Законы электромагнитной индукции Фарадея • Джеймс Трефил, энциклопедия «Двести законов мироздания»
После того как в начале XIX века было установлено, что электрические токи порождают магнитные поля (см. Открытие Эрстеда, Закон Био—Савара), ученые заподозрили, что должна наблюдаться и обратная закономерность: магнитные поля должны каким-то образом производить электрические эффекты. В 1822 году в своей записной книжке Майкл Фарадей записал, что должен найти способ «превратить магнетизм в электричество». На решение этой задачи у него ушло почти десять лет.
Не раз за эти годы он возвращался к этой проблеме, пока не придумал серию экспериментов, кажущихся крайне незамысловатым по современным меркам. На железную катушку в форме бублика, например, он с одной стороны намотал плотные витки длинного, заизолированного от железного сердечника проводника, подключаемые к сильной электрической батарее, а с другой — плотные витки электрического проводника, подключенного к гальванометру — прибору для обнаружения электрического тока. Железный сердечник был нужен для «поимки» силовых линий образующегося магнитного поля и передачи их внутрь контура второй обмотки.
Первые результаты пришли не сразу. Сначала, сколько Фарадей ни наблюдал за своей установкой, при протекании электрического тока по первичной обмотке тока во вторичной обмотке не возбуждалось. Могло показаться, что предположения Фарадея относительно «преобразования» электричества в магнетизм и обратно ошибочны. И тут на помощь пришел случай: обнаружилось, к полному удивлению Фарадея, что стрелка гальванометра в цепи вторичной обмотки скачкообразно отклоняется от нулевого положения лишь при подключении или отключении батареи. И тогда Фарадея посетило великое прозрение: электрическое поле возбуждается лишь при
Повторяя свои опыты и анализируя результаты, Фарадей вскоре пришел к выводу, что протекающий по контуру электрический заряд пропорционален изменению т. н. магнитного потока, проходящего через него. Представьте себе, что замкнутый электропроводящий контур положен на лист бумаги, через который проходят силовые линии магнитного поля. Магнитным потоком называется произведение площади контура на напряженность (условно говоря, число силовых линий) магнитного поля, проходящего через эту площадь перпендикулярно ей. В первоначальной формулировке закон электромагнитной индукции Фарадея гласил, что при изменении магнитного потока, проходящего через контур, по проводящему контуру протекает электрический заряд, пропорциональный изменению магнитного потока, который возбуждается без всякого внешнего источника питания типа электрической батареи. Не будучи до конца удовлетворенным формулировкой, в которой фигурировала столь трудноизмеримая величина, как электрический заряд, Фарадей вскоре объединил свой закон с законом Ома и получил формулу (иногда ее принято называть
Изменить магнитный поток через контур можно тремя способами:
- изменить площадь контура;
- изменить интенсивность магнитного поля;
- изменить взаимную ориентацию магнитного поля и плоскости, в которой лежит контур.
Последний метод работает, поскольку при таком движении изменяется проекция магнитного поля на перпендикуляр к площади контура, хотя ни напряженность магнитного поля, ни площадь контура не меняются. Это очень важно с практической точки зрения, поскольку именно это явление лежит в основе действия любого электрогенератора. В самом простом варианте генератора проволочный контур вращается между полюсами сильного магнита. Поскольку в процессе вращения магнитный поток, проходящий через контур, постоянно меняется, по нему всё время протекает электрический ток. Согласно правилу Ленца, на протяжении одного полуоборота контура ток будет течь в одну сторону, а на протяжении следующего полуоборота — в другую. Собственно, по этому принципу и вырабатывается так хорошо нам знакомый
Электрогенераторы играли, играют и будут играть важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии — и, тем не менее, снабжать ею заводы, дома и т. п.
Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей, демонстрировал прототип электрогенератора Джону Пилу (John Peel), Канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, всё это очень интересно, а какой от всего этого толк?»
«Какой толк? — якобы удивился Фарадей. — Да вы знаете, сэр, сколько налогов в казну эта штука со временем будет приносить?!»
См. также:
Закон индукции Фарадея | энергетик
Закон индукции Фарадея — Изменение потока магнитной индукции, проходящего через незамкнутую поверхность S, взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре, l который является границей поверхности S.
Таким образом:
Закон Фарадея для электромагнитной индукции — для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.
Обозначение в формуле:
B — поток магнитной индукции;
E — электрическое поле;
dL — бесконечно малый элемент контура;
dS — бесконечно малый элемент вектора поверхности.
Анализируя результаты, полученные опытным путем, Фарадей пришел к количественному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а, следовательно, и э.д.с. электромагнитной индукции определяется только скоростью изменения магнитного потока, т.е.
Теперь необходимо выяснить знак e. Вообще, знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта. Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре.
Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с (обоз. знаком E, ε или e).
Знак минус показывает, что увеличение потока (dФ/dt>0) вызывает э.д.с e < 0, т.е. поле индукционного тока направленно навстречу потоку; уменьшение потока (dФ/dt<0) вызывает e > 0, т.е. направление потока и поля индукционного тока совпадают. Знак минус в формуле правилом Ленца — общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.
Закон Фарадея можно сформулировать еще таким образом: э.д.с. электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром.
Этот закон является универсальным: э.д.с. не зависит от способа изменения магнитного потока. Э.Д.С. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим:
.
§23. Закон электромагнитной индукции Фарадея
В 1831 г. Фарадей экспериментально открыл явление электромагнитной индукции. Суть явления состояла в том, что если через замкнутый контур происходило изменение магнитного потока, то в контуре возникала электродвижущая сила, приводящая к возникновению замкнутого тока. Этот ток был назван индукционным током. Правило, устанавливающее направление индукционного тока было сформулировано в 1833г. Э. Х. Ленцем (1804 — 1865) и называется правилом Ленца. Оно гласит: индукционный ток направлен так, что создаваемый им магнитный поток стремится компенсировать изменение магнитного потока, вызывающего данный ток.
Опыты Фарадея состояли в следующем: катушка индуктивности подключалась к чувствительному гальванометру и в катушку вдвигался и выдвигался постоянный магнит.
Из опытов следовало, что . Но сила тока зависит еще и от сопротивления контура. Поэтому закон электромагнитной индукции формулируется не для индукционного тока, а для причины, вызывающий этот ток, т. е. для
(23.1)
Хотя внешне формулы (22.6) и (23.1) одинаковы, между ними существует принципиальное различие. Возникновение в (22.6) связано с движением проводников в магнитном поле и с действием на заряды силы Лоренца. Тогда как в (23.1) на заряды в контуре действует электрическое поле, причем сам контур лишь только инструмент или прибор, который может обнаружить это изменяющееся электрическое поле, которое возникает в пространстве. Следовательно закон Фарадея отражает новое физическое явление, а именно: изменяющееся магнитное поле порождает изменяющееся электрическое поле. А это означает, что электрическое поле порождается не только зарядами, но и изменяющимся магнитным полем. Закон электромагнитной индукции является фундаментальным законом природы.
Дифференциальная формулировка закона
, а тогда магнитный поток
.
К левой части применим формулу Стокса. Тогда . После того как перенесем все слагаемые в одну сторону получим:
В силу произвольности можно заключить, что подынтегральная функция равна нулю, а значит
Уравнение (23.2) является дифференциальной формой закона электромагнитной индукции. В переменных магнитных полях , а значит и следовательно, в отличие от электростатического поля, порождаемого неподвижными зарядами, переменное электрическое поле не является потенциальным и работа при перемещении заряда по замкнутому контуру не равна нулю:
.
Так как закон электромагнитной индукции не затрагивает закона порождения магнитного поля, то уравнение (18.6) остается в силе, а значит в силе остается и выражение (19.2): .
Если подставить (19.2) в (23.2), то , а значит
. (23.3)
Отсюда следует, что в переменных полях потенциальным является вектор , а значит он равен градиенту скалярной функции, т. е., а значит
. (23.4)
Второе слагаемое в (23.4) означает, что электрическое поле может порождаться неподвижными зарядами, а первое означает, что электрическое поле может порождаться переменным магнитным полем.
Закон электромагнитной индукции Фарадея Википедия
Электромагнитная индукция была обнаружена независимо друг от друга Майклом Фарадеем и Джозефом Генри в 1831 году, однако Фарадей первым опубликовал результаты своих экспериментов[3][4].
В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его.[5] В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея»)[6].
Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий. Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически.[7] Исключение составил Максвелл, который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории.[7][8][9] В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла.
Эмилий Христианович Ленц сформулировал в 1834 году закон (правило Ленца), который описывает «поток через цепь» и даёт направление индуцированной ЭДС