Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.
Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.
Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.
Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.
Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.
Принцип работы стабилитрона
Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.
Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.
Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.
Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.
Вольт-амперная характеристика стабилитрона
Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю
На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка
Встречное, параллельное, последовательное соединение стабилитронов
Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.
Параллельное соединение применяется с целью повышения тока и мощности.
Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.
В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.
Маркировка стабилитронов
Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.
Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.
Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.
Маркировка SMD стабилитронов
Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.
Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.
Мощность рассеивания стабилитрона
Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе
Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.
Как проверить стабилитрон
Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.
Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.
Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.
Еще статьи по данной теме
Как работает стабилитрон и для чего он нужен?
Что такое стабилитрон, какой у него принцип действия и назначение. Основные характеристики стабилитронов и их маркировка. Условное обозначение на схеме.
Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.
Содержание:Что это такое
В литературе дается следующее определение:
Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.
Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.
На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.
Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.
Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.
Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.
Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.
На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.
На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.
Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.
Основные характеристики
При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.
Основными характеристиками являются:
- напряжение Ucт. стабилизации;
- номинальный ток стабилизации Iст., протекающий через стабилитрон;
- допустимая мощность рассеивания;
- температурный коэффициент стабилизации;
- динамическое сопротивление.
Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.
Условно графическое обозначение на схемах
Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).
На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.
Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.
Схема подключения
Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.
Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.
Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.
Он равен 5 мА. На рисунке снизу представлена часть справочника.
Предполагаем, что ток нагрузки равен 100 мА:
R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.
Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.
Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.
Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.
На нижеприведенном рисунке представлена схема на транзисторе.
Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.
Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.
Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.
Маркировка
В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.
На нижеприведенных фото представлены приборы советского производства, и как они выглядели.
Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.
На нижеприведенном рисунке представлена маркировка SMD-диодов.
Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.
На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.
Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!
Материалы по теме:
- Что такое транзистор-тестер
- Как работает резистор
- Как выпаивать радиодетали из плат
Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.
Что это такое
В литературе дается следующее определение:
Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.
Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.
На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.
Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.
Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.
Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.
Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.
На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.
На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.
Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.
Основные характеристики
При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.
Основными характеристиками являются:
- напряжение Ucт. стабилизации;
- номинальный ток стабилизации Iст., протекающий через стабилитрон;
- допустимая мощность рассеивания;
- температурный коэффициент стабилизации;
- динамическое сопротивление.
Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.
Условно графическое обозначение на схемах
Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).
На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.
Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.
Схема подключения
Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.
Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.
Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.
Он равен 5 мА. На рисунке снизу представлена часть справочника.
Предполагаем, что ток нагрузки равен 100 мА:
R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.
Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.
Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.
Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.
На нижеприведенном рисунке представлена схема на транзисторе.
Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.
Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.
Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.
Маркировка
В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.
На нижеприведенных фото представлены приборы советского производства, и как они выглядели.
Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.
На нижеприведенном рисунке представлена маркировка SMD-диодов.
Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.
На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.
Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!
Материалы по теме:
Прекращаем ставить диод / Хабр
Нет, это не очередной «вечняк»
После прочтения статьи о защите электрических схем от неправильной полярности питания при помощи полевого транзистора, я вспомнил о том, что давно имею не решенную проблему автоматического отключения аккумулятора от зарядного устройства при обесточивании последнего. И стало мне любопытно, нельзя ли применить подобный подход в другом случае, где тоже испокон века в качестве запорного элемента использовался диод.
Эта статья является типичным гайдом по велосипедостроению, т.к. рассказывает о разработке схемы, функционал которой уже давно реализован в миллионах готовых устройств. Поэтому просьба не относится к данному материалу, как к чему-то совсем утилитарному. Скорее это просто история о том, как рождается электронное устройство: от осознания необходимости до работающего прототипа через все препятствия.
Зачем все это?
При резервировании низковольтного источника питания постоянного тока самый простой путь включения свинцово-кислотного аккумулятора – это в качестве буфера, просто параллельно сетевому источнику, как это делалось в автомобилях до появления у них сложных «мозгов». Аккумулятор хоть и работает в не самом оптимальном режиме, но всегда заряжен и не требует какой-либо силовой коммутации при отключении или включении сетевого напряжения на входе БП. Далее более подробно о некоторых проблемах такого включения и попытке их решить.
История вопроса
Еще каких-то 20 лет назад подобный вопрос не стоял на повестке дня. Причиной тому была схемотехника типичного сетевого блока питания (или зарядного устройства), которая препятствовала разряду аккумулятора на его выходные цепи при отключении сетевого напряжения. Посмотрим простейшую схему блока с однополупериодным выпрямлением:
Совершенно очевидно, что тот же самый диод, который выпрямляет переменное напряжение сетевой обмотки, будет препятствовать и разряду аккумулятора на вторичную обмотку трансформатора при отключении питающего напряжения сети. Двухполупериодная мостовая схема выпрямителя, несмотря на несколько меньшую очевидность, обладает точно такими же свойствами. И даже использование параметрического стабилизатора напряжения с усилителем тока (такого, как широко распространенная микросхема 7812 и ее аналоги), не меняет ситуацию:
Действительно, если посмотреть на упрощенную схему такого стабилизатора, становится понятно, что эмиттерный переход выходного транзистора исполняет роль все того же запорного диода, который закрывается при пропадании напряжения на выходе выпрямителя, и сохраняет заряд аккумулятора в целости и сохранности.
Однако в последние годы все изменилось. На смену трансформаторным блокам питания с параметрической стабилизацией пришли более компактные и дешевые импульсные AC/DC-преобразователи напряжения, которые обладают гораздо более высоким КПД и соотношением мощность/вес. Вот только при всех достоинствах, у этих источников питания обнаружился один недостаток: их выходные цепи имеют гораздо более сложную схемотехнику, которая обычно никак не предусматривает защиту от обратного затекания тока из вторичной цепи. В результате, при использовании такого источника в системе вида “БП -> буферный аккумулятор -> нагрузка”, при отключении сетевого напряжения аккумулятор начинает интенсивно разряжаться на выходные цепи БП.
Простейший путь (диод)
Простейшее решение состоит в использовании диода с барьером Шоттки, включенного в разрыв положительного провода, соединяющего БП и аккумулятор:
Однако основные проблемы такого решения уже озвучены в упомянутой выше статье. Кроме того, такой подход может быть неприемлемым по той причине, что для работы в буферном режиме 12-вольтовому свинцово-кислотному аккумулятору нужно напряжение не менее 13.6 вольт. А падающие на диоде почти пол вольта могут сделать это напряжение банально недостижимым в сочетании с имеющимся блоком питания (как раз мой случай).
Все это заставляет искать альтернативные пути автоматической коммутации, которая должна обладать следующими свойствами:
- Малое прямое падение напряжения во включенном состоянии.
- Способность без существенного нагрева выдерживать во включенном состоянии прямой ток, потребляемый от блока питания нагрузкой и буферным аккумулятором.
- Высокое обратное падение напряжения и низкое собственное потребление в выключенном состоянии.
- Нормально выключенное состояние, чтобы при подключении заряженного аккумулятора к изначально обесточенной системе не начинался его разряд.
- Автоматический переход во включенное состояние при подаче напряжения сети вне зависимости от наличия и уровня заряда аккумулятора.
- Максимально быстрый автоматический переход в выключенное состояние при пропадании напряжения сети.
Если бы диод являлся идеальным прибором, то он без проблем выполнил все эти условия, однако суровая реальность ставит под сомнение пункты 1 и 2.
Наивное решение (реле постоянного тока)
При анализе требований, любому, кто хоть немного «в теме», придет мысль использовать для этой цели электромагнитное реле, которое способно физически замыкать контакты при помощи магнитного поля, создаваемого управляющим током в обмотке. И, наверное, он даже набросает на салфетке что-то типа этого:
В этой схеме нормально разомкнутые контакты реле замыкаются только при прохождении тока через обмотку, подключенную к выходу блока питания. Однако если пройтись по списку требований, то окажется, что эта схема не соответствует пункту 6. Ведь если контакты реле были однажды замкнуты, пропадание напряжения сети не приведет к их размыканию по той причине, что обмотка (а с ней и вся выходная цепь БП) остается подключенной к аккумулятору через эти же контакты! Налицо типичный случай положительной обратной связи, когда управляющая цепь имеет непосредственную связь с исполнительной, и в итоге система приобретает свойства бистабильного триггера.
Таким образом, подобный наивный подход не является решением проблемы. Более того, если проанализировать сложившуюся ситуацию логически, то легко можно прийти к выводу, что в промежутке “БП -> буферный аккумулятор” в идеальных условиях никакое другое решение кроме вентиля, проводящего ток в одном направлении, быть просто не может. Действительно, если мы не будем использовать какой-либо внешний управляющий сигнал, то что бы мы не делали в этой точке схемы, любой наш коммутирующий элемент, однажды включившись, сделает неотличимым электричество, создаваемое аккумулятором, от электричества, создаваемого блоком питания.
Окольный путь (реле переменного тока)
После осознания всех проблем предыдущего пункта, «шарящему» человеку обычно приходит в голову новая идея использования в качестве односторонне проводящего вентиля самого блока питания. А почему бы и нет? Ведь если БП не является обратимым устройством, и подведенное к его выходу напряжение аккумулятора не создает на входе переменного напряжения 220 вольт (как это и бывает в 100% случаев реальных схем), то эту разницу можно использовать в качестве управляющего сигнала для коммутирующего элемента:
Бинго! Выполняются все пункты требований и единственное, что для этого нужно – это реле, способное замыкать контакты при подаче на него сетевого напряжения. Это может быть специальное реле переменного тока, рассчитанное на сетевое напряжение. Или обычное реле со своими мини-БП (тут достаточно любой беcтрансформаторной понижающей схемы с простейшим выпрямителем).
Можно было бы праздновать победу, но мне это решение не понравилось. Во-первых, нужно подключать что-то непосредственно к сети, что не есть гуд с точки зрения безопасности. Во-вторых, тем, что коммутировать это реле должно значительные токи, вероятно, до десятков ампер, а это делает всю конструкцию не такой тривиальной и компактной, как могло показаться изначально. Ну и в-третьих, а как же такой удобный полевой транзистор?
Первое решение (полевой транзистор + измеритель напряжения аккумулятора)
Поиски более элегантного решения проблемы привели меня к осознанию того факта, что аккумулятор, работающий в буферном режиме при напряжении около 13.8 вольта, без внешней «подпитки» быстро теряет исходное напряжение даже в отсутствии нагрузки. Если же он начнет разряжаться на БП, то за первую минуту времени он теряет не менее 0.1 вольта, чего более чем достаточно для надежной фиксации простейшим компаратором. В общем, идея такова: затвором коммутирующего полевого транзистора управляет компаратор. Один из входов компаратора подключен к источнику стабильного напряжения. Второй вход подключен к делителю напряжения блока питания. Причем коэффициент деления подобран так, чтобы напряжение на выходе делителя при включенном БП было примерно на 0.1..0.2 вольта выше, чем напряжение стабилизированного источника. В результате, при включенном БП напряжение с делителя всегда будет преобладать, а вот при обесточивании сети, по мере падения напряжения аккумулятора, оно будет уменьшаться пропорционально этому падению. Через некоторое время напряжение на выходе делителя окажется меньше напряжения стабилизатора и компаратор при помощи полевого транзистора разорвет цепь.
Примерная схема такого устройства:
Как видно, к источнику стабильного напряжения подключен прямой вход компаратора. Напряжение этого источника, в принципе, не важно, главное, чтобы оно было в пределах допустимых входных напряжений компаратора, однако удобно, когда оно составляет примерно половину напряжения аккумулятора, то есть около 6 вольт. Инверсный вход компаратора подключен к делителю напряжения БП, а выход – к затвору коммутирующего транзистора. Когда напряжение на инверсном входе превышает таковое на прямом, выход компаратора соединяет затвор полевого транзистора с землей, в результате чего транзистор открывается и замыкает цепь. После обесточивания сети, через некоторое время напряжение аккумулятора понижается, вместе с ним падает напряжение на инверсном входе компаратора, и когда оно оказывается ниже уровня на прямом входе, компаратор «отрывает» затвор транзистора от земли и тем самым разрывает цепь. В дальнейшем, когда блок питания снова «оживет», напряжение на инверсном входе мгновенно повысится до нормального уровня и транзистор снова откроется.
Для практической реализации данной схемы была использована имеющаяся у меня микросхема LM393. Это очень дешевый (менее десяти центов в рознице), но при этом экономичный и обладающий довольно неплохими характеристиками сдвоенный компаратор. Он допускает питание напряжением до 36 вольт, имеет коэффициент передачи не менее 50 V/mV, а его входы отличаются довольно высоким импедансом. В качестве коммутирующего транзистора был взят первый из доступных в продаже мощных P-канальных MOSFET-ов FDD6685. После нескольких экспериментов была выведена такая практическая схема коммутатора:
В ней абстрактный источник стабильного напряжения заменен на вполне реальный параметрический стабилизатор из резистора R2 и стабилитрона D1, а делитель выполнен на основе подстроечного резистора R1, позволяющего подогнать коэффициент деления под нужное значение. Так как входы компаратора имеют весьма значительный импеданс, величина гасящего сопротивления в стабилизаторе может составлять более сотни кОм, что позволяет минимизировать ток утечки, а значит и общее потребление устройства. Номинал подстроечного резистора вообще не критичен и без каких-либо последствий для работоспособности схемы может быть выбран в диапазоне от десяти до нескольких сотен кОм. Из-за того, что выходная цепь компаратора LM393 построена по схеме с открытым коллектором, для ее функционального завершения необходим также нагрузочный резистор R3, сопротивлением несколько сотен кОм.
Регулировка устройства сводится к установке положения движка подстроечного резистора в положение, при котором напряжение на ножке 2 микросхемы превышает таковое на ножке 3 примерно на 0.1..0.2 вольта. Для настройки лучше не лезть мультиметром в высокоимпедансные цепи, а просто установив движок резистора в нижнее (по схеме) положение, подключить БП (аккумулятор пока не присоединяем), и, измеряя напряжение на выводе 1 микросхемы, двигать контакт резистора вверх. Как только напряжение резким скачком упадет до нуля, предварительную настройку можно считать завершенной.
Не стоит стремиться к отключению при минимальной разнице напряжений, потому что это неизбежно приведет к неправильной работе схемы. В реальных условиях напротив приходится специально занижать чувствительность. Дело в том, что при включении нагрузки, напряжение на входе схемы неизбежно просаживается из-за не идеальной стабилизации в БП и конечного сопротивления соединительных проводов. Это может привести к тому, что излишне чувствительно настроенный прибор сочтет такую просадку отключением БП и разорвет цепь. В результате БП будет подключаться только при отсутствии нагрузки, а все остальное время работать придется аккумулятору. Правда, когда аккумулятор немного разрядится, откроется внутренний диод полевого транзистора и ток от БП начнет поступать в цепь через него. Но это приведет к перегреву транзистора и к тому, что аккумулятор будет работать в режиме долгого недозаряда. В общем, окончательную калибровку нужно проводить под реальной нагрузкой, контролируя напряжение на выводе 1 микросхемы и оставив в итоге небольшой запас для надежности.
В результате практического испытания были получены такие результаты. Сопротивление в открытом состоянии соответствует проходному сопротивлению из даташита на транзистор. В закрытом состоянии паразитный ток во вторичной цепи БП измерить не удалось ввиду его незначительности. Потребляемый ток в режиме работы от аккумулятора составил 1.1 мА, причем он практически на 100% состоит из тока, потребляемого микросхемой. После калибровки под максимальную нагрузку, время срабатывания без нагрузки вышло почти 15 минут. Столько времени понадобилось моему аккумулятору, чтобы разрядиться до того напряжения, которое поступает от БП на устройство под полной нагрузкой. Правда, отключение при полной нагрузке происходит почти сразу (менее 10 секунд), но это время зависит от емкости, заряда, и общего «здоровья» аккумулятора.
Существенными недостатками этой схемы являются относительная сложность калибровки и необходимость мириться с потенциальными потерями энергии аккумулятора ради корректной работы.
Последний недостаток не давал покоя и после некоторых обдумываний привел меня к мысли измерять не напряжение аккумулятора, а непосредственно направление тока в цепи.
Второе решение (полевой транзистор + измеритель направления тока)
Для измерения направления тока можно было бы применить какой-нибудь хитрый датчик. Например, датчик Холла, регистрирующий вектор магнитного поля вокруг проводника и позволяющий без разрыва цепи определить не только направление, но и силу тока. Однако в связи с отсутствием такого датчика (да и опыта работы с подобными девайсами), было решено попробовать измерять знак падения напряжения на канале полевого транзистора. Конечно, в открытом состоянии сопротивление канала измеряется сотыми долями ома (ради этого и вся затея), но, тем не менее, оно вполне конечно и можно попробовать на этом сыграть. Дополнительным доводом в пользу такого решения является отсутствие необходимости в тонкой регулировке. Мы ведь будем измерять лишь полярность падения напряжения, а не его абсолютную величину.
По самым пессимистичным расчетам, при сопротивлении открытого канала транзистора FDD6685 около 14 мОм и дифференциальной чувствительности компаратора LM393 из колонки “min” 50 V/mV, мы будем иметь на выходе компаратора полный размах напряжения величиной 12 вольт при токе через транзистор чуть более 17 mA. Как видим, величина вполне реальная. На практике же она должна быть еще примерно на порядок меньше, потому что типичная чувствительность нашего компаратора равна 200 V/mV, сопротивление канала транзистора в реальных условиях с учетом монтажа вряд ли будет меньше 25 мОм, а размах управляющего напряжения на затворе может не превышать трех вольт.
Абстрактная реализация будет иметь примерно такой вид:
Тут входы компаратора подключены непосредственно к плюсовой шине по разные стороны от полевого транзистора. При прохождении тока через него в разных направлениях, напряжения на входах компаратора неизбежно будут отличаться, причем знак разницы будет соответствовать направлению тока, а величина – его силе.
На первый взгляд схема оказывается предельно простой, однако тут возникает проблема с питанием компаратора. Заключается она в том, что мы не можем запитать микросхему непосредственно от тех же цепей, которые она должна измерять. Согласно даташиту, максимальное напряжение на входах LM393 не должно быть выше напряжения питания минус два вольта. Если превысить этот порог, компаратор прекращает замечать разницу напряжений на прямом и инверсном входах.
Потенциальных решений возникшей проблемы два. Первое, очевидное, заключается в повышении напряжения питания компаратора. Второе, которое приходит в голову, если немного подумать, заключается в равном понижении управляющих напряжений при помощи двух делителей. Вот как это может выглядеть:
Эта схема подкупает своей простотой и лаконичностью, однако в реальном мире она, к сожалению, не реализуема. Дело в том, что мы имеем дело с разницей напряжений между входами компаратора всего в единицы милливольт. В то же время разброс сопротивлений резисторов даже самого высокого класса точности составляет 0.1%. При минимально приемлемом коэффициенте деления 2 к 8 и разумном полном сопротивлении делителя 10 кОм, погрешность измерения будет достигать 3 mV, что в несколько раз превышает падение напряжения на транзисторе при токе 17 mA. Применение «подстроечника» в одном из делителей отпадает по той же причине, ведь подобрать его сопротивление с точностью более 0.01% не представляется возможным даже при использовании прецизионного многооборотного резистора (плюс не забываем про временной и температурный дрейф). Кроме того, как уже писалось выше, теоретически эта схема вообще не должна нуждаться в калибровке из-за своей почти «цифровой» сущности.
Исходя из всего сказанного, на практике остается только вариант с повышением напряжения питания. В принципе, это не такая уж и проблема, если учесть, что существует огромное количество специализированных микросхем, позволяющих при помощи всего нескольких деталей соорудить stepup-преобразователь на нужное напряжение. Но тогда сложность устройства и его потребление возрастет почти вдвое, чего хотелось бы избежать.
Существует несколько способов соорудить маломощный повышающий преобразователь. Например, большинство интегральных преобразователей предполагают использование напряжения самоиндукции небольшого дросселя, включенного последовательно с «силовым» ключом, расположенным прямо на кристалле. Такой подход оправдан при сравнительно мощном преобразовании, например для питания светодиода током в десятки миллиампер. В нашем случае это явно избыточно, ведь нужно обеспечить ток всего около одного миллиампера. Нам гораздо более подойдет схема удвоения постоянного напряжения при помощи управляющего ключа, двух конденсаторов, и двух диодов. Принцип ее действия можно понять по схеме:
В первый момент времени, когда транзистор закрыт, не происходит ничего интересного. Ток из шины питания через диоды D1 и D2 попадает на выход, в результате чего на конденсаторе C2 устанавливается даже несколько более низкое напряжение, чем поступает на вход. Однако если транзистор откроется, конденсатор C1 через диод D1 и транзистор зарядится почти до напряжения питания (минус прямое падение на D1 и транзисторе). Теперь, если мы снова закроем транзистор, то окажется, что заряженный конденсатор C1 включен последовательно с резистором R1 и источником питания. В результате его напряжение сложится с напряжением источника питания и, понеся некоторые потери в резисторе R1 и диоде D2, зарядит C2 почти до удвоенного Uin. После этого весь цикл можно начинать сначала. В итоге, если транзистор регулярно переключается, а отбор энергии из C2 не слишком велик, из 12 вольт получается около 20 ценой всего пяти деталей (не считая ключа), среди которых нет ни одного намоточного или габаритного элемента.
Для реализации такого удвоителя, кроме уже перечисленных элементов, нам нужен генератор колебаний и сам ключ. Может показаться, что это уйма деталей, но на самом деле это не так, ведь почти все, что нужно, у нас уже есть. Надеюсь, вы не забыли, что LM393 содержит в своем составе два компаратора? А то, что использовали мы пока только один из них? Ведь компаратор – это тоже усилитель, а значит, если охватить его положительной обратной связью по переменному току, он превратится в генератор. При этом его выходной транзистор будет регулярно открываться и закрываться, отлично исполняя роль ключа удвоителя. Вот что у нас получится при попытке реализовать задуманное:
Поначалу идея питать генератор напряжением, которое тот сам фактически и вырабатывает при работе, может показаться довольно дикой. Однако если присмотреться внимательнее, то можно увидеть, что изначально генератор получает питание через диоды D1 и D2, чего ему вполне достаточно для старта. После возникновения генерации начинает работать удвоитель, и напряжение питания плавно возрастает примерно до 20 вольт. На этот процесс уходит не более секунды, после чего генератор, а вместе с ним и первый компаратор, получают питание, значительно превышающее рабочее напряжение схемы. Это дает нам возможность непосредственно измерять разность напряжений на истоке и стоке полевого транзистора и достичь-таки своей цели.
Вот окончательная схема нашего коммутатора:
Пояснять по ней уже нечего, все описано выше. Как видим, устройство не содержит ни одного настроечного элемента и при правильной сборке начинает работать сразу. Кроме уже знакомых активных элементов добавились только два диода, в качестве которых можно использовать любые маломощные диоды с максимальным обратным напряжением не менее 25 вольт и предельным прямым током от 10 mA (например, широко распространенный 1N4148, который можно выпаять из старой материнской платы).
Эта схема была проверена на макетной плате, где доказала свою полную работоспособность. Полученные параметры полностью соответствуют ожиданиям: мгновенная коммутация в оба направления, отсутствие неадекватной реакции при подключении нагрузки, потребление тока от аккумулятора всего 2.1 mA.
Один из вариантов разводки печатной платы тоже прилагается. 300 dpi, вид со стороны деталей (поэтому печатать нужно в зеркальном отражении). Полевой транзистор монтируется со стороны проводников.
Собранное устройство, полностью готовое к монтажу:
Разводил старым дедовским способом, поэтому вышло немного криво, однако тем не менее девайс уже несколько дней исправно выполняет свои функции в цепи с током до 15 ампер без всяких признаков перегрева.
Архив с файлами схемы и разводки для EAGLE.
Спасибо за внимание.
При проектировании промышленных приборов, к которым предъявляются повышенные требования по надёжности, я не раз сталкивался с проблемой защиты устройства от неправильной полярности подключения питания. Даже опытные монтажники порой умудряются перепутать плюс с минусом. Наверно ещё более остро подобные проблемы стоят в ходе экспериментов начинающих электронщиков. В данной статье рассмотрим простейшие решения проблемы — как традиционные так и редко применяемые на практике методы защиты.
Простейшее решение, которое напрашивается с ходу — включение последовательно с прибором обычного полупроводникового диода.
Просто, дёшево и сердито, казалось бы чего ещё нужно для счастья? Однако, у такого способа есть очень серьёзный недостаток — большое напряжение падения на открытом диоде.
Вот типичная ВАХ для прямого включения диода. При токе в 2 Ампера напряжение падения составит примерно 0.85 вольт. В случае низковольтных цепей
0.85В х 2А = 1.7Вт.
Рассеиваемая на диоде мощность уже многовата для такого корпуса и он будет ощутимо греться!
Впрочем, если вы готовы расстаться с несколько большими деньгами, то можно применить диод Шоттки, который имеет меньшее напряжение падения.
Вот типичная ВАХ для диода Шоттки. Подсчитаем рассеиваемую мощность для этого случая.
0.55В х 2А = 1.1Вт
Уже несколько лучше. Но что же делать если ваше устройство потребляет ещё более серьёзный ток?
Иногда параллельно устройству ставят диоды в обратном включении, которые должны сгореть если перепутать напряжение питания и привести к короткому замыканию. Ваше устройство при этом скорее всего потерпит минимум повреждений, но может выйти из строя источник питания, не говоря уже о том, что сам защитный диод придётся заменить, а вместе с ним могут и дорожки на плате повредиться. Словом этот способ для экстрималов.
Однако, есть ещё один несколько более затратный, но весьма простой и лишённый перечисленных выше недостатков способ защиты — с помощью полевого транзистора. За последние 10 лет параметры этих полупроводниковых приборов резко улучшились, а цена наоборот сильно упала. Пожалуй то, что их крайне редко используют для защиты ответственных цепей от неправильной полярности подачи питания можно объяснить во многом инерцией мышления. Рассмотрим следующую схему:
При подаче питания напряжение на нагрузку проходит через защитный диод. Падение на нём достаточно велико — в нашем случае около вольта. Однако в результате между затвором и истоком транзистора образуется напряжение превышающее напряжение отсечки и транзистор открывается. Сопротивление исток-сток резко уменьшается и ток начинает течь уже не через диод, а через открытый транзистор.
Перейдём к конкретике. Например для транзистора FQP47З06 типичное сопротивление канала будет составлять 0.026 Ом! Нетрудно рассчитать что рассеиваемая при этом на транзисторе мощность для нашего случая будет всего 25 милливатт, а падение напряжение близко к нулю!
При смене полярности источника питания ток в цепи течь не будет. Из недостатков схемы можно пожалуй отметить разве то, что подобные транзисторы имеют не слишком большое пробивное напряжение между затвором и истоком, но слегка усложнив схему можно применить её для защиты более высоковольтных цепей.
Думаю читателям не составит труда самим разобраться как работает эта схема.
Уже после публикации статьи уважаемый пользователь Keroro в комментариях привел схему защиты на основе полевого транзистора, которая применяется в iPhone 4. Надеюсь он не будет возражать если я дополню свой пост его находкой.
Zener Diode Схемы и дизайн »Электроника Примечания
Существует множество цепей стабилитронов от опорных цепей напряжения до цепей, обеспечивающих защиту от скачков напряжения.
Учебное пособие по стабилитрону и эталонному диоду Включает в себя: стабилитрон
Теория работы стабилитрона
Технические характеристики стабилитронов
Схемы стабилитрона
Другие диоды: Типы диодов
диодов Зенера или опорное напряжения диоды используются в различных схемы, чтобы они могли обеспечить опорное напряжение.Они также могут быть использованы в других схемах, кроме простого предоставления опорного напряжения.
Существует много схем, в которых используются стабилитроны, начиная от очень простых схем стабилитронов и заканчивая более сложными.
Ниже приведены несколько примеров схем стабилитронов, а также некоторые советы и рекомендации по проектированию схем.
Простой диод Зенера схема обеспечивает опорное напряжение
Самая основная схема стабилитрона состоит из одного стабилитрона и резистора.Диод Зенера обеспечивает опорное напряжение, но последовательный резистор должен быть на месте, чтобы ограничить ток в диод в противном случае большое количество тока будет протекать через него, и он может быть разрушен.
Значение резистора в цепи стабилитрона должно быть рассчитано, чтобы дать требуемое значение тока для используемого напряжения питания. Как правило, большинство маломощных этилированных стабилитронов имеют максимальную мощность рассеяния 400 мВт. В идеале схема должна быть рассчитана таким образом, чтобы рассеивать менее половины этой величины, но для правильной работы ток в стабилитроне не должен опускаться ниже примерно 5 мА, иначе они не будут правильно регулироваться.
Основное опорное напряжение стабилитрон цепиПример схемы
Возьмем случай, когда цепь стабилитрона используется для питания регулируемой 5,1-вольтной шины, потребляющей 2 мА, от источника входного напряжения 12 вольт. Для вычисления требуемого резистора можно использовать следующие простые шаги:
- Рассчитать разницу в напряжении на последовательном резисторе 12 — 5,1 = 6,9 Вольт
- Определите ток резистора. Выберите это, чтобы быть 15 мА.Это позволит получить достаточный запас выше минимального тока стабилитрона для некоторого изменения тока нагрузки.
- Проверьте рассеяние мощности стабилитрона. При токе 15 мА и напряжении на рассеиваемой мощности: 15 мА х 5,1 вольт = 76,5 мВт
Это в пределах максимального предела для диода - Определите ток через последовательный резистор. Это 15 мА для стабилитрона плюс 2 мА для нагрузки, то есть 17 мА.
- Определите значение последовательного резистора.Используя закон Ома, его можно рассчитать по падению напряжения на нем и суммарному току через него: 6,9 / 17 мА = 0,405 кОм
Ближайшее значение — 390 Ом - Определите мощность последовательного резистора. Это можно определить с помощью значения тока через резистор и напряжения на нем, рассчитанного ранее: В x I = 6,9 В x 17 мА = 117 мВт
Резистор должен быть в состоянии рассеивать этот уровень тепла. Для этого должно быть достаточно четверть ваттного резистора.
Этот простой диод Зенера схема широко используется в качестве простого способа предоставления опорного напряжения.
Схема стабилитронадля БП с последовательным транзистором
Очень простая схема стабилитрона, обеспечивающая функцию шунтирующего регулятора, как показано выше, не особенно эффективна и неосуществима для многих приложений с большим током. Одним из решений является использование схемы стабилитрона, которая использует транзисторный буфер, который действует как последовательный транзистор.Простая схема показана ниже, и здесь транзистор используется в качестве повторителя излучателя.
Простая стабилитронная схема стабилизатора напряжения
При использовании этой схемы стабилитрона, необходимо рассчитать ток, требуемый от разрядника потенциала резистора стабилитрона. Это ток эмиттера от транзистора, деленный на коэффициент усиления.
При выборе напряжения стабилитрона следует помнить, что напряжение эмиттера будет ниже напряжения стабилитрона на величину напряжения базы-эмиттера — около 0.6 вольт для кремниевого транзистора.
Стабилитрон для защиты от перенапряжения
Другая форма схемы стабилитрона — это схема защиты от перенапряжения. Эта схема стабилитрона использует стабилитрон несколько другим способом, определяя ток пробоя через диод после достижения определенного напряжения.
Хотя источники питания обычно надежны, последствия последовательного транзистора или отказа полевого транзистора могут быть катастрофическими. Если последовательное устройство выходит из строя из-за короткого замыкания, полное нерегулируемое напряжение будет подаваться на цепи с использованием регулируемой мощности.Это может уничтожить все питающиеся чипы.
Одним из решений является использование ломовой схемы. Когда эта форма цепи обнаруживает ситуацию перенапряжения, она запускает SCR. Это быстро удерживает выходное напряжение и в показанном примере перегорает предохранитель, который отключает источник питания.
Схема защиты от перенапряжения стабилитрона / SCRЦепь работает путем срабатывания SCR при обнаружении перенапряжения. Стабилитрон выбирается так, чтобы иметь напряжение выше нормального рабочего напряжения — достаточный запас, чтобы не срабатывать при нормальных условиях эксплуатации, но достаточно малый, чтобы ток мог течь быстро при обнаружении неисправного состояния.
При нормальных условиях работы выходное напряжение ниже обратного напряжения стабилитрона и ток не течет, хотя он и затвор SCR не сработали.
Однако, если напряжение поднимется выше допустимого напряжения, то есть напряжения пробоя стабилитрона, стабилитрон начнет проводить, SCR сработает и предохранитель перегорит.
Цинковые диодные наконечники
Стабилитрон является очень гибким и полезным компонентом схемы. Однако, как и у любого другого электронного компонента, есть несколько советов и подсказок, которые позволяют сделать лучшее из стабилитрона.Число указаны ниже.
- Буферная схема стабилитрона с помощью схемы эмиттера или повторителя источника: Чтобы напряжение стабилитрона было максимально стабильным, ток, протекающий через стабилитрон, должен быть постоянным. Любые изменения тока, потребляемого нагрузкой, должны быть сведены к минимуму, так как они изменят ток через стабилитрон и вызовут небольшие изменения напряжения. Изменения, вызванные нагрузкой, можно минимизировать, используя ступень схемы повторителя эмиттера, чтобы уменьшить ток, снимаемый с цепи диода Зенера, и, следовательно, изменения, которые он видит.Это также имеет то преимущество, что можно использовать меньшие стабилитроны.
- Привод с источником постоянного тока для лучшей стабильности: Еще один способ улучшить стабильность стабилитрона — это использовать хороший источник постоянного тока. Простая схема, использующая только резистор, подходит для многих приложений, но более эффективный источник тока может обеспечить некоторые улучшения характеристик схемы, поскольку ток может поддерживаться практически независимо от любых изменений в шине питания.
- Выберите правильное напряжение для лучшей стабильности: В приложениях, где требуется стабильность при изменениях температуры, опорный диод напряжения Зенера должен быть выбран, чтобы иметь напряжение около 5,5 вольт. Ближайшее предпочтительное значение составляет 5,6 вольт, хотя 5,1 вольт является еще одним популярным значением ввиду его близости к 5 вольтам, требуемым для некоторых логических семейств. Там, где требуются разные уровни напряжения, можно использовать стабилитрон на 5,6 В и окружающую электронику, чтобы перевести его на требуемое выходное значение.
- Обеспечить ток, достаточный для обратного пробоя: Необходимо убедиться, что через диод пропущен достаточный ток, чтобы он оставался в обратном пробое. Для типичного устройства 400 мВт необходимо поддерживать ток около 5 мА. Для точных значений минимального тока следует обратиться к таблице данных для конкретного устройства и напряжения. Если этот минимальный ток не подается, то диод не будет работать должным образом, и вся цепь не будет работать.
- Убедитесь, что максимальные пределы тока для стабилитрона не превышены: Хотя необходимо обеспечить достаточный ток, пропускаемый через стабилитрон, максимальные пределы не должны превышаться. Это может быть немного уравновешивающим действием в некоторых цепях, так как колебания тока нагрузки приводят к изменению тока стабилитрона. Следует соблюдать осторожность, чтобы не превысить максимальный ток или максимальное рассеивание мощности (напряжение стабилитрона x ток стабилитрона). Если это кажется проблемой, можно использовать схему повторителя эмиттера для буферизации стабилитрона и увеличения возможностей тока.
очень просты в использовании и, как следствие, существует множество различных схем стабилитронов. При использовании с некоторыми мерами предосторожности они работают хорошо, но иногда они могут вызывать некоторые проблемы, но следование указанным выше советам и советам должно помочь избежать большинства проблем.
Больше электронных компонентов:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
транзистор
Фототранзистор
FET
Типы памяти
тиристор
Соединители
РЧ разъемы
Клапаны / Трубы
батареи
Выключатели
Реле
Вернуться в меню компонентов., ,
Диод является одним из основных компонентов в электронных схемах. Если вы хотите знать о напряжениях, вы должны знать о диодах. Диод в основном состоит из полупроводников, которые имеют две характеристики: тип «P» и тип «N». Полупроводники типа «P» и «N» представляют собой полупроводники положительного и отрицательного типа. Полупроводник типа «P» будет иметь избыточное количество дырок в конфигурации, а полупроводник типа «N» будет иметь избыточное количество электронов.Если оба типа характеристик присутствуют в монокристалле, его можно назвать диодным. Положительный вывод батареи соединяется со стороной «P», а отрицательный — со стороны «N». Давайте поговорим о работе стабилитрона, это не что иное, как простой диод, подключаемый в обратном смещении.
Zener DiodeZener Diode
Это в основном особые свойства диода, а не какой-либо специальный тип оборудования. Человек по имени Клиренс Зинер изобрел это свойство диода, поэтому оно названо его именем в память.Особое свойство диода заключается в том, что в цепи произойдет пробой, если напряжение подается на цепь с обратным смещением. Это не позволяет току течь через него. Когда напряжение на диоде увеличивается, температура также увеличивается, и ионы кристаллов вибрируют с большей амплитудой, и все это приводит к разрушению обедненного слоя. Слой на стыке типа «P» и «N». Когда приложенное напряжение превышает определенную величину, происходит пробой стабилитрона.
Zener Diode V-I Характеристики
Стабилитрон является ничем иным, как одним диодом, подключенным в режиме обратного смещения, и стабилитрон может быть подключен с положительным обратным смещением в цепи, как показано на рисунке. Мы можем подключить его для различных применений.
Символ цепи стабилитрона, как показано на рисунке. Для удобства он используется нормально. При обсуждении диодных цепей мы должны рассмотреть графическое представление работы стабилитрона.Это называется характеристиками V-I общего диода p — n перехода.
Соединение стабилитронаХарактеристики стабилитрона
На приведенной выше диаграмме показаны V-I характеристики поведения стабилитрона. Когда диод подключен к прямому смещению, диод работает как обычный диод. Когда напряжение обратного смещения превышает заданное напряжение, возникает напряжение пробоя стабилитрона. Чтобы получить пробивное напряжение, необходимо контролировать резкое и четкое легирование и избежать дефектов поверхности.В V-I характеристиках выше Vz находится напряжение Зенера. А также напряжение колена, потому что в этот момент ток является током очень быстрым.
Поведение стабилитронаПрименение стабилитрона
Стабилитроншироко используется в качестве шунтирующего регулятора или регулятора напряжения. Поскольку мы прошли первую часть статьи, мы знаем, что такое стабилитрон и каков основной принцип работы. Здесь возникает вопрос, где этот тип диодов может быть полезен.Основное применение этого типа диодов в качестве защитного напряжения regulator.Over напряжения, в качестве опорного напряжения.
Проверка стабилитрона
Мы обсудили применение стабилитрона в качестве регулятора напряжения, а теперь обсудим два других момента.
Защита от перенапряжения осуществляется с помощью стабилитронов, поскольку через диод течет ток после того, как напряжение обратного смещения превысит определенное напряжение. Эта схема обеспечивает безопасность оборудования, подключенного к клеммам.Обычно ток не должен превышать нормальный клапан, но если из-за какой-либо неисправности в цепи ток превышает максимально допустимое напряжение, то оборудование системы может быть повреждено. Используется SCR, при котором выходное напряжение быстро отключается и перегорает предохранитель, который отключает источник питания. Схемное показан ниже для лучшего понимания,
стабилитрон соединениеопорного напряжения определяет постоянную подачу тока или напряжения питания в качестве работ напряжения Зенера.Если подача тока одинакова, то во избежание нестабильной работы мы используем стабилитроны. Они используются там, где опорное напряжение требуется, как амперметры, омметры и вольтметры.
Стабилитрон как регулятор напряжения
Термин «регулятор» означает, что регулирует. Стабилитрон может работать как регулятор напряжения, если он включен в цепь. Выход через диод будет постоянным. Он управляется источником тока. Как мы знаем, если напряжение на диоде превышает определенное значение, это приведет к чрезмерному току от источника питания.Принципиальная схема стабилитрона в качестве регулятора напряжения приведена ниже,
Для фиксации тока через последовательное сопротивление стабилитрона R вводится значение, которое можно выбрать из следующего уравнения:
Значение резистора (Ом) = (V1 — V2) / (Ток стабилитрона + ток нагрузки)
На приведенной выше схеме показаны шунтирующие регуляторы, поскольку регулирующий элемент параллелен нагрузочному элементу. Диод Зенера производит стабильное опорное напряжение на нагрузке, которая удовлетворяет критериям требования регулятора.
Стабилитрон позволяет току течь в прямом направлении так же, как идеальный диод. Это также позволяет течь в обратном направлении, когда напряжение выше определенного значения, известного как напряжение пробоя.
Это устройство названо в честь Зенера. Зинер обнаружил это электрическое свойство. Стабилитрон представляет собой диод, в котором происходит обратный пробой из-за туннелирования квантов электронов при высокой напряженности электрического поля, называемой эффектом Зенера. Многие диоды, описанные как стабилитроны, полагаются вместо этого на лавинный пробой.Оба типа используются с эффектом Зенера, преобладающим при 5,6 В, и с лавинным пробоем выше. Обычные приложения включают в себя обеспечение опорного напряжения для регуляторов напряжения. Это необходимо для защиты устройств от мгновенных импульсов напряжения.
Возможность подключения стабилитронаЭти устройства также встречаются последовательно с переходом базового эмиттера. На этапах транзистора, где выборочный выбор устройства сосредоточен вокруг лавины или точки Зенера. Это может быть использовано для введения компенсационного температурного коэффициента балансировки транзистора.Усилитель ошибки постоянного тока, используемый в системе контуров обратной связи цепи регулируемого электропитания, является примером.
Они также используются в устройствах защиты от перенапряжений для ограничения скачков напряжения при переходных процессах, и еще одним применением стабилитрона является использование шума, вызванного его лавинным пробоем в генераторе случайных чисел. Можете ли вы сказать мне еще несколько применений стабилитрона? Комментируя …
Фото Кредиты:
.Определение: Полупроводниковый диод с высокой степенью легирования, предназначенный для работы в обратном направлении, известен как стабилитрон. Другими словами, диод, который специально разработан для оптимизации области пробоя, известен как стабилитрон.
Символическое представление стабилитрона показано на рисунке ниже.
Принципиальная электрическая схема стабилитрона
Принципиальная схема стабилитрона показана на рисунке ниже.Стабилитрон используется в режиме обратного смещения. Обратное смещение означает, что материал n-типа диода подключен к положительной клемме источника питания, а материал P-типа подключен к отрицательной клемме источника питания. Область истощения диода очень тонкая, потому что он сделан из сильно легированного полупроводникового материала.
рабочий стабилитрон
Стабилитрон изготовлен из сильно легированного полупроводникового материала. Сильно легированный означает, что к материалу добавляются примеси с высоким содержанием, чтобы сделать его более проводящим.Область обеднения стабилитрона очень тонкая из-за примесей. Сильно легирующий материал увеличивает напряженность электрического поля в обедненной области стабилитрона даже при небольшом обратном напряжении.
Когда смещение стабилитрона не применяется, электроны остаются в валентной зоне материала р-типа и ток не протекает через диод. Зона, в которой находятся валентные электроны (крайняя электронная орбита), называется электроном валентной зоны.Электроны валентной зоны легко переходят из одной полосы в другую, когда на нее подается внешняя энергия.
Когда обратное смещение применяется к диоду и напряжение питания равно напряжению стабилитрона, оно начинает проводить в обратном направлении смещения. Напряжение Зенера — это напряжение, при котором область обеднения полностью исчезает.
Обратное смещение применяется через диод увеличивает напряженность электрического поля в области истощения.Таким образом, это позволяет электронам перемещаться из валентной зоны материала P-типа в зону проводимости материала N-типа. Эта передача электронов валентной зоны в зону проводимости уменьшает барьер между материалом p и n-типа. Когда область истощения становится полностью исчезающей, диод начинает проводить в обратном смещении.
Характеристика стабилитрона
График ВИ характеристики диода Зенера показан на рисунке ниже. Эта кривая показывает, что стабилитрон, когда он подключен с переадресацией, ведет себя как обычный диод.Но когда на него подается обратное напряжение и обратное напряжение выходит за пределы заданного значения, в диоде происходит пробой стабилитрона.
При напряжении пробоя стабилитрона ток начинает течь в обратном направлении. График пробоя стабилитрона не совсем вертикальный, показанный выше, который показывает, что стабилитрон имеет сопротивление. Напряжение на стабилитроне представлено уравнением, показанным ниже.
В = В Z + I Z R Z
Применение стабилитрона
Стабилитрон в основном используется в коммерческих и промышленных применениях.Ниже приведены основные применения стабилитрона.
в качестве стабилизатора напряжения — стабилитрон используется для регулирования напряжения. Он обеспечивает постоянное напряжение от источника колебаний напряжения к нагрузке. Стабилитрон подключается параллельно через нагрузку и поддерживает постоянное напряжение V Z и, следовательно, стабилизирует напряжение.
Для защиты счетчика — Стабилитрон обычно используется в мультиметрах для контроля движения счетчика от случайных перегрузок.Он подключен параллельно с диодом. Когда перегрузка происходит через диод, большая часть тока проходит через диод. Таким образом, защищает счетчик от повреждений.
Для формирования волны — Стабилитрон используется для преобразования синусоиды в прямоугольную волну. Это можно сделать, поместив два диода Зенера последовательно с сопротивлением. Диод подключен вплотную и в противоположном направлении.
Когда напряжение, подаваемое на клемму, меньше напряжения Зенера, диоды обеспечивают высокий резистивный путь к току, и входное напряжение, приложенное к диоду, появляется на выходной клемме.Когда напряжение поднимается выше напряжения стабилитрона, они предлагают путь с низким сопротивлением и большой ток, протекающий через диод. Из-за чего происходит сильное падение напряжения на сопротивлении и обрезание входной волны на пике. Таким образом, прямоугольная волна появляется на выходной клемме
,Введение
Диодыобычно известны как устройства, которые позволяют протекать току в одном направлении (с прямым смещением) и обеспечивают сопротивление потоку тока при использовании в обратном смещении. Zener Diode (названный в честь американского ученого К. Зенера, который впервые объяснил его принципы работы), с другой стороны, не только позволяют протекать току при использовании в прямом смещении, но они также позволяют протекать току при использовании в обратное смещение до сих пор приложенное напряжение выше напряжения пробоя , известного как напряжение пробоя стабилитрона .Или, другими словами, Напряжение пробоя — это напряжение, при котором стабилитрон начинает проводить в обратном направлении.
Принцип действия стабилитрона:
В нормальных диодах напряжение пробоя очень высокое и диод полностью поврежден, если приложено напряжение выше диода пробоя, но в диодах Зенера напряжение пробоя не такое высокое и не приводит к необратимому повреждению диода Зенера если напряжение приложено.
Когда обратное напряжение, подаваемое на стабилитрон, увеличивается по направлению к указанному напряжению пробоя (В), через диод начинает течь ток, и этот ток называется током стабилитрона , а этот процесс известен как пробой лавины . Ток увеличивается до максимума и стабилизируется. Этот ток остается постоянным в более широком диапазоне приложенного напряжения и позволяет стабилитрону выдерживать более высокое напряжение без повреждения.Этот ток определяется последовательным резистором.
Рассмотрим изображения ниже нормального диода в действии .
Чтобы показать операции стабилитрона , рассмотрим два эксперимента (A и B) ниже.
В эксперименте A стабилитрон 12 В подключен в обратном смещении, как показано на рисунке, и видно, что стабилитрон эффективно блокировал напряжение, потому что оно было меньше или равно напряжению пробоя конкретного стабилитрона и лампа, таким образом, осталась выключенной.
В эксперименте B использованный стабилитрон 6 В проводит (с включенной лампой) обратное смещение, потому что приложенное напряжение больше его напряжения пробоя и, таким образом, показывает, что область пробоя является областью действия стабилитрона
Вольт-амперная характеристика стабилитрона приведена ниже.
Из графика можно сделать вывод, что стабилитрон, работающий в режиме обратного смещения, будет иметь довольно постоянное напряжение независимо от величины подаваемого тока.
Применения стабилитрона:
Стабилитроныиспользуются в трех основных областях применения в электронных схемах;
1. Регулирование напряжения
2. Waveform Clipper
3. Напряжение Shifter
1. Стабилитрон как регулятор напряжения
Это, пожалуй, самое распространенное применение стабилитронов.
Это применение стабилитронов в значительной степени зависит от способности стабилитронов поддерживать постоянное напряжение независимо от изменений тока питания или нагрузки.Общая функция устройства регулирования напряжения состоит в том, чтобы обеспечивать постоянное выходное напряжение для нагрузки, подключенной параллельно к ней, независимо от изменений энергии, потребляемой нагрузкой (ток нагрузки), или изменений и нестабильности напряжения питания.
Стабилитрон будет обеспечивать постоянное напряжение при условии, что ток остается в диапазоне максимального и минимального обратного тока.
Принципиальная электрическая схема, показывающая стабилитрон , используемый в качестве регулятора напряжения , показана ниже.
Резистор R1 подключен последовательно с стабилитроном для ограничения количества тока, протекающего через диод, и входное напряжение Vin (которое должно быть больше напряжения стабилитрона) подключено поперек, как показано на рисунке, и выходное напряжение Vout берется по стабилитрону с Vout = Vz (напряжение Зенера). Поскольку характеристики обратного смещения стабилитрона необходимы для регулирования напряжения, он подключен в режиме обратного смещения, а катод подключен к положительной шине цепи.
Необходимо соблюдать осторожность при выборе значения резистора R1 , так как резистор малого значения приведет к большому току диода при подключении нагрузки, и это увеличит требования к рассеиваемой мощности диода, которые могут стать выше максимального значения. номинальная мощность стабилитрона и может повредить его.
Значение используемого резистора можно определить по формуле ниже.
R 1 = (V в - V Z ) / I Z Куда; R1 - значение последовательного сопротивления.Vin - это входное напряжение. Vz, которое совпадает с Vout, является напряжением стабилитрона И Из является током Зенера.
Используя эту формулу, легко убедиться, что значение выбранного резистора не приведет к току, превышающему то, что может выдержать стабилитрон.
Одна небольшая проблема, с которой сталкиваются схемы стабилизатора на основе стабилитрона, заключается в том, что стабилитрон иногда генерирует электрический шум на шине питания, пытаясь регулировать входное напряжение.Хотя это не может быть проблемой для большинства приложений, эта проблема может быть решена путем добавления разделительного конденсатора большой величины через диод. Это помогает стабилизировать выход стабилитрона.
2. Стабилитрон как ограничитель формы волны
Одно из применений обычных диодов заключается в применении схем с ограничением и ограничением , которые являются схемами, которые используются для формирования или изменения формы входного сигнала переменного тока или сигнала , создавая выходной сигнал различной формы в зависимости от характеристик клипер или фиксатор.
Схемы ограничителей , как правило, представляют собой схемы, которые используются для предотвращения выхода выходного сигнала схемы за пределы предварительно определенного значения напряжения без изменения какой-либо другой части входного сигнала или формы сигнала.
Эти схемы вместе с фиксаторами широко используются в аналоговом телевидении и FM-радиопередатчиках для устранения помех (зажимные схемы) и ограничения шумовых пиков за счет ограничения высоких пиков.
Поскольку стабилитроны в целом ведут себя как нормальные диоды , когда приложенное напряжение не равно напряжению пробоя, они, таким образом, также используются в цепях ограничения.
Схемы отсечения могут быть предназначены для ограничения сигнала в положительной, отрицательной или обеих областях . Хотя диод естественным образом отсекает другую область при напряжении 0,7 В независимо от того, был ли он спроектирован как положительный или отрицательный ограничитель.
Например, рассмотрим схему ниже.
Схема ограничителя предназначена для ограничения выходного сигнала при напряжении 6,2 В, поэтому был использован стабилитрон с напряжением 6,2 В. Стабилитрон предотвращает выход выходного сигнала за пределы напряжения Зенера независимо от формы входного сигнала.В этом конкретном примере использовалось входное напряжение 20 В, а выходное напряжение на положительном колебании составляло 6,2 В в соответствии с напряжением стабилитрона. Однако во время отрицательного колебания напряжения переменного тока стабилитрон ведет себя так же, как обычный диод, и обрезает выходное напряжение при 0,7 В, в соответствии с нормальными силиконовыми диодами.
Чтобы реализовать схему ограничения для отрицательного и переменного тока цепи переменного тока, а также для положительного колебания таким образом, чтобы напряжение ограничивалось на разных уровнях на положительном и отрицательном колебаниях, используется схема ограничения с двойным стабилитрономом.Принципиальная схема для схемы двойного стабилитрона показана ниже.
В приведенной выше схеме ограничения напряжение Vz2 представляет напряжение на отрицательном колебании источника переменного тока, при котором выходной сигнал должен быть ограничен, в то время как напряжение Vz1 представляет напряжение на положительном колебании источника переменного тока, на котором выход напряжение желательно обрезать.
3. Стабилитрон как преобразователь напряжения
Сдвиг напряжения — одно из самых простых, но интересных применений стабилитрона.Если у вас был опыт, особенно с подключением датчика 3,3 В к 5 В MCU, и вы из первых рук видели ошибки в показаниях и т. Д., Что это может привести к ним, вы по достоинству оцените важность переключателей напряжения. Преобразователи напряжения помогают преобразовывать сигнал из одного напряжения в другое , а благодаря стабилитрону, поддерживающему постоянное выходное напряжение в области пробоя, это делает их идеальным компонентом для работы.
В преобразователе напряжения на основе стабилитрона схема понижает выходное напряжение на величину, равную напряжению пробоя конкретного используемого стабилитрона.Принципиальная схема для переключателя напряжения показана ниже.
Рассмотрим эксперимент ниже,
Схема описывает сдвиг напряжения на стабилитроне 3,3 В. Выходное напряжение (3,72 В) схемы определяется путем вычитания напряжения пробоя (3,3 В) стабилитрона из входного напряжения (7 В).
Vout = Vin –Vz
Vout = 7 — 3,3 = 3,7 В
Переключатель напряжения, как описано ранее, имеет несколько применений в современном дизайне электронных схем, так как инженеру-конструктору иногда приходится работать с тремя различными уровнями напряжения в процессе проектирования.
Типы стабилитронов:
Стабилитроныподразделяются на типы по нескольким параметрам, которые включают;
- Номинальное напряжение
- Рассеиваемая Мощность
- Прямой ток привода
- Прямое напряжение
- Тип упаковки
- Максимальный обратный ток
Номинальное напряжение
Номинальное рабочее напряжение стабилитрона также известно как напряжение пробоя стабилитрона, и в зависимости от применения, для которого должен использоваться диод, это часто является наиболее важным критерием выбора стабилитрона.
Рассеиваемая мощность
Это максимальное количество энергии, которое может рассеивать ток стабилитрона. Превышение этой номинальной мощности приводит к чрезмерному повышению температуры стабилитрона, что может повредить его и привести к выходу из строя элементов, подключенных к нему в цепи. Таким образом, этот фактор следует учитывать при выборе диода с учетом его использования.
Максимальный ток стабилитрона
Это максимальный ток, который может проходить через стабилитрон при напряжении стабилитрона, не повреждая устройство.
Минимальный ток стабилитрона
Это относится к минимальному току, необходимому для стабилитрона, чтобы он начал работать в области пробоя.
Все остальные параметры, которые служат спецификацией для диода, должны быть полностью рассмотрены, прежде чем будет принято решение о типе типа стабилитрона, необходимого для этой специфической конструкции.
Вывод:
Вот 5 пунктов, которые вы никогда не должны забывать о стабилитроне.
- Стабилитрон похож на обычный диод только потому, что он легирован, чтобы иметь резкое пробивное напряжение.
- Стабилитрон поддерживает стабильное выходное напряжение независимо от входного напряжения, при условии, что максимальный ток стабилитрона не превышен.
- При подключении в прямом смещении стабилитрон ведет себя так же, как обычный силиконовый диод. Он проводит с тем же падением напряжения 0,7 В, что сопровождает использование обычного диода.
- Рабочее состояние стабилитрона по умолчанию находится в области пробоя (обратное смещение).Это означает, что он фактически начинает работать, когда приложенное напряжение выше напряжения Зенера при обратном смещении.
- Стабилитрон в основном используется в приложениях, связанных с регулированием напряжения, цепями ограничения и переключателями напряжения.