Site Loader

Содержание

2.3 Усилители постоянного тока

2.3 Усилители постоянного тока

Усилителями постоянного тока (УПТ) называют такие устройства, которые могут усиливать медленно изменяющиеся электрические сигналы, то есть они способны усиливать и переменные и постоянные составляющие входного сигнала.

Таким образом, для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь. Непосредственная связь может быть использована и в обычных усилителях переменного тока с целью уменьшения числа элементов, простоты реализации в интегральном исполнении, стабильности смещения и т.д. Однако такая связь вносит в усилитель ряд специфических особенностей, затрудняющих как его выполнение, так и эксплуатацию. Хорошо передавая медленные изменения сигнала, непосредственная связь затрудняет установку нужного режима покоя для каждого каскада и обусловливает нестабильность их работы.

При разработке УПТ приходится решать две основные проблемы: согласование потенциальных уровней в соседних каскадах и уменьшение дрейфа (нестабильности) выходного уровня напряжения или тока.

Применение усилительных каскадов в УПТ ограничивается дрейфом нуля. Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловливающих наличие дрейфа нуля в УПТ. К ним относятся нестабильности источников питания, температурная и временная нестабиль­ности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наиболь­шую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и не­стабильность тока коллектора усилителя в режиме покоя изменениями I кбо , U бэ0 и B .Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы. Так, для уменьшения абсолютного дрейфа нуля УПТ необходимо умень­шать коэффициент нестабильности S нс .

Абсолютным дрейфом нуля  , называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ обычно оценивают по напряжению дрейфа нуля, приведен­ного ко входу усилителя: е др = . Приведенный ко входу усилителя дрейф нуля не зависит от коэффициента усиления по напряжению и. эквивалентен ложному входному сигналу. Величина е др ограничивает минимальный входной сигнал, т. е. определяет чувствительность усилителя.

В усилителях переменного тока, естественно, тоже имеет место дрейф нуля, но так как их каскады отделены друг от друга разделительными элементами (например, конденсаторами), то этот низкочастотный дрейф не передается из предыдущего каскада в последующий и не усиливается им. Поэтому в таких усилителях (рассмотренных в предыдущих главах) дрейф нуля минимален и его обычно не учитывают. В УПТ для уменьшения дрейфа нуля, прежде всего, следует заботиться о его снижении в первом каскаде. Приведенный ко входу усилителя температурный дрейф снижа­ется при уменьшении номиналов резисторов, включенных в цепи базы и эмиттера. В УПТ резистор R Э большого номинала может создать глубокую ООС по постоянному току, что повысит стабильность и одновременно уменьшит KU для рабочих сигналов постоянного тока. Поскольку здесь KU пропорционален S нс , то величина е др оказывается независимой от S нс . Минимального значения е др можно достичь за счет снижения величин R э, R б и Rr . При этом для кремниевых УПТ можно получить  Кремниевые УПТ более пригодны для работы на повышенных температурах.

С целью снижения дрейфа нуля в УПТ могут быть использова­ны следующие способы: применение глубоких ООС, использование термокомпенсирующих элементов, преобразование постоянного тока в переменный и усиление переменного тока с последующим выпрямлением, построение усилителя по балансной схеме и др.

Однотактные УПТ прямого усиления по сути своей являются обычными многокаскадными усилителями с непосредственной связью. В таком усилителе резисторы R э 1 и R э 2 не только создают местную последователь­ную ООС по току, но и обеспечивают необходимое напряжение   в своих каскадах. В многокаскадном усилителе наблюдается последовательное повышение потенциала на эмиттере транзистора каждого

При разработке УПТ необходимо обеспечивать согласование потенциалов не только между каскадами, но и с источником сигнала и нагрузкой. Если источник сигнала включить на входе усилителя между базой первого транзистора и общей шиной, то через него будет протекать постоянная составляющая тока от источника питания EK . Для устранения этого тока обычно включают генератор входного сигнала между базой транзистора Т1 и средней точкой специального делителя напряжения, образованного резисторами R 1 и R 2 . На рисунке 2.3.1 приведена принципиальная схема рассматриваемого входного каскада УПТ прямого усиле­ния. При правильно выбранном делителе потенциал его средней точки в режиме покоя равен потенциалу покоя на базе первого транзистора.

Рисунок 2.3.1 схема входного каскада УПТ

Нагрузка усилителя обычно включается в диагональ моста, образованного элементами выходной, цепи УПТ. Рассматриваемый здесь способ включения нагрузки используется для получения U н =0 при Е r =0. Номиналы резисторов R3 и R4 выбираются таким образом, чтобы напряжение средней точки делителя равнялось напряжению на коллекторе выходного транзистора в режиме покоя. При этом в нагрузке для режима покоя не будет протекать тока. В каждом каскаде УПТ прямого усиления за счет резисторов в цепи эмиттера образуется глубокая ООС. Поэтому для определения входного сопротивления Ku oc каскада ОЭ здесь можно пользоваться формулами    и Ku ОС = — R кн / R э соответственно. Обычно максимальное усиление свойственно первому каскаду, у которого R к имеет наибольшее значение. Однако и в последующем каскаде УПТ, где R к меньше, все равно его номинал должен быть больше номинала R э . В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора, первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. В результате суммарный дрейф нуля второго каскада может оказаться меньше, чем в отсутствие первого каскада в идеальном случае и сведен к нулю. Заметим, что полная компенсация дрейфа нуля возможна лишь при специальном подборе элементов и только для некоторой конкретной температуры. Хотя на практике это почти и недо­стижимо, тем не менее в УПТ с четным числом усилительных каскадов наблюдается снижение дрейфа нуля.

Способ построения УПТ на основе непосредственной связи в усилительных каскадах с глубокой ООС может быть использован для получения сравнительно небольшого коэффициента усиления (в несколько десятков) при достаточно большом . Если в таких УПТ попытаться повысить Кu , то неизбежно получим резкое возрастание дрейфа нуля, вызванного не только температурной нестабильностью, но и нестабильностью источников питания. Отметим, что применение традиционных методов уменьшения влияния нестабильностей Ек с помощью фильтрующих конденсаторов здесь не дает желаемого результата (слишком низкие частоты). Для снижения температурного дрейфа в УПТ прямого усиления иногда применяют температурную компенсацию. В настоящее время в качестве термокомпенсирующего элемента обычно используется диод в прямом смешении, включенный в цепь базы транзистора. Принцип построения таких устройств практически одинаков для усилителей постоянного и переменного тока. Все рассмотренные выше УПТ имеют большой температурный дрейф (e дрсоставляет единицы милливольт на градус). Кроме того, в них отсутствует зримая компенсация временного дрейфа и влияния низкочастотных шумов. Эти факторы могут оказаться даже более существенными, чем температурный дрейф нуля. Отмеченные недостатки усилителей прямого усиления в значительной степени преодолеваются в УПТ с преобразованием (модуляцией) сигнала.

 

2.3.1 ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛИ

В настоящее время наибольшее распространение получили диф­ференциальные (параллельно-балансные или разностные) усилители. Такие усилители просто реализуются в виде монолитных ИС и широко выпускаются отечественной промышленностью: К118УД, КР198УТ1 и др. Их отличает высокая стабильность работы, малый дрейф нуля, большой коэффициент усиления дифференциального сигнала и большой коэффициент подавления синфазных помех.

На рисунке 2.3.1.1 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ). Любой ДУ выпол­няется по принципу сбалансированного моста, два плеча которого образованы резисторами R к1 и R к1 , а два других — транзисторами Т1 и Т2. Сопротивление нагрузки включается между коллекторами транзисторов, т. е. в диагональ моста. Сразу отметим, что резисторы R 01 и R 02 имеют небольшие величины, а часто и вообще отсутствуют. Можно считать, что резистор R Э подключен к эмиттерам транзисторов. Обращает на себя внимание то обстоятельство, что питание ДУ осуществляется от двух источников, напряжения которых равны (по модулю) друг другу. Таким образом, суммарное напряжение питания ДУ равно 2Е.

Рисунок 2.3.1.1 Схема дифференциального усилителя

Использование второго источника (—Е) позволяет снизить потенциалы эмиттеров Т1 и Т2 до потенциала общей шины. Это обстоятельство дает возможность подавать сигналы на входы ДУ без введения дополнительных компенсирующих напряжений. При анализе работы ДУ принято выделять в нем два общих плеча, одно из которых состоит из транзистора Т1 и резистора Rк1 (и R01 ), второе —из транзистора Т2 и резистора Rк2 (и R02 ). Каждое общее плечо ДУ является каскадом ОЭ. Таким образом, можно заключить, что ДУ состоит из двух каскадов ОЭ. В общую цепь эмиттеров транзисторов включен резистор RЭ , которым и задается их общий ток. Для того чтобы ДУ мог качественно и надежно выполнять свои функции, а также в процессе длительной работы сохранить свои параметры и уникальные свойства, в реальных усилителях требуется выполнить два основных требования. Рассмотрим эти требования последовательно.

Первое требование состоит в симметрии обоих плеч ДУ. По нему необходимо обеспечить идентичность параметров каскадов ОЭ, образующих ДУ. При этом должны быть одинаковы параметры транзисторов Т1 и Т2, а также Rк1 = Rк2 (и R01 = R02 ). Если первое требование выполнено полностью, то больше ничего и не требуется для получения идеального ДУ. Действительно, при Uвх1 = Uвх2 = 0 достигается полный баланс моста, т. е. потенциалы коллекторов транзисторов Т1 и Т2 одинаковы, следовательно, напряжение на нагрузке равно нулю. При одинаковом дрейфе нуля в обоих каскадах, ОЭ (плечах ДУ) потенциалы коллекторов будут изменяться всегда одинаково, поэтому на выходе ДУ дрейф нуля будет от­сутствовать. За счет симметрии общих плеч ДУ будет обес­печиваться высокая стабильность при изменении напряжения питания, температуры, радиационного воздействия и т.д. Если собрать ДУ на таких дискретных элементах, то он может быть и продемонстрируете желаемый результат, но только в относительно небольшой промежуток времени. С течением времени параметры транзисто­ров и резисторов будут изменяться различным образом в соот­ветствии с законами своей собственной структуры, естественно, что на них различным образом будут влиять и внешние факторы, а следовательно, нарушится симметрия плеч со всеми вытека­ющими отсюда последствиями. В конечном счете можно за­ключить, что на дискретных элементах (изготовленных в разное время и в разных условиях) осуществить выполнение первого требования для ДУ практически невозможно. Это и обусловили тот факт, что прекрасные свойства ДУ не нашли должного использования в дискретной электронике. Приблизиться к выполнению первого основного требования для ДУ позволила микроэлектроника. Ясно, что симметрию общих плеч ДУ могут, обеспечив лишь идентичные элементы в которых все одинаково и которые были изготовлены в аб­солютно одинаковых условиях. Так, в монолитной ИС близко расположенные элементы действительно имеют почти одинаковые параметры. Следовательно, в монолитных ИС первое требование к ДУ почти выполнено. Это «почти» позволяет реализовать ДУ пусть не с идеальными, но все же с хорошими параметрами, но при непременном условии выполнения второго основного требования к ДУ.

Второе основное требование состоит в обеспечении глубокой ООС для синфазного сигнала. Синфазными называются одинаковые сигналы, т. е. сигналы, имеющие равные амплитуды, формы и фазы. Если на входах ДУ (рис. 10) присутствуют U вх1 = U вх2 , причем с совпадающими фазами, то можно говорить о поступлении на вход ДУ синфазного сигнала. Синфазные сигналы обычно обусловлены наличием помех, наводок и т. д. Часто они имеют большие амплитуды (значительно превышающие полезный сигнал) и являют­ся крайне нежелательными, вредными для работы любого усилителя.

Выполнить второе основное требование позволяет введение в ДУ резистора R Э , (или его электронного эквивалента). Если на вход ДУ поступает сигнал синфазной помехи, например, положительной полярности, то транзисторы Т1 и Т2 приотк­роются и токи их эмиттеров возрастут. В результате по резистору R Э будет протекать суммарное приращение этих токов, об­разующее на нем сигнал ООС. Нетрудно показать, что R Э образует в ДУ последовательную ООС по току. При этом будет наблюдаться уменьшение коэффициента усиления по на­пряжению для синфазного сигнала каскадов ОЭ, образующих общие плечи ДУ, K исф1 и Кисф2 . Поскольку коэффициент усиления ДУ для синфазного сигнала Кисф = Кисф1 — Кисф2 и за счет выполнения первого основного требования Кисф1 ≈ Кисф2 удается получить весьма малое значение Кисф , т. е. значительно подавить синфазную помеху.

Так как в монолитном ДУ с достаточным приближением можно выполнить оба основных требования, удается не только подавить синфазную внешнюю помеху, но и снизить влияние внутренних факторов, проявляющихся через изменения парамет­ров элементов схемы. Конечно, параметры составляющих каска­дов будут изменяться, но по весьма близким зависимостям, влияние которых будет дополнительно ослабляться наличием ООС.

Теперь рассмотрим работу ДУ для основного рабочего входно­го сигнала — дифференциального. Дифференциальными (противо­фазными) принято называть сигналы, имеющие равные амплиту­ды, но противоположные фазы. Будем считать, что входное напряжение подано между входами ДУ, т. е. на каждый вход поступает половина амплитудного значения входного сигнала, причем в противоположных фазах. Если U вх1 в рассматриваемый момент представляется положительной полуволной, то U вх2 — отрицательной.

За счет действия U вх1 транзистор Т1 приоткрывается, и ток его эмиттера получает положительное приращение ∆I Э1 , а за счет действия U вх2 транзистор Т2 закрывается, и ток его эмиттера получает отрицательное приращение, т.е. — ∆I Э2 . В ре­зультате приращение тока в цепи резистора R Э IR Э = ∆I Э1 — ∆I Э1.  Если общие плечи ДУ идеально симметричны, то ∆IR Э = 0 и, следовательно, ООС для дифференциального сигнала отсутствует. Это обстоятельство позволяет получать от каждого каскада ОЭ в рассматриваемом усилителе, а следовательно, и от всего ДУ большое усиление. Отсюда происходит и название усилителя — дифференциальный. Так как для дифференциального входного сигнала в любой момент напряжения на коллекторах транзисто­ров Т1 и Т2 будут находиться в противофазе, то на нагрузке происходит выделение удвоенного выходного сигнала. Итак, резистор R Э , образует ООС только для синфазного сигнала.

Поскольку в реальных ДУ идеальную симметрию плеч осущест­вить нельзя, то R Э все же будет и для дифференциального сигнала создавать ООС, но незначительной глубины, причем чем лучше симметрия плеч, тем меньше ООС. Небольшую последовательную ООС по току задают в каскадах ДУ с по­мощью резисторов R01и R02 . Как отмечалось выше, эти резисторы имеют небольшие номиналы (участки полупровод­никовой подложки), поэтому создаваемая ими ООС невелика и существенно не влияет на усилительные свойства ДУ.

Таким образом, при выполнении в ДУ двух основных требова­ний он обеспечивает стабильную работу с малым дрейфом нуля, с хорошим усилением дифференциального сигнала и со значитель­ным подавлением синфазной помехи. В зависимости от того, как подключены в ДУ источник входного сигнала и сопротивление нагрузки, следует различать схемы его включения.

Усилители постоянного тока: схемы, принцип действия, формулы

Пример HTML-страницы

Усилитель называют усилителем постоянного тока (УПТ), если он может усиливать постоянные и медленно изменяющиеся сигналы. Такой усилитель может использоваться и для усиления переменных сигналов.

Выше рассмотрены операционные усилители, являющиеся усилителями постоянного тока. Но внутреннее устройство операционных усилителей не рассматривалось.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Для того чтобы постоянные или медленно изменяющиеся сигналы могли быть переданы с входа усилителя на его выход, должны использоваться только гальванические связи между отдельными частями усилителя или эти сигналы должны быть преобразованы в переменные.

Полученные переменные сигналы могут быть усилены с помощью усилителей переменного тока, в которых гальванические связи разорваны с помощью конденсаторов или трансформаторов.

После усиления переменные сигналы должны быть преобразованы в постоянные или медленно изменяющиеся.

При построении УПТ с использованием гальванической связи между каскадами получают УПТ, которому присуще такое вредное явление, как дрейф нуля. Под дрейфом нуля понимают самопроизвольное изменение выходного напряжения при неизменном нулевом входном. Основными причинами дрейфа нуля усилителя являются:

  • изменение параметров элементов схемы, прежде всего транзисторов, за счет изменения температуры окружающей среды;
  • изменение питающих напряжений;
  • постоянное изменение параметров активных и пассивных элементов схемы, вызванное их старением.

Сигнал дрейфа нуля может быть соизмерим с полезным сигналом, поэтому при построении УПТ принимают меры по снижению дрейфа нуля.

Основными мерами снижения дрейфа являются:

  • жесткая стабилизация источников питания усилителей;
  • использование отрицательных обратных связей;
  • применение балансных компенсационных схем УПТ;
  • использование элементов с нелинейной зависимостью параметров от температуры для компенсации температурного дрейфа;
  • применение УПТ с промежуточным преобразованием и др.

Важным вопросом при построении УПТ является также согласование потенциалов соседних каскадов, согласование источника входного сигнала с УПТ, а также подключение нагрузки к УПТ таким образом, чтобы при нулевом входном напряжении, напряжение на нагрузке было также равно нулю.

Поэтому простейшие УПТ, состоящие из нескольких каскадов, включенных последовательно и соединенных гальванической (непосредственной) связью, даже при условии согласования потенциалов обладают рядом недостатков, главным из которых является дрейф нуля.

Таким образом, для устранения отмеченных выше недостатков УПТ строят в виде параллельно-балансных каскадов, представляющих собой сбалансированный мост, в одно плечо которого включена нагрузка, а в другое — источник питания. Схема такого УПТ приведена на рис. 2.35.

Коллекторные сопротивления RK1 и RK2, транзисторы Т1 и Т2, резистор Rэ образуют мост, к одной диагонали которого подключен источник питания ЕK, а в другую диагональ — между коллекторами транзисторов — включается нагрузка.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

При нулевых входных сигналах и полной симметрии схемы (RK1 = RК2, T1 и Т2 одинаковы) потенциалы коллекторов транзисторов Т1 и Т2 одинаковы и uвых, равное u К1—uК2, равно нулю.

Высокая стабильность схемы объясняется тем, что при изменении напряжения источника питания или при одинаковых изменениях параметров транзисторов (например, за счет температуры) потенциалы обоих коллекторов получают равные приращения и, следовательно, выходное напряжение остается равным нулю.

В реальных схемах всегда имеется некоторая несимметрия плеч и существует некоторый дрейф нуля, хотя он и значительно меньше, чем в других схемах.

Входной сигнал в этой схеме может подаваться либо между базами, либо на одну из баз при фиксированном потенциале другой.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Представив Rэ в виде двух параллельно соединенных сопротивлений удвоенной величины (см. пунктир на рис. 2.35), можно увидеть, что рассматриваемый УПТ представляет собой два каскада с эмиттерной стабилизацией, объединенных соответствующим образом (см. вертикальные разделительные линии).

Включив последовательно с Rэ дополнительный источник Еэ, можно обеспечить такой начальный режим работы транзисторов, при котором потенциалы входов равны нулю и, следовательно, возможно убрать из схемы сопротивления делителей R1, R2, R3, R4. В результате получится схема дифференциального усилителя.

Усилители постоянного тока — назначение, виды, схемы и принцип действия

Усилители постоянного тока, как может показаться из названия, сами по себе ток не усиливают, то есть они не генерируют никакой дополнительной мощности. Данные электронные устройства служат для управления электрическими колебаниями в определенном диапазоне частот начиная с 0 Гц. Но посмотрев на форму сигналов на входе и выходе усилителя постоянного тока, можно однозначно сказать — на выходе имеется усиленный входной сигнал, однако источники энергии для входного и выходного сигналов — индивидуальные.

По принципу действия усилители постоянного тока подразделяются на усилители прямого усиления и усилители с преобразованием.

Усилители постоянного тока с преобразованием преобразуют ток постоянный — в переменный, затем он усиливается и выпрямляется. Это называется усилением сигнала с модуляцией и демодуляцией — МДМ.

Схемы усилителей прямого усиления не содержат реактивных элементов, таких как катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты.

Вместо этого существует непосредственная гальваническая связь выхода (коллектора или анода) усилительного элемента одного каскада с входом (базой или сеткой) очередного каскада. По этой причине усилитель прямого усиления способен пропускать (усиливать) даже постоянный ток. Такие схемы популярны и в акустике.

Однако непосредственная гальваническая связь хотя и передает очень точно между каскадами перепады напряжения и медленные изменения тока, такое решение сопряжено с нестабильностью работы усилителя, с затруднением установления режима работы усилительного элемента.

Когда напряжение источников питания немного изменяется, или изменяется режим работы усилительных элементов, либо немного плывут их параметры, — тут же наблюдаются медленные изменения токов в схеме, которые по гальванически связанным цепям попадают во входной сигнал и соответствующим образом искажают форму сигнала на выходе. Зачастую эти паразитные изменения на выходе схожи по размаху с рабочими изменениями, вызываемыми нормальным входным сигналом.

Искажения выходного напряжения могут быть вызваны различными факторами. Прежде всего — внутренними процессами в элементах схемы. Нестабильное напряжение источников питания, нестабильные параметры пассивных и активных элементов схемы, особенно под действием перепадов температуры и т. д. Они могут быть вовсе не связаны с входным напряжением.

Изменения выходного напряжения вызванные данными факторами именуют дрейфом нуля усилителя. Максимальное изменение выходного напряжения в отсутствие входного сигнала усилителя (когда вход замкнут) за определенный временной промежуток, называется абсолютным дрейфом.

Напряжение дрейфа, приведенное ко входу равно отношению абсолютного дрейфа к коэффициенту усиления данного усилителя. Это напряжение определяет чувствительность усилителя, так как вносит ограничение в минимально различимый входной сигнал.

Чтобы усилитель работал нормально, напряжение дрейфа не должно быть больше заранее определенного минимального напряжения усиливаемого сигнала, который подается на его вход.

В случае если дрейф выхода окажется того же порядка или будет превышать входной сигнал, искажения превысят допустимую норму для усилителя, и его рабочая точка окажется смещенной за пределы адекватной рабочей области характеристик усилителя («дрейф нуля»).

Для снижения дрейфа нуля прибегают к следующим приемам. Во-первых, все источники напряжения и тока, питающие каскады усилителя, делают стабилизированными. Во-вторых, используют глубокую отрицательную обратную связь. В-третьих, применяют схемы компенсации температурного дрейфа путем добавления нелинейных элементов, чьи параметры зависят от температуры. В-четвертых, используют балансирующие мостовые схемы. И наконец, постоянный ток преобразуют в переменный и затем усиливают переменный ток и выпрямляют.

При создании схемы усилителя постоянного тока очень важно согласовать потенциалы на входе усилителя, в точках сопряжения его каскадов, а также на нагрузочном выходе. Также необходимо обеспечить стабильность работы каскадов при различных режимах и даже в условиях плавающих параметров схемы.

Усилители постоянного тока бывают однотактными и двухтактными. Однотактные схемы прямого усиления предполагают непосредственную подачу выходного сигнала с одного элемента — на вход следующего. На вход следующего транзистора вместе с выходным сигналом от первого элемента (транзистора) подается коллекторное напряжение первого.

Тут должны быть согласованы потенциалы коллектора первого и базы второго транзистора, для чего коллекторное напряжение первого транзистора компенсируют при помощи резистора. Резистор добавляют также в цепь эмиттера второго транзистора, чтобы сместить его напряжение база-эмиттер. Потенциалы на коллекторах транзисторов следующих каскадов также должны быть высокими, что тоже достигается применением согласующих резисторов.

В двухтактном параллельном балансном каскаде резисторы коллекторных цепей и внутренние сопротивления транзисторов образуют собой четырехплечевой мост, на одну из диагоналей которого (между цепями коллектор-эмиттер) подается напряжение питания, а к другой (между коллекторами) — присоединяется нагрузка. Сигнал который требуется усилить прикладывается к базам двух транзисторов.

При равенстве коллекторных резисторов и полностью одинаковых транзисторах, разность потенциалов между коллекторами, в отсутствие входного сигнала, равна нулю. Если входной сигнал не равен нулю, то на коллекторах будут приращения потенциалов равные по модулю, но противоположные по знаку. На нагрузке между коллекторами появится переменный ток по форме повторяющий входной сигнал, но большей амплитуды.

Такие каскады часто применяются в качестве первичных каскадов многокаскадных усилителей либо в качестве выходных каскадов для получения симметричного напряжения и тока. Достоинство данных решений в том, что влияние температуры на оба плеча одинаково изменяет их характеристики и напряжение на выходе не плывет.

Источник: http://electricalschool.info

5.8. УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА | Политех в Сети

Усилителями постоянного тока (УПТ) или медленно меняющихся во времени сигналов называются усилители низкой частоты, коэффициент усиления которых не равен нулю на частоте

. УПТ способны усиливать постоянные и переменные напряжения. Амплитудно-частотная характеристика УПТ приведена на рис.5.35.

Рис.5.35. Амплитудно-частотная характеристика УПТ.

Усилители постоянного тока широко используются в технике физического эксперимента и радиоизмерительных устройствах – электронных вольтметрах, высокочувствительных гальванометрах, осциллографах, в схемах различных стабилизаторов. В усилителях постоянного тока применяется непосредственная связь между каскадами, так как связь через разделительные конденсаторы и трансформаторы не обеспечивает передачи постоянной составляющей усиливаемого сигнала. Поэтому база транзистора каждого последующего каскада непосредственно соединяется с коллектором транзистора предыдущего каскада. Гальваническое соединение связано с необходимостью согласования режимов соседних транзисторов по постоянному току.

При создании многокаскадных УПТ с большими коэффициентами усиления возникают определенные трудности, вызванные нестабильностью усилителей постоянного тока. Отличие коэффициента усиления от нуля при нулевой частоте приводит к тому, что медленные процессы, связанные с колебаниями напряжения источников питания, изменениями сопротивлений резисторов и параметров активных элементов, вызывают появление внутри усилителя небольшого напряжения, которое усиливается последующими каскадами. В результате при отсутствии входного сигнала выходное напряжение УПТ медленно флуктуирует около некоторого среднего значения. Это вредное явление называется дрейфом нуля. Дрейф нуля, вызываемый перечисленными причинами, можно минимизировать, используя высокостабильные элементы схемы и стабилизаторы напряжений источников питания. Однако основной причиной дрейфа нуля являются температурные изменения входной характеристики и параметров транзисторов. Температурное смещение входных характеристик кремниевых транзисторов составляет, примерно, -2,5мВ на один градус Цельсия. Чтобы оценить порядок величины температурного дрейфа нуля на выходе усилителя, рассмотрим двухкаскадный усилитель постоянного тока на кремниевых транзисторах, схема которого представлена на рис. 5.36.

Рис.5.36. Двухкаскадный УПТ с непосредственной связью между каскадами

Предположим, что окружающая температура увеличилась на + 40

. При этом произойдет смещение входной характеристики каждого транзистора на — 0,1В, что эквивалентно появлению дополнительного напряжения на базах транзисторов. Приращение напряжения на коллекторе первого транзистора, коэффициент усиления которого = 6,8, будет равно 0,68В. Это напряжение суммируется с напряжением, вызванным температурным смещением входной характеристики второго транзистора. В результате общее приращение напряжения на базе второго транзистора составит -0,58В. Умноженное на коэффициент усиления второго транзистора , результирующее смещение на выходе усилителя составит:

-1,75*(-0,58В)=0,987В.

Из-за большого температурного дрейфа нуля многокаскадные УПТ с непосредственной связью между каскадами не находят применения.

Дрейф нуля почти полностью отсутствует в усилителях с преобразованием сигнала. В них усиливаемое постоянное напряжение на входе усилителя преобразуется в переменное, которое усиливается усилителем переменного напряжения, на выходе которого обратно преобразуется в постоянное напряжение. Преобразование осуществляется по принципу модуляции-демодуляции сигнала (М-Д-М усилители) с помощью электронных коммутаторов, синхронно коммутирующих входное и выходное напряжения. Входное напряжение при этом преобразуется в короткие прямоугольные импульсы, амплитуда которых соответствует мгновенным значениям напряжения входного сигнала в моменты коммутации. Частота коммутации должна не менее чем в два раза превышать максимальную частоту в спектре входного сигнала. Недостатком таких усилителей являются наводки при коммутации малых входных напряжений. Примером такого усилителя является усилитель в интегральном исполнении 140 УД13. Структурная схема М-Д-М усилителя приведена на рис. 4.37.

Рис.5.37. Структурная схема М-Д-М усилителя

5. 8.1. Дифференциальный усилитель

Значительно минимизировать температурный дрейф нуля можно, используя параллельно-балансные каскады усилителя, построенные на двух идентичных по своим параметрам и характеристикам транзисторах. Такие усилители называются дифференциальными.

Дифференциальные усилители (ДУ) представляют широкий класс усилителей, основным назначением которых является усиление разности между двумя сигналами. По этой причине их также называют разностными усилителями. Свойства ДУ зависят от симметрии между двумя плечами схемы. Балансная природа ДУ делает его идеальным усилителем в интегральном исполнении. Так как практически невозможно получить два абсолютно идентичных по своим параметрам и характеристикам транзистора на дискретных элементах, дифференциальные усилители изготавливают по интегральной технологии, поскольку такой технологии свойственно хорошее согласование элементов усилителя. Принципиальным достижением планарной технологии явилось создание на одной подложке пары строго согласованных по своим параметрам и характеристикам транзисторов. Степень согласования параметров определяется качеством технологического процесса. Для транзисторов, расположенных на одном кристалле, эквивалентная разность температур переходов может быть доведена до нескольких десятых долей градуса. Столь малая разность температур позволяет серийным интегральным дифференциальным структурам иметь разрешающую способность по постоянной составляющей порядка десятых долей милливольта. Температурный дрейф постоянной составляющей при этом имеет порядок единиц микровольт на

изменения окружающей температуры. Такие характеристики обусловили ключевую роль дифференциального усилителя в схемотехнике линейных интегральных схем. Принципиальная схема дифференциального усилителя приведена на рис.5.38. У дифференциального усилителя два входа и два выхода. Можно подавать разные сигналы на оба входа. Можно подавать сигнал на один из входов, второй вход при этом заземляется. Выходной усиленный сигнал можно снимать между выходами усилителя, либо с каждого из выходов относительно земли.

Рис.5.38. Дифференциальный усилитель

При полной симметрии схемы, когда напряжения на входах равны нулю, коллекторные токи транзисторов одинаковы, потенциалы коллекторов левого и правого транзисторов также одинаковы и выходное напряжение между коллекторами транзисторов равно нулю. Любые изменения температуры окружающей среды или флуктуации напряжения питания вызовут одинаковые изменения коллекторных токов и коллекторных напряжений транзисторов. Выходное напряжение между коллекторами при этом останется равным нулю.

Дифференциальный усилитель усиливает разность входных сигналов. У высококачественных дифференциальных усилителей сопротивление резистора

Должно быть неограниченно велико. Совместно с источником питания этот резистор образует генератор стабильного тока . Поэтому необходимо обеспечить высокую стабильность источника питания усилителя, так как качество усилителя зависит от стабильности тока . У дифференциального усилителя ток практически не зависит от наличия сигналов на входах.

Если напряжения генераторов

и Одинаковы, ток Делится пополам между транзисторами усилителя. Напряжения на выходах усилителя при этом равны напряжению баланса:

. (5.90)

Если в момент

На вход подать положительный сигнал, а на вход напряжение UС2=0, то на выходе транзистора появится усиленный проинвертированный импульс, так как этот транзистор включен по схеме с ОЭ. Транзистор усиливает и не инвертирует входной импульс, так как по отношению к входному сигналу представляет схему с ОБ. На выходах ДУ появятся одинаковые импульсы разной полярности. При этом ток левого транзистора во время действия входного импульса будет увеличиваться, а ток правого транзистора будет уменьшаться. Таким образом, на время действия импульса происходит перераспределение тока I0 между левым и правым транзисторами. Суммарный же ток остается равным I0. Изменение напряжений на выходах транзисторов усилителя для этого случая показано на рис.5.39.

Рис.5.39. Изменение напряжений на выходах ДУ

Если подать положительный импульс на базу правого транзистора, то правый транзистор будет представлять собой схему с ОЭ, а левый транзистор по отношению к входному сигналу – схему с ОБ. Ток правого транзистора будет увеличиваться, а ток левого транзистора – уменьшаться. При этом также происходит перераспределение тока между транзисторами усилителя.

Сигнал управления, прикладываемый между входами усилителя, называется дифференциальным. Если на входы поданы одинаковые сигналы, то такой сигнал называется синфазным. Идеальный дифференциальный усилитель не дает отклика на синфазный сигнал. Реальный дифференциальный усилитель откликается на синфазный сигнал из-за неидеальности генератора тока и неидеальной симметрии схемы. При этом незначительно изменяется уровень тока

и напряжение баланса изменяется на величину =.

Обычно под синфазным сигналом понимают сигнал помехи, действующей одновременно на оба входа. Синфазный сигнал может появляться также за счет наводок на оба входа усилителя, за счет нестабильности источников питания, за счет неидеальности генератора тока и неидеальной симметрии схемы усилителя, за счет изменения температуры и других воздействий на усилитель. Синфазный сигнал может присутствовать автоматически в некоторых схемах подачи дифференциального сигнала. В этом случае на входах усилителя происходит суммирование полезного сигнала и синфазного мешающего сигнала. Если сигналы на входах ДУ

и неодинаковы, их можно представить в виде комбинации синфазной и дифференциальной составляющих:

, (5.91)

. (5.92)

Решая систему этих уравнений, получим:

, (5.93)

. (5.94)

Различают коэффициент усиления разностного сигнала и коэффициент передачи синфазного сигнала. Коэффициент усиления разностного сигнала равен:

. (5.95)

С учетом крутизны транзистора коэффициент усиления дифференциального сигнала равен, как и у одиночного

— каскада по схеме с ОЭ:

. (5.96)

Коэффициент передачи синфазного сигнала равен:

. (5.97)

Коэффициент передачи синфазного сигнала можно выразить через отношение коллекторного и эмиттерного резисторов:

. (5.98)

Поскольку

дифференциальный усилитель значительно ослабляет синфазные сигналы. Качество дифференциального усилителя оценивается коэффициентом ослабления синфазного сигнала, который равен отношению

. (5.99)

Величина относительного ослабления синфазного сигнала может быть выражена в логарифмических единицах через коэффициент ослабления синфазного сигнала

(дБ). (5.100)

Коэффициент усиления дифференциального сигнала для одного каскада дифференциального усилителя составляет

= 50 100 , а коэффициент передачи синфазного сигнала . Коэффициент ослабления синфазного сигнала для этого случая равен Раз или (-100дБ). для современных дифференциальных усилителей составляет величину () дБ.

Способность дифференциального усилителя различать по входу малые дифференциальные сигналы на фоне больших синфазных помех является одним из его важнейших достоинств.

Для реального ДУ выходное напряжение равно:

. .101)

Оценим уровень синфазного сигнала на выходе ДУ следующим примером.

Пример.

, , , .

Выходное напряжение ДУ будет равно:

Таким образом, погрешность воспроизведения дифференциального сигнала составляет 0,5

Или 0,05%.

Другой характерной особенностью ДУ является низкое значение температурного дрейфа напряжения на выходе. Это обусловлено тем, что температурные изменения напряжений база-эмиттер левого и правого транзисторов воспринимаются усилителем как синфазный сигнал и значительно ослабляются на выходе. Типовая величина температурного дрейфа разности напряжений база-эмиттер для современных ДУ составляет единицы микровольт на градус Цельсия.

Из выражения для коэффициента передачи синфазного сигнала следует, что чем больше

, тем сильнее ослабляется синфазный сигнал. Для увеличения в цепь эмиттера включают генератор стабильного тока на транзисторах (рис.5.40), эквивалентное выходное сопротивление которого по переменному току составляет десятки – сотни килоом.

Рис.5.40. Генератор стабильного тока

Выходное сопротивление такого генератора тока велико, так как через резистор

Осуществляется последовательная отрицательная обратная связь по току. Поэтому ток стабилен даже при воздействии синфазного сигнала. Для типичного транзистора интегральной схемы разность напряжений база-эмиттер дифференциальной пары Δ. Если пренебречь током базы транзистора генератора стабильного тока, то значение тока можно определить из выражения:

, (5.102)

. (5.103)

Температурные зависимости токов

и Будут одинаковыми.

С повышением температуры напряжение

уменьшается на 2,5 мВ/1оС, при этом падение напряжения на резисторе будет увеличиваться, и ток будет увеличиваться. Но на переходе диода падение напряжения также уменьшается на 2,5 мВ/1оС. В результате ток увеличивается, а ток базы транзистора уменьшается, препятствуя увеличению тока . Таким образом, ток следит за током. В интегральном исполнении вместо диода ставят транзистор в диодном включении.

Дифференциальный усилительный каскад используется в качестве основного блока в схеме операционного усилителя.

5.8.2. Операционные усилители

Наиболее распространенным классом аналоговых интегральных схем являются монолитные операционные усилители (ОУ). Дифференциальные усилители являются основой схемотехники операционных усилителей. Операционным усилителем называется усилитель постоянного тока с большим коэффициентом усиления постоянного напряжения и с большим входным сопротивлением. Обычно ОУ питается от двухполярного источника питания и имеет два входа и один выход. Один вход называется неинвертирующим, так как фаза сигнала на выходе усилителя совпадает с фазой сигнала, поданного на этот вход. Второй вход называется инвертирующим, так как фаза сигнала на выходе усилителя противоположна фазе сигнала на этом входе.

Термин операционный усилитель, возникший впервые в вычислительной технике, в настоящее время существенно изменил свое первоначальное значение. Если ранее с ним отождествляли понятие «решающий усилитель» и неизменно связывали выполнение математических операций – сложения, интегрирования, вычитания, то сейчас эти функции ОУ, хотя и не утратили своего значения, занимают рядовое место в длиннейшем списке возможных применений ОУ в радиоэлектронике, автоматике, измерительной и вычислительной технике. Широкие возможности производства качественных ОУ открылись с внедрением интегральной технологии, позволяющей в одном кристалле создать множество транзисторов с идентичными характеристиками. По своим свойствам ОУ близок к идеальному усилителю напряжения. Идеальный ОУ должен обладать следующими свойствами:

  1. Бесконечно большим входным и нулевым выходным сопротивлением.
  2. Бесконечно большим коэффициентом усиления в бесконечно широкой полосе частот.
  3. У идеального ОУ не должно быть дрейфовых ошибок (дрейф нуля равен 0).

Эти свойства полностью не могут быть реализованы в реальном ОУ. Однако отсюда можно сделать 2 вывода:

1. Входы идеального ОУ не потребляют ток от источника сигнала, так как входное сопротивление равно бесконечности.

2. Между входами идеального ОУ напряжение управления равно нулю, так как коэффициент усиления равен бесконечности.

Эти два вывода можно сформулировать как принцип виртуального замыкания, который поясняется на рис. 5.41. При виртуальном замыкании, как и при обычном, напряжение между замкнутыми зажимами равно нулю. Однако в отличие от обычного замыкания, ток источника сигналов в виртуальное замыкание не ответвляется, а течет через резистор обратной связи. Для тока виртуальное замыкание эквивалентно разрыву цепи. При этом инвертирующий вход (обозначен кружком) можно считать потенциально заземленным.

Рис5.41. Принцип виртуального замыкания

Достоинством ОУ с характеристиками, близкими к идеальным, является то, что он может выполнять большое количество математических операций путем применения пассивных цепей обратной связи, охватывающих усилитель. Если входное и выходное сопротивления усилителя являются соответственно очень высоким и очень низким по отношению к величине сопротивления цепи обратной связи, и если коэффициент усиления достаточно велик, то результирующие характеристики усилителя определяются только параметрами элементов цепи внешней обратной связи.

Структурная схема ОУ показана на рисунке 5. 42.

Рис.5.42. Структурная схема ОУ

В ходным каскадом ОУ является дифференциальный усилитель (ДУ), который для уменьшения статических и дрейфовых ошибок и повышения входного сопротивления работает в режиме микроамперных токов и имеет обычно небольшой коэффициент усиления по напряжению (К = 10). Работа в режиме микроамперных токов позволяет обеспечить не только высокое значение входного сопротивления, но и хорошие шумовые параметры, и низкий уровень дрейфа. Для обеспечения высокой стабильности, хорошего подавления синфазной помехи, малого дрейфа нуля в цепи эмиттеров первого ДУ включен генератор стабильного тока. За входным ДУ включается следующий дифференциальный усилитель – усилитель напряжения (УН), который обычно работает с токами эмиттеров транзисторов, имеющих уровень 1 –2 мА, поэтому его коэффициент усиления всегда превышает 100.

Наиболее широкое распространение получили трех — и двухкаскадные ОУ. В ОУ применяют покаскадное соединение дифференциальных усилителей, поэтому из-за отсутствия разделительных конденсаторов на базах второго каскада ДУ будут значительные постоянные составляющие коллекторного напряжения предыдущего каскада. Чтобы предотвратить насыщение транзисторов второго ДУ, потенциалы их эмиттеров должны быть выше потенциала «земли» примерно на ту же величину, что и потенциалы на их базах. Необходимый сдвиг уровня обеспечивает УН. Выходной каскад ОУ представляет собой усилитель мощности, позволяющий получить необходимое усиление по мощности и малое значение выходного сопротивления.

Обычно в ОУ применяют двухполярное питающее напряжение, чтобы обеспечить возможность работы, как с положительными, так и отрицательными входными сигналами. Двухполярное питание облегчает получение на выходе ОУ нулевого потенциала при отсутствии напряжения на входе. Как правило, ОУ работают с напряжениями питания

.

Амплитудная характеристика ОУ для инвертирующего и неинвертирующего входов имеет вид, показанный на рисунке 5.43.

Рис.5.43. Амплитудная характеристика ОУ

(1- для инвертирующего входа, 2 – для неинвертирующего входа)

Из амплитудной характеристики видно, что напряжение на выходе ОУ равно нулю, когда входное напряжение равно нулю. В реальном ОУ наблюдается разбаланс, т. е.

при Напряжение, которое надо подать на вход ОУ для устранения разбаланса, называется напряжением смещения.

Современные ОУ являются двухкаскадными. Они состоят из сложного входного каскада с повышенным коэффициентом усиления и выходного каскада. АЧХ ОУ аппроксимируют прямыми линиями, изломы которых соответствуют полюсам АЧХ. Такая идеализированная АЧХ называется диаграммой Боде. Двухкаскадный ОУ имеет 2 излома идеализированной амплитудно-частотной характеристики. Чтобы усилитель работал устойчиво, его АЧХ должна быть такой, как у фильтра нижних частот первого порядка, то есть скорость спада АЧХ не должна превышать 20дБ/декаду изменения частоты. Фазовый сдвиг выходного сигнала ОУ должен быть меньше

, когда коэффициент усиления . При этом для любого коэффициента обратной связи запас по фазе будет составлять не менее . Это требование выполняется коррекцией частотной характеристики ОУ, причем коррекция производится так, чтобы при АЧХ была аналогична характеристике фильтра нижних частот первого порядка. Корректирующие цепи обеспечивают устойчивость схемы ОУ к самовозбуждению.

На рисунке 5.44 показаны амплитудно-частотная и фазово-частотная характеристики ОУ с частотной коррекцией и без коррекции.

Рис.5.44. АЧХ и ФЧХ операционного усилителя с частотной коррекцией и без коррекции.

Граничной частотой или частотой единичного усиления ОУ называется частота, при которой коэффициент усиления ОУ без обратной связи становится равным 1(0дБ). Для обеспечения стабильности работы ОУ, расширения его динамического диапазона и получения необходимой рабочей полосы частот в ОУ вводят отрицательную обратную связь.

Широко применяются в радиоэлектронной аппаратуре ОУ общего применения К140УД6, К140УД7, К544УД1, К140УД17, К1409УД1, К140УД20, К1401УД1 и другие. Микросхема ОУ К140УД20 содержит в корпусе два ОУ, а микросхема К1401УД1 – четыре ОУ. Набор параметров ОУ содержит около 20 наименований. Эти параметры, приводимые в справочниках, позволяют оценить качество ОУ без его испытания.

Коэффициент усиления современных ОУ составляет сотни тысяч. Так ОУ К140УД17 имеет коэффициент усиления порядка

. Коэффициент ослабления синфазного сигнала достигает значений —ДБ. Частота единичного усиления ОУ может составлять 100МГц. Величина дифференциального входного сопротивления ОУ на полевых транзисторах составляет величину Ом, а величина выходного сопротивления – десятки Ом.

5.8.2.1. Схемы включения операционных усилителей

Инвертирующий усилитель

Схема инвертирующего усилителя показана на рисунке 5.45.

Рис.5.45. Инвертирующий ОУ

Входной сигнал подается на инвертирующий вход. Неинвертирующий вход заземляется. Фаза усиленного сигнала на выходе ОУ противоположна фазе входного сигнала. Исходя из принципа виртуального замыкания, можно записать:

. (5.104)

Напряжение на выходе равно:

(5.105)

Коэффициент усиления инвертирующего усилителя равен:

(5. 106)

Последнее выражение является достаточно точным, если собственный коэффициент усиления самого ОУ намного больше требуемого коэффициента усиления ОУ с обратной связью. Например, для получения усилителя с коэффициентом усиления 100, коэффициент усиления ОУ без обратной связи должен составлять

и выше. Это условие легко обеспечивают современные ОУ.

Неинвертирующий усилитель

Если источник сигналов подключить к неинвертирующему входу, то получим неинвертирующий усилитель, схема которого приведена на рисунке 5.46.

Рис5.46. Неинвертирующий ОУ

Напряжение обратной связи на инвертирующем входе равно:

. (5.107)

Коэффициент обратной связи равен:

(5.108)

Напряжение на выходе ОУ будет равно:

. (5.109)

Откуда:

. (5.110)

Из этого выражения найдем коэффициент усиления неинвертирующего ОУ:

(5. 111)

При

коэффициент усиления будет равен

(5.112)

Повторитель напряжения

На рисунке 5.47 показана схема повторителя напряжения на ОУ.

Рис.5.47. Повторитель напряжения

Положив в (5.112)

, а , получим коэффициент усиления

Напряжение на выходе повторяет входное напряжение.

Интегратор

Если в цепь отрицательной обратной связи включить конденсатор, как показано на рисунке 5.48, то получим схему инвертирующего интегрирующего усилителя, у которого выходное напряжение пропорционально интегралу от входного напряжения.

Рис.5.48. Интегрирующий усилитель

На основании принципа виртуального замыкания можно записать:

. (5.113)

Ток

, протекая через резистор, заряжает конденсатор и создает на нем напряжение, которое является выходным:

(5. 114)

Подставив значение тока из выражения (5.113) получим:

(5.115)

В отличие от интегрирующей цепочки происходит линейный заряд конденсатора входным током, величина которого определяется резистором R. Если входной сигнал представляет собой переменное напряжение, изменяющееся по косинусоидальному закону, то есть

, то формула напряжения на выходе будет иметь следующий вид:

(5.116)

Как видно из этого выражения, амплитуда выходного сигнала обратно пропорциональна круговой частоте

. Амплитудно-частотная характеристика интегратора в логарифмическом масштабе имеет вид прямой с наклоном -6дБ на октаву изменения частоты.

Если входное напряжение постоянно, то напряжение на выходе будет равно

, (5.117)

То есть выходной сигнал возрастает со временем. Поэтому эта схема пригодна для формирования пилообразного напряжения.

Дифференциатор

Если в схеме интегратора поменять местами резистор и конденсатор, то получим инвертирующий дифференцирующий ОУ, схема которого приведена на рисунке 4.49.

Рис.5.49. Дифференцирующий усилитель

Напряжение на входе дифференцирующего усилителя равно:

. (5.118)

Ток из этого выражения равен

. (5.119)

Подставив значение тока в выражение (5.118), получим напряжение на выходе дифференцирующего усилителя

(5.120)

Если к входу подключить генератор синусоидального напряжения

, то напряжение на выходе будет равно:

(5.121)

Отсюда видно, что амплитудно-частотная характеристика схемы дифференциатора в логарифмическом масштабе представляет собой прямую с наклоном +6дБ на октаву изменения частоты.

Следует отметить, что данная схема становится неустойчивой на больших частотах из-за дополнительного фазового сдвига в цепи обратной связи. Для уменьшения фазового сдвига в цепи обратной связи последовательно с конденсатором включают резистор

. Постоянную времени и, следовательно, граничную частоту выбирают так, чтобы на этой частоте усиление цепи обратной связи составляло 1.

Суммирующий ОУ

Ниже на рисунке 5.50 приведена схема суммирующего инвертирующего усилителя.

Рис5.50. Суммирующий усилитель

Этот усилитель суммирует входные токи на резисторе обратной связи. Напряжение на выходе усилителя пропорционально сумме входных токов и равно:

. (5.122)

Такая схема широко применяется в цифро-аналоговых преобразователях для суммирования весовых токов.

Логарифматор

Если в цепь обратной связи включить нелинейный элемент, то получим схему логарифмирующего усилителя, показанную на рисунке 5.51.

Рис.5.51. Логарифмирующий усилитель

В качестве нелинейного элемента используется полупроводниковый диод. Для положительных входных сигналов ток, протекающий через диод, соответствует прямой ветви вольтамперной характеристики диода и равен:

(5.123)

Это равенство достаточно точное при напряжении на диоде

.

Из выражения (5.123) напряжение на диоде равно

(5.124)

Поскольку ток, протекающий через диод, равен

, (5.125)

То напряжение на выходе усилителя будет равно:

(5.126)

Из этого выражения видно, что напряжение на выходе операционного усилителя пропорционально логарифму входного напряжения.

Для отрицательных входных сигналов необходимо включить диод в обратной полярности. Вместо диода можно использовать биполярный транзистор в диодном включении.

Антилогарифматор

Если нелинейный элемент включить на входе ОУ, то получим антилогарифмирующий усилитель.

Рис. 5.52. Антилогарифмирующий усилитель

Для этой схемы справедливы следующие соотношения:

, (5.127)

, (5.128)

. (5.129)

Подставляя значение тока из (5.129) в (5.128), получим:

. (5.130)

Напряжение на выходе усилителя пропорционально антилогарифму входного напряжения.

Активные фильтры

Реализация фильтров с индуктивностями в области низких частот затруднительна, так как для низкочастотного диапазона необходимы большие катушки, которые сложны в изготовлении и обладают плохими электрическими характеристиками. Применения катушек индуктивностей для фильтров в области низких частот можно избежать, используя

-фильтры совместно с операционными усилителями. Такие фильтры называются активными. Высокое значение входного сопротивления ОУ не нагружает -цепь. Необходимо, чтобы ОУ обеспечивал заданный коэффициент усиления как в полосе пропускания, так и за ее пределами для того, чтобы затухание фильтра за пределами полосы пропускания было не меньше заданного.

На рис.5.53 показаны фильтры первого порядка нижних и верхних частот.

а б

Рис.5.53. Активные фильтры первого порядка нижних (а) и верхних (б) частот

АЧХ фильтра нижних частот определяется интегрирующей цепью на входе и описывается выражением

. (5.131)

Фильтр верхних частот является инвертирующим. Его АЧХ определяется дифференцирующей цепью и описывается выражением

. (5.132)

Активные фильтры более высоких порядков можно построить из последовательно соединенных фильтров первого, второго, третьего порядков.

6. УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА

6.1.Основные свойства усилителей постоянного тока

Под усилителями постоянного тока (УПТ) понимают усилители, способные усиливать сигналы, нижняя частота которых может быть равной нулю. Частотная характеристика (рис. 6.1) таких усилителей начинается с определенного значения на частоте fH = 0 и остается постоянной до частоты fB, которая, как обычно, определяется техническим заданием на усилитель.

На рис. 6.1 представлены также фазовая, переходная и амплитудная характеристики усилителя постоянного тока. Его фазовая характеристика отличается от подобной характеристики усилителя переменного тока тем, что она расположена в области отрицательных значений фазового сдвига. На переходной характеристике УПТ отсутствует спад в области больших времен, характерный

для усилителей переменного тока. Ампли-

 

 

 

 

 

 

 

тудная характеристика отражает условия

 

 

К

 

 

 

К

 

 

 

 

прохождения сигнала постоянного тока че-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

рез данный усилитель, т. е. при смене по-

 

 

 

 

 

 

лярности постоянного напряжения на вхо-

 

−ϕ

φ

де соответственно меняется и полярность

 

 

h(t)

 

выходного сигнала.

 

1

 

 

 

 

 

 

Усилители постоянного тока нахо-

 

 

 

 

 

 

дят широкое применение в электронной

 

 

 

 

 

 

f

аппаратуре; они используются в осцилло-

 

 

 

 

 

 

 

 

 

 

 

 

UВЫХ

графах, вольтметрах постоянного тока,

 

 

 

 

 

 

 

 

 

 

 

 

 

электронных стабилизаторах тока и напря-

—UВХ

UВХ

жения, различных системах автоматиче-

ского регулирования, операционных уси-

 

 

 

 

 

 

 

лителях и многих устройствах.

 

 

 

 

 

 

—UВЫХ

По принципу действия УПТ делят

 

 

 

 

 

 

 

 

 

 

 

 

 

на два вида: усилители постоянного тока

 

 

 

 

 

 

Рис. 6.1

 

 

 

 

 

 

 

прямого действия и усилители постоянного тока с преобразованием. В УПТ прямого действия используются непосредст-

венные связи между каскадами, источником сигнала и нагрузкой. В усилителях с преобразованием входной сигнал с помощью преобразователя частоты преоб-

215

Рис. 6.2

UВЫХ

разуется в более высокую несущую частоту. На этой частоте осуществляется основное усиление. Затем усиленный высокочастотный сигнал с помощью демодулятора преобразуется обратно в сигнал постоянного тока.

Для оценки качества УПТ наряду с обычными параметрами усилителя вводится понятие дрейфа нуля. Дело в том, что любые воздействия дестабилизирующих факторов, приводящие к.изменению положения рабочей точки, вызовут изменение постоянного напряжения на выходе и будут восприняты как появление сигнала. Зависи-

t мость дрейфа нуля от времени представлена на рис. 6.2. Эта зависимость имеет две составляющие. Одна составляющая обусловлена медленно меняющимися воздействиями,

чаще всего связанными с изменением параметров окружающей среды (особенно температуры), старением элементов схемы и изменением их параметров. Вторая составляющая накладывается на первую и представляет собой изменяющийся сигнал, обусловленный собственными шумами и помехами. Дрейф нуля оценивают величиной изменения выходного напряжения за определенный промежуток времени при отсутствии сигнала на входе. Используя коэффициент усиления усилителя, эту величину обычно приводят к его входу. В этом случае дрейф нуля показывает, какой сигнал необходимо подать на вход, чтобы на выходе получить реальное приращение сигнала. Величиной приведенного к входу усилителя дрейфа нуля ограничивается его реальная чувствительность.

Для уменьшения дрейфа нуля необходимо прежде всего устранить сами источники дестабилизирующих факторов. Устранение отдельных факторов может оказаться очень дорогим и не всегда приемлемым (например помещение усилителя в термостат). На уменьшение нестабильности напряжения питания путем использования стабилизированных источников потребуется меньше затрат. В любом случае нужен комплексный подход к этому вопросу, предусматривающий самые различные способы решения проблемы.

216

6.2. Усилители постоянного тока прямого действия

Так как УПТ усиливает переменную и постоянную составляющие сигнала, в его цепях не могут быть применены реактивные элементы, изменяющие свои параметры в области нижних и средних частот. К ним относятся разделительные и блокирующие конденсаторы, дроссели и трансформаторы. Для межкаскадной связи здесь используют непосредственную связь или связь с помо-

щью частотно-независимых в диапазоне

 

 

 

усиливаемых частот элементов (резисторы,

 

 

Е0

диоды и др.).

 

 

R1

R3

R5

Простейшим усилителем постоянно-

 

U2

 

го тока является обычный резисторный кас-

 

 

 

VT

 

кад без разделительных конденсаторов (рис.

 

 

 

R2

 

6.3). В выходной цепи используется мосто-

 

 

R4

R6

вая схема подключения нагрузки. Мост об-

 

 

 

разуется сопротивлениями R3,R5,R6 и тран-

 

 

 

зистором VT вместе с сопротивлением R4.

 

Рис. 6.3

 

Когда мост находится в состоянии баланса,

 

 

 

 

 

напряжение U2 будет равно нулю при отсутствии напряжения UИ на входе каскада. При подаче напряжения UИ с плюсом на базе VT транзистор открывается, потенциал его коллектора понижается, и в цепи нагрузки появляется усиленное напряжение U2 с полярностью, указанной на рисунке. Смена полярности входного напряжения приводит к изменению полярности напряжения U2.

Одним из самых распространенных простейших каскадов усиления постоянного тока является дифференциальный каскад (см. рис. 4.35, а, б), рассмотренный выше. Сигнал в таком каскаде может подаваться между базами транзисторов или между базой одного из них и общей шиной. Нагрузка включается между коллекторами транзисторов. Все положительные качества дифференциального каскада в полной мере реализуются при его использовании в качестве УПТ. Этот каскад занимает особое место в разработках УПТ в интегральном исполнении (операционных усилителей). Для всех операционных усилителей на биполярных и полевых транзисторах характерным является использование в качестве входного каскада соответствующего дифференциального усилителя.

217

В случае необходимости получения большого коэффициента усиления приходится строить УПТ из нескольких каскадов. Возникающие при этом трудности выравнивания выходных и входных потенциалов соединяемых каскадов могут решаться различными способами. Наиболее распространенные методы построения многокаскадных УПТ представлены на рис. 6.4.

 

 

R4

R5

R7

 

15В

R1

R3

12к

R9

 

 

UВХ

VT1

VT2

VT3 UВЫХ

 

 

 

R6

 

 

R2

 

 

3к 3В R8 6В

R10

 

 

 

 

 

 

 

 

 

 

а

 

 

 

R1

 

 

 

 

 

E0

R2

R5

E01

R1

R3

R5

 

R6

VD

VT2

 

 

R3

 

 

VT1

VT2

 

R2

VT1

UВЫХ

 

 

 

UВХ

R4

R7

UВЫХ

UВХ

U0K1

R6

 

 

 

 

R4

 

 

б

 

E02

в

 

 

 

 

 

 

Рис. 6.4

На схеме (рис. 6.4, а) коллектор предыдущего каскада непосредственно подключается к базе последующего. Необходимое напряжение смещения на базе следующего транзистора получают за счет выбора соответствующей величины сопротивления в цепи эмиттера следующего каскада. Пусть все три транзистора работают в одном режиме: токи коллекторов равны 1 мА, напряжения коллектор-эмиттер равны 3 В, напряжения база-эмиттер примерно равны нулю. Чтобы получить 3 В на коллекторе VT1 при токе I0K1 = 1 мА, сопротивление R4 должно быть равно 12 кОм. Напряжение коллектор-эмиттер VT1 прикладывается к последовательному соединению перехода база-эмиттер VT2 и сопротивления R6. Чтобы на переходе база-эмиттер VT2 напряжение примерно равнялось нулю, напряжение на R6 должно быть равно 3 В. Это возможно, если

218

сопротивление R6 имеет величину 3 кОм. Напряжение на коллекторе VT2 относительно общей шины теперь будет равно 6 В, для чего необходимо взять сопротивление R5, равное 9 кОм. Для компенсации этого напряжения на базе VT3 сопротивление R8 требуется увеличить до 6 кОм. При заданном режиме и напряжении источника питания сопротивление R7 должно быть уменьшено до 6 кОм. Таким образом, по мере продвижения к выходу усилителя нагрузка каждого последующего каскада уменьшается (R5, R7), а глубина местной обратной связи увеличивается (R6, R8). Согласно (4.9) и (4.12), коэффициент усиления таких каскадов быстро падает и стремится к отношению

К0

= y21FRH =

 

h31RH

h31RH

RH .

(6.1)

h21

+ RЭ(1+ h31)

RЭ(1+ h31)

 

 

 

 

 

Уже при равенстве сопротивлений в эмиттере и коллекторе коэффициент усиления не превышает единицы. Избавиться от этих обратных связей с помощью блокировочных конденсаторов в УПТ невозможно. (Как известно, любые реактивные элементы могут использоваться в усилителях постоянного тока только при появляющейся необходимости коррекции частотных характеристик в области высоких частот.) Заметного повышения температурной стабильности эти обратные связи также не дают, так как нестабильность схемы на рис. 6.4, а в основном определяется каскадом на транзисторе VT1, где ввести эту ОС не представляется возможным. Сопротивления R1, R2 и R9, R10 дополняют входную и выходную цепи усилителя до мостового вида для устранения постоянной составляющей, не связанной с сигналом.

В схеме (рис. 6.4, б) используется потенциометрическая связь между каскадами. В этой схеме с помощью резистивных делителей R3 — R4, R5 — R7 дополнительного источника питания Е02 появляется возможность довести до необходимой величины потенциал на базе VT2 и на выходе усилителя. Естественно, плечи делителей R3 и R5 заметно снижают усиление каждого каскада. Коэффициент усиления каскада с потенциометрической связью примерно в 1,5 — 2 раза меньше, чем у аналогичного резисторного каскада. Однако это снижение не прогрессирует от каскада к каскаду и не ограничивает число используемых каскадов.

В схеме на рис. 6.4, в в качестве элемента связи применен стабилитрон. Постоянное напряжение на коллекторе VT1 U0K1, согласно второму закону

219

УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА НА ПОЛЕВЫХ ТРАНЗИСТОРАХ

УПТ С НЕПОСРЕДСТВЕННОЙ СВЯЗЬЮ

Высокое входное сопротивление, малый температурный дрейф (в термостабильной точке), низкий уровень шумов позволяют использовать ПТ в схемах усилителей постоянного тока. Наличие термостабильной точки у полевых транзисторов выгодно отличает их от электронных ламп и биполярных транзисторов, используемых в УПТ.

Рис. 1. Простейшие схемы УПТ. а — истоковый повторитель; б — истоковый повторитель с компенсацией дрейфа тока затвора.

В этом параграфе будут рассмотрены простейшие схемы УПТ, а также более сложные балансные каскады на полевых транзисторах.

Полевой транзистор при токе стока, соответствующем точке «нулевого» дрейфа, в схеме простейшего УПТ (рис. 1, а) может иметь очень малый дрейф. Так, при изменении температуры окружающей среды от +10 до +100°C приведенный ко входу дрейф может быть менее 100 мкВ, что соответствует среднему дрейфу 1 мкВ/°С во всем диапазоне температур [2]. Таких результатов можно достигнуть, конечно, при очень тщательной установке, термостабильной точки.

При смене транзисторов без дополнительной подстройки появится дрейф, если новый транзистор не будет иметь точно такое же Uотс, что и прежний.

Достоинство выбора рабочей точки ПТ с нулевым дрейфом по сравнению с другими методами компенсации состоит в том, что используется компенсация встречно направленных явлений внутри одного транзистора.

При большом сопротивлении резистора в цепи затвора R3 появляется дополнительный дрейф, обусловленный током затвора. Этот дрейф можно скомпенсировать с помощью диода и резистивного делителя в схеме, изображенной на рис. 1, б. Здесь обратный ток диода Д1, протекая через резистор R2, создаёт на нём падение напряжения, равное и противоположное напряжению, создаваемому обратным током затвора на резисторе R3. В результате компенсации дрейф может быть снижен до 2 мВ и менее в диапазоне температур от -25 до +100°С.

Рис. 2. Принципиальные схемы балансных усилителей. а — дифференциальный усилитель; б — разностный каскад с генератором тока в нагрузке; в — последовательный балансный каскад.

Для больших значений тока стока Ic, когда режим ПТ далёк от оптимального с точки зрения температурной стабильности, можно получить коэффициент усиления порядка 15-30 при Rвых≈Rc = 10…20 кОм. Коэффициент усиления такого же порядка можно получить и от ПТ с малым напряжением отсечки (т. е. при малых токах стока) в термостабильной точке, однако Rc в этом случае оказывается равным 100-200 кОм, a Rвых=Ri||Rc>50…100 кОм. Столь большие значения Rвых приводят к сужению полосы пропускания усилителя до 10-20 кГц [3].

Для расчета температурного дрейфа усилителей на полевых транзисторах с управляющим p-n переходом можно воспользоваться формулами, приведенными в [5].

Наилучшим способом компенсации дрейфа УПТ с непосредственной связью является использование согласованных пар полевых транзисторов, включенных по схеме дифференциального усилителя (рис. 2, а).

Особенностью балансных усилителей постоянного тока на ПТ является то, что для получения минимального дрейфа приходится использовать режим микротоков. Это в свою очередь обусловливает трудность получения высокого коэффициента усиления и широкой полосы пропускания балансных каскадов.

В [3] показано, что дрейф балансных каскадов можно определить по выражению

(1)

где ρ — удельное электрическое сопротивление кремния; Т — абсолютная температура;

Из соотношения (1) видно, что дрейф балансных каскадов зависит от величины Iс и разброса параметра, определяемого выражением

(2)

Таким образом, получение приемлемого значения приведённого дрейфа сопряжено со значительными трудностями: необходимостью использования транзисторов в режиме очень малых токов стока Iс и отбором в пары по параметру ξ, не поддающемуся прямому измерению.

Использование ПТ в режиме микротоков приводит к проблеме получения коэффициента усиления больше нескольких единиц при ограниченных номиналах источников питания. Один из возможных путей решения этой проблемы-использование схем по типу рис. 33, б, где биполярный транзистор в режиме генератора тока создает эквивалентное сопротивление в несколько мегаом в цепи стока Т2. По данным [3] такой каскад для полевых транзисторов с Uотс≤2 В и Ic0≤0,5 мА обеспечивает усиление около 30 при Ic≈30 мкА. Среднее значение приведенного ко входу дрейфа составляет 100-200 мкВ/°С.

Разбаланс по сопротивлениям R1 и R2 (рис. 33, б) не играет в этой схеме существенной роли благодаря автоматической установке режима биполярного транзистора Т3.

Коэффициент усиления разностного каскада, изображённого на рис. 33, б, можно определить, используя μ=RiSмакс как основной параметр усиления, потому что полевые транзисторы сохраняют значение μ приблизительно постоянным в широком диапазоне изменения Iс. Тогда усиление разностного каскада можно определить по приближенной формуле [4]

(3)

где rк — выходное сопротивление каскада на транзисторе Т3 по схеме с общей базой.

В том случае, когда необходим усилитель постоянного тока с несимметричными входом и выходом, можно использовать последовательно-балансный каскад, принципиальная схема которого изображена на рис. 33, е. Схема отличается простотой и невысокой критичностью к подбору транзисторов в пары. Ток в рабочей точке целесообразно выбирать в пределах 0,1-0,2 мА. Усиление в области низких частот на холостом ходу

Ки ≈ μ/2      (4)

При R1=R2=30 кОм (рис. 2, б), Eпит=24 В и использовании полевых транзисторов типа КП103Ж получен коэффициент усиления Ки = 15 при приведённом ко входу дрейфе меньше 150 мкВ/°С.

Рис. 3. Схемы комбинированных балансных усилителей.
а — параллельно-балансного; б — последовательно-балансного.

Приведенные на рис. 2 схемы имеют высокое выходное сопротивление (200-500 кОм) и узкую полосу пропускания (10-20 кГц).

Повышение усиления и расширение полосы пропускания может быть достигнуто путем использования комбинации полевых и биполярных транзисторов. У таких комбинированных каскадов (рис. 3) можно получить коэффициент усиления примерно 200 при дрейфе, приведенном ко входу, 50-100 мкВ/°С [4].

Для расширения полосы пропускания и для получения нулевого уровня на выходе усилителя прибегают к усложнению принципиальной схемы УПТ [7].

Отметим, что отбор пар полевых транзисторов облегчается тем, что между Sm, Uотс и Ic0 существует достаточно однозначное соответствие, позволяющее вести отбор по одному, максимум по двум параметрам.

Подробные сведения о подборе одиночных полевых транзисторов в пары для дифференциальных усилителей можно найти в [6], где автор анализирует взаимосвязь параметров отдельных транзисторов, входящих в пару, с температурным дрейфом и смешением нуля пары, предлагает способ подбора, качественно связывающий критерий подбора и заданные величины температурного дрейфа и смещения нуля.

ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ ПОЛЕВЫХ ТРАНЗИСТОРОВ В УПТ С ПРЕОБРАЗОВАНИЕМ

При необходимости измерения очень слабых сигналов постоянного тока (единиц микровольт) применение усилителей с непосредственной связью невозможно из-за их высокого дрейфа. В этом случае используются усилители с модуляцией и демодуляцией (М-ДМ), которые мало чувствительны к изменениям питающих напряжений и температуры окружающей среды и значительно стабильнее во времени, чем усилители с непосредственными связями. В усилителях М-ДМ сигнал постоянного тока преобразуется с помощью специального устройства (модулятора М) в переменный, затем полученный сигнал усиливается усилителем переменного тока (У), после чего детектируется демодулятором ДМ. После демодулятора обычно включается фильтр нижних частот ФНЧ, на выходе которого выделяется усиленный сигнал постоянного тока, пропорциональный входному (рис. 4).

Рис. 4. Структурная схема усилителя М-ДМ.

Так как усиление на постоянном токе заменяется усилением на переменном токе, то дрейф всего усилителя определяется только изменением нулевого уровня выходного напряжения модулятора.

Следующие свойства полевых транзисторов делают их во многих случаях незаменимыми в модуляторах УПТ с преобразованием:

практическое отсутствие статического напряжения смещения нуля;

малый обратный ток затвора закрытого транзистора, обеспечивающий малый дрейф по току и напряжению; малая мощность управления затвором; большой срок службы.

Рассмотрим причины, ухудшающие качественные показатели усилителей М-ДМ с модуляторами на полевых транзисторах: дрейф нулевого уровня и коммутационные помехи, используя при этом те же эквивалентные схемы и ключевые параметры ПТ, которые были приведены ранее.

Дрейф нулевого уровня модулятора с ПТ обусловлен изменением обратного тока затвора Iз, который зависит от величины управляющего напряжения на затворе и сопротивление затвор — канал. При малом значении тока Iз и высокой частоте преобразования дрейф нулевого уровня зависит также от изменения тока помехи. Остаточный ток ПТ с p-n переходом зависит от температуры, как уже говорилось выше, по экспоненциальному закону. Практически можно с достаточной степенью точности считать, что ток затвора для кремниевых приборов удваивается на каждые 10-12° С.

Рис. 5. Принципиальные и эквивалентные схемы модуляторов на ПТ.
а — параллельного модулятора; б — последовательного модулятора; в — параллельно-последовательного модулятора.

Вследствие наличия сопротивления источника сигнала и сопротивления замкнутого ключа изменение остаточного тока вызывает дрейф нулевого уровня по напряжению. При отсутствии входного сигнала напряжение дрейфа, приведенное ко входу, можно определить по схеме рис. 5, а, из условия, что напряжение на входе преобразователя одинаково при замкнутом и разомкнутом ключе [1]:

откуда

Поскольку для полевых транзисторов выполняется условие

rз>>rк, то

Uдр ≈ ΔIз(Ri+rк)      (5)

где ΔIз — изменение остаточного тока, вызванное нестабильностью управляющего напряжения, изменением емкости затвор — канал и другими причинами.

Таким образом, при использовании ПТ в модуляторах высокочувствительных УПТ необходима компенсация остаточных токов и напряжений. При использовании МОП-транзисторов, у которых значение тока затвора на 2-4 порядка меньше, чем у ПТ с p-n переходом, компенсация остаточного тока обычно не требуется.

Другой причиной, вызывающей дрейф и снижающей чувствительность УПТ, является коммутационная помеха. Помеха возникает на выходе модулятора за счет прохождения управляющего напряжения через ёмкости Сз.с и Сз.и. Эта помеха ограничивает частоту коммутации порядка 500-2000 Гц для ПТ с управляющим p-n переходом (в некомпенсированных модуляторах). Величина помехи зависит от сопротивлений канала открытого и закрытого транзистора, от значения и формы управляющего напряжения и, как уже говорилось выше, от ёмкости затвора.

Заметим, что на дрейф нулевого уровня оказывают влияние также паразитные термо-э.д.с, возникающие в местах соединений разнородных металлов. Для их уменьшения следует внимательно относиться к выбору металлов соединительных проводников, обеспечивающих минимальную термо-э. д.с, тщательно термоизолировать входные цепи, выравнивать температуры в местах соединений, использовать при пайке специальные припои и т. д. Проведение указанных мероприятий позволяет снизить термо-э.д.с. приблизительно до 1 мкВ/°С [8].

В модуляторах, выполненных на полевых транзисторах, используются управляющие напряжения различной формы: синусоидальные, трапециевидные и прямоугольные. Напряжение прямоугольной формы предпочтительно, так как оно может быть меньше, чем напряжение других форм. При использовании полевых транзисторов с управляющим p-n переходом прямоугольные импульсы управляющего напряжения должны быть однополярными.

СХЕМЫ МОДУЛЯТОРОВ

В зависимости от схемы включения транзисторных ключей модуляторы делятся на параллельные, последовательные и последовательно-параллельные; по цикличности работы — однотактные и двухтактные; в зависимости от типа нагрузки — резистивные, индуктивные и трансформаторные.

Параллельный модулятор предназначен для работы с высокоомным источником напряжения. Его принципиальная и эквивалентная схемы приведены на рис. 36, а.

Чувствительность преобразователя к входному сигналу Sc определяется как отношение эффективного значения первой гармоники выходного напряжения к постоянному напряжению на входе [8]. Для сравнительно низких частот преобразования f<1/2πCзс(Ri+rк) и Ri>>rк можно считать

Sc макс ≈ 1,41/π = 0,45     (6)

Для низких частот управляющего напряжения Uупр амплитуда помехи на выходе модулятора вычисляется по формуле

    (7)

где U1 — напряжение на емкости Сз.с в момент запирания транзистора.

Максимальная рабочая частота управляющего напряжения выбирается по условию [8]

fмакс < Uc/(UотсπCз.сRi),      (8)

где Uc — напряжение входного сигнала.

Из условия (8) видно, что для повышения максимальной частоты управляющего напряжения необходимо выбирать транзисторы с малым напряжением отсечки и малой проходной емкостью.

Принципиальная и эквивалентная схемы последовательного модулятора приведены на рис. 36, б. При постоянной времени цепи нагрузки τн=Rн(Cнз.с) и сравнительно низкой частоте преобразования f<1/(2πτн) максимальная чувствительность последовательного модулятора к полезному сигналу, как и в случае параллельного модулятора,

Sс макс ≈ 0,45.

Для повышения чувствительности целесообразно увеличивать входное сопротивление усилителя переменного тока, а для снижения помехи на выходе модулятора следует выбирать транзисторы с малым напряжением отсечки и по возможности минимальное значение управляющего напряжения.

Наиболее широкое распространение получил последовательно-параллельный модулятор, обладающий лучшими характеристиками по сравнению с параллельным и последовательным преобразователями. В таком модуляторе изменение внутреннего сопротивления источника сигнала относительно слабо влияет на основные характеристики модулятора, а благодаря разнополярному управлению ключами происходит частичная компенсация помехи в нагрузке.

Принципиальная схема последовательно-параллельного модулятора приведена на рис. 36, в.

Чувствительность последовательно-параллельного модулятора к полезному сигналу

    (9)

Амплитуда напряжения помехи на выходе модулятора

     (10)

где индексы «1» и «2» означают, что соответствующие обозначения относятся к транзисторам Т1 или Т2.

Преобразователи малых напряжений постоянного тока с ПТ могут выполняться по трансформаторной схеме. Такие схемы обеспечивают наиболее высокую чувствительность и хорошее согласование с источником сигнала при условии выполнения трансформатора с требуемой степенью симметрии. На рис. 37, а представлена одноактная последовательная схема преобразователя с входным трансформатором. Выходной сигнал появляется при замкнутом ключе [1].

Рис. 6. Трансформаторные модуляторы на ПТ.
а — однотактный последовательный модулятор; б — двухтактный балансный модулятор.

Двухтактная балансная схема с входным трансформатором (рис. 6, б) состоит из двух однотактных, управляемых противофазными сигналами. При точной балансировке с помощью подстроенных конденсаторов С1 и С2 двухтактная схема позволяет существенно снизить остаточную помеху. Однотактная балансная схема используется для измерения напряжения до 0,2 мкВ при сопротивлении источника сигнала менее 40 кОм. Дрейф нулевого уровня схемы (в течение нескольких дней) не превышает 0,3 мкВ при частоте преобразования 250 Гц. Двухтактная схема с входным трансформатором, работающая на частоте 250 Гц, позволяет получить полную нестабильность нулевого уровня (в течение трех недель) менее 0,05 мкВ [42].

МЕТОДЫ КОМПЕНСАЦИИ ОСТАТОЧНЫХ ПАРАМЕТРОВ

Существует достаточно много методов и схемных решений, позволяющих уменьшить дрейф нулевого уровня и коммутационные помехи. В этом параграфе рассмотрены лишь некоторые методы устранения остаточных параметров

Компенсацию остаточного тока можно произвести включением плоскостного диода с характеристикой обратного тока, близкой к характеристике остаточного тока ПТ по схеме рис. 38, а. Поскольку остаточный ток ПТ зависит от управляющего напряжения, то компенсирующий диод также подключается к этому источнику. Полную компенсацию в такой схеме осуществить невозможно, поскольку необходимо осуществлять подбор компенсирующего диода и точную установку напряжения на нем. Практически такая схема обеспечивает снижение дрейфа нулевого уровня по току до 5*10-10 А и по напряжению до 0,5 мкВ в диапазоне температур 20-70° С [6].

Требуемое значение компенсирующего тока без подбора диода Дк может быть получено при помощи делителя R1 и R2 (рис. 7, б). В этой схеме обратный ток диода должен превышать ток утечки затвора ПТ. Недостатком является шунтирование делителя канала полевого транзистора. При подключении компенсирующего диода к источнику постоянного напряжения дрейф нулевого уровня составляет 5-15 мкВ в диапазоне температур 20-60° С. Необходимого значения компенсирующего тока диода можно достигнуть, используя дополнительные приемы: подбор диода, изменение амплитуды напряжения, подаваемого на диод, включение делителя тока, как показано на рис. 7, б [10].

Рис. 7. Схемы компенсационных модуляторов.
а, б, в — модуляторы с компенсацией остаточного тока; г, д -модуляторы с компенсацией коммутационной помехи.

Существенное влияние на работу модулятора оказывает помеха, проходящая в цепи управления через емкость затвор — канал. Эквивалентное напряжение помехи, обусловленное указанной емкостью, пропорционально напряжению управления, сопротивлению источника сигнала, частоте преобразования и значению емкости. Компенсацию тока помехи Iп можно осуществить включением дополнительного конденсатора Ск в схеме на рис. 7, г. Здесь удается скомпенсировать только помеху основной частоты, однако существенное влияние на работу модулятора оказывают также помехи высших гармоник.

Практически такая схема компенсации снижает напряжение помехи до 1-2 мВ [1].

Если модулятор управляется напряжением прямоугольной формы, то сигнал помехи имеет вид коротких, но больших по амплитуде (до 150-200 мВ) импульсов, которые могут вызвать насыщение усилителя, включённого на выходе модулятора, и смещение нулевого уровня.

На рис. 7, д представлена однотактная параллельная схема, в которой выход модулятора подключается к дифференциальному входу операционного усилителя. В этой схеме исток ПТ подключается к общей точке через балансирующее сопротивление R2. Для окончательной регулировки вводится подстроечный конденсатор Сп. Введение внешнего подстроечного конденсатора не ухудшает температурной стабильности схемы, так как ёмкости

ПТ имеют низкий температурный коэффициент (0,02%/°С) [1]. В сбалансированной схеме, т. е. при R1=R2 и Cз.из.с, остаточное напряжение помехи практически отсутствует.

Некоторое снижение помех достигается применением модулятора с последовательно-параллельным включением ПТ (рис. 5, в). Основные характеристики этой схемы были приведены ранее. Использование в последовательно-параллельном модуляторе управляющих напряжений противоположной полярности приводит к некоторой компенсации остаточного напряжения помехи. Полной компенсации получить нельзя из-за неидентичности ПТ, работающих в паре, и зависимости ёмкостей затвор — канал от величины управляющего напряжения.

На рис. 8 изображена принципиальная схема последовательно-параллельного модулятора [11] с компенсацией импульсной помехи, для чего между коммутирующей цепью и сигнальной включена цепь компенсации, состоящая из резисторов R1-R4 конденсатора С2 и диода Д1 Модулятор коммутируется напряжением прямоугольной формы с частотой 1 кГц. По данным [1] модулятор обладает следующими параметрами: порог чувствительности около 5 мкВ, температурный дрейф в диапазоне температур -5..60°С не более 0,1 мкВ/°С, временной дрейф ±2 мкВ за 8 ч непрерывной работы.

Рис. 8. Практическая схема модулятора на полевых транзисторах с компенсацией импульсной помехи.

УСИЛИТЕЛЬ ПЕРЕМЕННОГО ТОКА КАНАЛА М-ДМ

Усилитель переменного тока канала М-ДМ должен иметь:

необходимый коэффициент усиления с требуемой стабильностью;
полосу пропускания, верхняя и нижняя границы которой отличаются от несущей частоты не менее чем в 5 раз;
большое входное сопротивление; малый уровень низкочастотных шумов; быстрое затухание переходного процесса после перегрузок.

Рис. 9. Схема усилителя несущей с разделенной нагрузкой.

Перечисленные требования сравнительно легко выполнить. Так как частота коммутации (модуляции) редко превышает 10-20 кГц, то в качестве усилителей переменного тока канала М-ДМ могут быть использованы почти все схемы УНЧ.

Применение полевые транзисторов во входных каскадах усилителей переменного тока позволяет получать входные сопротивления до десятков мегаом (в зависимости от частоты модуляции), что обеспечивает коэффициент преобразования М-ДМ систем, близкий к коэффициенту преобразования собственно модуляторов. Использование микросхем типа К2УС261-К2УС264 в качестве усилителей переменного тока позволяет сократить габариты и повысить надежность УПТ М-ДМ в целом.

В случае использования двухтактных модулятора и демодулятора целесообразно во входном каскаде усилителя несущей применять дифференциальную схему, а на выходе — каскад с разделенной нагрузкой. Принципиальная схема такого усилителя переменного тока изображена на рис. 9 [13]. Связь между каскадами непосредственная.

Термостабилизация достигается введением местных обратных связей и использованием дифференциальных усилителей. Для получения одинаковых выходных сопротивлений усилителя последовательно с выходом 1 установлен резистор R17.

ПРАКТИЧЕСКИЕ СХЕМЫ УПТ С ПРЕОБРАЗОВАНИЕМ

На рис. 10 приведена схема УПТ М-ДМ с использованием микросхем [12]. Особенность схемного решения этого усилителя состоит в том, что компенсация переходных процессов от перезаряда входных емкостей усилителя осуществляется не в модуляторе, а в первом каскаде усилителя несущей частоты. Компенсация достигается за счет того, что часть входного сигнала подается через переменный резистор R3 и конденсатор С1, минуя модулятор, на второй вход дифференциального усилителя К1УТ221А. При равенстве огибающей переходного процесса на одном входе дифференциального усилителя экспоненциальному напряжению на другом его входе в выходном напряжении будут полностью скомпенсированы переходные процессы. Равенство указанных напряжений достигается регулировкой R3. Переходные процессы будут скомпенсированы при выполнении двух условий: равенстве постоянных напряжений на конденсаторах С1 и С2 в начальный момент времени при любых изменениях Uвх и равенстве постоянных времени входных цепей дифференциального усилителя.

Рис. 10. Схема УПТ с преобразованием на ПТ и микросхемах.

Модулятор усилителя собран по последовательно-параллельной схеме на полевых транзисторах типа КП103. Делитель, изменяющий масштаб входного напряжения Uвх, состоит из потенциометра R3 и составного эмиттерного повторителя, служащего для развязки низкоомного потенциометра от источника входного сигнала. Трёхкаскадный усилитель несущей частоты (40 кГц) собран на трёх микросхемах типа К1УТ221А, коэффициент усиления каждого каскада регулируется резисторами обратной связи, помеченными на принципиальной схеме звездочками (R4, R6, R8, R10, R12, R14).

Упрощенная схема УПТ М-ДМ с модулятором и демодулятором на полевых транзисторах приведена на рис. 11 [14].

Рис. 11. Упрощенная схема УПТ М-ДМ.

Последовательно-параллельный модулятор на транзисторах Т1 и Т2 позволяет несколько понизить напряжение помех, возникающих при переключении ПТ. В качестве усилителя несущей частоты используется микросхема К2УС261, входной каскад которой выполнен на полевом транзисторе; это обеспечивает хорошее согласование между модулятором и усилителем несущей. Демодулятор УПТ выполнен также на полевых транзисторах, что позволило обойтись без фазирующего трансформатора в цепи управления.

Вместо обычного RC-фильтра нижних частот в УПТ используется активный фильтр-интегратор. В этом случае коэффициент усиления несущей частоты может быть снижен в Ки раз (Ки — коэффициент передачи активного фильтра-интегратора) и соответственно увеличена устойчивость всего УПТ [14].

Усилитель охвачен отрицательной обратной связью, которая с выхода активного фильтра вводится в цепь истока полевого транзистора Т2, причём коэффициент усиления УПТ определяется глубиной ООС и может регулироваться с помощью потенциометра R10.

Баланс нуля УПТ и регулирование уровня выходного сигнала осуществляется потенциометром R5 на входе активного фильтра-интегратора.

По данным [14] УПТ имеет следующие параметры: коэффициент усиления с разомкнутой обратной связью около 106; дрейф нуля, приведенный ко входу за 7 ч. 2,0 мкВ, порог чувствительности 0,2 мкВ; температурный дрейф (в диапазоне температур +20…60°С) 0,2мкВ/°С.

В заключение отметим, что использование полевых транзисторов в схемах УПТ с М-ДМ позволяет улучшить метрологические характеристики, уменьшить габариты и массу, повысить надежность, а применение комплементарных схем с ПТ позволит в дальнейшем создавать схемы УПТ с преобразованием полностью в интегральном исполнении.

А.Г. Милехин

Литература:

  1. Александров В. С, Прянишников В. А. Приборы для измерения малых напряжений и токов. М., «Энергия», 1971.
  2. Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
  3. Гальперин М. В., Злобин Ю. П. , Павленко В. А. Транзисторные усилители постоянного тока. М., «Энергия», 1972.
  4. Гальперин М. В., Злобин Ю, П., Мелехова Г. Н. Полевые транзисторы КП102 в схемах усиления постоянного тока. — В кн.: Тенденции развития активных радиокомпонентов малой мощности. Новосибирск, «Наука», 1970.
  5. Немчинов В. M., Сиколенко С. Ф. Температурный дрейф усилителя на полевом транзисторе с р-п-переходом. — «Полупроводниковые приборы в технике электросвязи», вып. 4, М., «Связь», 1969.
  6. Голованов В. М. Подбор ПТ в пары для дифференциальных усилителей. — «Интегральные схемы», вып. 5. Новосибирск, «Наука», 1973.
  7. Немчинов В. М. Параллельный балансный каскад на ПТ.- «Микроэлектроника», вып. 6. М., «Советское радио», 1973.
  8. Назарян К. X., Прянишников В. А. Преобразователи напряжения и тока на полевых транзисторах. ЛДНТП, 1973.
  9. Hitt J. J., Mosley G. FET chopper circuits for low lewel signals. — «IЕЕЕ Internat. Conf. Record», 1967, pt. 8.
  10. Беленький Б. И., Минц М. Б. Высокочувствительные усилители постоянного тока с преобразователями. Л., «Энергия», 1970.
  11. Калинчук Б. А., Пичугин О. Р. Модуляторы малых сигналов. М., «Энергия», 1972.
  12. Ворожейкин А. И., Добровинский И. Р., Ломтев Б. А. Измерительный усилитель с модуляцией входного сигнала. — «Приборы и техника эксперимента», 1972, № 6.
  13. Полонников Д. Е. Решающие усилители. М, «Энергия», 1973.
  14. Хононзон Г. А, Гаркуша О. И., Лебакин Н. А. Высокостаьильный усилитель постоянного тока. — «Приборы и системы управления», 1974, №1
BACK MAIN PAGE

ПРОДУКТЫ — УСИЛИТЕЛИ — АУДИО ПОСТОЯННОГО ТОКА