Site Loader

Содержание

РадиоКот :: Выпрямители. Как и почему.

РадиоКот >Обучалка >Аналоговая техника >Основы — слишком просто? Вам сюда. Продолжаем. >

Выпрямители. Как и почему.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт

U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.


Как вам эта статья?

Заработало ли это устройство у вас?

Схемы выпрямителей

Добавлено 4 марта 2017 в 15:10

Сохранить или поделиться

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителяСхема однополупериодного выпрямителя

Однополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется. Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммерИспользование однополупериодного выпрямителя: двухпозиционный ламповый диммер

В положении переключателя «Тускло» лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения. Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку. Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкойДвухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка «видит» первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузкуДвухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему «видит» половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузкуДвухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкойДвуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем.

Двухполупериодный мостовой выпрямительДвухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителяАльтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителяСхема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителяСхема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более «гладкое» (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителяТрехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является «чистое» постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества «импульсов» постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph2W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph2W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph3W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph3W6P.

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)

Подведем итоги

  • Выпрямление – это преобразование переменного напряжения в постоянное.
  • Однополупериодный выпрямитель – это схема, которая позволяет только одной половине синусоиды переменного напряжения достичь нагрузки, давая на ней в результате неизменяющуюся полярность. Полученное постоянное напряжение, приложенное к нагрузке, значительно «пульсирует».
  • Двухполупериодный выпрямитель – это схема, которая преобразует обе половины периода синусоиды переменного напряжения в непрерывную последовательность импульсов одной полярности. Полученное постоянное напряжение, приложенное к нагрузке, «пульсирует» не так сильно.
  • Многофазное переменное напряжении при выпрямлении дает более «гладкую» форму постоянного напряжения (меньшее напряжение пульсаций) по сравнению с выпрямленным однофазным напряжением.

Оригинал статьи:

Теги

ВыпрямительДиодИсточник питанияУчебникЭлектроника

Сохранить или поделиться

1.2. Основные схемы выпрямления Однофазная, однополупериодная схема

Однофазную, однополупериодную схему (рис. 1.2, а) обычно применяют при выпрямленных токах до нескольких десятков миллиампер и в тех случаях, когда не требуется высокой степени сглаживания выпрямленного напряжения. Эта схема характеризу­ется низким коэффициентом использования трансформатора по мощности и большими пульсациями выпрямленного напряжения.

Диаграммы напряжений и токов, поясняющие работу однополупериодного выпрямителя на активную нагрузку с учетом потерь в трансформаторе и вентиле, представлены на рис. 1.2,б. Индуктивностью рассеяния трансформатора пренебрегаем, как это обычно допускается в выпрямителях малой мощности [2].

а) б)

Рис. 1.2. Однофазная, однополупериодная схема выпрямления (а) и

диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Под действием ЭДС вторичной обмотки ток в цепи нагрузкиможет проходить только в течение тех полупериодов, когда анод диода имеет положительный потенциал относительно катода. Диод пропускает токв первый полупериод, во второй полупериод, когда потенциал анода становится отрицательным, ток в цепи равен нулю. Выпрямленное напряжениев любой момент времени меньше ЭДС вторичной обмотки, так как часть напряжения теряется на активных сопротивлениях трансформатора и открытого вентиля (учитывается сопротивлениемr). Максимальное обратное напряжение на вентиле , как видно из рис. 1.2,б, достигает амплитудного значения ЭДС вторичной обмотки.

Диаграмма первичного тока трансформатора подобна диаграмме вторичного тока, если пренебречь током намагничивания и исключить из него постоянную составляющую , которая в первичную обмоткуне трансформируется. В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается добавочный постоянный магнитный поток, насыщающий сердечник. Это явление называют – вынужденное подмагничивание сердечника трансформатора постоянной составляющей тока, которое является главным недостатком этой схемы. В результате насыщения намагничивающий ток трансформатора возрастает в несколько раз по сравнению с током в нормальном режиме намагничивания сердечника. Возрастание намагничивающего тока обусловливает увеличение сечения провода первичной обмотки, следствием чего являются завышенные размеры трансформатора и габариты выпрямителя в целом [2].

Двухполупериодная схема со средней точкой (схема Миткевича)

Однофазный двухполупериодный выпрямитель со средним (нулевым) выводом вторичной обмотки трансформатора (рис. 1.3, а) применяют в низковольтных устройствах. Он позволяет уменьшить вдвое число диодов и тем самым понизить потери, но имеет более низкий коэффициент использования трансформатора и, следовательно, большие габариты по сравне­нию с однофазным мостовым выпрямителем, который рассмотрен ниже. Обратное напряжение на диодах выше в этой схеме, чем в мостовой.

Необходимым элементом данного выпрямителя является трансформатор с двумя вторичными обмотками. Выпрямитель со средней точкой является по существу двухфазным, так как вторичная обмотка трансформатора со средней точкой создает две ЭДС, равные по величине, но противоположные по направлению. Таким образом, схема соединения обмоток такова, что одинаковые по величине напряжения на выводах вторичных обмоток относительно средней точки сдвинуты по фазе на 180º.

Диаграммы напряжений и токов, поясняющие работу двухполупериодного выпрямителя со средним выводом на активную нагрузку с учетом потерь в трансформаторе и вентилях, представлены на рис.1.3,б.

а) б)

Рис. 1.3. Двухполупериодная схема выпрямления со средней точкой (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б).

Вторичные обмотки трансформатора подключены к анодам вентилей VD1 и VD2. Напряжения на вторичных обмотках трансформатора w21 и w22 находятся в противофазе. Поэтому диоды схемы VD1 и VD2 проводят ток поочередно, каждый в соответствующий полупериод питающего напряжения. В течение первого полупериода положительный потенциал имеет анод диода VD1 и ток проходит через него, нагрузку и вторичную полуобмоткуw21 трансформатора. В течение второго полупериода положительный потенциал имеет анод диода VD2, ток проходит через него, нагрузку и вторичную полуобмоткуw22 трансформатора, причем в цепи нагрузки ток проходит в том же направлении, что и в первый полупериод.

Таким образом, в отличие от простейшего однополупериодного выпрямителя в выпрямителе со средней точкой выпрямленный ток проходит через нагрузку в течение обоих полупериодов переменного тока, но каждая из половин вторичной обмотки трансформатора оказывается нагруженной током только в течение полупериода. В результате встречного направления м.д.с. постоянных составляющих токов вторичных обмоток ив сердечнике трансформаторанет вынужденного подмагничивания [2].

Рассмотрим расчет коэффи­циента использования трансформатора по мощности для выпрямителя без потерь при активной нагрузке на примере двухполупериодной схемы со средней точкой [3].

Выходное напряжение снимается в данной схеме между средней (нулевой) точкой трансформатора и общей точкой соединения катодов обоих вентилей. Среднее напряжение на нагрузке

,

т.е. между средним значением выпрямленного напряжения и действующим значением существует то же соотношение, что связывает среднее и действующее значение синусоидального тока.

Среднее значение тока через нагрузку

Поскольку ток протекает через диоды поочередно, средний ток через каждый диод составит

,

Обратное напряжение прикладывается к закрытому диоду, когда проводит ток другой диод. Поскольку к закрытому диоду в этой схеме максимально прикладывается двойное амплитудное напряжение вторичной стороны, то

Величина при расчете выпрямителя является заданной, поэтому находим действующее значение напряжения на вторичной обмотке трансформатора

Действующее значение тока вторичной обмотки трансформатора

Габаритная мощность вторичных обмоток трансформатора

Габаритная мощность первичной обмотки трансформатора

; ;;

Коэффициент использования трансформатора по мощности в двухполупериодной схеме со средней точкой

Таким образом, габаритная мощность трансформатора в двухполупериодной схеме со средней точкой в 1,48 раза превышает мощность в нагрузке.

Особенности работы выпрямителей, или как правильно рассчитать мощность силового трансформатора — Начинающим — Теория

Хороший и надёжный силовой трансформатор — это уже половина собираемой и разрабатываемой конструкции.
В настоящее время выбор силовых трансформаторов, предлагаемых рынком, для радиолюбителей довольно широк. Но не смотря на это, не все предлагаемые трансформаторы идеально подходят для нужд радиолюбителя (по току, напряжению, количеству обмоток и т.д.), и поэтому довольно часто ему приходится самостоятельно изготавливать силовые трансформаторы для своих разработок и собираемых конструкций.
В этой статье я попробую объяснить, как правильно выбрать, или рассчитать силовой трансформатор для своей конструкции.
Нового я здесь ничего не открою, и постараюсь как можно проще и на примерах, объяснить Вам то, что уже давно доказано и решено. Просто в силу каких либо обстоятельств, не все это могут знать.

В основном радиолюбителю приходится изготавливать силовые трансформаторы средней мощности 50 — 300 Вт.
КПД таких трансформаторов достигает 0,88 — 0,92. У более мощных промышленных трансформаторов, при мощностях более 1 кВт, КПД может достигать 0,97-0,98, так как обмотки их намотаны толстым проводом и потери в них на активное сопротивление минимальны.
У менее мощных трансформаторов, с мощностью до 40 Вт, КПД понижается и обычно не превышает 0,8 — 0,85.

Чтобы правильно рассчитать трансформатор, нужны довольно сложные вычисления, радиолюбители-же пользуются для этих целей упрощёнными формулами и радиолюбительскими программами, которые в принципе тоже довольно точно позволяют это сделать, поэтому я тоже постараюсь не отходить от этой традиции и всё попробую объяснить на практических примерах и готовых расчётах, используя по минимуму формулы и вычисления.

Как обычно производится расчёт силового трансформатора.
Зная напряжение и ток, который должна давать вторичная (или несколько вторичных) обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.
Мощность вторичной обмотки Р2 по Закону Ома равна;

Отсюда можно найти и мощность первичной обмотки, где для трансформаторов средней мощности к нашим расчётам мы берём КПД трансформатора 0,9 (90%). Для трансформаторов меньшей мощности соответственно и КПД берётся меньше (0,8).
Мощность первичной обмотки Р1 (мощность трансформатора) в этом случае будет равна;

То есть поясню, если расчётная мощность вторичной (вторичных) обмотки у нас получилась например 100 Вт, то общая мощность трансформатора будет равна 111,1 Вт (100/0,9). Это ещё не учитывая ток холостого хода, который тоже прибавляется к общей мощности трансформатора.

Как определить мощность первичной обмотки мы уяснили, теперь как правильно определить мощность вторичной обмотки?
Для этого у нас имеется какая либо нагрузка, которая потребляет определённый ток при определённом напряжении. Например имеется нагрузка, потребляющая ток 2 Ампера при напряжении 15 Вольт.
Кажется что может быть проще, по Закону Ома умножаем 2 на 15 и вуаля — получаем 30 Вт. Да, это так, ток отдаваемый вторичной обмоткой будет равен току потребления нагрузкой, но только тогда, когда вторичная обмотка нагружена на активную нагрузку! Например обмотка накала ламп.
Если же вторичная обмотка нагружена на нагрузку через элементы выпрямителя, или выпрямителя и фильтра, то ситуация приобретает совсем другой оборот. Ток отдаваемый вторичной обмоткой будет больше тока, потребляемого нагрузкой!
Почему так, давайте попробуем вместе с этим разобраться.
Работа вторичной обмотки на активную нагрузку мы рассматривать не будем, здесь всё ясно, давайте пойдём дальше.

 

Работа выпрямителя на активную нагрузку.

Однополупериодный выпрямитель.

Поставим перед нагрузкой выпрямительный диод. То есть у нас получился однополупериодный выпрямитель.

Соберём такую же схемку. Трансформатор у меня тороидальный, мощностью 60 Вт, с напряжением ХХ вторичной обмотки около 20 вольт (номинальный ток нагрузки 3,8 А, номинальное напряжение 16,5 Вольт), ток ХХ трансформатора 7 мА.
В разрыв первичной обмотки, для измерения её тока, я поставил резистор, величиной 1,0 Ом, в разрыв вторичной (последовательно с нагрузкой) резистор, величиной 0,1 Ом. Для измерения в цепях переменного и пульсирующего тока и напряжения, я использовался среднеквадратичный (RMS) микровольтметр В3-57, ну и для измерения в цепях постоянного тока — цифровой мультиметр «Mastech MY64».

Для безопасности измерений, вся эта конструкция подключалась через разделительный трансформатор. В качестве нагрузочных резисторов использовались проволочные переменные сопротивления различных величин, мощностью 25 Вт.
Действующий ток нагрузки был установлен 0,5 ампер (рисунок выше). Предел измерения 100 мВ, шунт во вторичной цепи 0,1 Ом.
Сопротивление переменного резистора получилось 19 Ом, действующее напряжение на нагрузке 9,5 вольт. То есть мощность потребляемая нагрузкой получилась 4,75 Вт.
Измерим ток, потребляемый первичной обмоткой.

Ток первичной обмотки получился 97 мА, минус 7 мА ХХ, итого 90 мА. Напряжение на первичной обмотке 215 вольт. Мощность потребляемая первичной обмоткой получилась 19,35 Вт, то есть в 4 (четыре) раза больше мощности потребляемой нагрузки. Почему так? Кому интересны все подробности происходящих процессов в трансформаторе, рекомендую почитать первоисточники, приведённые в конце статьи, кому лень читать, попробую объяснить по простому.

При установке диода последовательно с нагрузкой, у нас получается однополупериодный выпрямитель. На нагрузку подаётся импульс напряжения (тока) только в положительный полупериод, а в отрицательный ничего нет (пауза). В результате чего среднее напряжение на нагрузке уменьшается более, чем в два раза (точнее в 2,2) по сравнению с напряжением на вторичной обмотке. Средний ток через диод соответствует току нагрузки, а действующий ток диода и самой вторичной обмотки — больше тока нагрузки в 1,57 раза.
Давайте подсчитаем мощность вторичной обмотки;
Ток нагрузи 0,5 А, умножаем на 1,57=0,785 (ток вторичной обмотки). Полученный ток умножаем на напряжение вторичной обмотки (19 Вольт) 0,785х19=14,9 Вт — это получается отдаваемая мощность вторичной обмотки, плюс сюда ещё добавляются и переходные процессы при работе диода (вентиля), плюс реактивные токи, которые просто нагревают обмотку, в итоге мощность трансформатора получается минимум в 3,5 раза больше мощности потребляемой нагрузкой.
Ещё при работе этой схемы во вторичной обмотке возникает постоянная составляющая (из-за того, что ток в обмотке протекает только в одном направлении в один полупериод), которая намагничивает сердечник трансформатора и тем больше, чем больше ток нагрузки. Из-за этого свойства сердечника ухудшаются и увеличивается ток ХХ, в последствии чего повышается потребляемая мощность трансформатора (у нас получилась мощность в 4 раза больше).

Например уже при токе нагрузки в 1,0 Ампер, напряжение на нагрузке получилось 9,0 Вольт, сопротивление нагрузки 9,0 Ом, мощность нагрузки 9,0 Вт. Ток первичной обмотки получился 230 мА (минус 7 мА) итого 223 и напряжение на первичной обмотке 210 вольт. Итоговая потребляемая мощность трансформатора 46,83 Вт, то есть больше мощности потребляемой нагрузкой уже в 5,2 раза. Сильно увеличился ток ХХ с увеличением тока нагрузки (от которого увеличилось намагничивание сердечника).

Двухполупериодный выпрямитель.

Ну, с однополупериодным выпрямителем разобрались, давайте пойдём дальше. Посмотрим как ведёт себя двухполупериодная схема.
Что из себя представляет двухполупериодная схема выпрямителя. Это два однополупериодных выпрямителя, которые работают на общую нагрузку. Каждый выпрямитель имеет свою обмотку, но в отличии от другого — противофазную, в результате чего выпрямляются (поступают в нагрузку) оба полупериода, за счёт чего эффективность такого выпрямителя, по сравнению с однополупериодным, повышается два раза.

Посмотрим, как он себя ведёт. Соберём схему двухполупериодного выпрямителя. Для этой схемы нужен трансформатор с отводом от средней точки вторичной обмотки. Трансформатор другой, вторичная обмотка имеет напряжение 193-193 Вольт, ток ХХ у него 36 мА (какой нашёл).
Проволочными резисторами выставил ток нагрузки 150 мА.

Нагрузочный резистор получился с сопротивлением 1,17 кОм, измеренное напряжение на нём 175 Вольт. Мощность потребляемая нагрузкой получилась 26,17 Вт. Смотрим ток первичной обмотки.

Ток первичной обмотки 210 мА, минус ток ХХ (36) итого 174 мА. Мощность потребляемая трансформатором получилась 38,28 Вт. Это больше мощности потребляемой нагрузкой в 1,46 раз.
Как видите, здесь показатели гораздо лучше, чем у однополупериодного выпрямителя.
Идём дальше.

Мостовая схема выпрямителя.

Проверим, как поведёт себя мостовая схема выпрямителя.
Для этого соберём следующую схему.

Трансформатор возьмём тот, что был и раньше, с одной вторичной обмоткой из первого рассматриваемого случая для однополупериодного выпрямителя.
Ток нагрузки я выставил 0,5 А, проволочное переменное сопротивление получилось величиной 32 Ома. Напряжение на нагрузке 16 Вольт. Мощность потребляемая нагрузкой получилась 8 Вт.

Смотрим ток потребляемый первичной обмоткой.

Ток первички 53 мА минус ток ХХ (7 мА) = 45 мА. Мощность потребляемая первичной обмоткой получилась 9,9 Вт. Это в 1,23 раза больше, чем мощность потребляемая нагрузкой.
Как видите, здесь показатели ещё лучше, чем у двухполупериодного выпрямителя, не говоря уже об однополупериодном.

Работа выпрямителя на нагрузку с ёмкостной реакцией.

В основном радиолюбители используют в своей практической деятельности выпрямители с сглаживающими фильтрами, начинающимися с ёмкости (конденсатора), то есть нагрузка с ёмкостной реакцией.
Переписывать учебники не имеет смысла, кому интересно, список литературы в конце статьи. Просто я здесь дальше кратко изложу основные схемы выпрямителей применяемых радиолюбителями, их особенности и приближённые электрические характеристики, и как они влияют на общую мощность трансформатора.

Однополупериодный выпрямитель.

Начнём как обычно с однополупериодного выпрямителя.

У такого выпрямителя конденсатор фильтра заряжается до амплитудного значения напряжения вторичной обмотки (при отсутствии нагрузки). То есть если напряжение вторички 10 Вольт, то конденсатор зарядится до 10х1,41=14,1 Вольта (это без падения напряжения на диоде).
Достоинства выпрямителя;
Простота схемы, используется всего один вентиль (диод, кенотрон).
Недостатки;
Большая зависимость выходного напряжения от тока нагрузки, пониженная частота пульсаций по отношению с другими схемами, что требует применение конденсаторов в два раза большей ёмкости, плохое использование трансформатора (низкий КПД), присутствует вынужденное намагничивание сердечника. При пробое вентиля, переменное напряжение поступает на конденсатор, что ведёт его к выходу из строя и взрыву.
Особенности схемы;
Применяется радиолюбителями для питания слаботочных цепей. Обратное напряжение в этой схеме прикладываемое к вентилю, приблизительно в три раза больше напряжения вторичной обмотки (точнее в 2,82 раза), почему так происходит — попробуйте сами определить. То есть если у Вас вторичка имеет напряжение 100-110 Вольт, то диод необходимо ставить на обратное напряжение не менее 400 Вольт, на 300 Вольт может пробить.
Средний ток через вентиль здесь соответствует току нагрузки, а действующее значение тока через вентиль в два раза больше тока нагрузки.

 

Вторичная обмотка для однополупериодного выпрямителя выбирается в 1,8 -1,9 раз больше по току (лучше в 2 раза), чем ток потребления нагрузки. К общей расчётной мощности трансформатора, если есть ещё другие обмотки, добавьте мощность этой Вашей нагрузки умноженной на 2.

Двухполупериодный выпрямитель.

Двухполупериодный выпрямитель обладает гораздо лучшими параметрами, чем однополупериодный. Выходное напряжение этого выпрямителя (напряжение на конденсаторе) в 1,41 раз выше, чем напряжение вторичной обмотки (половины). Это при отсутствии нагрузки.

Достоинства выпрямителя;
Малое количество используемых вентилей (2). Среднее значение тока через вентиль почти в два раза меньше тока нагрузки. Уровень пульсаций у этой схемы в 2 раза меньше по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций, может быть в 2 раза меньше. Отсутствует вынужденное намагничивание сердечника, но это зависит от конструкции трансформатора и способа намотки обмоток, о чём будет сказано ниже.
Недостатки;
Сложная конструкция трансформатора, вторичная обмотка состоит из двух половин, откуда не рациональное использование меди. Обратное напряжение на один вентиль здесь также больше напряжения (половины) вторичной обмотки в 2,82 раза. Плохое использование трансформатора, так как общая расчётная мощность всей вторичной обмотки получается в 2,2 раза больше мощности потребляемой нагрузкой.
Особенности схемы;
Так как за один период, в этой схеме работают обе половины вторичной обмотки по очереди, соответственно и вентили (диоды) тоже работают по очереди, то среднее значение тока через один вентиль (за период) здесь получается почти в два раза меньше, чем ток нагрузки. То есть например, если поставить в эту схему диоды с допустимым постоянным током на 5 Ампер, то снять с этого выпрямителя можно будет 7-8 Ампер без особого риска выхода из строя диодов, естественно обеспечив им необходимое охлаждение. Действующий же ток через вентиль и вторичную обмотку здесь будут в 1,1 раза больше тока нагрузки.
Провод для вторичной обмотки в этой схеме, можно выбирать на 30-40% меньше по току (сечение), чем ток нагрузки, так как половины вторичной обмотки так же работают по очереди и среднее значение тока вторичной обмотки получается меньше тока нагрузки. Но лучше, если позволяют размеры трансформатора и возможности, мотать вторичку проводом соответствующего сечения с током нагрузки.

Насчёт вынужденного намагничивания сердечника. Если сердечник трансформатора Ш-образный, броневой, и все обмотки размещены на одном каркасе, то вынужденного намагничивания сердечника здесь не будет.
Если сердечник трансформатора стержневой и в конструкции трансформатора предусмотрены два каркаса, на которых размещены обмотки, и сетевая обмотка состоит из двух половин, размещённых на разных стержнях (ТС-180, ТС250), то вторичную обмотку в таких трансформаторах необходимо выполнять следующим образом;
Каждая половина вторичной обмотки делится ещё раз пополам и наматывается на разных стержнях, потом всё соединяется последовательно, сначала четверти одной половины, затем другой. Как ниже на рисунке. Иначе будет намагничивание сердечника.

 

Так как кенотроны обладают большим внутренним сопротивлением, то при выборе кенотронной схемы выпрямителя, напряжение вторичной обмотки (половины) выбирается в среднем примерно на 10-15% меньше планируемого выходного напряжения выпрямителя. Это ещё зависит от тока нагрузки. Чем больше ток нагрузки, тем меньше должна быть разница.
Ещё запомните, что во всех выпрямителях и с кенотронами и с диодами, конденсаторы фильтра при отсутствии нагрузки, всегда заряжаются до амплитудного напряжения вторичной обмотки (UC = U2 x 1,41). Это учитывайте при выборе напряжения конденсаторов фильтра.

Как примерно определить здесь, какая мощность добавится к общей мощности трансформатора? Не углубляясь глубоко в теорию, так как там очень много зависящих друг от друга факторов, можно поступить следующим образом;

Зная расчётный ток нагрузки, умножаем его на 1,7 (схема с кенотронами), или на 1,6 (схема с диодами), потом полученный результат умножаем на напряжение нагрузки. Это будет приблизительный результат полученной мощности, которая добавится к общей мощности трансформатора. Большой ошибки здесь не будет.

 

Мостовой выпрямитель.

Мостовой выпрямитель, так же как и двухполупериодный, обладает гораздо лучшими параметрами, чем однополупериодный и немного получше КПД, чем у двухполупериодного. Поэтому это наиболее распространённая схема.

Достоинства выпрямителя;
Среднее значение тока через вентиль почти в два раза меньше тока нагрузки. Уровень пульсаций у этой схемы в 2 раза меньше по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций, может быть в 2 раза меньше. Отсутствует вынужденное намагничивание сердечника. Используется всего одна вторичная обмотка.
Недостатки;
Плохое использование трансформатора, так как приходится увеличивать расчётную мощность вторичной обмотки на величину амплитудного значения напряжения вторичной обмотки, т.е. в 1,41 раз. Увеличенное число используемых вентилей (4) и необходимость их шунтирования резисторами, для выравнивания обратного напряжения на каждом их них. Хотя это уже не столь актуально при современном качестве их исполнения. Ещё в два раза большее падение напряжения, по сравнению с другими схемами, так как выпрямляемый ток проходит по двум вентилям последовательно. Но это заметно только при низком выходном напряжении и больших токах нагрузки.
Особенности схемы;
В этой схеме так же, как и в двухполупериодной, среднее значение тока через один вентиль (за период) получается почти в два раза меньше, чем ток нагрузки. То есть также можно использовать диоды с меньшим рабочим током (на 30-40%), чем ток нагрузки.
А вот действующий ток вторичной обмотки всегда будет выше, чем ток нагрузки, минимум на 1,41. Поэтому провод для вторичной обмотки в этой схеме нужно выбирать в 1,5 раза больше по току (сечение), чем ток нагрузки. Почему, потому что выпрямитель всегда будет заряжать конденсатор фильтра до амплитудного значения напряжения вторичной обмотки, и от величины этого напряжения и подсчитывается мощность. А так, как по закону сохранения энергии она никуда не пропадает, то вторичной обмотки ничего не остаётся, как постоянно восполнять эту разницу. То есть у нас например вторичная обмотка имеет напряжение 14 Вольт. На конденсаторе фильтра будет напряжение около 20-ти Вольт. Нагрузили мы её током 0,5 Ампер. Мощность получилась 10 Вт. Значит и вторичка должна отдавать 10 Вт, а при выходном напряжении 14 Вольт это будет ток примерно 0,71 Ампера, то есть больше тока нагрузки в 1,41 раз.

Вторичная обмотка в мостовой схеме выпрямителя, всегда будет отдавать энергию на заряд конденсатора до амплитудного значения напряжения, а нагрузка разряжать его. То есть это как повышающий преобразователь, где низковольтная часть — это вторичная обмотка, а высоковольтная — конденсатор фильтра. Поэтому и ток вторичной обмотки всегда будет выше тока нагрузки на эту разницу напряжений, то есть минимум в 1,41 раз.

Например нашли Вы трансформатор с выходным напряжением 24 Вольта и током нагрузки 5 Ампер (120 Вт). Собрали линейный регулируемый блок питания, подключили к нему нагрузку 12 Вольт и током потребления 5 Ампер (60 Вт). Вроде всё нормально должно быть. Погоняли с полчаса-час, запахло палёным, потрогали трансформатор — обожглись. Как так?

Давайте проверим что у нас было с трансформатором;
Ток нагрузки 5 Ампер, напряжение на конденсаторе фильтра в режиме ХХ будет 24х1,41=33,84 Вольта. Мощность потребляемая нагрузкой будет 33,84х5=169,2 Вт, притом это не зависит от выходного напряжения Вашего БП, хоть 5 Вольт, хоть 25. Остальная мощность просто потеряется на регулирующем транзисторе.
И вот оказывается, что в течении часа наш транс отдавал мощность нагрузке 170 Вт!!!, хотя его мощность 120.

Вывод; Для схемы мостового выпрямителя, сечение провода вторичной обмотки необходимо выбирать на 50% или в 1,5 раза больше планируемого тока нагрузки для обеспечения нормальных условий работы трансформатора, или же выбирать трансформатор для своей конструкции с током вторичной обмотки выше планируемого на такую же величину, так как ток нагрузки на трансформаторах указан для активной нагрузки.

Ну и соответственно мощность вторичной обмотки подсчитывается так: Ток нагрузки умножаем на напряжение вторичной обмотки и полученный результат умножаем на 1,5.

 

Схема удвоения напряжения.

Схема удвоения напряжения, тоже довольно часто применяется на практике. Схема состоит из двух однополупериодных выпрямителей, включенных последовательно и работающих на общую нагрузку. Особенностью данной схемы является то, что в одном полупериоде от вторичной обмотки “заряжается” один конденсатор, а во втором полупериоде от той же обмотки – другой. Поскольку конденсаторы включены последовательно, то результирующее напряжение на обоих конденсаторах (на нагрузке) в два раза выше, чем можно получить от той же вторичной обмотки в схеме с однополупериодным выпрямителем. То есть максимальное выходное напряжение ХХ выпрямителя равно U2 х 2,82 , почти в три раза больше напряжения вторичной обмотки.

Достоинства выпрямителя;
Вторичную обмотку трансформатора можно рассчитывать на значительно меньшее напряжение. Отсутствует вынужденное намагничивание сердечника. Используется всего одна вторичная обмотка.
Недостатки;
Большая зависимость выходного напряжения от тока нагрузки. Значительные токи через вентили выпрямителя и вторичную обмотку. Уровень пульсаций значительно выше, чем в схемах двухполупериодных выпрямителей.
Особенности схемы;
Схемы эти на практике применяются для получения высоких напряжений при малых токах нагрузки. Например вполне можно использовать такую схему для питания анодных цепей в маломощных ламповых усилителях, если нет подходящего трансформатора а перематывать лень, в предварительных каскадах мощных ламповых усилителях, сеточных цепей, и т.д.. Пульсации на нагрузке здесь такие же, как в мостовой или двухполупериодной схеме выпрямителей. Ток протекающий через вентиль соответствует току нагрузки. Обратное напряжение на вентиль равно амплитудному значению напряжения вторичной обмотки.

Действующий ток вторичной обмотки здесь больше тока нагрузки почти в три раза (2,82). Мощность вторичной обмотки подсчитывается так, ток нагрузки умножаем на 2,9 и полученный результат умножаем на напряжение вторичной обмотки. Сечение провода вторичной обмотки для этой схемы, выбирается по току в три раза больше, чем ток потребляемый нагрузкой.

Почему так, теперь Вы сами вполне сможете догадаться. Если напряжение ХХ вторичной обмотки например 10 Вольт, то при положительном полупериоде конденсатор С1 здесь зарядится до какого напряжения? Правильно, до 14,1 вольта (до амплитудного значения напряжения вторичной обмотки, которое больше действующего в 1,41 раз). При отрицательном полупериоде конденсатор С2 так же зарядится до 14,1 вольт. Какое будет итоговое напряжение на нагрузке (R), 28,2 Вольта, то есть в 2,82 раза больше напряжения вторичной обмотки. Отсюда и вторичке ничего не остаётся, как всё время компенсировать эту разницу.

Удачи Вам в конструировании!

Список литературы;

  • Терентьев Б.П. «Электропитание радиоустройств» (1958).
  • Белопольский И.И. «Электропитание радиоустройств» (1965).
  • Рогинский В. «Электропитание радиоустройств» (1970).
 

Схема двухполупериодного выпрямителя

Содержание:
  1. Свойства двухполупериодного выпрямителя
  2. Распространенные схемы двухполупериодных выпрямителей
  3. Выпрямительные схемы

К категории выпрямителей относятся различные устройства, с помощью которых переменный входной электрический ток преобразуется на выходе в постоянный ток. В большинстве таких приборов невозможно создать постоянный ток и напряжение. В них осуществляется создание однонаправленного пульсирующего напряжения и тока, где сглаживание пульсаций выполняется с помощью специальных фильтров.

Среди множества подобных приборов, наиболее эффективной считается схема двухполупериодного выпрямителя. Данные устройства имеют различные технические характеристики, что позволяет применять их практически при любых значениях токов.

Свойства двухполупериодного выпрямителя

Основным свойством этих устройств является протекание электрического тока через нагрузку за оба полупериода в одном и том же направлении.

В приборах такого типа используются, в основном, мостовые или полумостовые схемы. В последнем случае однофазный ток выпрямляется с использованием специального трансформатора. В качестве вывода используется средняя точка вторичной обмотки, а количество элементов, выпрямляющих ток – в два раза меньше. В настоящее время полумостовая схема используется довольно редко из-за высокой металлоемкости и высокого активного внутреннего сопротивления, с большими потерями при нагревании трансформаторных обмоток.

Чаще всего используются двухполупериодные устройства, в схемах которых имеется сразу два вентиля. Электрический ток в нагрузке всегда протекает в одном и том же направлении. В результате, выпрямление тока происходит с участием двух полупериодов напряжения. Благодаря высокой частоте пульсаций, фильтрация выпрямляемого напряжения существенно облегчается.

Двухполупериодные выпрямители получили широкое распространение во многих радиоэлектронных устройствах, обеспечивая их нормальное питание. Возможность преобразования постоянного тока из одного напряжения в другое, дает возможность создавать в схемах питания различные напряжения при одном и том же источнике энергии.

Распространенные схемы двухполупериодных выпрямителей

Данные схемы лежат в основе многих источников питания, применяемых в радиоэлектронике и других технических областях. Таким образом, обеспечивается постоянное напряжение питания электронных устройств, технологических процессов, электромашинных приводов механизмов. Чтобы правильно эксплуатировать выпрямители, необходимо хорошо знать их основные свойства.

Двухполупериодный однофазный выпрямитель с выводом от средней точки

Основными преимуществами данной схемы считается более высокий коэффициент эксплуатации вентилей по току, сниженная расчетная мощность трансформатора, низкий коэффициент, определяющий пульсацию выпрямленного напряжения.

Однако в этой схеме вентили недостаточно используются по напряжению. Само устройство обладает высоким обратным напряжением, поступающим на выпрямительные диоды. В схеме используется более сложная конструкция трансформатора.

Двухполупериодный однофазный мостовой выпрямитель

Главным преимуществом мостового выпрямителя считается повышенный коэффициент применения вентилей по напряжению. В схеме используется трансформатор с меньшей расчетной мощностью и очень простой конструкцией. Данные выпрямители нашли широкое применение в установках малой и средней мощности.

Главным недостатком мостовой схемы является необходимость строгой симметрии напряжений на каждой обмотке и применение двух обмоток вместо одной. На диодах возникает большое обратное напряжение. В сравнении с предыдущей схемой выпрямителя, требуется в два раза больше диодов, однако значение общего сопротивления постоянному току во многих случаях оказывается меньше, чем сопротивление выпрямителя со средней точкой.

Двухполупериодный выпрямитель с удвоением напряжения

Данная схема используется в случае возникновения проблем с намоткой вторичной обмотки, состоящей из множества витков, или при обмотке действующего трансформатора с недостаточным напряжением. В схеме удвоения применяется нагрузочная характеристика с круто падающим графиком. Пульсации выпрямленного тока сглаживаются конденсаторами.

Серьезным недостатком считается возможный взрыв электролитического конденсатора под действием переменного напряжения в случае пробоя одного из диодов. Представленная схема не может быть использована для получения напряжения на выходе более 200-300В из-за возможного пробоя изоляции между нитью накала и катодами в кенотроне.

Двухполупериодный выпрямитель с умножением напряжения

Представленная схема дает возможность получать высокое напряжение без использования высоковольтного трансформатора. В ней используются конденсаторы с рабочим напряжением 2Ет, независимо от того, во сколько раз умножилось значение напряжения.

Данная схема двухполупериодного выпрямителя имеет недостаток в виде разрядки конденсаторов при включении нагрузочного сопротивления. С уменьшением сопротивления нагрузки увеличивается скорость разрядки конденсаторов, снижается их напряжение. Использование этой схемы нерационально при незначительных сопротивлениях нагрузок.

Выпрямительные схемы

Russian HamRadio — Выпрямители, достоинства и недостатки.

Выпрямители используются в блоках питания радиоэлектронных устройств для преобразования переменного напряжения в постоянное. Схема любого выпрямителя содержит 3 основных элемента:

Силовой трансформатор – устройство для понижения или повышения напряжения питающей сети и гальванической развязки сети с аппаратурой.

Выпрямительный элемент (вентиль), имеющий одностороннюю проводимость – для преобразования переменного напряжения в пульсирующее.

Фильтр – для сглаживания пульсирующего напряжения.

Выпрямители могут быть классифицированы по ряду признаков: по схеме выпрямления – однополупериодные, двухполупериодные, мостовые, с удвоением (умножением) напряжения, многофазные и др.

По типу выпрямительного элемента – ламповые (кенотронные), полупроводниковые, газотронные и др.

По величине выпрямленного напряжения – низкого напряжения и высокого.

По назначению –для питания анодных цепей, цепей экранирующих сеток, цепей управляющих сеток, коллекторных цепей транзисторов, для зарядки аккумуляторов и др.

Основные характеристики выпрямителей:

Основными характеристиками выпрямителей являются:

Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем

устройств.

Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.

Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.

Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.

Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы и схемы удвоения напряжения дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.

Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различают коэффициент пульсаций на входе фильтра (p0 %) и коэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.

Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

Выпрямители, применяемые для однофазной бытовой сети выполняются по 4 основным схемам: однополупериодной, двухполупериодной с нулевой точкой (или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Герца”), и схема удвоения(умножения) напряжения(схема Латура). Для многофазных промышленных сетей применяются две разновидности схем: Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей. Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.

Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе (вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.

Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

Основные характеристики различных схем выпрямления.

Сравнение схем выпрямления и ориентировочный расчет выпрямителя можно сделать, используя данные из таблицы.

Тип схемы

Uобр

I макс

I 2

U 2

C 0 *

P0 %

U C0

Однополупериодная

3 U0

7 I 0

2 I 0

0,75U0

60 I 0/U0

600 I

0
——
U0 *C0

1,2U0

Двухполупериодная

3 U0

3,5 I 0

I 0

0,75U0

30 I 0/U0

300 I

0
——
U0 *C0

1,2U0

Мостовая

1,5 U0

3,5 I 0

1,41 I 0

0,75U0

30 I 0/U0

300 I

0
——
U0 *C0

1.2U0

Удвоения напряжения

1,5 U0

7 I 0

2,8 I 0

0,38U0

125 I 0/U0

1250 I

0
——
U0 *C0

0,6U0

* Значение емкости конденсатора рассчитано для P0 % = 10 %

Задавшись значением напряжения на выходе выпрямителя U0 и значением номинального тока в нагрузке (среднего значения выпрямленного тока) I 0, можно без труда определить напряжение вторичной обмотки трансформатора, ток во вторичной обмотке, максимально допустимый ток вентилей, обратное напряжение на вентилях, а также рабочее напряжение конденсатора фильтра. Задавшись необходимым коэффициентом пульсаций, можно рассчитать значение емкости на выходе выпрямителя.

Однополупериодный выпрямитель.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение на вторичной обмотке трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

Как видно на осциллограммах напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт и напряжение в нагрузку подается только с заряженного в предыдущий полупериод конденсатора. При отсутствии конденсатора пульсации выпрямленного напряжения довольно значительны.

Недостатками такой схемы выпрямления являются: Высокий уровень пульсации выпрямленного напряжения, низкий КПД, значительно больший, чем в других схемах, вес трансформатора и нерациональное использование в трансформаторе меди и стали.

Данная схема выпрямителя применяется крайне редко и только в тех случаях, когда выпрямитель используется для питания цепей с низким током потребления.

Двухполупериодный выпрямитель с нулевой точкой.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение на одной половине вторичной обмотки трансформатора

Uн – Напряжение на нагрузке

.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

В этом выпрямителе используются два вентиля, имеющие общую нагрузку и две одинаковые вторичные обмотки трансформатора (или одну со средней точкой). Практически схема представляет собой два однополупериодных выпрямителя, имеющих два разных источника и общую нагрузку. В одном полупериоде переменного напряжения ток в нагрузку проходит с одной половины вторичной обмотки через один вентиль, в другом полупериоде — с другой половины обмотки, через другой вентиль.

Преимущество: Эта схема выпрямителя имеет в 2 раза меньше пульсации по сравнению с однополупериодной схемой выпрямления. Емкость конденсатора при одинаковом с однополупериодной схемой коэффициенте пульсаций может быть в 2 раза меньше.

Недостатки: Более сложная конструкция трансформатора и нерациональное использование в трансформаторе меди и стали.

Мостовая схема выпрямителя.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Uн0 – Напряжение на нагрузке при отсутствии конденсатора.

Основная особенность данной схемы – использование одной обмотки трансформатора при выпрямлении обоих полупериодов переменного напряжения.

При выпрямлении положительного полупериода переменного напряжения ток проходит по следующей цепи: Верхний вывод вторичной обмотки – вентиль V2 – верхний вывод нагрузки – нагрузка — нижний вывод нагрузки — вентиль V3 – нижний вывод вторичной обмотки – обмотка.

При выпрямлении отрицательного полупериода переменного напряжения ток проходит по следующей цепи: Нижний вывод вторичной обмотки – вентиль V4 – верхний вывод нагрузки — нагрузка – нижний вывод нагрузки – вентиль V1 – верхний вывод вторичной обмотки – обмотка. Как мы видим, в обоих случаях направление тока через нагрузку (выделено курсивом) одинаково.

Преимущества: По сравнению с однополупериодной схемой мостовая схема имеет в 2 раза меньший уровень пульсаций, более высокий КПД, более рациональное использование трансформатора и уменьшение его расчетной мощности. По сравнению с двухполупериодной схемой мостовая имеет более простую конструкцию трансформатора при таком же уровне

пульсаций. Обратное напряжение вентилей может быть значительно ниже, чем в первых двух схемах.

Недостатки: Увеличение числа вентилей и необходимость шунтирования вентилей для выравнивания обратного напряжения на каждом из них.

Эта схема выпрямителя наиболее часто применяется в самых различных устройствах. На основе этой схемы, при наличии среднего вывода с вторичной обмотки трансформатора можно получить еще два варианта схем выпрямления:

На левой схеме отвод от средины вторичной обмотки позволяет получить еще одно напряжение, меньше основного в 2 раза. Таким образом основное напряжение получается с мостовой схемы выпрямления, дополнительное – с двухполупериодной.

На правой схеме получается двуполярное напряжение амплитудой в 2 раза меньше чем получаемое в основной схеме. Оба напряжения получаются с помощью двуполупериодных схем выпрямления.

Схема удвоения напряжения.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

U2 — Напряжение вторичной обмотки трансформатора

Uн – Напряжение на нагрузке.

Отличительной особенностью данной схемы является то, что в одном полупериоде переменного напряжения от вторичной обмотки трансформатора “заряжается” один конденсатор, а во втором полупериоде от той же обмотки– другой. Поскольку конденсаторы включены последовательно, то результирующее напряжение на обоих конденсаторах (на нагрузке) в два раза выше, чем можно получить от той же вторичной обмотки в схеме с однополупериодным выпрямителем.

Преимущества: Вторичную обмотку трансформатора можно рассчитывать на значительно меньшее напряжение.

Недостатки: Значительные токи через вентили выпрямителя, Уровень пульсаций значительно выше, чем в схемах двуполупериодных выпрямителей.

Эта же схема может использоваться еще в двух вариантах:

Левая схема предназначена для получения двух напряжений питания одной полярности, правая – для получения двуполярного напряжения с общей точкой.

Во втором варианте схемы характеристики выпрямителя соответствуют характеристикам однополупериодного выпрямителя.

Многофазные выпрямители.

Многофазные выпрямители применяются, как правило только в промышленной и специальной аппаратуре. Обычно в промышленной аппаратуре применяются трехфазные выпрямители двух типов – трехфазный выпрямитель и выпрямитель Ларионова.

Трехфазный выпрямитель.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

ФА, ФС, ФВ – напряжения на вторичных обмотках трехфазного трансформатора.

U va, Uvb, Uvc напряжение на нагрузке получаемое с соответствующего вентиля.

Uн – Суммарное напряжение на нагрузке.

Выпрямитель представляет собой однополупериодный выпрямитель для каждой из трех фазных вторичных обмоток. Все три вентиля имеют общую нагрузку. Если рассмотреть осциллограммы напряжения на нагрузке при отключенном конденсаторе для каждой из трех фаз, то можно заметить, что напряжение на нагрузке имеет такой же уровень пульсаций, как и в схеме однополупериодного выпрямления. Сдвиг фаз (т.е. сдвиг по времени) напряжений выпрямителей между собой в результате даст в 3 раза меньший уровень пульсаций, чем в однофазной однополупериодной схеме выпрямления.

Достоинства: Низкий уровень пульсаций выпрямленного напряжения.

Недостатки: Так же как и в однофазной однополупериодной схеме выпрямления, низкий КПД, нерациональное использование трансформатора. Данный выпрямитель неприменим для обычной однофазной сети.

Схема Ларионова.

Принципиальная схема и осциллограммы напряжения в различных точках выпрямителя приведены на рисунке.

Этот выпрямитель представляет собой мостовые выпрямители для каждой пары трехфазных обмоток, работающие на общую нагрузку.

Соединяя в себе достоинства мостового выпрямителя и трехфазного питания, он имеет настолько низкий уровень пульсаций, что позволяет работать почти без сглаживающего конденсатора или с небольшой его емкостью.

Недостатки: Увеличенное количество вентилей. Выпрямитель также не может быть применен для работы в однофазной бытовой сети.

Выпрямители для бестрансформаторного питания аппаратуры.

Бестрансформаторные выпрямители являются простейшими неавтономными источниками постоянного тока. Они применяются при напряжениях близких к напряжению сети или превышающих его в 1,5 – 2,5 раза и токах до нескольких десятков миллиампер.

Ограниченное применение бестрансформаторных выпрямителей объясняется в первую очередь требованиями техники безопасности, так как оба полюса выпрямленного напряжения гальванически связаны с сетью.

Второй недостаток таких выпрямителей – отсутствие гибкости при выборе выпрямленного напряжения. Для радиоаппаратуры можно использовать в качестве безтрансформаторных выпрямители: Однополупериодный, мостовой, удвоения напряжения. Основные характеристики такие же как и в случае с трансформаторным питанием. Сетевое напряжение подключают к точкам подключения вторичных обмоток трансформаторов (вместо трансформатора).

Безтрансформаторные схемы опасны для использования!

Для питания малогабаритной портативной аппаратуры с токами до 15-20 миллиампер можно применять однополупериодные или мостовые схемы с гасящими конденсаторами. В этой схеме конденсатор Сгас выполняет роль “безваттного” реактивного сопротивления, образующий с активным сопротивлением нагрузки своеобразный делитель напряжения.

 

Реактивное сопротивление гасящего конденсатора указано в формуле.

Данная схема может найти применение для заряда малогабаритных аккумуляторов радиоприемников, радиостанций и радиотелефонов.

При конструировании и эксплуатации выпрямителя также необходимо соблюдать осторожность!

Некоторые рекомендации по работе с выпрямителями.

Вторичные обмотки трансформаторов необходимо всегда защищать плавкими предохранителями. В этом случае короткое замыкание в цепи нагрузки не приведет к таким последствиям как выход из строя трансформатора и тем более не приведет к возгоранию аппаратуры.

Часто при конструировании выпрямителей оказывается, что нет нужных вентилей (диодов) или конденсаторов. с нужными характеристиками. В таком случае можно применить параллельное или последовательное соединение вентилей или конденсаторов.

Что при этом нужно помнить?

Если имеющиеся вентили (диоды) по допустимому току меньше расчетного максимального тока, можно применить параллельное соединение таких диодов, умножив их допустимый ток на количество диодов в “связке”.

В случае если допустимое обратное напряжение вентилей (диодов) меньше рассчитанного значения, можно применить их последовательное соединение, включив параллельно каждому диоду шунтирующие резисторы, которые выровняют обратное напряжение между диодами. Величину сопротивления шунта рассчитывают по формуле:

Rш = 700 * Uобр / N для диодов с Uобр меньше 200 В и Iмакс = 1 – 10 Ампер

Или

Rш = 150 * Uобр / N для диодов с Uобр более 200 В и Iмакс менее 0,3 Ампер

В случае если емкость конденсатора меньше расчетной, можно применить параллельное включение нескольких конденсаторов, имеющих рабочее напряжение не меньше расчетного.

В случае если рабочее напряжение конденсаторов меньше допустимого для конкретной схемы, можно применить последовательное включение конденсаторов, не забывая, что общая емкость в этом случае уменьшится во столько раз, сколько конденсаторов будет включено в последовательную цепь.

Такую схему применять можно только в крайнем случае, поскольку в такой схеме пробой (короткое замыкание) одного конденсатора вызовет “цепную реакцию”, так как на оставшиеся в работе конденсаторы будет приложено большее напряжение, чем было до замыкания одного из них. Шунтирование конденсаторов резисторами в этом случае не спасает аппаратуру от последовательного выхода из строя конденсаторов во всей цепочке. Лучше применить последовательное соединение нескольких выпрямителей, рассчитанных на более низкое напряжение. Тогда при пробое одного из конденсаторов выходное напряжение просто снизится.

В этой статье приведена только краткая информация по схемам выпрямителей. Более подробно о расчете выпрямителей можно прочесть в самой различной литературе.

При подготовке статьи использована литература:

В.Я. Брускин “Номограммы для радиолюбителей” МРБ 1972 год.

Б.Богданович, Э.Ваксер “Краткий радиотехнический справочник” Беларусь 1968 год.

Всего вам доброго!

О трансформаторных блоках питания для самых маленьких

Делал тут намедни презентацию на тему «Однополярные и двуполярные трансформаторные блоки питания», решил заодно и здесь продублировать. Наверное, будет полезно для начинающих.

Блок питания радиоэлектронной аппаратуры является вторичным источником питания, то есть он служит для преобразования электроэнергии (первичные — для ее производства). Как правило, происходит преобразование переменного тока напряжением 220 В в постоянный с напряжением, необходимым для нормальной работы устройства. Из этих функций вытекает структурная схема трансформаторного блока питания: трансформатор, выпрямитель, сглаживающий фильтр и стабилизатор.


Последние две части могут отсутствовать, как, например, в трансформаторных зарядных устройствах ACP-7E телефонов Nokia.

В последнее время трансформаторные блоки активно вытесняются импульсными (легкими, компактными, способными переварить любую дрянь из розетки: 110-240 вольт, 50-60 Гц — трансформатор такого не потерпит), однако все еще есть ниши, где они актуальны: например, устройства высококачественного воспроизведения звука или радиоприемники, которые подвержены действию помех, излучаемых импульсными БП (да-да, некоторые экземпляры можно использовать как маленькие глушилки длинных, средних и коротких волн).


Рассмотрим наиболее простой и наиболее часто встречающийся подвид: однополярный трансформаторный блок питания

Сразу оговорюсь, что однополупериодная схема выпрямителя (один диод, как в детекторном приемнике) в трансформаторной схемотехнике не снискала популярности ввиду низкого КПД и высокого уровня пульсаций.

В разрывы первичной и вторичной обмотки включены предохранители (у современных трансформаторов по первичной обмотке включен термопредохранитель, срабатывающий при перегреве магнитопровода). По «вторичке» предохранителя может и не быть, но по «первичке» он обязателен — это электро- и пожаробезопасность.

Вторичных обмоток может быть несколько (на разные напряжения), у одной обмотки могут быть несколько отводов от разных витков… Все это можно узнать из паспорта на трансформатор.

Диодный мост выпрямляет напряжение, а конденсаторный фильтр сглаживает его пульсации (минимально рекомендуемая емкость — 100 мкФ, максимальная ограничивается экономическими соображениями, размерами корпуса устройства, максимально возможным током через диоды и здравым смыслом). Не стоит забывать о физике: на диодном мосту неизбежно потеряется 1 — 2 вольта, но после конденсатора то, что останется, увеличится в корень из двух (1,41) раз (конденсатор заряжается до амплитудного значения напряжения). Например, с трансформатора идут 12 вольт «переменки» (действующее значение). 1,4 вольта отдадим диодам — итого уже 10,6. А на конденсаторе будет 14,94 вольта (амплитудное значение). Поэтому рабочее напряжение конденсатора должно быть с запасом — 25 вольт вполне хватит, а вот 16 — это уже пороховая бочка. Может, и не долбанет, но ресурс быстрее выработается.

 Выходное напряжение снимается с конденсатора и может питать устройство как напрямую, так и через стабилизатор: в этом случае рекомендуется, чтобы выходное напряжение БП было на 3 — 5 вольт выше номинального выходного напряжения стабилизатора. Используя интегральные стабилизаторы серии L78XX и компоненты из примера выше, можно сделать шикарный блок питания на девять вольт. Или на двенадцать, если падение напряжения на самом стабилизаторе 2-3 вольта (эта информация находится в даташите микросхемы). Или на пять, но 14,94 — 5 = 9,94 вольта, которые надо куда-то девать. А куда? Только в тепло. Поэтому стабилизаторы на малое напряжение, подключенные к большому входному, очень сильно греются.

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: радиоприемник VEF 216 (встроенный), радиотелефоны (внешний), магнитофон «Весна 306» (встроенный).

Это слайд-шоу требует JavaScript.

Принцип работы мостового выпрямителя незатейлив: в течение каждого полупериода ток идет через два диода, включенные в прямом направлении (на одном кремниевом диоде в среднем падает 0,7 вольт — отсюда и берется число потерь 1,4). Таким образом, на конденсатор будет приходить напряжение, пульсирующее с удвоенной частотой питающей сети. Если за эти полпериода конденсатор не будет успевать разрядиться, то можно рассчитывать на то, что уровень пульсаций выходного напряжения будет низок (здесь, например, это хорошо показано: красное напряжение — с конденсатора, серое — с моста).

Следующие схемотехнические решения можно заметить в звуковоспроизводящей аппаратуре высокого класса: это пленочные конденсаторы, шунтирующие первичную и вторичную обмотки трансформатора (высоковольтный C1, C2), керамические конденсаторы, шунтирующие диоды моста (C3C6), и керамический или пленочный конденсатор емкостью 10 — 100 нФ, шунтирующий выходной электролитический (C7).

Конденсаторы на обмотках трансформатора предназначены для гашения высокочастотных помех от близких грозовых разрядов, щеточно-коллекторных узлов работающих электродвигателей и пр.

Шунтирование диодов помогает бороться с мультипликативной помехой радиоприему: она проявляется как фон в приемнике с частотой 100 Гц при настройке на мощную станцию в АМ-диапазоне.

Шунтирование выходного электролитического конденсатора помогает продлить срок его службы, так как «электролиты» склонны быстрее деградировать под действием высокочастотных помех. При наличии керамического или пленочного шунта малой емкости эти помехи через него закорачиваются на «землю».

Преимущества однополярных трансформаторных БП:

-Просты в изготовлении.
-Относительно легкие и маленькие.
-Легко обеспечить батарейное питание, что актуально для переносной техники (нужно всего лишь напыжевать достаточно батареек «в послед»).

К недостаткам можно отнести:

-Повышенное падение напряжение на выпрямителе (полтора вольта теряются, и при выпрямлении малого напряжения, например, трех вольт, это уже будет ощутимо — после конденсатора останется только 2,1 В).
-Мощные диоды в металлическом корпусе должны устанавливаться на радиатор через электроизолирующие прокладки, что в ряде случаев может быть затруднительно.


Следующий на очереди — двуполярный трансформаторный блок питания

Здесь используется трансформатор с двумя одинаковыми вторичными обмотками, соединенными последовательно (или это может быть одна обмотка со средней точкой). В этом случае средняя точка объявляется «землей», а с фильтров снимается напряжение как положительной, так и отрицательной полярности (измерения, разумеется, относительно «земли». И логично, что между «плюсом» и «минусом» 2Uвых).

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: магнитофон «Вильма М-212С», усилитель «Радиотехника У-101», осциллограф «С1-94».

Это слайд-шоу требует JavaScript.

Диодный мост работает точно так же, как и в случае однополярного блока питания. Попеременно открываясь, то одна, то другая пара диодов пропускает переменное напряжение к конденсаторам фильтра.

К достоинствам двуполярного БП можно отнести:

-Значительное упрощение схем с операционными усилителями (исключаются цепочки, создающие «искусственный ноль» на входе — достаточно сравнить первую и вторую схемы отсюда).
-Уменьшение количества межкаскадных емкостей, так как в большинстве случаев постоянная составляющая сигнала отсутствует. А все мы знаем, что «электролиты» имеют свойство пересыхать.
-Акустика, подключенная к выходу исправного и настроенного усилителя с двуполярным питанием, не будет хлопать при включении, так как на выходе нет постоянной составляющей и конденсатора, блокирующего ее.

Однако есть и определенные недостатки:

-Снова повышенное падение напряжение на выпрямителе.
-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-Устройство чувствительно к перекосу плеч питания — например, если в звуковоспроизводящей технике при номинальных +/-14 вольт де-факто будут +12 и -16, форма выходного сигнала может сильно исказиться относительно нуля.
-«Исправный и настроенный усилитель», став вдруг неисправным, может выжечь акустику постоянным напряжением на выходе: нужна схема ее защиты при аварии.

Как следствие, такие блоки питания прижились в стационарной аппаратуре, где нет нужды в батарейном питании.


Необычная схема: однополярный БП с выпрямителем Миткевича

Этот блок питания также основывается на трансформаторе со средней точкой, но в качестве выпрямителя применяются два четвертьмоста, соединенные параллельно (выпрямитель Миткевича). Это двухполупериодный выпрямитель, и ток на фильтрующий конденсатор течет то с одной половины обмотки, то с другой через диод, находящийся в этот момент в прямом включении. Это было достаточно типичное решение для тех времен, когда диоды стоили дороже меди.

Пример устройства с таким БП: радиоприемник «Ишим».

Это слайд-шоу требует JavaScript.

Первым делом в глаза бросается то, что выпрямитель и фильтр включены по схеме с общим «плюсом», и с конденсатора снимается напряжение отрицательной полярности. Это обычная схемотехника 60-70-х гг.: тогда применялись германиевые транзисторы в основном p-n-p-структуры (ограничение технологии), у которых эмиттер подключается к «плюсу», а база и коллектор — к «минусу» питания.

В течение каждого полупериода ток протекает через один диод.

Положительными сторонами таких блоков питания можно считать:

-Экономию на диодах.
-Потери в выпрямители в два раза меньше, чем в мостовой схеме (ток в каждом полупериоде течет только через один диод).

Однако недостатки загнали этот вид блока питания в «Красную книгу РЭА»:

-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-В каждом полупериоде одна половина обмотки простаивает. Меди много, но работает она не вся.


Как быстро отличить импульсный блок питания от трансформаторного (имеются в виду те, что вставляются в розетку)?

Ипульсный: компактный, почти невесомый, часто бывает вытянут в осевом направлении. Жрет что угодно: чудовищный разброс по напряжению 110-240 вольт и частоте сети его не пугает (обычно эти параметры написаны на наклейке). Выходной ток при высоких напряжениях как правило, тоже достаточно большой — до 2 ампер. На секундочку: 2 А * 12 В = 24 Вт!

Трансформаторный: тяжелый, сбитый «кубик«. На наклейке обычно указано входное напряжение 230 вольт, иногда с маленькими зазорами (плюс-минус десять вольт). Частота — строго 50 Гц для постсоветского пространства. Ток обычно скромный: тот, что на картинке — девятивольтовый с полуамперным выходом (0,5 А * 9 В = 4,5 Вт). А ведь уже и такой блок достаточно громоздкий.

Для питания радиоприемников и другой старой техники, конечно, лучше выбрать трансформаторный.

Понравилось это:

Нравится Загрузка…

Похожее

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *