Site Loader

Закон Био — Савара — Лапласа — КиберПедия

Три французских ученых в 1820 г. открыли закон, который позволяет рассчитать вектор магнитной индукции, созданный проводником с током. Также можно вычислять напряженность магнитного поля , которая связана с вектором магнитной индукции соотношением (2.33).

Закон Био — Савара — Лапласа записывается для элемента тока. Элементом тока называется вектор, модуль которого равен произведению силы тока в проводнике на длину малого отрезка этого проводника, а направление совпадает с направлением силы тока — .

Закон Био — Савара — Лапласа в векторной форме формулируется следующим образом.

Вектор магнитной индукции, созданный элементом тока, пропорционален векторному произведению элемента тока на радиус-вектор, проведенный от элемента в точку наблюдения, и обратно пропорционален кубу расстояния от элемента тока до точки наблюдения (рис. 2.11)

Направление вектора определяется по правилу векторного произведения двух векторов и , т. е. перпендикулярен плоскости, в которой лежат перемножаемые вектора, и направлен по правилу правого винта.

Рис.2.11

На рис. 2.11 показана линия магнитной индукции. По касательной к этой линии направлен вектор . Модуль вектора определяется по закону Био — Савара — Лапласа в скалярной форме

где α — угол между векторами и .

Для напряженности магнитного поля можно записать аналогичные формулы

Изолированный элемент с током создать невозможно. Ток, который создает магнитное поле, всегда течет по проводникам конечных размеров. Поэтому далее надо применять принцип суперпозиции и векторно суммировать (интегрировать) или , созданные всеми элементами тока ,

Магнитное поле в центре кругового тока

С помощью закона Био — Савара — Лапласа и принципа суперпозиции найдем напряженность магнитного поля в центре витка с током

I радиуса R (рис. 2.12) (виток перпендикулярен чертежу).

Рис.2.12

В этом случае все элементы проводника перпендикулярны радиусу и , т. е. . Расстояние всех элементов провода до центра одинаково и r = R. Поэтому формула (2.37) примет следующий вид

.

Применим принцип суперпозиции.

Все элементы тока создают магнитное поле одинакового направления, перпендикулярно плоскости витка, поэтому от векторного интегрирования можно перейти к скалярному

,

где — длина окружности.

Окончательно получим формулу для вычисления напряженности магнитного поля в центре кругового тока

Магнитная индукция равна

Напомним, что для вакуума μ = 1.



Направление векторов и

нужно находить по правилу правого винта (рис. 2.12) с учетом того, что и .

 

Магнитное поле прямого тока

Применяя закон Био — Савара — Лапласа и принцип суперпозиции, можно найти напряженность магнитного поля прямого тока. Запишем без вывода конечный результат для проводника конечной длины (рис. 2.13).

Рис.2.13

Введем следующие обозначения: I — сила тока в проводнике, b — кратчайшее расстояние от точки наблюдения до проводника, α1 и α2 — углы между отрезком проводника и линией, соединяющей концы отрезка с точкой наблюдения.

Напряженность магнитного поля, созданного конечным прямым проводником с током, равна

Направление вектора определяется по правилу правого винта. Вектор, направленный за чертеж, изображается крестиком

. Вектор, направленный к нам — точкой . Линия напряженности представляет собой окружность.

Для бесконечно длинного проводника и . Напряженность магнитного поля равна

Модуль вектора магнитной индукции, соответственно, равен

Сила Лоренца. Сила Ампера

Магнитное поле не только порождается движущимися электрическими зарядами, но действует на движущиеся заряды.

Силой Лоренца называется сила, действующая на движущийся электрический заряд со стороны магнитного поля. Сила Лоренца равна произведению заряда q на векторное произведение скорости движения заряда и вектора магнитной индукции , т. е.

Модуль силы Лоренца равен

где α — угол между векторами и .

Поскольку ток — это упорядоченное движение электрических зарядов, то на проводник с током в магнитном поле тоже действует сила, которая называется силой Ампера.

Сила Ампера равна произведению силы тока на векторное произведение элемента проводника и вектора магнитной индукции

Модуль силы Ампера равен

где α — угол между векторами .

С помощью измерения силы можно найти модуль вектора магнитной индукции (формула (2.45)). Сила будет максимальной, если sinα = 1. Тогда по формуле (2.45)



.

Отсюда:

.

Тогда единица магнитной индукции тесла (Тл) равна ньютон (Н), деленный на ампер и на метр , т. е.

.

 

Закон Био-Савара. Теорема о циркуляции

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Жан Батист Био и Феликсом Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется

принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию  проводника с током можно представить как векторную сумму элементарных индукций  создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока.

Закон Био–Савара определяет вклад  в магнитную индукцию   результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.

Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора  определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

которая уже приводилась в 1.16.

Рисунок 1.17.1.

Иллюстрация закона Био–Савара

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где R – радиус кругового проводника. Для определения направления вектора  также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользоваться теоремой о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора   Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δ

l этого контура можно определить касательную составляющую  вектора  в данном месте, то есть определить проекцию вектора  на направление касательной к данному участку контура (рис. 1.17.2).

Рисунок 1.17.2.

Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и

I3, создающие магнитное поле

Циркуляцией вектора  называют сумму произведений Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора   магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 < 0. Ток I1 не пронизывает контур L.

Теорема о циркуляции в данном примере выражается соотношением:

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур

L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор  направлен по касательной , а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.

Этот пример показывает, что теорема о циркуляции вектора магнитной индукции  может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).

Рисунок 1.17.3.

Применение теоремы о циркуляции к тороидальной катушке

Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r < r2 изображена на рис. 1.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 1.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора  одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:

где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 << r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r → ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.

На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.

Рисунок 1.17.4.

Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.

Рисунок 1.17.5.

Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоида

Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора   по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен I n l. Согласно теореме о циркуляции,

откуда

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.

Модель. Магнитное поле кругового витка с током

Модель. Магнитное поле прямого тока

Модель. Магнитное поле соленоида

Закон Био-Савара-Лапласа и его полевая трактовка

Задание: По плоскому контуру, который изображен на рис.1 течет постоянный ток силы I. Угол, между прямолинейными участками контура равен 900. Радиусы контуров $R_1$ и $R_2$. Какова магнитная индукция в точке C?

Закон Био-Савара-Лапласа и его полевая трактовка

Рис. 1

Решение:

В точке С магнитное поле создают четыре проводника с током. Два из них прямолинейные, конечной длины, два являются частями витков с током.

В качестве основы для решения задачи используем закон Био — Савара — Лапласа в виде:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\oint{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}\left(1.1\right).\]

Выделим в интеграле (1.1) четыре интеграла, по количеству участков — проводников:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\left(\int\limits_1{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}+\int\limits_2{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}+\int\limits_3{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}+\int\limits_4{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}\right)\left(1.2\right).\]

В подынтегральном выражении мы имеем векторное произведение, модуль которого равен:

\[\left|d\overrightarrow{l}\times \overrightarrow{r}\right|=\left|d\overrightarrow{l}\right|\left|\overrightarrow{r}\right|{sin \left(\widehat{\overrightarrow{l}\overrightarrow{r}}\right)\ }\left(1.3\right).\]

В таком случае, получим, что

\[\int\limits_2{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}=0\ (1.4)\]

так как для данного участка проводника $d\overrightarrow{l}\uparrow \downarrow \overrightarrow{r}$, следовательно, угол между этими векторами равен 1800, следовательно, $sin\pi =0.$

\[\int\limits_4{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}=0(1.5).\]

для данного участка проводника $d\overrightarrow{l}\uparrow \uparrow \overrightarrow{r}$, следовательно, угол между этими векторами равен 00, следовательно, $sin0=0.$

В соответствии с приведенными выше рассуждениями получаем, что поле в точке С можно найти как сумму двух интегралов:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\left(\int\limits_1{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}+\int\limits_3{\frac{I\left[d\overrightarrow{l}\overrightarrow{r}\right]}{r^3}}\right)\left(1.6\right).\]

Или как сумму полей двух токов, которые текут в двух дугах окружностей. Для дуги окружности запишем:

\[r=R,\overrightarrow{dl}\bot \overrightarrow{R},\ sin\frac{\pi }{2}=1,\ sin\frac{d\alpha }{2}=\frac{dl}{2R},d\alpha -мал,sin\frac{d\alpha }{2}\approx \frac{d\alpha }{2}\ \to Rd\alpha =dl.\]

Для части окружности с током элемент поля для точки в центре можно записать как:

\[dB=\frac{{\mu }_0I}{4\pi }\frac{R}{R^2}d\alpha =\frac{{\mu }_0I}{4\pi R}d\alpha (1.7),\]

где ${\alpha }_1\le \alpha \le {\alpha }_2$.

Тогда для части окружности с радиусом $R_1$ запишем, что элемент поля в точке С равен:

\[B_1=\frac{{\mu }_0I}{4\pi R_1}\int\limits^{\frac{\pi }{2}}_0{d\alpha }=\frac{{\mu }_0\pi I}{8\pi R_1}\ \left(1.8\right)\]

для части окружности с радиусом $R_2$ запишем, что элемент поля в точке С равен:

\[B_2=\frac{{\mu }_0I}{4\pi R_2}\int\limits^0_{\frac{\pi }{2}}{d\alpha }=-\frac{{\mu }_0\pi I}{8\pi R_2}\ \left(1.9\right).\]

Результирующее поле равно:

\[\overrightarrow{B}=\frac{{\mu }_0I\overrightarrow{e_z}}{8}\left[\frac{1}{R_1}-\frac{1}{R_2}\right],\]

где $\overrightarrow{e_z}$- единичный орт, направленный перпендикулярно плоскости чертежа.

Ответ: $\overrightarrow{B}=\frac{{\mu }_0I\overrightarrow{e_z}}{8}\left[\frac{1}{R_1}-\frac{1}{R_2}\right].$

Закон Био-Савара-Лапласа | Все формулы

Закон Био Савара Лапласа — Магнитное поле любого тока может быть вычислено как векторная сумма полей, создаваемая отдельными участками токов.


Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

Закон Био-Савара-Лапласа для некоторых токов:

Магнитное поле прямого тока :

Магнитное поле кругового тока :

В формуле мы использовали :

— Магнитная индукция

— Вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током

— Магнитная постоянная

— Относительная магнитная проницаемость (среды)

— Сила тока

— Расстояние от провода до точки, где мы вычисляем магнитную индукцию

— Угол между вектором dl и r

14. Магнитное поле. Закон Био-Савара-Лапласа.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции  (вектор индукции магнитного поля)[3][4]. С математической точки зрения — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постояннымэлектрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).

Закон Био—Савара—Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био—Савара—Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты.

В современной формулировке закон Био—Савара—Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био—Савара—Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).

15. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля.

Магни́тный пото́к — поток  как интеграл вектора магнитной индукции  через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где  — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

В СИ единицей магнитного потока является Вебер (Вб, размерность — В·с = кг·м²·с−2·А−1),

Теорема о суммировании зарядов позволяет понять смысл и определить границы применимости известной теоремы Остроградского-Гаусса. В электродинамике существуют понятия потоков напряженности и индукции электрического и магнитного полей. Напряженность и индукция определяются градиентами потенциалов.

В свою очередь они определяют число силовых линий и линий индукции, исходящих из заряженного тела (заряда). Существует прямая пропорциональная связь между величинами электрических и магнитных зарядов и количествами силовых линий и линий индукции. Теорема Остроградского-Гаусса утверждает, что суммарное число линий, проходящих через замкнутую поверхность, охватывающую электрические и магнитные заряды, равно алгебраической сумме линий, выходящих из каждого заряда в отдельности. Заметим, что линии напряженности и индукции – это крайне формальные понятия, в течение длительного времени затруднявшие правильное понимание электрических и магнитных явлений.

Вместе с тем эти понятия легко получить из общей теории, так как напряженность и индукция непосредственно связаны (пропорциональны) с потоком нанозаряда, а сам поток – с величиной излучающего его макро или микрозаряда.

Таким образом, из общей теории как частный случай вытекает теорема Остроградского-Гаусса. Она есть следствие теоремы о суммировании зарядов, справедливой только для стационарного режима и только в условиях, когда отсутствует взаимное влияние между зарядами. В реальных условиях теорема Остроградского-Гаусса неточно отражает действительность.

Формула — Закон Био-Савара-Лапласа

\(\vec{B}\) — магнитная индукция поля \((Тл)\)

\(\mu_0\) — магнитная постоянная \(\approx 1.26 * 10^{-6}\) \(\frac{Гн}{м}\)

\(\pi\) — число Пи \(\approx 3.14\)

\(I\) — сила тока текущего по проводнику \((А)\)

\(\vec{r}\) — расстояние \((м)\)

\(\vec{\Delta L}\) — длина малого элемента проводника \((м)\)

\(\mu\) — относительная магнитная проницаемость среды

Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.

Магнитное поле постоянных токов различной формы было подробно исследовано фр. учеными Био и Саваром. Ими было установлено, что во всех случаях магнитная индукция в произвольной точке пропорциональна силе тока, зависит от формы, размеров проводника, расположения этой точки по отношению к проводнику и от среды.

Результаты этих опытов были обобщены фр. математиком Лапласом, который учел векторный характер магнитной индукции и высказал гипотезу о том, что индукция в каждой точке представляет собой, согласно принципу суперпозиции, векторную сумму индукций элементарных магнитных полей, создаваемых каждым участком этого проводника.

или .

Лапласом в 1820 г. был сформулирован закон, который получил название закона Био-Савара-Лапласа: каждый элемент проводника с током создает магнитное поле, вектор индукции которого в некоторой произвольной точке К определяется по формуле:

— закон Био-Савара-Лапласа.

Из закона Био-Совара-Лапласа следует, что направление вектора совпадает с направлением векторного произведения . Такое же направление дает и правило правого винта (буравчика).

Учитывая, что ,

— элемент проводника, сонаправленный с током;

— радиус-вектор, соединяющий c точкой K;

a — угол между и .

Закон Био-Савара-Лапласа имеет практическое значение, т.к. позволяет найти в заданной точке пространства индукцию магнитного поля тока, текущего по проводнику конечный размеров и произвольной формы.

Для тока произвольной формы подобный расчет представляет собой сложную математическую задачу. Однако, если распределение тока имеет определенную симметрию, то применение принципа суперпозиции совместно с законом Био-Савара-Лапласа дает возможность относительно просто рассчитать конкретные магнитные поля.

Рассмотрим некоторые примеры.

А. Магнитное поле прямолинейного проводника с током.

 

 

1) для проводника конечной длины:

 

 

2) для проводника бесконечной длины: a1 = 0, a2 = p

 

.

 

Б. Магнитное поле в центре кругового тока:

 

a=900, sina=1,

 

 

3. Теорема о циркуляции вектора (закон полного тока) и ее применение для расчета магнитных полей.

Эрстедом в 1820 году экспериментально было обнаружено, что циркуляция по замкнутому контуру, окружающему систему макротоков, пропорциональна алгебраической сумме этих токов. Коэффициент пропорциональности зависит от выбора системы единиц и в СИ равен 1.

Циркуляцией вектора называется интеграл по замкнутому контуру.

Эта формула носит название теоремы о циркуляции или закона полного тока:

циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков (или полному току), охватываемых этим контуром.

Если, кроме токов проводимости, есть еще ток смещения (переменное электрическое поле), то и его надо включить в сумму токов.

а) поле прямолинейного бесконечного проводника с током:

— согласно теореме о циркуляции.

— на окружности

— т.к. m = 1 — для воздуха

 

б) поле внутри длинного соленоида с током.

Каждая силовая линия проходит обязательно как внутри соленоида, так и вне его. Подавляющее число линий вне соленоида проходит на расстоянии от него порядка длины соленоида l. Если длина соленоида во много раз больше его радиуса, то поле вне соленоида пренебрежимо мало по сравнению с полем внутри него.

Если

B=mm0H=mm0nI

где — длина соленоида;

N — число витков;

n — число витков на единице длины.

в) поле тороида.

L — длина средней линии тороида.

 



Дата добавления: 2016-11-04; просмотров: 22404;


Похожие статьи:

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *