Файл:Закон Ома.jpg — Википедия
Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поискуКраткое описание
ОписаниеЗакон Ома.jpg | English: Ohm’s law |
Дата | |
Источник | собственная работа |
Автор | Andshel |
поток безсвязной логики
Лицензирование
Public domainPublic domainfalsefalse |
Этот файл не защищается авторским правом, так как является тривиальным, не несёт художественной ценности, состоит только из общеизвестных элементов, не имеющих авторства. |
История файла
Нажмите на дату/время, чтобы посмотреть файл, который был загружен в тот момент.
Дата/время | Миниатюра | Размеры | Участник | Примечание | |
---|---|---|---|---|---|
текущий | 06:21, 29 июня 2013 | 596 × 918 (73 Кб) | Andshel | User created page with UploadWizard |
Использование файла
Следующие 6 страниц используют данный файл:
Глобальное использование файла
Данный файл используется в следующих вики:
Файл:Закон Ома (перерисованный).png — Википедия
Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поискуКраткое описание
ОписаниеЗакон Ома (перерисованный).png | Русский: Основные формулы Закона Ома. |
Дата | |
Источник | собственная работа |
Автор | Павел Ёжыг |
Права (Повторное использование этого файла) | |
Другие версии |
Лицензирование
Этот файл доступен на условиях Creative Commons CC0 1.0 Универсальной передачи в общественное достояние (Universal Public Domain Dedication). | |
Лица, связанные с работой над этим произведением, решили передать данное произведение в общественное достояние, отказавшись от всех прав на произведение по всему миру в рамках закона об авторских правах (а также связанных и смежных прав), в той степени, которую допускает закон. Вы можете копировать, изменять, распространять, исполнять данное произведение в любых целях, в том числе в коммерческих, без получения на это разрешения автора. |
История файла
Нажмите на дату/время, чтобы посмотреть файл, который был загружен в тот момент.
Дата/время | Миниатюра | Размеры | Участник | Примечание | |
---|---|---|---|---|---|
текущий | 14:39, 20 мая 2016 | 596 × 918 (38 Кб) | Krassotkin | User created page with UploadWizard |
Использование файла
Следующая 1 страница использует данный файл:
Файл содержит дополнительные данные, обычно добавляемые цифровыми камерами или сканерами. Если файл после создания редактировался, то некоторые параметры могут не соответствовать текущему изображению.
Закон на Ом – Уикипедия
Серия статии на тема Класическа електродинамика |
Електричество Магнетизъм Електромагнетизъм Електродинамика Известни учени |
Законът на Ом е физичен закон, определящ зависимостта между напрежението, тока и съпротивлението на проводника в електрическа верига. Наречен е в чест на неговия откривател Георг Ом. Същността на закона е проста: създаваният от напрежението ток е обратно пропорционален на съпротивлението, което той трябва да преодолява, и е право пропорционален на пораждащото го напрежение.
Трябва също да се има предвид, че законът на Ом е фундаментален и може да се прилага към всяка физична система, в която действат някакви потоци енергия, преодоляващи съпротивление. Законът може да се прилага за изчисление на хидравлични, пневматични, магнитни, електрически, светлинни, топлинни потоци и т.н. (същото се отнася и за законите на Кирхоф), обаче такова приложение на тези закони става крайно рядко, само в рамките на тясно специализирани курсове.
Георг Симон Ом, провеждайки експерименти с различни проводници, установил, че силата на тока I{\displaystyle I} в даден проводник е пропорционална на напрежението U{\displaystyle U}, приложено към краищата му:
I=G⋅U{\displaystyle I=G\cdot U}
Коефициентът на пропорционалност G{\displaystyle G} се нарича електропроводимост, а величината R=1/G{\displaystyle R=1/G} е прието да се нарича електрическо съпротивление на проводника.
Законът на Ом за част от електрическата верига има вида:
- I=UR{\displaystyle \textstyle I={\frac {U}{R}}}, или
- U=R⋅I{\displaystyle \textstyle U=R\cdot I}, или
- R=UI{\displaystyle \textstyle R={\frac {U}{I}}},
където:
- U{\displaystyle \scriptstyle U} е напрежението или разликата между потенциалите,
- I{\displaystyle \scriptstyle I} е силата на тока,
- R{\displaystyle \scriptstyle R} е съпротивлението.
Законът на Ом се прилага също и към цялата верига, но в малко видоизменена форма:
- I=ER+r{\displaystyle I={E \over {R+r}}},
където:
За по-лесно запомняне (в училище) законът на Ом се изобразява и като равностранен триъгълник с пресечна хоризонтална линия, под която има вертикална линия в средата. В горния малък триъгълник е U, под него са I и R. Лесно се помни и изглежда ето така:
/\ / \ / U \ /——————\ / I | R \ ——————————
Съпротивлението R зависи както от материала на проводника, по който тече токът, така и от геометричните размери на проводника.
Полезно е да се запише законът на Ом в диференциална форма, при която зависимостта от геометричните размери изчезва и тогава законът на Ом описва само електропроводните свойства на материала. За изотропни материали:
- j=σ⋅E{\displaystyle \mathbf {j} =\sigma \cdot \mathbf {E} },
където:
Всички величини, влизащи в това уравнение, са функции на координатите и в общия случай на времето. Ако материалът е анизотропен, то посоките на векторите на плътността на тока и на интензитета могат да не съвпадат. В този случай относителната проводимост е тензор от ранг (1, 1).
Разделът от физиката, изучаващ протичането на електрически ток в различни среди, се нарича електродинамика на непрекъснатите среди.
Ако веригата съдържа не само активни, но и реактивни елементи (капацитети, индуктивности), а токът е синусоидален с кръгова (ъглова) честота ω, то законът на Ом се обобщава, а участващите в него величини стават комплексни:
- U˙=Z⋅I˙{\displaystyle {\dot {U}}=Z\cdot {\dot {I}}},
където:
- U˙=U⋅ejψu{\displaystyle \textstyle {\dot {U}}=U\cdot e^{j\psi _{u}}}
- е комплексната ефективна стойност на напрежението; ψu{\displaystyle \textstyle \psi _{u}} е началната фаза на напрежението,
- I˙=I⋅ejψi{\displaystyle \textstyle {\dot {I}}=I\cdot e^{j\psi _{i}}}
- е комплексната ефективна стойност на тока; ψi{\displaystyle \textstyle \psi _{i}} е началната фаза на тока,
- Z=z⋅ejφ{\displaystyle \textstyle Z=z\cdot e^{j\varphi }}
- е комплексното пълно съпротивление (комплексният импеданс),
- z=R2+X2{\displaystyle \textstyle z={\sqrt {R^{2}+X^{2}}}}
- е пълното съпротивление (импеданс),
Ако токът е периодична функция на времето, но не е синусоидален, то той може да представи като сума от синусоидални съставящи (хармонични) с честоти kω{\displaystyle \scriptstyle k\omega }, (k=1…∞{\displaystyle \scriptstyle k=1\ldots \infty }) чрез разлагане в ред на Фурие. За линейни вериги може да се счита, че тези съставящи от разлагането на тока в ред на Фурие действат независимо една от друга.
Трябва да се отбележи също, че законът на Ом във вида, представен по-горе, е в сила за линейни електрически вериги, т.е. такива вериги, в които параметрите R{\displaystyle \scriptstyle R}, L{\displaystyle \scriptstyle L} и C{\displaystyle \scriptstyle C} са константни величини, независещи от напрежението, тока и честотата. В практиката това означава, че законът на Ом важи в определени граници на изменение на честотата, напрежението или тока.
За описване на по-сложни (нелинейни) системи, когато не може да се пренебрегне зависимостта на съпротивлението от силата на тока, е прието да се разглежда тяхната волт-амперна характеристика. Отклонения от закона на Ом се наблюдават също и в случаите, когато скоростта на изменение на електрическото поле е толкова голяма, че не може да се пренебрегне инерционността на носителите на заряда.
- Фархи, С.Л., С.П.Папазов. Теоретична електротехника ч. I, София, 1999, Техника.
- Simonyi, K. Theoretische Elektrotechnik, Berlin, 1956, Deutscher Verlag der Wissenschaften.
- Нейман, Л. Р., К. С. Демирчян, Теоретические основы электротехники т. I, т. II, Ленинград, 1981, Энергоиздат.
Закон Ома — это… Что такое Закон Ома?
V — напряжение,I — сила тока,
R — сопротивление.
Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.
В своей оригинальной форме он был записан его автором в виде : ,
Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) , l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, b параметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r[1].
В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает
Закон Ома для полной цепи:
, (2)
где:
Из закона Ома для полной цепи вытекают следствия:
- При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
- При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.
Часто[2] выражение:
(3)
(где есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».
Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:
(4)
То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.
К другой записи формулы (3), а именно:
(5)
Применима другая формулировка:
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи. |
Выражение (5) можно переписать в виде:
(6)
где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо[3], впоследствии переименованный в Си́менс (обозначение: См, S).
Мнемоническая диаграмма для Закона
Схема, иллюстрирующая три составляющие закона Ома Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисленияВ соответствии с этой диаграммой формально может быть записано выражение:
(7)
Которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.
В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:
(8)
где:
- — удельное сопротивление материала, из которого сделан проводник,
- — его длина
- — площадь его поперечного сечения
Закон Ома и ЛЭП
Одним из важнейших требований к линиям электропередач (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока = при минимальных потерях мощности в линии передачи = , где , причём на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора, (последнее всё же меньше сопротивления линии передач).
В таком случае потери мощности будут определяться выражением:
= (9)
Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом желательно всемерное её увеличение, что ограничивается электрической прочностью обмотки генератора. И повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако, для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в ней возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее, практически используемое, напряжение в дальних ЛЭП не превышает миллиона вольт.
Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём, излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.
Закон Ома в дифференциальной форме
Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.
Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:
где:
Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).
Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.
Закон Ома для переменного тока
Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.
Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:
где:
- U = U0eiωt — напряжение или разность потенциалов,
- I — сила тока,
- Z = Re−iδ — комплексное сопротивление (импеданс),
- R = (Ra2 + Rr2)1/2 — полное сопротивление,
- Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
- Rа — активное (омическое) сопротивление, не зависящее от частоты,
- δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.
При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, подбором такой что Тогда все значения токов и напряжений в схеме надо считать как
Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.
Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.
Трактовка закона Ома
Закон Ома можно просто объяснить при помощи теории Друде:
Здесь: