенное ниже, автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, то схема автоматически заряжает аккумулятор.

Схема автоматического зарядного устройства 12 В Принципиальная схема автоматического зарядного устройства

Эта схема автоматического зарядного устройства в основном состоит из двух частей — блока питания и блока сравнения нагрузок.

Основное напряжение питания 230 В, 50 Гц подключено к первичной обмотке центрального ответвительного трансформатора для понижения напряжения до 15–0–15 В.

Выход трансформатора подключен к диодам D1, D2. Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется исправлением. Пульсирующее напряжение постоянного тока подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.

Таким образом на выходе конденсатора нерегулируется постоянное напряжение.Это нерегулируемое напряжение постоянного тока теперь подается на регулятор переменного напряжения LM317 для обеспечения регулируемого напряжения постоянного тока.

Выходное напряжение этого регулятора напряжения изменяется от 1,2 В до 37 В, а максимальный выходной ток этой ИС составляет 1,5 А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10 кОм, который подключен к регулировочному выводу LM317.

[Также читайте: Как сделать регулируемый таймер]

Выход регулятора напряжения Lm317 подается на батарею через диод D5 и резистор R5.Здесь диод D5 используется для предотвращения разряда батареи при отключении основного питания.

При полной зарядке аккумулятора стабилитрон D6, подключенный в обратном направлении, проводит ток. Теперь база транзистора BD139 NPN получает ток через стабилитрон, так что полный ток заземлен.

В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.

Выходное видео:
Принцип схемы

Если напряжение аккумулятора ниже 12 В, то ток от микросхемы LM317 протекает через резистор R5 и диод D5 к аккумулятору.В это время стабилитрон D6 не будет проводить, потому что аккумулятор забирает весь ток для зарядки.

Когда напряжение батареи повышается до 13,5 В, ток в батарею прекращается, и стабилитрон получает достаточное напряжение пробоя и пропускает ток через него.

Теперь база транзистора получает ток, достаточный для включения, так что выходной ток регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод указывает на полный заряд.

Настройки зарядного устройства

Выходное напряжение зарядного устройства должно быть меньше, чем в 1,5 раза от аккумулятора, а ток зарядного устройства должен составлять 10% от тока аккумулятора. Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.

ПРИМЕЧАНИЕ : Также получите представление о том, как построить схему индикатора уровня заряда аккумулятора?

2. Автоматическое зарядное устройство

Принципиальная схема

В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов.Это схема импульсного типа зарядного устройства, которая помогает продлить срок службы батарей. Работа этой схемы объясняется ниже.

LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон 15 В используется для настройки LM317 на подачу напряжения 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включен выходом 555, вывод ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.

LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2.5 В на неинвертирующую клемму (контакт 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующий вывод (вывод 2) LM358.

Когда заряд аккумулятора достигает 14,5 В, входной сигнал инвертирующего терминала LM358 немного больше 2,5 В на контакте 3, установленном LM336. Это повысит выход 555.

В результате горит красный светодиод и транзистор включается. Это приведет к заземлению вывода ADJ на LM317, и его выход упадет до 1,3 В.

Когда заряд в АКБ падает ниже 13.8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение течет от LM317 к аккумулятору, и зеленый светодиодный индикатор светится, указывая на зарядку.

[Связанное сообщение Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]

3. Зарядное устройство с использованием SCR

В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Его можно использовать для зарядки аккумуляторов 12 В. Батареи с разным потенциалом, например, 6 В и 9 В, также можно заряжать, выбрав соответствующие компоненты.Схема работы следующая.

Источник переменного тока преобразуется в 15 В постоянного тока с помощью трансформатора и мостового выпрямителя, при этом загорается зеленый светодиод. Выход постоянного тока представляет собой пульсирующий постоянный ток, поскольку после выпрямителя нет фильтра.

Это важно, поскольку тиристор перестает проводить ток, только когда напряжение питания равно 0 или когда он отключен от источника питания, и это возможно только при пульсирующем постоянном токе.

Первоначально SCR1 начинает проводить, поскольку он получает напряжение затвора через R2 и D5.Когда SCR1 является проводящим, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда аккумулятор почти полностью заряжен, он препятствует прохождению тока, и ток начинает течь через R5.

Это фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает напряжение затвора на SCR2, достаточное для его включения.

В результате ток протекает через SCR2 через R2, и SCR1 отключается, так как напряжение затвора и напряжение питания отключены.Красный светодиод горит, указывая на полную зарядку аккумулятора.

Знайте, как спроектировать схему автоматического отключения и автоматической зарядки аккумулятора с помощью SCR.

Портативные зарядные устройства 1A-6A — Sterling Power Products

Портативное зарядное устройство 12В 1А

Портативный аккумулятор для медленной зарядки 230 В переменного тока, только 50 Гц

Напряжение постоянного тока Амперы Вилка переменного тока Д x Ш x Г мм Вес, кг Номер детали
12 1 Британский 135 х 50 х 40 0.35 B121
12 1 Евро (Schuko) 135 х 50 х 40 0,35 E121

Характеристики

Светодиодный дисплей, отображает состояние зарядки и неисправности. Защита от перегрева / короткого замыкания / обратной полярности. Защита от низкого входного напряжения и перенапряжения.
Подходит для использования с длительным плаванием / хранением аккумулятора. Постоянный заряд 13,9 В Изолированные зажимы для зарядки
Емкость аккумулятора Ач, до 120 Ач. Вилки на выбор: британские или европейские. Автоматический запуск.

Портативное зарядное устройство 12В 3А

Портативное зарядное устройство, управляемое микропроцессором, только 230 В переменного тока, 50 Гц. Включая функции обслуживания аккумуляторной батареи, защиты от десульфатации и спасения аккумуляторной батареи.

Напряжение постоянного тока Амперы Вилка переменного тока Д x Ш x Г мм Вес, кг Каталожный номер
6 и 12 3 Британский 170 х 110 х 55 0,45 B123
6 и 12 3 Евро (Schuko) 170 х 110 х 55 0.45 E123

Характеристики

Светодиодный дисплей, отображает состояние зарядки и неисправности.

Система диагностики неисправностей. Защита от перегрева / короткого замыкания / обратной полярности.

Защита от низкого входного напряжения и перенапряжения.

Подходит для использования с длительным плаванием / хранением аккумулятора.

Автоматические 4-х ступенчатые профили зарядки.

Регулируемый зарядный ток. Омоложение аккумулятора, функция пульса (цикл десульфатации). Изолированные зарядные зажимы.
Подходит для использования на открытом воздухе только в сухих условиях. Аккумуляторная батарея емкостью до 120 Ач. Вилки британского или европейского производства на выбор
Автоматический запуск. Варианты зарядки аккумуляторов 6В и 12В.

Портативное зарядное устройство 12В 4А

Только портативные зарядные устройства, управляемые микропроцессором, 230 В переменного тока, 50 Гц.Включая функции обслуживания аккумуляторной батареи, защиты от сульфатирования и спасения аккумуляторной батареи.

постоянного тока Амперы Вилка переменного тока Д x Ш x Г мм Вес кг Каталожный номер
12 4 Британский 160 х 60 х 45 0,6 B124
12 4 Евро (Schuko) 160 х 60 х 45 0.6 E124

Характеристики

Светодиодный дисплей, отображает состояние зарядки и неисправности. Система диагностики неисправностей. Защита от перегрева / короткого замыкания / обратной полярности.
Защита от низкого входного и перенапряжения.

Подходит для использования с длительным плаванием / хранением аккумулятора.

Автоматические 4-х ступенчатые профили зарядки.
Регулируемый зарядный ток. Омоложение аккумулятора, функция пульса (цикл десульфатации). Изолированные зарядные зажимы.
Подходит для использования на открытом воздухе только в сухих условиях. Аккумуляторная батарея емкостью до 120 Ач. Вилки на выбор: британские или европейские.
Автоматический запуск.

Портативное Ba ttery Зарядное устройство 12В 5А

Только портативные зарядные устройства, управляемые микропроцессором, 230 В переменного тока, 50 Гц.

Напряжение постоянного тока Амперы Вилка переменного тока Размер Д x Ш x Г мм Вес, кг Каталожный номер
6 и 12 5 Британский 180 х 100 х 55 0,62 B125
6 и 12 5 Евро (Schuko) 180 х 100 х 55 0.62 E125

Характеристики

Светодиодный дисплей, отображает состояние зарядки и неисправности.

Система диагностики неисправностей. Защита от перегрева / короткого замыкания / обратной полярности.
Защита от низкого входного и перенапряжения. Подходит для использования с длительным плаванием / хранением аккумулятора. Автоматические 4-х ступенчатые профили зарядки.
Регулируемый зарядный ток. Омоложение аккумулятора, функция пульса (цикл десульфатации). Изолированные зарядные зажимы.
Подходит для использования на открытом воздухе только в сухих условиях.

Аккумуляторная батарея емкостью до 120 Ач.

На выбор британские или европейские вилки.
Автоматический запуск.

Варианты зарядки аккумулятора 6 В (и 12 В).

Портативное зарядное устройство 12В 6А

Портативные зарядные устройства, управляемые микропроцессором, только 230 В переменного тока, 50 Гц

Напряжение постоянного тока Амперы Вилка переменного тока Размер Д x Ш x Г мм Вес, кг Номер детали
6 и 12 6 Британский 180 х 100 х 55 0.72 B126
6 и 12 6 Евро (Schuko) 180 х 100 х 55 0,72 E126

Характеристики

Светодиодный дисплей, отображает состояние зарядки и неисправности Система диагностики неисправностей
Защита от перегрева / короткого замыкания / обратной полярности Защита от низкого входного напряжения и перенапряжения

Подходит для использования с длительным плаванием / хранением аккумулятора

Автоматический четырехступенчатый процесс зарядки
Регулируемый зарядный ток Омоложение аккумулятора, функция пульса (цикл десульфатации)
Изолированные зарядные зажимы Только для наружного применения в сухих условиях
Емкость аккумулятора Ач, до 120 Ач Вилки британского или европейского производства на выбор

Автоматический запуск

Варианты зарядки аккумулятора 6 В (и зарядка 12 В).

Полное руководство по использованию правильного зарядного устройства или адаптера питания (и что произойдет, если вы этого не сделаете)

Подождите! Тот факт, что вилка универсального адаптера подходит к вашему ноутбуку или телефону, не означает, что им безопасно пользоваться. Прочтите это руководство по поиску подходящего зарядного устройства или адаптера питания.

На прошлых выходных я сел и перебрал всю свою беспорядочную хлам электроники.В рамках этого процесса я взял все свои блоки питания и адаптеры и бросил их в коробку. В итоге получился довольно большой ящик. Готов поспорить, что в любой семье есть дюжина или более различных типов зарядных устройств для сотовых телефонов, адаптеров переменного / постоянного тока, блоков питания, кабелей питания и вилок зарядных устройств.

Наличие такого количества зарядных устройств может быть довольно неприятным. Их легко отделить от телефона, ноутбука, планшета или маршрутизатора. И как только это произойдет, может быть сложно понять, что к чему.Решение по умолчанию — пробовать случайные штекеры, пока не найдете тот, который подходит к вашему устройству. Однако это большая авантюра. Если вы возьмете несовместимый адаптер питания, в лучшем случае он будет работать, хотя и не так, как задумал производитель. Второй наихудший сценарий — вы обжариваете гаджет, который пытаетесь включить. В худшем случае вы сожжете свой дом.

В этой статье я расскажу, как рыться в ящике для мусора и найти подходящий адаптер питания для вашего устройства.Затем я расскажу, почему это так важно.

В двух словах:

  • Следующее может привести к повреждению вашего устройства:
    • Обратная полярность
    • Адаптер более высокого напряжения, чем номинал устройства
  • Следующее может повредить ваш шнур питания или адаптер:
    • Обратная полярность
    • Адаптер тока ниже номинала устройства
  • Следующее может не привести к повреждению, но устройство не будет работать должным образом:
    • Адаптер напряжения ниже номинала устройства
    • Адаптер тока выше номинала устройства

A Очень Краткое введение в электрическую терминологию

Каждый адаптер питания переменного / постоянного тока специально разработан для приема определенного входа переменного тока (обычно стандартного выхода из розетки переменного тока 120 В в вашем доме) и преобразования его в конкретный выход постоянного тока.Точно так же каждое электронное устройство специально предназначено для приема определенного входного постоянного тока. Главное — согласовать выход постоянного тока адаптера со входом постоянного тока вашего устройства. Определение выходов и входов ваших адаптеров и устройств — сложная часть.

Адаптеры питания немного похожи на консервы. Некоторые производители помещают на этикетку много информации. Другие приводят лишь некоторые детали. А если на этикетке нет информации, действуйте с особой осторожностью.

Самыми важными деталями для вас и вашей тонкой электроники являются напряжение и ток .Напряжение измеряется в вольтах (В), а ток — в амперах (А). (Вы, вероятно, также слышали о сопротивлении (Ом), но обычно это не отображается на адаптерах питания.)

Чтобы понять, что означают эти три термина, полезно думать об электричестве как о протекающей через него воде. труба. В этой аналогии напряжение будет давлением воды. Ток, как следует из этого термина, относится к скорости потока. А сопротивление зависит от размера трубы. Настройка любой из этих трех переменных увеличивает или уменьшает количество электроэнергии, отправляемой на ваше устройство.Это важно, потому что слишком мало энергии означает, что ваше устройство не будет заряжаться или работать правильно. Слишком большая мощность генерирует избыточное тепло, которое является проклятием чувствительной электроники.

Другой важный термин, который необходимо знать, — это полярность . Есть положительный полюс (+) и отрицательный полюс (-). Для работы адаптера положительная вилка должна совпадать с отрицательной розеткой или наоборот. По своей природе постоянный ток — это улица с односторонним движением, и ничего не получится, если вы попытаетесь подняться по водосточной трубе.

Если вы умножите напряжение на ток, вы получите мощности .Но одно только количество ватт не скажет вам, подходит ли адаптер для вашего устройства.

Чтение этикетки адаптера переменного / постоянного тока

Если производитель был достаточно умен (или был вынужден по закону) включить выход постоянного тока на этикетку, вам повезло. Посмотрите на «кирпичную» часть адаптера и найдите слово ВЫХОД. Здесь вы увидите вольты, за которыми следует символ постоянного тока, а затем — ток.

Символ постоянного тока выглядит следующим образом:

Чтобы проверить полярность, найдите знак + или — рядом с напряжением.Или поищите диаграмму, показывающую полярность. Обычно он состоит из трех кругов, с плюсом или минусом по бокам и сплошным кружком или С в середине. Если знак + справа, значит, адаптер имеет положительную полярность:

Если справа есть знак -, значит, он имеет отрицательную полярность:

Затем вы хотите посмотреть на свое устройство вход постоянного тока. Обычно вы видите, по крайней мере, напряжение около розетки постоянного тока. Но вы также хотите убедиться, что текущие совпадения тоже.

Вы можете найти напряжение и ток в другом месте устройства, на дне или внутри крышки батарейного отсека или в руководстве. Опять же, обратите внимание на полярность, отмечая символ + или — или диаграмму полярности.

Помните: вход устройства должен быть таким же , что и выход адаптера. Это включает полярность. Если устройство имеет вход постоянного тока +12 В / 5,4 А, приобретите адаптер с выходом постоянного тока + 12 В / 5,4 А. Если у вас есть универсальный адаптер, убедитесь, что он имеет соответствующий номинальный ток, и выберите правильную полярность напряжения и .

Подделка: что произойдет, если вы воспользуетесь неправильным адаптером?

В идеале у адаптера и устройства должны быть одинаковое напряжение, сила тока и полярность.

Но что, если вы случайно (или намеренно) используете не тот адаптер? В некоторых случаях вилка не подходит. Но во многих случаях к вашему устройству подключается несовместимый адаптер питания. Вот что вы можете ожидать в каждом сценарии:

  • Неправильная полярность — Если вы измените полярность, может произойти несколько вещей.Если повезет, ничего не произойдет и никаких повреждений не произойдет. Если вам не повезет, ваше устройство будет повреждено. Есть и золотая середина. Некоторые ноутбуки и другие устройства включают защиту от полярности, которая по сути представляет собой предохранитель, который перегорает, если вы используете неправильную полярность. В этом случае вы можете услышать хлопок и увидеть дым. Но устройство может по-прежнему работать от аккумулятора. Однако ваш вход постоянного тока будет тостом. Чтобы исправить это, замените предохранитель защиты полярности или обратитесь в сервисный центр. Хорошая новость в том, что основная схема не перегорела.
  • Слишком низкое напряжение — Если напряжение на адаптере ниже, чем у устройства, но ток такой же, то устройство может работать, хотя и нестабильно. Если мы вернемся к нашей аналогии напряжения с давлением воды, это будет означать, что у устройства «низкое кровяное давление». Эффект от низкого напряжения зависит от сложности устройства. Динамик, например, может быть нормальным, но он не станет таким громким. Более сложные устройства будут давать сбои и могут даже отключиться при обнаружении пониженного напряжения.Обычно пониженное напряжение не приводит к повреждению или сокращению срока службы вашего устройства.
  • Слишком высокое напряжение — Если адаптер имеет более высокое напряжение, но ток такой же, то устройство, скорее всего, отключится при обнаружении перенапряжения. В противном случае он может нагреться сильнее, чем обычно, что может сократить срок службы устройства или вызвать немедленное повреждение.
  • Слишком высокий ток — Если у адаптера правильное напряжение, но ток больше, чем требуется для входа устройства, проблем не должно быть.Например, если у вас есть ноутбук, который требует входа постоянного тока 19 В / 5 А, но вы используете адаптер постоянного тока 19 В / 8 А, ваш ноутбук по-прежнему будет получать необходимое напряжение 19 В, но потребляет только 5 А. Что касается тока, то устройство делает все возможное, и адаптеру придется выполнять меньше работы.
  • Слишком низкий ток — Если у адаптера правильное напряжение, но номинальный ток адаптера ниже, чем на входе устройства, может произойти несколько вещей. Устройство может включиться и потреблять от адаптера больше тока, чем предназначено.Это может привести к перегреву адаптера или выходу его из строя. Или устройство может включиться, но адаптер может не справиться с этим, что приведет к падению напряжения (см. слишком низкое напряжение выше). Для ноутбуков, работающих с адаптерами с пониженным током, вы можете видеть заряд аккумулятора, но ноутбук не включается или может работать от питания, но аккумулятор не заряжается. Итог: использовать адаптер с более низким номинальным током — плохая идея, поскольку это может вызвать перегрев.

Вы ожидаете увидеть все вышеперечисленное, основываясь на простом понимании полярности, напряжения и тока.В этих прогнозах не принимается во внимание различная защита и универсальность адаптеров и устройств. Производители также могут немного смягчить свои рейтинги. Например, ваш ноутбук может быть рассчитан на ток 8А, но на самом деле он потребляет только около 5А. И наоборот, адаптер может быть рассчитан на 5А, но может выдерживать токи до 8А. Кроме того, некоторые адаптеры и устройства будут иметь функции переключения или обнаружения напряжения и тока, которые будут регулировать выход / потребление в зависимости от того, что необходимо.И, как упоминалось выше, многие устройства автоматически отключаются до того, как это приведет к повреждению.

При этом я не рекомендую подделывать маржу, предполагая, что вы можете с помощью своих электронных устройств проехать на 5 миль в час сверх установленной скорости. На это есть причина, и чем сложнее устройство, тем больше вероятность того, что что-то пойдет не так.

Есть какие-нибудь предостережения об использовании неправильного адаптера переменного / постоянного тока? Предупреждайте нас в комментариях!

П.Адаптеры S. Wall, дающие вам USB-порт для зарядки, не так уж сложны. Стандартные USB-устройства имеют напряжение постоянного тока 5 В и ток до 0,5 А или 500 мА только для зарядки. Это то, что позволяет им хорошо работать с портами USB на вашем компьютере. Большинство настенных USB-адаптеров представляют собой адаптеры на 5 В и имеют номинальный ток значительно выше 0,5 А. Настенный USB-адаптер для iPhone, который я держу в руке, имеет напряжение 5 В / 1 А. Вам также не о чем беспокоиться. полярность с USB. USB-штекер — это USB-штекер, и все, о чем вам обычно нужно беспокоиться, это форм-фактор (например.г., микро, мини или стандартный). Кроме того, USB-устройства достаточно умны, чтобы отключать устройства, если что-то не так. Следовательно, часто встречается сообщение «Зарядка не поддерживается с этим аксессуаром».

Изображение функции от Qurren — GFDL (http://www.gnu.org/copyleft/fdl.html) или CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) /), через Wikimedia Commons

Могу ли я использовать зарядное устройство с таким же напряжением, но с разной силой тока?

Вольт и ампер вместе сбивают с толку.

(Изображение: canva.com)

Зарядные устройства и блоки питания бывают самых разных конфигураций. Выбор подходящего очень важен. Я посмотрю на несколько параметров.

Я хотел бы знать, можно ли использовать другое зарядное устройство для моего нетбука. Изначально характеристики зарядного устройства были 19 В и 1,58 А. Этого зарядного устройства больше нет, и я могу найти только 19 В и 2,15 А. Могу я использовать это как замену?

Да, конечно, с некоторыми оговорками.

Если он не предназначен специально для вашего компьютера, выбор правильного источника питания важен и требует согласования напряжения, силы тока и полярности.

У каждого разные ограничения.

Вольт, ампер и совместимость

В общем, для источников питания или зарядных устройств:

  • Выходное напряжение должно совпадать.
  • Выходная мощность , сила тока должна соответствовать или быть больше требуемой.
  • Полярность выходного соединения должна быть правильной.

Входное линейное напряжение (настенное или «сетевое» питание) должно поддерживаться, но не связано с совместимостью с заряжаемым или запитанным устройством.

Напряжение

Напряжение, обеспечиваемое вашим зарядным устройством, должно соответствовать ожидаемому для заряжаемого устройства.

При замене зарядного устройства это легко определить: оно будет указано на старом зарядном устройстве. В вашем случае старое зарядное устройство подавало 19 вольт, поэтому ваша замена также должна быть 19 вольт.

Очень важно получить правильное напряжение. Некоторые устройства допускают вариации и работают нормально. У других, к сожалению, нет. В зависимости от того, насколько подаваемое напряжение отличается от требуемого, устройство может просто выйти из строя, оно может работать «как бы» или может показаться, что оно будет работать за счет гораздо более короткого срока службы.

Если напряжение падает слишком сильно, это может повредить ваше устройство.

И вот в чем проблема: невозможно сказать, чего достаточно, а чего слишком много. Это зависит от устройства к устройству. Некоторые могут выдерживать широкий диапазон входных напряжений, в то время как другие чрезвычайно чувствительны даже к малейшей ошибке.

Избегайте всех этих неизвестных моментов и убедитесь, что с самого начала вы получаете именно правильное напряжение.

Сила тока

Предоставленная сила тока против требуемой силы тока

Номинальная сила тока блока питания или зарядного устройства Результат
Больше, чем требуется для устройства Аппарат работает.
Соответствует требованиям устройства Аппарат работает.
Меньше, чем нужно устройству Устройство может выйти из строя, работать или медленно заряжаться, блок питания может перегреться, может повредить заряжаемое устройство — все зависит от величины разницы.

Сила тока, обеспечиваемая зарядным устройством, должна соответствовать или превышать силы тока, необходимой для заряжаемого устройства.

Максимальный номинальный ток зарядного устройства или источника питания , который он может обеспечить. Заряжаемое устройство потребляет ровно столько силы тока, сколько требуется . Если вашему устройству требуется 0,5 ампера для зарядки, а ваше зарядное устройство рассчитано на 1,0 ампера, будет использоваться только 0,5 ампера.

Проблема, конечно, в обратном: если вашему устройству требуется 1,0 ампер, а ваше зарядное устройство рассчитано только на 0,5 ампера, то может возникнуть любая из нескольких проблем:

  • Зарядка может вообще не работать.
  • Устройство может заряжаться очень медленно.
  • Блок питания может перегреться.
  • Заряжаемое устройство может быть повреждено.

Таким образом, до тех пор, пока вы замените блок питания на блок, способный обеспечить на или более ампер больше, чем предыдущий, все будет в порядке. Чтобы было ясно: нет ничего плохого в том, чтобы иметь зарядное устройство, способное обеспечить больше ампер, чем необходимо.

Полярность

Полярность подключения зарядного устройства к устройству должна быть правильной.

Большинство источников питания имеют выход на два провода: один с маркировкой (+) или положительный, а другой (-) или отрицательный.Какой из проводов называется полярностью.

Полярность должна совпадать.

Вот загвоздка: то, что физическая вилка подходит к вашему устройству , не означает, что полярность правильная .

Пример индикатора полярности. (Изображение: Три четверти десять, CC BY-SA 3.0, через Wikimedia Commons)

В частности, когда речь идет о популярных круглых разъемах питания, убедитесь, что ожидания соответствуют ожиданиям. Если устройство ожидает, что центральный разъем будет положительным, а внешнее кольцо — отрицательным, разъем источника питания должен совпадать .От этого никуда не деться.

Неправильная установка в лучшем случае просто не работает, но в худшем случае может повредить устройство.

Внимательно посмотрите на индикаторы на блоке питания и на устройстве.

Хорошая новость в том, что есть стандарты, в которых полярность всегда правильная. Источники питания USB, например, одинаковы, несмотря ни на что.

Входное напряжение

Входное напряжение, также известное как «сеть» или линейное напряжение, конечно, имеет решающее значение.Подключите устройство, рассчитанное на 110 вольт, к розетке 220 вольт, и вы, вероятно, увидите искры, а затем темноту при срабатывании автоматического выключателя. Вы также можете повредить устройство.

В большинстве случаев.

А вот с современными блоками питания работает практически все.

Если вы внимательно посмотрите на мелкий шрифт на многих блоках питания, вы увидите, что они рассчитаны на напряжение от 100 до 250 вольт. Это означает, что большинство из них могут работать по всему миру, не имея ничего, кроме адаптера для учета физических различий в вилках — трансформатор напряжения не требуется.

Конечно, проверяйте источники питания перед поездкой, но это очень и очень удобно.

Важно : входное напряжение и сила тока не связаны с совместимостью зарядного устройства с вашим устройством. Для вашего устройства важны выходное напряжение и номинальная сила тока.

Медленный компьютер?

Ускорьтесь с моим специальным отчетом: 10 причин, по которым ваш компьютер работает медленно , теперь обновлено для Windows 10.

СЕЙЧАС: назовите свою цену! Вы сами решаете, сколько платить — и да, это означает, что вы можете получить этот отчет совершенно бесплатно , если захотите. Получите свою копию прямо сейчас!

12v 1a Источники питания | КТК Великобритания

15DYS812-120100W-3

PW04136

12 В, 1 А, 12 Вт, подключаемый блок питания (уровень VI), 2.Заглушка 1 мм

ИДЕАЛЬНАЯ СИЛА

• Высокая надежность • Фиксированный штекер UK • 100% тестирование ATE • Штекерный разъем постоянного тока 2,1×5,5 мм • Встроенная защита от перенапряжения, перегрузки по току и короткого замыкания • Соответствие нормам эффективности VI уровня • Одобрено CE-EMC, LVD , RoHS и REACH • Универсальный вход: …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В Положительный центр заглушки ствола 2.1 мм x 5,5 мм Зафиксированный От 90 В до 264 В переменного тока Великобритания
59РКПО-UK1201000CD-2

PW04324

12 В, 1 А, 12 Вт, линейный блок питания с проушинами (уровень VI), IP68, 2.Заглушка 1 мм

ИДЕАЛЬНАЯ СИЛА

Надежный блок питания с проушинами, обеспечивающий встроенную защиту от перенапряжения, перегрузки по току и короткого замыкания. • Для влажных помещений, соответствует уровню эффективности VI • Герметично запечатано эпоксидной смолой для гидроизоляции • Корпус с проушинами (4 выступа) • Штекерный разъем постоянного тока 2,1×5,5 мм • …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 выход 12 Вт 12 В Положительный центр заглушки ствола 2.1 мм x 5,5 мм Зафиксированный От 90 В до 264 В переменного тока Идеальная мощность — блоки питания с проушинами Великобритания
G13801N-A

SR08982

12В, 1А, настенный источник питания для видеонаблюдения в металлической коробке, диапазон G, серия N

ELMDENE

• 12 В постоянного тока (13.8 В), 1 А • Полный ток нагрузки и зарядки аккумулятора • Модульная конструкция обеспечивает простоту модернизации / обслуживания • Энергоэффективность • Универсальное входное напряжение сети • Светодиодная индикация состояния • Передняя защита от несанкционированного доступа • 3-летняя гарантия

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 13.8В Зафиксированный От 90 В до 264 В переменного тока Блоки питания Elmdene
PEL00398

PW04113

12В, 1А, 12Вт, подключаемый блок питания, 2.Заглушка 1 мм

ПРО ЭЛЕК

PEL00398 — это блок питания мощностью 12 Вт, от 12 В до постоянного тока с выходным током 1 А. • Уровень эффективности: VI • Вилка UK • Один фиксированный выход • Полярность разъема постоянного тока 2,1 x 5,5 x 12 мм + центральная точка

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
PEL00400

PW04114

12 В, 1 А, 12 Вт, подключаемый блок питания, под прямым углом 2.Заглушка 1 мм

ПРО ЭЛЕК

• Прямоугольный разъем постоянного тока • Уровень эффективности: VI • Полярность разъема постоянного тока + центральная точка

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
PEL00404

PW04118

12 В, 1 А, 12 Вт, подключаемый блок питания, универсальный, с 6 наконечниками

ПРО ЭЛЕК

• 6 сменных наконечников • Уровень эффективности: VI

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В Различный Зафиксированный От 100 В до 240 В переменного тока Великобритания
PEL00405

PW04119

12В, 1А, 12Вт, международный блок питания, универсальный, с 6 наконечниками

ПРО ЭЛЕК

• Сменные вилки постоянного тока: 3.Разъем 5 мм, 5,5×2,5 мм, 5×2,1 мм, 4×1,7 мм, 3,5×1,35 мм и 2,35×0,75 мм

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В Различный Зафиксированный От 100 В до 240 В переменного тока ЕС, Великобритания
PEL00847

PW04263

12 В, 1 А, 12 Вт, подключаемый блок питания (уровень VI), 2.Штекер 5мм

ПРО ЭЛЕК

Высоконадежный источник питания переменного / постоянного тока 12 В, 1 А с фиксированной вилкой UK. Блок питания соответствует стандарту UL CE ErP VI и имеет встроенную защиту от перенапряжения, перегрузки по току и короткого замыкания, а также соответствует требованиям к уровню эффективности VI. • Универсальный вход: 90 ~ 26 …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В 2.5 мм x 5 мм x 12 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
UKR006-57-KBB

PW03959

12В, 1А, линейный блок питания для систем видеонаблюдения (уровень VI), 2.Заглушка 1 мм

POWERPAX

UKR006-57 ‐ K — это блок питания с проушинами, обеспечивающий стабилизированное выходное напряжение 12 В постоянного тока до 1 А (12 Вт). Он оснащен фиксированным входным кабелем, который помогает предотвратить случайное отключение входного кабеля от сети. Крепежные проушины, которые должны быть …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 выход 12 Вт 12 В Положительный центр заглушки ствола 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 90 В до 264 В переменного тока Великобритания
VRS128000-8-T

SR08992

Блок питания для видеонаблюдения, низкопрофильный настенный монтаж на 12 В, 8 А — 8 выходов 1 А

ELMDENE

• Идеально для систем видеонаблюдения • Компактный корпус • 3 года гарантии • 12 В постоянного тока, 8 А • 8 выходов с предохранителями по 1 А • Запираемая крышка

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 96 Вт 12 В 12 В 12 В Зафиксированный От 90 В до 264 В переменного тока
БП-12V1AIN-IP

PW03012

12 В, 1 А, водонепроницаемый IP67, линейный источник питания, 2.Заглушка 1 мм

РЕШЕНИЯ РФ

• Герметичный блок с классом защиты IP67 • Штекер постоянного тока 2,1 x 5,5 x 12 мм • Миниатюрный размер 83 x 37 x 30 мм • Блок с полимерным покрытием • Сетевой шнур 3,3 м с вилкой UK • Ушки для настенного крепления

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
VRS121000EB

SR08986

12В, 1А, 12Вт, блок питания для видеонаблюдения с проушинами, 2.Заглушка 1 мм

ELMDENE

• Герметичный • 12 В постоянного тока, 1 А • Сетевой штекер для Великобритании • Выходной штекер постоянного тока 2,1 мм • 3-летняя гарантия • Идеально для CCTV

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В Заглушка ствола 2.1 мм x 5,5 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
G13801N-C

PW04223

12V, 1A, металлический блок питания CCTV для настенного монтажа в штучной упаковке

ELMDENE

Блоки питания 12VDC серии G серии N были разработаны для систем видеонаблюдения, контроля доступа и приложений общего назначения, требующих использования резервной батареи.В изделиях используется энергоэффективная технология переключения и есть универсальное питание от сети …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 12 Вт 12 В Зафиксированный От 100 В до 240 В переменного тока
PEL00401

PW04115

12 В, 1 А, 12 Вт, подключаемый блок питания, под прямым углом 2.Штекер 5мм

ПРО ЭЛЕК

• Уровень эффективности: VI • Прямоугольный разъем постоянного тока • Полярность разъема постоянного тока + центральная точка

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 В 2.5 мм x 5,5 мм x 12 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
SW4010G

PW02598

12 В, 1 А, подключаемый блок питания (уровень VI), 2.Заглушка 1 мм

POWERPAX

Этот импульсный источник питания рассчитан на максимум 12 Вт, обеспечивая регулируемый выход 12 В постоянного тока при токе до 1 А без минимальной нагрузки. Устройство соответствует последним стандартам эффективности CoC Tier 1 / Level VI и будет модернизировано до требований CoC Tier 2 до требования …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 выход 12 Вт 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 90 В до 264 В переменного тока Великобритания
VRS124000-4-J

SR08990

12В, 4А, низкопрофильный источник питания для систем видеонаблюдения — 4 выхода 1А

ELMDENE

• Идеально для систем видеонаблюдения • 3 года гарантии • 12 В постоянного тока, 4 А • 4 выхода с предохранителями по 1 А • Компактный корпус

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 48 Вт 12 В 12 В 12 В Зафиксированный От 90 В до 264 В переменного тока
PP10005

PW02709

12В, 1А, подключаемый блок питания, 2.Заглушка 1 мм

ПРО СИЛА

• Отсутствие минимальной нагрузки • Высокая надежность. 100% отработано и протестировано • Соответствует требованиям законодательства ErP / EuP / CEC в области энергоэффективности • Встроенная защита от короткого замыкания

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 90 В до 264 В переменного тока Великобритания
T6261ST

PW04107

12 В, 1 А, 12 Вт, линейный блок питания для систем видеонаблюдения (уровень VI), 2.Заглушка 1 мм

STONTRONICS

Встроенный блок питания с сетевой вилкой для Великобритании, идеально подходящий для использования с оборудованием видеонаблюдения. Он небольшой и компактный, имеет встроенные выступы для настенного монтажа, а высокая надежность делает его чрезвычайно экономичным. • Фиксированный сетевой шнур переменного тока (Великобритания и ЕС) • Уровень VI • …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 90 В до 264 В переменного тока Великобритания
TP1004

PW04876

12 В, 1 А, 12 Вт, подключаемый блок питания (уровень VI), 2.Заглушка 1 мм

ИСТОЧНИКИ ПИТАНИЯ TIGER

Высоконадежный источник питания постоянного и переменного тока, соответствующий нормам эффективности VI уровня. Он также оснащен защитой от короткого замыкания и перенапряжения с фиксированной вилкой UK и разъемом постоянного тока. • Уровень эффективности VI • Фиксированная вилка UK • Встроенное короткое замыкание …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В 2.1 мм x 5,5 мм x 12 мм Зафиксированный От 100 В до 240 В переменного тока Великобритания
2240000055

BT03017

Зарядное устройство с переключателем, 12 В, 1 А — серия 2240

МАСКОТ

Небольшое и легкое зарядное устройство с трехступенчатой ​​системой зарядки Mascot • Соответствует стандарту EN 60601 для медицинских приложений • Универсальный вход напряжения • Защита от обратной полярности и короткого замыкания • Поставляется с 2.Свободные контакты постоянного тока 1 мм и 2,5 мм • Внесены в список UL (UL26 …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

MASCOT 2240 серии
DA665 / 4

PW03442

Универсальный импульсный источник питания 4x 12V DC 1A

ДАНТЕК

Импульсный источник питания, который может принимать широкий диапазон сетевого напряжения и обеспечивает 4 регулируемых выхода 12 В постоянного тока по 1 А.• Идеально подходит для использования с камерами видеонаблюдения или рядом приложений безопасности • Светодиодная индикация на каждом выходе • Энергосберегающий режим переключения PS …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 48 Вт 12 В 12 В 12 В Зафиксированный 230 В переменного тока Dantech — серия DA665 / x
PC170-1

BT03794

Зарядное устройство, свинцово-кислотный оптимизатор 12 В, 1 А

ИДЕАЛЬНАЯ СИЛА

3-ступенчатое автоматическое зарядное устройство для свинцово-кислотных аккумуляторов 12 В, с зарядным током 1.0A, используется для зарядки и поддержания полностью заряженных аккумуляторов в течение длительных периодов времени. Идеально подходит для зарядки и обслуживания мотоциклов, мопедов, лодок, газонокосилок и аккумуляторов небольших транспортных средств …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

Великобритания
SW4382-C

PW04079

12 В, 1 А, 12 Вт, подключаемый блок питания (уровень VI), 2.Штекер 5мм

POWERPAX

Этот импульсный источник питания рассчитан на максимум 12 Вт, обеспечивая регулируемое выходное напряжение 12 В постоянного тока при токе до 1 А без минимальной нагрузки. Устройство соответствует последним стандартам эффективности CoC Tier 1 / Level VI и будет модернизировано до требований CoC Tier 2 до того, как потребуются …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

1 выход 12 Вт 12 В 2.5 мм x 5,5 мм x 12 мм Зафиксированный От 90 В до 264 В переменного тока Сетевая вилка продается отдельно
T6117ST

PW03988

12 В, 1 А, подключаемый блок питания (уровень VI), 2.Заглушка 1 мм

STONTRONICS

• Уровень эффективности 6 • Гарантия 1 год • Универсальный вход переменного тока с полным диапазоном • Импульсный источник питания • Небольшой и компактный дизайн британской вилки • Экономичность и высокая надежность • Защита от перегрузки по току, перенапряжения и короткого замыкания • Разъем 2,1×5,5×12 мм • …

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

мин: 1 Mult: 1

ITE 1 выход 12 Вт 12 В Зафиксированный От 100 В до 240 В переменного тока Великобритания
HAY-PSUINLINE1A

PW03907

12В, 1А, линейный блок питания для видеонаблюдения, 2.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *