Стабилизатор напряжения автомобильный — для чего он нужен?
Стабилизатор напряжения являет собою электронное (электрическое) или электромеханическое устройство, которое имеет выход и вход по напряжению и предназначается для того, чтобы поддерживать выходное напряжение во всех узких пределах, при условии существенного изменения выходного тока нагрузки и входного напряжения.
- 1. Конструкция и детали стабилизатора напряжения
- 2. Налаживание стабилизатора напряжения
- 3. Принцип работы стабилизатора напряжения
Сразу же стоит заметить, что по типу выходного напряжения устройства стабилизаторов делятся на:
— стабилизаторы переменного напряжения;
— стабилизаторы постоянного напряжения.
Как аксиома, что на входе стабилизатора и его выходе вид напряжения всегда будет совпадать. Тем не менее, некоторые конструкции стабилизаторов предусматривают разные вариации данных видов.
1. Конструкция и детали стабилизатора напряжения
Для того чтобы максимально точно разобраться в данном устройстве, чтобы понять принцип его работы и сущность, автомобилисту необходимо будет узнать о конструктивной составной данного устройства и о деталях, посредством которых данное устройство функционирует.
Вследствие своей конструктивной простоты, самый элементарный стабилизатор напряжения будет собираться на отрезке макетной платы, который будет всегда располагаться на особом месте в корпусе от реле-регулятора. Конструктивный элемент платы закрепляется в устройстве посредством стоек, так как именно плата будет обеспечивать контроль и надежную работу всего устройства.
Важно заметить, что устройство имеет в наличие и мощный полевой транзистор, который устанавливается через изолирующую и теплопроводящую прокладку на базисную основу корпуса. Данная часть в обязательном порядке предусматривает смазывание поверхности теплопроводящей пастой.
2. Налаживание стабилизатора напряжения
Для того, чтобы максимально точно и успешно произвести налаживание устройства стабилизатора напряжения автомобилисту потребуются некоторые устройства и инструменты:
— мультимер;
— регулируемый стабилизированный источник питания, который будет иметь выходное напряжение от 12 до 15 В;
— максимальный ток нагрузки не менее 1 А;
— устройство осциллографа.
Стабилизатор напряжения необходимо подключить непосредственно к источнику питания, где выходное напряжение будет установлено на 12 В. Посредством устройства осциллографа нужно проверить наличие импульсов, частота которых будет составлять от 300 до 600 Гц на выходе. Длительность импульсов коротких низкоуровневых должна составлять от 100 до 300 мкс. Если же длительность и частота импульсов будут выходить за вышеуказанные пределы, то следует подобрать второй конденсатор. После этого на самом коллекторе необходимо проверить наличие транзистора пилообразных импульсов, максимальное положительное напряжение которого будет составлять 9 В, а отрицательное – от 0,5 до 0,7 В, касательно вывода микросхемы.
После этого необходимо подключить вхож осциллографа к выходу элемента, вследствие чего будут наблюдаться прямоугольные импульсы, размах которых равен 9 В. Далее следует достаточно плавно повышать и увеличивать напряжение в источнике питания, вследствие чего в определенный момент длительность импульса высокого уровня будет резко увеличена.
Также следует затронуть и проверку длительности перепадов импульсов, которые должны колебаться в пределах от 5 до 20 мкс; короткие перепады будут вызывать лишнее перегревание генератора, а длинные будут предопределять нагревание мощного транзистора. Если существует необходимость, то нужно подобрать резистор. Это может быть необходимым тогда, когда существует необходимость в замене полевого транзистора.
После всего проведенного посредство вывода и общего провода нужно подключить лампу накаливания на напряжение 12 В, которое имеет мощность 15 Вт.
3. Принцип работы стабилизатора напряжения
Схема стабилизатора напряжения бортовой сети транспортного средства является достаточно простой. Она содержит в себе стабилизатор напряжения питания микросхемы на резисторе и стабилитроне; устройство генератора коротких импульсов с низким логическим уровнем, частота следования которого не превышает 600 Гц; устройство времязадающего конденсатора, который подключается параллельно в соответствии с участком коллектор-эмиттера транзистора; устройство управляемого генератора тока на транзисторе; измерительное устройство, такое же, как и в прототипе, которое имеет в своем арсенале фильтр нижних частот и содержит резистивный делитель напряжения; стабилитрон и конденсатор. Кроме того к системе будет относиться и мощный полевой транзистор, защитный диод.
Вслед за подачей питания устройство первого конденсатора будет заряжаться посредством четвертого резистора до устройство напряжения стабилизации первого стабилитрона.
Для предопределения общей картины в голове автомобилиста, следует разобрать еще один период работы стабилизатора, что будет начинаться с того момента, когда непосредственно на выходе первого триггера будет возникать низкий логический уровень. Первый транзистор будет открываться посредством тока зарядки третьего конденсатора и подавать на входы второго триггера высокий уровень, при чем будет происходить одновременное разряжение четвертого конденсатора. Именно на выходе второго элемента будет возникать и низкий уровень, посредством которого будет открываться третий полевой транзистор.
Кроме того будет возникать и возбуждение генератора. По завершении импульса на первом выходе возникнет высокий уровень, а первый транзистор замкнется. После этого будет начата зарядка четвертого конденсатора посредством тока, который исходит из управляемого генератора на втором транзисторе через пятый резистор. После того, как на четвертом конденсаторе напряжение достигнет нижнего порога переключения второго триггера, он переключится, а на его выходе возникнет новый уровень, посредством которого третий транзистор будет закрыт.
Вся дальнейшая зарядка четвертого конденсатора не будет вызывать переключения второго элемента. После этого, когда на выходе генератора уже будет находится ново сформированный импульс низкого уровня, все процессы будут повторяться. Процедура стабилизации напряжения будет осуществляться посредством изменения относительной длительности задействованного состояния третьего полевого транзистора; именно этим процессом будут управлять измерительные устройства и генератор тока.
Если детально изучить и рассмотреть стабилизатора напряжения для автомобиля, вникнуть в саму сущность и схему данного устройства, то можно выяснить, что оно не является таким сложным и нереальным, как это могло бы показаться на первый взгляд.
Как сделать источники питания, схемы источников питания и зарядок
В книге «Как сделать источники питания своими руками» собраны воедино и систематизированы наиболее интересные и оригинальные схемы основных групп источников питания: линейных, импульсных, сварочных, а также преобразователей, стабилизаторов, зарядных устройств.
Как сделать источники питания своими руками, схемы линейных, импульсных и сварочных источников питания, преобразователей, стабилизаторов и зарядных устройств.
О книге: Пособие.
Автор: Шмаков С. Б.
Издание: 2013 года.
Формат книги: файл djvu в архиве zip
Страниц: 286
Язык: Русский
Размер: 16,5 мб
Скачать книгу: бесплатно, без ограничений, на нормальной скорости, без SMS, логина и пароля. Файл взят из открытых источников.
Представленные в книге «Как сделать источники питания своими руками» схемные решения не повторяют друг друга, интересны, содержат определенные элементы оригинальности. Рассмотренные источники питания построены на недорогих компонентах, ко многим из них указаны доступные аналоги. Для удобства восприятия информации описание источников питания идет по единой схеме.
Все источники питания, рассмотренные в книге, были проверены их авторами на практике, демонстрировались на выставках, были отмечены призами и дипломами. Предлагаемая книга рассчитана, в первую очередь, на радиолюбителей средней квалификации. Для самостоятельного изготовления понравившейся конструкции вполне достаточно приводимого описания и представленного схемного материала. Приводятся рисунки монтажа и печатных плат многих описываемых схем.
Содержание книги «Как сделать источники питания своими руками».
Создаем стабилизированные источники питания с током нагрузки от 30 мА до 200 А.
Принцип действия линейных источников питания
Микромощный источник питания с током нагрузки до 30 мА и выходным напряжением 9 В
Стабилизированный источник питания с током нагрузки до 50 мА
Стабилизированный источник питания 60 В 100 мА
Источник питания с током нагрузки до 100 мА
Стабилизированный источник питания на полевом транзисторе с током нагрузки до 100 мА
Низковольтный регулируемый стабилизатор напряжения на 3—5 В и с током нагрузки до 100 мА
Низковольтный стабилизатор напряжения с регулирующим транзистором в минусовом проводнике на 3—5 В и с током нагрузки до 100 мА
Стабилизированный источник питания на полевом транзисторе с током нагрузки до 150 мА
Стабилизатор напряжения на операционных усилителях серии К140 и с током нагрузки до 200 мА
Стабилизированный источник питания на шесть значений выходного напряжения и с током нагрузки до 250 мА
Стабилизатор напряжения, защищенный от коротких замыканий выхода, с током нагрузки до 300 мА и диапазоном выходных напряжений 2—12 В
Стабилизатор напряжения с защитой от короткого замыкания для питания маломощных устройств
Стабилизированный источник питания с регулируемым напряжением на выходе 0—12 В и током нагрузки до 300 мА
Источник питания для детских электрифицированных игрушек током до 350 мА
Простой стабилизатор напряжения на ИМС 142ЕН1Г с выходным напряжением 5 В и током нагрузки 500 мА
Стабилизатор напряжения с защитой и током нагрузки до 500 мА
Комбинированный источник питания с максимальным током нагрузки каждого из источников 500 мА
Простой источник питания для питания стабилизированным напряжением +5 В различных цифровых устройств с током потребления до 500 мА
Стабилизатор напряжения с высоким коэффициентом стабилизации и с током нагрузки до 500 мА
Простой источник питания с плавной инверсией выходного напряжения и током нагрузки до 500 мА
Простой стабилизатор напряжения с током нагрузки до 500 мА
Двуполярный источник питания с выходным стабилизированным напряжением ±12,6 В и током нагрузки до 500 мА
Стабилизированный источник питания для любительского УНЧ с током нагрузки до 700 мА
Простой импульсный стабилизатор напряжения с выходным напряжением 5 В и током нагрузки до 700 мА
Линейный стабилизатор напряжения с высоким КПД, построенный на дискретных элементах, с током нагрузки до 1000 мА
Стабилизатор напряжения с логическими элементами и током нагрузки до 1000 мА
Стабилизатор напряжения 12 В с током нагрузки до 1000 мА
Стабилизаторы напряжения 10 В, построенные на полевом транзисторе, с током нагрузки до 1000 мА
Источник питания на транзисторах и трансформаторе кадровой развертки телевизора ТВК-110 ЛМ с током нагрузки до 1000 мА
Источник питания «Ступенька» с выходом на наиболее часто применяемые напряжения и током нагрузки до 1000 мА
Источники питания с плавным изменением полярности и напряжением от+12 до -12 В
Стабилизированный источник питания 40 В 1200 мА
Комбинированный лабораторный источник питания с током нагрузки до 1200 мА
Регулируемый двуполярный источник питания с током нагрузки до 2000 мА в каждом плече
Стабилизированный источник питания 1—29 В и с током нагрузки до 2000 мА
Простой стабилизатор напряжения с защитой от КЗ и током нагрузки до 3000 мА
Транзисторный стабилизатор с защитой от КЗ с током нагрузки до 3000 мА
Простой регулируемый стабилизатор напряжения (1,8—32 В) с током нагрузки до 3000 мА
Мощный источник питания для усилителя низкой частоты с током нагрузки до 3000 мА
Стабилизатор напряжения на мощных биполярных транзисторах с возможностью регулировки выходного напряжения 11,5—14 В и током нагрузки до 4000 мА
Мощный стабилизатор напряжения -5 В с током нагрузки до 5000 мА
Мощный стабилизатор напряжения с током нагрузки до 5000 мА
Стабилизатор с защитой по току с током нагрузки до 5000 мА
Мощный источник питания 12 В и током нагрузки до 6000 мА
Стабилизатор напряжения 20 В и током нагрузки до 7000 мА
Регулируемый стабилизатор тока с напряжением на нагрузке 16 В и током нагрузки до 7000 мА
Стабилизатор напряжения с защитой от перегрузок и током нагрузки до 10 А
Источник питания повышенной мощности с током нагрузки до 20 А
Стабилизатор напряжения для питания УМЗЧ с током нагрузки до 20 А
Стабилизированный источник питания 12 В, построенный на ИМС К142ЕНЗ, с током нагрузки до 20 А
Мощный источник питания на дискретных элементах с регулировкой напряжения от 0 до 15 В и током нагрузки до 20 А
Стабилизатор напряжения на мощном полевом транзисторе с током нагрузки до 20 А
Источник питания для автомобильного трансивера 13 В 20 А
Стабилизатор тока на с плавной регулировкой 100—200 А
Создаем полезные схемы преобразователей напряжения.
Как работают преобразователи постоянного напряжения в постоянное (DC-DC конвертеры)
Как работают преобразователи постоянного напряжения в переменное (DC-AC конвертеры)
Низковольтный преобразователь напряжения
Стабилизированный сетевой преобразователь напряжения
Преобразователь напряжения с 1,5 В до 4,5 В для авометра Ц20
Преобразователь напряжения с 9 В до 400 В
Преобразователи напряжения с ШИ модуляцией без гальванической развязки цепей нагрузки и управления
Преобразователь напряжения с ШИ модуляцией с гальванической развязки цепей нагрузки и управления
Универсальный преобразователь напряжения
Трехфазный инвертор
Преобразователь однофазного напряжения в трехфазное для питания трехфазного электродвигателя
Преобразователь питания от элемента А316с напряжением 1,5 В на питание 9 В (батарейка типа «Крона»)
Формирователь двуполярного напряжения ±8,5 В с допустимой нагрузкой 10 мА
Электроподжиг в газовой плите — высоковольтный преобразователь 220 В — 10 кВ
Модернизированный электроподжиг — высоковольтный преобразователь 220 В — 10 кВ
Источник питания для ионизатора — люстры Чижевского
Источник питания для часов на БИС
Преобразуем напряжение автомобильного аккумулятора 12В в другие величины.
«Обратимый» преобразователь напряжения
Тринисторный преобразователь постоянного тока релаксационного типа
Преобразователь напряжения автомобильной бортсети в переменное напряжение 220 В
Преобразователь напряжения 12 В — 220 В для питания радиоэлектронных устройств с мощностью до 100 Вт
Преобразователи 12 В в 220 В для походов
Преобразователь напряжения бортсети автомобиля в переменное напряжение 36, 127 и 220 В
Несложный бестрансформаторный преобразователь 12В — 220 В
Преобразователь 12 В — 220 В на полевых транзисторах
Двухтактный преобразователь напряжения на полевых транзисторах, выполненный с использованием специализированного ШИМ-контроллера 1114ЕУ4
Мощный тиристорный преобразователь с мощностью в нагрузке до 500 Вт
Импульсный преобразователь с 12 В на 220 В 50 Гц
Мощный малогабаритный преобразователь постоянного напряжения 12 В в постоянное напряжение большей величины
Стабилизаторы напряжения, построенные на интегральных микросхемах.
Особенности микросхем серий 142, К142 и КР142
Стабилизатор напряжения на ИМС КР142, защищенный от повреждения разрядным током конденсаторов
Стабилизатор напряжения на ИМС КР142 со ступенчатым включением
Стабилизаторы напряжения на ИМС КР142 с выходным напряжением повышенной стабильности
Стабилизатор напряжения на ИМС КР142 с регулируемым выходным напряжением от 0 до 10 В
Стабилизаторы напряжения на ИМС КР142 с внешними регулирующими транзисторами
Стабилизатор напряжения на ИМС КР142 с высоким коэффициентом стабилизации
Двуполярный стабилизатор напряжения на основе однополярной микросхемы
Стабилизатор напряжения на ИМС КР142 с регулируемым выходным напряжением
Импульсный стабилизатор напряжения на ИМС КР142
Стабилизатор тока на ИМС КР142 для зарядки аккумуляторной батареи напряжением 12В
Стабилизатор тока на ИМС КР142 для зарядки аккумуляторной батареи напряжением 6 В
Создаем импульсные источники питания.
Достоинства и недостатки импульсных источников питания
Структурная схема нерегулируемого импульсного источника питания
Структурная схема регулируемого импульсного источника питания
Импульсный источник питания 5 В 0,2 А
Миниатюрный импульсный сетевой источник питания с выходом 5 В 3 Вт
Импульсный источник питания 5 В 6 А, построенный на ИМС КР142ЕН19А
Импульсный стабилизатор напряжения на трех транзисторах
Экономичный импульсный источник питания, формирующий на выходе двуполярное напряжение + 27 В и -27 В при токе нагрузки до 0,6 А
Импульсный источник питания УЗЧ
Импульсный стабилизатор напряжения на 5 В с высоким КПД
Стабилизатор напряжения 5 В на микросхеме К554САЗ
Импульсный стабилизатор напряжения на 5 В с током нагрузки до 2 А
Ключевой стабилизатор напряжения 5 В 2 А, выполненный по классической схеме
Создаем бестрансформаторные источники питания.
Источник питания с гасящим конденсатором
Конденсаторно-стабилитронный выпрямитель
Бестрансформаторный пятивольтовый источник питания общего назначения на ток нагрузки до 0,3 А
Бестрансформаторный источник бесперебойного питания для кварцованных электронно-механических часов
Бестрансформаторные источники питания большой мощности для любительского передатчика
Стабилизированный выпрямитель с малым уровнем пульсаций
Бестрансформаторное зарядное устройство
Бестрансформаторный источник питания с регулируемым выходным напряжением
Маломощный конденсаторный выпрямитель с ШИМ стабилизатором
Бестрансформаторные источники питания с симметричным динистором
Бестрансформаторный источник питания на полевом транзисторе
Высоковольтный преобразователь — электронная ловушка для тараканов
Создаем стабилизаторы сетевого напряжения.
Стабилизатор напряжения переменного тока
Релейный стабилизатор напряжения
Мощный транзисторный регулятор сетевого напряжения
Создаем трансформаторные источники сварочного тока.
Разновидности источников сварочного тока
Типы сварочных трансформаторов
Сварочный трансформатор со ступенчатой регулировкой тока
Сварочный источник с резонансным конденсатором
Сварочные источники переменного тока с плавной регулировкой
Сварочные источники постоянного тока с электронной регулировкой
Создаем инверторные источники сварочного тока.
Принцип действия инверторных сварочных источников
Однотактный прямоходовый преобразователь
Двухтактный мостовой преобразователь
Простой самодельный инверторный сварочный источник
Сварочный инвертор на одном транзисторе
Сварочный источник Большакова
Предупреждение!
Электронная версия данной книги создана исключительно для ознакомления только на локальном компьютере. Скачав файл, вы берете на себя полную ответственность за его дальнейшее использование и распространение. Начиная загрузку книги, вы подтверждаете свое согласие с данными утверждениями.
Реализация данной электронной книги с целью получения прибыли незаконна и запрещена. По вопросам приобретения данной книги обращайтесь непосредственно к законным издателям или их представителям.
Как сделать источники питания своими руками, схемы линейных, импульсных и сварочных источников питания, преобразователей, стабилизаторов и зарядных устройств — СКАЧАТЬ КНИГУ >>>
Сделайте эту схему стабилизатора напряжения для своего автомобиля
Вы здесь: Главная / Автомобиль и мотоцикл / Сделайте эту схему стабилизатора напряжения для своего автомобиля
узнайте о схеме автомобильного стабилизатора напряжения, которую можно изготовить и установить во всех автомобилях для обеспечения идеально контролируемого и стабилизированного питания соответствующей чувствительной электроники и гаджетов.
Понимание автомобильной электрики
Электрическая часть автомобиля, вероятно, более нестабильна, чем наша домашняя, просто потому, что она генерируется из источника, называемого генератором переменного тока, мощность которого значительно зависит от скорости автомобиля.
Это означает, что если вы едете на автомобиле с внезапными изменениями скорости или если вы часто нажимаете на педаль тормоза, на выходе генератора переменного тока могут возникать переменные напряжения.
Поскольку в настоящее время салоны наших автомобилей и других транспортных средств в значительной степени содержат сложные электронные устройства, нестабильное напряжение может серьезно повлиять на их работу и срок службы.
Идея схемы была запрошена г-ном Хазиком, давайте узнаем больше о создании предложенной схемы (разработанной мной для приложения).
Сегодня в нашем распоряжении есть замечательные микросхемы, специально разработанные для приложений регулирования напряжения.
LM317 и LM338 — это пара из них, которые универсальны с их функциями регулирования напряжения, я подробно обсуждал их в некоторых моих предыдущих сообщениях.
LM317 выдерживает ток до 1,5 ампер, тогда как его старший брат LM338 выдерживает не более 5 ампер.
Однако эти значения довольно мизерны по сравнению с огромными запросами в автомобилях.
При соответствующей модификации конфигурации можно настроить ИС для регулирования любых желаемых уровней тока.
В предложенную схему стабилизатора напряжения автомобиля мы включили микросхему LM317 и модифицировали ее стандартную конструкцию таким образом, чтобы она обеспечивала достаточное питание автомобиля и в то же время ограничивала его от всех возможных опасностей, таких как перегрузки, перегрузки по току, колебания напряжения и короткие замыкания, обеспечивая идеальные условия напряжения для салонов транспортных средств.
Работа схемы
На схеме показана довольно простая конфигурация, в которой IC 317 подключен в стандартном режиме регулятора напряжения.
R1 ограничивает импульсный ток, в то время как R2 определяет напряжение срабатывания для T1, если потребляемый ток превышает отметку 1,5 ампера, T1 проводит и помогает IC, распределяя через нее избыточный ток.
P1 настроен на достижение около 13 вольт на C3.
R5 отслеживает условия перегрузки и короткие замыкания, если ток превышает 12 ампер, на R5 возникает достаточный ток для срабатывания T2, который мгновенно отключает IC, так что выходное напряжение падает и ограничивает ток ниже 12 ампер.
Идеальные характеристики:
- Постоянное напряжение = 13 В
- Ограничение по току = 12 А
- Защита от перегрузки = свыше 12 А отключение ВЫКЛ
- Тепловая защита (если транзистор и ИС установлены на одном радиаторе со слюдяной изоляцией)
- Защита от короткого замыкания (защита от возгорания)
Список деталей
- R1 = 0,1 Ом, 100 Вт, изготовлен из стальной проволоки диаметром 1 мм.
- R2 = 2 Ом, 1 Вт,
- R3 = 120 Ом, 1/4 Вт,
- R4 = 0,1 Ом, 20 Вт, как указано для R1 (на самом деле этот резистор не требуется, его можно заменить коротким проводом).
- R5 = 0,05 Ом, 20 Вт, сделать как R1 На большем плавническом типе Heatsink
- T2 = BC547,
- C1 = 10 000 UF, 35V
- C2 = 1UF/50V
- C3 = 100UF/25V
- P1 = 4K7 PRESET,
- IC1 = LM314646464646464646464646464646464646464643. 4004 4.464646464. = 20-амперный диод (3 шт. 6-амперных диода параллельно)
Упрощенная версия
Используя IC LM196, описанная выше конфигурация становится чрезвычайно простой. Вы можете обратиться к следующей схеме, которая иллюстрирует упрощенную версию предложенной схемы стабилизатора напряжения автомобильного генератора с использованием минимума компонентов.
- R3 = 240 ohms
- D1, D2 = 15 amp diodes
- P1 = 10k preset
- C1,C2,C3 as specified above
- IC1 = LM196
About Swagatam
I am an electronic engineer ( dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете ответить через комментарии, я буду очень рад помочь!
Регулятор напряжения — Чистое автомобильное питание 12 В
спросил
Изменено 5 лет назад
Просмотрено 14 тысяч раз
\$\начало группы\$
Я хочу получить постоянное чистое напряжение 12 В от сети 12 В моей машины.
Напряжение 12 В будет подключено к материнской плате pico (макс. вход 19 В), 7-дюймовому ЖК-монитору и Arduino. нужен ли радиатор?0085
\$\конечная группа\$
7
\$\начало группы\$
Напряжение 12 В на вашем автомобиле, вероятно, упадет ниже 12 В при запуске двигателя. Это, а также шум/всплески поверх 12 В означает, что простой линейный регулятор, подобный тому, который у вас есть на вашей схеме, не будет делать то, что вы хотите или ожидаете.
Ваша схема рассчитана на входное напряжение от 12,8 В до 30 В, а на выходе она составляет 12 В и немного менее шумная. Если входное напряжение (указанное как 12,8 В) упадет на несколько сотен милливольт, выходное напряжение будет таким же и, возможно, даже больше, для входа 12 В вы можете получить только 11 В на выходе, и схема больше не будет регулироваться.