Site Loader

Содержание

2.3 Усилители постоянного тока

2.3 Усилители постоянного тока

Усилителями постоянного тока (УПТ) называют такие устройства, которые могут усиливать медленно изменяющиеся электрические сигналы, то есть они способны усиливать и переменные и постоянные составляющие входного сигнала.

Таким образом, для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь. Непосредственная связь может быть использована и в обычных усилителях переменного тока с целью уменьшения числа элементов, простоты реализации в интегральном исполнении, стабильности смещения и т.д. Однако такая связь вносит в усилитель ряд специфических особенностей, затрудняющих как его выполнение, так и эксплуатацию. Хорошо передавая медленные изменения сигнала, непосредственная связь затрудняет установку нужного режима покоя для каждого каскада и обусловливает нестабильность их работы.

При разработке УПТ приходится решать две основные проблемы: согласование потенциальных уровней в соседних каскадах и уменьшение дрейфа (нестабильности) выходного уровня напряжения или тока.

Применение усилительных каскадов в УПТ ограничивается дрейфом нуля. Дрейфом нуля (нулевого уровня) называется самопроизвольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловливающих наличие дрейфа нуля в УПТ. К ним относятся нестабильности источников питания, температурная и временная нестабиль­ности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наиболь­шую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и не­стабильность тока коллектора усилителя в режиме покоя изменениями I кбо , U бэ0 и B .Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы. Так, для уменьшения абсолютного дрейфа нуля УПТ необходимо умень­шать коэффициент нестабильности S нс .

Абсолютным дрейфом нуля  , называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ обычно оценивают по напряжению дрейфа нуля, приведен­ного ко входу усилителя: е др = . Приведенный ко входу усилителя дрейф нуля не зависит от коэффициента усиления по напряжению и. эквивалентен ложному входному сигналу. Величина е др ограничивает минимальный входной сигнал, т. е. определяет чувствительность усилителя.

В усилителях переменного тока, естественно, тоже имеет место дрейф нуля, но так как их каскады отделены друг от друга разделительными элементами (например, конденсаторами), то этот низкочастотный дрейф не передается из предыдущего каскада в последующий и не усиливается им. Поэтому в таких усилителях (рассмотренных в предыдущих главах) дрейф нуля минимален и его обычно не учитывают. В УПТ для уменьшения дрейфа нуля, прежде всего, следует заботиться о его снижении в первом каскаде. Приведенный ко входу усилителя температурный дрейф снижа­ется при уменьшении номиналов резисторов, включенных в цепи базы и эмиттера. В УПТ резистор R Э большого номинала может создать глубокую ООС по постоянному току, что повысит стабильность и одновременно уменьшит KU для рабочих сигналов постоянного тока. Поскольку здесь KU пропорционален S нс , то величина е др оказывается независимой от S нс . Минимального значения е др можно достичь за счет снижения величин R э, R б и Rr . При этом для кремниевых УПТ можно получить  Кремниевые УПТ более пригодны для работы на повышенных температурах.

С целью снижения дрейфа нуля в УПТ могут быть использова­ны следующие способы: применение глубоких ООС, использование термокомпенсирующих элементов, преобразование постоянного тока в переменный и усиление переменного тока с последующим выпрямлением, построение усилителя по балансной схеме и др.

Однотактные УПТ прямого усиления по сути своей являются обычными многокаскадными усилителями с непосредственной связью. В таком усилителе резисторы R э 1 и R э 2 не только создают местную последователь­ную ООС по току, но и обеспечивают необходимое напряжение   в своих каскадах. В многокаскадном усилителе наблюдается последовательное повышение потенциала на эмиттере транзистора каждого

При разработке УПТ необходимо обеспечивать согласование потенциалов не только между каскадами, но и с источником сигнала и нагрузкой. Если источник сигнала включить на входе усилителя между базой первого транзистора и общей шиной, то через него будет протекать постоянная составляющая тока от источника питания EK . Для устранения этого тока обычно включают генератор входного сигнала между базой транзистора Т1 и средней точкой специального делителя напряжения, образованного резисторами R 1 и R 2 . На рисунке 2.3.1 приведена принципиальная схема рассматриваемого входного каскада УПТ прямого усиле­ния. При правильно выбранном делителе потенциал его средней точки в режиме покоя равен потенциалу покоя на базе первого транзистора.

Рисунок 2.3.1 схема входного каскада УПТ

Нагрузка усилителя обычно включается в диагональ моста, образованного элементами выходной, цепи УПТ. Рассматриваемый здесь способ включения нагрузки используется для получения U н =0 при Е r =0. Номиналы резисторов R3 и R4 выбираются таким образом, чтобы напряжение средней точки делителя равнялось напряжению на коллекторе выходного транзистора в режиме покоя. При этом в нагрузке для режима покоя не будет протекать тока. В каждом каскаде УПТ прямого усиления за счет резисторов в цепи эмиттера образуется глубокая ООС. Поэтому для определения входного сопротивления Ku oc каскада ОЭ здесь можно пользоваться формулами    и Ku ОС = — R кн / R э соответственно. Обычно максимальное усиление свойственно первому каскаду, у которого R к имеет наибольшее значение. Однако и в последующем каскаде УПТ, где R к меньше, все равно его номинал должен быть больше номинала R э . В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора, первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. В результате суммарный дрейф нуля второго каскада может оказаться меньше, чем в отсутствие первого каскада в идеальном случае и сведен к нулю. Заметим, что полная компенсация дрейфа нуля возможна лишь при специальном подборе элементов и только для некоторой конкретной температуры. Хотя на практике это почти и недо­стижимо, тем не менее в УПТ с четным числом усилительных каскадов наблюдается снижение дрейфа нуля.

Способ построения УПТ на основе непосредственной связи в усилительных каскадах с глубокой ООС может быть использован для получения сравнительно небольшого коэффициента усиления (в несколько десятков) при достаточно большом . Если в таких УПТ попытаться повысить Кu , то неизбежно получим резкое возрастание дрейфа нуля, вызванного не только температурной нестабильностью, но и нестабильностью источников питания. Отметим, что применение традиционных методов уменьшения влияния нестабильностей Ек с помощью фильтрующих конденсаторов здесь не дает желаемого результата (слишком низкие частоты). Для снижения температурного дрейфа в УПТ прямого усиления иногда применяют температурную компенсацию. В настоящее время в качестве термокомпенсирующего элемента обычно используется диод в прямом смешении, включенный в цепь базы транзистора. Принцип построения таких устройств практически одинаков для усилителей постоянного и переменного тока. Все рассмотренные выше УПТ имеют большой температурный дрейф (e дрсоставляет единицы милливольт на градус). Кроме того, в них отсутствует зримая компенсация временного дрейфа и влияния низкочастотных шумов. Эти факторы могут оказаться даже более существенными, чем температурный дрейф нуля. Отмеченные недостатки усилителей прямого усиления в значительной степени преодолеваются в УПТ с преобразованием (модуляцией) сигнала.

 

2.3.1 ДИФФЕРЕНЦИАЛЬНЫЕ УСИЛИТЕЛИ

В настоящее время наибольшее распространение получили диф­ференциальные (параллельно-балансные или разностные) усилители. Такие усилители просто реализуются в виде монолитных ИС и широко выпускаются отечественной промышленностью: К118УД, КР198УТ1 и др. Их отличает высокая стабильность работы, малый дрейф нуля, большой коэффициент усиления дифференциального сигнала и большой коэффициент подавления синфазных помех.

На рисунке 2.3.1.1 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ). Любой ДУ выпол­няется по принципу сбалансированного моста, два плеча которого образованы резисторами R к1 и R к1 , а два других — транзисторами Т1 и Т2. Сопротивление нагрузки включается между коллекторами транзисторов, т. е. в диагональ моста. Сразу отметим, что резисторы R 01 и R 02 имеют небольшие величины, а часто и вообще отсутствуют. Можно считать, что резистор R Э подключен к эмиттерам транзисторов. Обращает на себя внимание то обстоятельство, что питание ДУ осуществляется от двух источников, напряжения которых равны (по модулю) друг другу. Таким образом, суммарное напряжение питания ДУ равно 2Е.

Рисунок 2.3.1.1 Схема дифференциального усилителя

Использование второго источника (—Е) позволяет снизить потенциалы эмиттеров Т1 и Т2 до потенциала общей шины. Это обстоятельство дает возможность подавать сигналы на входы ДУ без введения дополнительных компенсирующих напряжений. При анализе работы ДУ принято выделять в нем два общих плеча, одно из которых состоит из транзистора Т1 и резистора Rк1 (и R01 ), второе —из транзистора Т2 и резистора Rк2 (и R02 ). Каждое общее плечо ДУ является каскадом ОЭ. Таким образом, можно заключить, что ДУ состоит из двух каскадов ОЭ. В общую цепь эмиттеров транзисторов включен резистор RЭ , которым и задается их общий ток. Для того чтобы ДУ мог качественно и надежно выполнять свои функции, а также в процессе длительной работы сохранить свои параметры и уникальные свойства, в реальных усилителях требуется выполнить два основных требования. Рассмотрим эти требования последовательно.

Первое требование состоит в симметрии обоих плеч ДУ. По нему необходимо обеспечить идентичность параметров каскадов ОЭ, образующих ДУ. При этом должны быть одинаковы параметры транзисторов Т1 и Т2, а также Rк1 = Rк2 (и R01 = R02 ). Если первое требование выполнено полностью, то больше ничего и не требуется для получения идеального ДУ. Действительно, при Uвх1 = Uвх2 = 0 достигается полный баланс моста, т. е. потенциалы коллекторов транзисторов Т1 и Т2 одинаковы, следовательно, напряжение на нагрузке равно нулю. При одинаковом дрейфе нуля в обоих каскадах, ОЭ (плечах ДУ) потенциалы коллекторов будут изменяться всегда одинаково, поэтому на выходе ДУ дрейф нуля будет от­сутствовать. За счет симметрии общих плеч ДУ будет обес­печиваться высокая стабильность при изменении напряжения питания, температуры, радиационного воздействия и т.д. Если собрать ДУ на таких дискретных элементах, то он может быть и продемонстрируете желаемый результат, но только в относительно небольшой промежуток времени. С течением времени параметры транзисто­ров и резисторов будут изменяться различным образом в соот­ветствии с законами своей собственной структуры, естественно, что на них различным образом будут влиять и внешние факторы, а следовательно, нарушится симметрия плеч со всеми вытека­ющими отсюда последствиями. В конечном счете можно за­ключить, что на дискретных элементах (изготовленных в разное время и в разных условиях) осуществить выполнение первого требования для ДУ практически невозможно. Это и обусловили тот факт, что прекрасные свойства ДУ не нашли должного использования в дискретной электронике. Приблизиться к выполнению первого основного требования для ДУ позволила микроэлектроника. Ясно, что симметрию общих плеч ДУ могут, обеспечив лишь идентичные элементы в которых все одинаково и которые были изготовлены в аб­солютно одинаковых условиях. Так, в монолитной ИС близко расположенные элементы действительно имеют почти одинаковые параметры. Следовательно, в монолитных ИС первое требование к ДУ почти выполнено. Это «почти» позволяет реализовать ДУ пусть не с идеальными, но все же с хорошими параметрами, но при непременном условии выполнения второго основного требования к ДУ.

Второе основное требование состоит в обеспечении глубокой ООС для синфазного сигнала. Синфазными называются одинаковые сигналы, т. е. сигналы, имеющие равные амплитуды, формы и фазы. Если на входах ДУ (рис. 10) присутствуют U вх1 = U вх2 , причем с совпадающими фазами, то можно говорить о поступлении на вход ДУ синфазного сигнала. Синфазные сигналы обычно обусловлены наличием помех, наводок и т. д. Часто они имеют большие амплитуды (значительно превышающие полезный сигнал) и являют­ся крайне нежелательными, вредными для работы любого усилителя.

Выполнить второе основное требование позволяет введение в ДУ резистора R Э , (или его электронного эквивалента). Если на вход ДУ поступает сигнал синфазной помехи, например, положительной полярности, то транзисторы Т1 и Т2 приотк­роются и токи их эмиттеров возрастут. В результате по резистору R Э будет протекать суммарное приращение этих токов, об­разующее на нем сигнал ООС. Нетрудно показать, что R Э образует в ДУ последовательную ООС по току. При этом будет наблюдаться уменьшение коэффициента усиления по на­пряжению для синфазного сигнала каскадов ОЭ, образующих общие плечи ДУ, K исф1 и Кисф2 . Поскольку коэффициент усиления ДУ для синфазного сигнала Кисф = Кисф1 — Кисф2 и за счет выполнения первого основного требования Кисф1 ≈ Кисф2 удается получить весьма малое значение Кисф , т. е. значительно подавить синфазную помеху.

Так как в монолитном ДУ с достаточным приближением можно выполнить оба основных требования, удается не только подавить синфазную внешнюю помеху, но и снизить влияние внутренних факторов, проявляющихся через изменения парамет­ров элементов схемы. Конечно, параметры составляющих каска­дов будут изменяться, но по весьма близким зависимостям, влияние которых будет дополнительно ослабляться наличием ООС.

Теперь рассмотрим работу ДУ для основного рабочего входно­го сигнала — дифференциального. Дифференциальными (противо­фазными) принято называть сигналы, имеющие равные амплиту­ды, но противоположные фазы. Будем считать, что входное напряжение подано между входами ДУ, т. е. на каждый вход поступает половина амплитудного значения входного сигнала, причем в противоположных фазах. Если U вх1 в рассматриваемый момент представляется положительной полуволной, то U вх2 — отрицательной.

За счет действия U вх1 транзистор Т1 приоткрывается, и ток его эмиттера получает положительное приращение ∆I Э1 , а за счет действия U вх2 транзистор Т2 закрывается, и ток его эмиттера получает отрицательное приращение, т.е. — ∆I Э2 . В ре­зультате приращение тока в цепи резистора R Э IR Э = ∆I Э1 — ∆I Э1.  Если общие плечи ДУ идеально симметричны, то ∆IR Э = 0 и, следовательно, ООС для дифференциального сигнала отсутствует. Это обстоятельство позволяет получать от каждого каскада ОЭ в рассматриваемом усилителе, а следовательно, и от всего ДУ большое усиление. Отсюда происходит и название усилителя — дифференциальный. Так как для дифференциального входного сигнала в любой момент напряжения на коллекторах транзисто­ров Т1 и Т2 будут находиться в противофазе, то на нагрузке происходит выделение удвоенного выходного сигнала. Итак, резистор R Э , образует ООС только для синфазного сигнала.

Поскольку в реальных ДУ идеальную симметрию плеч осущест­вить нельзя, то R Э все же будет и для дифференциального сигнала создавать ООС, но незначительной глубины, причем чем лучше симметрия плеч, тем меньше ООС. Небольшую последовательную ООС по току задают в каскадах ДУ с по­мощью резисторов R01и R02 . Как отмечалось выше, эти резисторы имеют небольшие номиналы (участки полупровод­никовой подложки), поэтому создаваемая ими ООС невелика и существенно не влияет на усилительные свойства ДУ.

Таким образом, при выполнении в ДУ двух основных требова­ний он обеспечивает стабильную работу с малым дрейфом нуля, с хорошим усилением дифференциального сигнала и со значитель­ным подавлением синфазной помехи. В зависимости от того, как подключены в ДУ источник входного сигнала и сопротивление нагрузки, следует различать схемы его включения.

Усилители постоянного тока: схемы, принцип действия, формулы

Пример HTML-страницы

Усилитель называют усилителем постоянного тока (УПТ), если он может усиливать постоянные и медленно изменяющиеся сигналы. Такой усилитель может использоваться и для усиления переменных сигналов.

Выше рассмотрены операционные усилители, являющиеся усилителями постоянного тока. Но внутреннее устройство операционных усилителей не рассматривалось.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Для того чтобы постоянные или медленно изменяющиеся сигналы могли быть переданы с входа усилителя на его выход, должны использоваться только гальванические связи между отдельными частями усилителя или эти сигналы должны быть преобразованы в переменные.

Полученные переменные сигналы могут быть усилены с помощью усилителей переменного тока, в которых гальванические связи разорваны с помощью конденсаторов или трансформаторов.

После усиления переменные сигналы должны быть преобразованы в постоянные или медленно изменяющиеся.

При построении УПТ с использованием гальванической связи между каскадами получают УПТ, которому присуще такое вредное явление, как дрейф нуля. Под дрейфом нуля понимают самопроизвольное изменение выходного напряжения при неизменном нулевом входном. Основными причинами дрейфа нуля усилителя являются:

  • изменение параметров элементов схемы, прежде всего транзисторов, за счет изменения температуры окружающей среды;
  • изменение питающих напряжений;
  • постоянное изменение параметров активных и пассивных элементов схемы, вызванное их старением.

Сигнал дрейфа нуля может быть соизмерим с полезным сигналом, поэтому при построении УПТ принимают меры по снижению дрейфа нуля.

Основными мерами снижения дрейфа являются:

  • жесткая стабилизация источников питания усилителей;
  • использование отрицательных обратных связей;
  • применение балансных компенсационных схем УПТ;
  • использование элементов с нелинейной зависимостью параметров от температуры для компенсации температурного дрейфа;
  • применение УПТ с промежуточным преобразованием и др.

Важным вопросом при построении УПТ является также согласование потенциалов соседних каскадов, согласование источника входного сигнала с УПТ, а также подключение нагрузки к УПТ таким образом, чтобы при нулевом входном напряжении, напряжение на нагрузке было также равно нулю.

Поэтому простейшие УПТ, состоящие из нескольких каскадов, включенных последовательно и соединенных гальванической (непосредственной) связью, даже при условии согласования потенциалов обладают рядом недостатков, главным из которых является дрейф нуля.

Таким образом, для устранения отмеченных выше недостатков УПТ строят в виде параллельно-балансных каскадов, представляющих собой сбалансированный мост, в одно плечо которого включена нагрузка, а в другое — источник питания. Схема такого УПТ приведена на рис. 2.35.

Коллекторные сопротивления RK1 и RK2, транзисторы Т1 и Т2, резистор Rэ образуют мост, к одной диагонали которого подключен источник питания ЕK, а в другую диагональ — между коллекторами транзисторов — включается нагрузка.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

При нулевых входных сигналах и полной симметрии схемы (RK1 = RК2, T1 и Т2 одинаковы) потенциалы коллекторов транзисторов Т1 и Т2 одинаковы и uвых, равное u К1—uК2, равно нулю.

Высокая стабильность схемы объясняется тем, что при изменении напряжения источника питания или при одинаковых изменениях параметров транзисторов (например, за счет температуры) потенциалы обоих коллекторов получают равные приращения и, следовательно, выходное напряжение остается равным нулю.

В реальных схемах всегда имеется некоторая несимметрия плеч и существует некоторый дрейф нуля, хотя он и значительно меньше, чем в других схемах.

Входной сигнал в этой схеме может подаваться либо между базами, либо на одну из баз при фиксированном потенциале другой.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Представив Rэ в виде двух параллельно соединенных сопротивлений удвоенной величины (см. пунктир на рис. 2.35), можно увидеть, что рассматриваемый УПТ представляет собой два каскада с эмиттерной стабилизацией, объединенных соответствующим образом (см. вертикальные разделительные линии).

Включив последовательно с Rэ дополнительный источник Еэ, можно обеспечить такой начальный режим работы транзисторов, при котором потенциалы входов равны нулю и, следовательно, возможно убрать из схемы сопротивления делителей R1, R2, R3, R4. В результате получится схема дифференциального усилителя.

PRODUCTS — УСИЛИТЕЛИ — DC AUDIO — Страница 1