Site Loader

Содержание

Симисторы серии BTA40, BTA41, BTB41 — DataSheet

Свойства
  • Мощные симисторы
  • Низкое тепловое сопротивление
  • Высокая коммутирующая способность
  • Сертифицированы по стандарту UL1557
  • Корпусы соответствуют директиве RoHS (2002/95/EC)

 

Применение

 

Описание

Доступны в мощных корпусах. Симисторы серии BTA / BTB40-41 подходят для коммутации переменного тока общего назначения. Серия BTA снабжена изолированным язычком (номинальное среднеквадратичное напряжение пробоя 2500 В).

 

Типы корпусов (A1, A2 — аноды, G — управляющий электрод)
Общие характеристики
Обозначение Параметр BTA40(1) BTA41(1) BTB41 Ед. изм
IT(RMS) Действующий ток в открытом состоянии 40 41 41 А
VDRM
/VRRM
Повторяющееся импульсное напряжение в закрытом состоянии 600 и 800 600 и 800 600 и 800 В
!gt Отпирающий постоянный ток управления 50 50 50 мА

 

Абсолютные максимальные значения 
Обозначение Параметр Значение Ед. изм.
IT(RMS) Действующий ток в открытом состоянии (для полной синусоиды) TOP3 Tc = 95 °C 40 А
RD91 / TOP ins. Tc = 80 °C
ITSM Ударный ток в открытом состоянии (для полного цикла, Tj initial = 25 °C) F = 50 Гц t = 20 мс 400 A
F = 60 Гц t = 16.7 мс 420
l2t l2t  Значение плавления симистора tp = 10 мс 1000 A2с
dl/dt Критическая скорость нарастания тока в открытом состоянии lG = 2 ·lGT , tr < 100 нс F = 120 Гц Tj = 125 °C 50 A/мкс
VDSM/VRSM Неповторяющееся импульсное напряжение в закрытом состоянии tp = 10 мс Tj = 25 °C VDSM/VRSM+ 100 В
IGM Импульсный ток управления tp = 20 мкс Tj = 125 °C 8 A
PG(AV) Средняя рассеиваемая мощность управления Tj = 125 °C 1 Вт
Tstg  Температура хранения -40…+ 150 
°C
Tj Диапазон рабочих температур -40…+ 125 °C

 

Электрические характеристики (Tj = 25 °C)
Обозначение Параметр Значение Ед. изм.
IGT(1) Отпирающий постоянный ток управления VD = 12 В, RL = 33 Ом I- II — III MAX. 50 мА
IV 100
V
GT
Постоянное отпирающее напряжение управления все квадранты MAX. 1,3 В
VGD Неотпирающее постоянное напряжение управления VD = VDRM RL = 3.3 кОм Tj = 125 °C все квадранты MIN. 0,2 А
IH (2) Ток удержания lj = 500 mA MAX. 80 мА
IL Ток включения тиристора IG = 1.2 IGT I-III-IV MAX. 70 мА
II
160
dV/dt(2) Скорость нарастания напряжения VD = 67% VDRM  в открытом состоянии, Tj = 125 °C MIN. 500 В/мкс
(dV/dt)c(2) Критическая скорость нарастания напряжения (dl/dt)c = 20 А/мс, Tj = 125 °C MIN. 10 В/мкс
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Статические характеристики 
Обозначение Условия Значение Ед. изм.
VT(1) Напряжение в открытом состоянии ITM = 60 A, tp = 380 мкс Tj = 25 °C MAX. 1,55 В
Vt0(2) Пороговое напряжение Tj= 125 °C MAX. 0,85 В
Rd(2) Динамическое сопротивление Tj= 125 °C MAX. 10 мОм
IDRM Повторяющийся импульсный ток в закрытом состоянии VDRM = VRRM T= 25 °C
MAX.
5 мкА
IRRM Повторяющийся импульсный обратный ток VDRM = VRRM Tj= 125 °C 5 мА
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Тепловое сопротивление 
Обозначение Условия Значение Ед. изм.
Rth(j-c) Тепловое сопротивление переход-корпус RD91 (изолированный корпус)/ТОРЗ изолированный 0,9 °С/Вт
TOP3 0,6
Rth(j-a) Тепловое сопротивление переход-среда ТОРЗ / TOP3 изолированный 50 °С/Вт

 

Зависимость максимальной рассеиваемой мощности от действующего тока (полный цикл)Зависимость действующего тока от температуры корпусаЗависимость теплового сопротивления от длительности импульсаХарактеристики в отрытом состоянии (максимальные значения)Зависимость ударного тока в открытом состоянии от количества цикловЗависимость ударного тока в открытом состоянии от синусоидального импульса и значения плавленияОтносительное изменение отпирающего тока, тока удержания и тока включения в зависимости от температуры переходаОтносительное изменение критической скорости снижения основного тока в зависимости от критической скорости нарастания напряженияОтносительное изменение критической скорости снижения основного тока в зависимости от температуры переходаРасшифровка серииРазмеры для корпуса TOP3Размеры для корпуса RD91

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Симисторы технические характеристики и параметры

Симистор. Описание, принцип работы, свойства и характеристики.

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его «довольно архаичным», пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор — это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 — это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно.
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 «анодный» вывод, цифрой 2 — «катодный», поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).


Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте — никакой, схема получается проще, но главное — исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на «аноде» симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.

То бишь — всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — симистор будет открываться при замыкании S1 в каждый момент превышения «анодным» напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.


Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 — динистор. Для интересующихся отмечу — на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

ТипU макс, ВI max, АIу отп, мА
КУ208Г4005
BT 131-6006001
BT 134-5005004
BT 134-6006004
BT 134-600D6004
BT 136-500Е5004
BT 136-600Е6004
BT 137-600Е6008
BT 138-60060012
BT 138-80080012
BT 139-50050016
BT 139-60060016
BT 139-80080016
BTA 140-60060025
BTF 140-80080025
BT 151-650R65012
BT 151-800R80012
BT 169D40012
BTA/BTB 04-600S6004
BTA/BTB 06-600C6006
BTA/BTB 08-600B6008
BTA/BTB 08-600C6008
BTA/BTB 10-600B60010
BTA/BTB 12-600B60012
BTA/BTB 12-600C60012
BTA/BTB 12-800B80012
BTA/BTB 12-800C80012
BTA/BTB 16-600B60016
BTA/BTB 16-600C60016
BTA/BTB 16-600S60016
BTA/BTB 16-800B80016
BTA/BTB 16-800S80016
BTA/BTB 24-600B60025
BTA/BTB 24-600C60025
BTA/BTB 24-800B80025
BTA/BTB 25-600В60025
BTA/BTB 26-600A60025
BTA/BTB 26-600B60025
BTA/BTB 26-700B70025
BTA/BTB 26-800B80025
BTA/BTB 40-600B60040
BTA/BTB 40-800B80040
BTA/BTB 41-600B60041
BTA/BTB 41-800B80041
MAC8M6008
MAC8N8008
MAC9M6009
MAC9N8009
MAC12M60012
MAC12N80012
MAC15M60015
MAC12N80015

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Основные характеристики симисторов

Все полупроводниковые приборы основаны на переходах, и если трехпереходный прибор — это тиристор, то два трехпереходных прибора, включенных встречно-параллельно внутри одного общего корпуса, — это уже симистор, то есть симметричный тиристор. В англоязычной литературе он именуется «TRIAC» – триод для переменного тока.

Так или иначе, у симистора есть три вывода, два из которых силовые, а третий — управляющий или затвор (англ. GATE). При этом у симистора нет конкретных анода и катода, ибо каждый из силовых электродов в разные моменты времени может выступать как в роли анода, так и в роли катода.

В силу этих особенностей симисторы весьма широко применяются в цепях переменного тока. Кроме того, симисторы недорого стоят, имеют продолжительный строк службы, и не вызывают искрения, по сравнению с механическими коммутационными реле, чем и обеспечивают себе неугасающую востребованность.

Давайте же рассмотрим основные характеристики, то есть основные технические параметры симисторов, и разъясним, что каждый из них обозначает. Рассматривать будем на примере довольно распространенного симистора BT139-800, часто применяемого в разного рода регуляторах. Итак, основные характеристики симистора:

Максимальное повторяющееся импульсное напряжение в закрытом состоянии;

Максимальный, средний за период, ток в открытом состоянии;

Максимальный кратковременный импульсный ток в открытом состоянии;

Максимальное падение напряжения на симисторе в открытом состоянии;

Минимальный постоянный ток управления, необходимый для включения симистора;

Отпирающее напряжение управления, соответствующее минимальному постоянному отпирающему току;

Критическая скорость нарастания напряжения в закрытом состоянии;

Критическая скорость нарастания тока в открытом состоянии;

Рабочий диапазон температур;

Для нашего примера оно составляет 800 вольт. Это то напряжение, которое будучи приложено к силовым электродам симистора теоретически еще не вызовет его выхода из строя. Практически же это максимально допустимое рабочее напряжение для коммутируемой данным симистором цепи, в условиях рабочей температуры, попадающей в допустимый температурный диапазон.

Даже кратковременное превышение этого значения не гарантирует дальнейшей работоспособности полупроводникового прибора. Следующий параметр пояснит данное положение.

Максимальное повторяющееся импульсное напряжение в закрытом состоянии

Данный параметр всегда указывается в документации, и обозначает он как раз критическое значение напряжения, являющееся предельным для данного симистора.

Это то напряжение, которое в пике нельзя превышать. Даже если симистор закрыт и не открывается, будучи установлен в цепи с постоянно действующим переменным напряжением, симистор не будет пробит, если амплитуда прикладываемого напряжения не превышает для нашего примера 800 вольт.

Если же к запертому симистору окажется приложено напряжение хоть чуть-чуть выше, хоть на долю периода переменного напряжения, его дальнейшая работоспособность производителем не гарантируется. Данное положение опять же относится к условиям допустимого температурного диапазона.

Максимальный, средний за период, ток в открытом состоянии

Так называемый максимальный среднеквадратичный (RMS — root mean square) ток, для тока синусоидальной формы это его среднее значение, в условиях приемлемой рабочей температуры симистора. Для нашего примера это максимум 16 ампер при температуре симистора до 100 °C. Пиковый ток может быть и выше, об этом сообщает следующий параметр.

Максимальный кратковременный импульсный ток в открытом состоянии

Это пиковый ток, который указывается в документации на симистор обязательно с приведением максимально допустимой продолжительности действия тока данной величины в миллисекундах. Для нашего примера это 155 ампер в течение максимум 20 мс, что означает практически, что время действия такого большого тока должно быть еще меньше.

Обратите внимание, что среднеквадратичный ток по прежнему не должен быть превышен ни при каких условиях. Это связано с максимальной рассеиваемой корпусом симистора мощностью и с максимально допустимой температурой кристалла менее 125 °C.

Максимальное падение напряжения на симисторе в открытом состоянии

Данный параметр указывает на максимальное напряжение (для нашего примера оно составляет 1,6 вольт), которое установится между силовыми электродами симистора в открытом состоянии, при указанном в документации токе в его рабочей цепи (для нашего примера — при токе в 20 ампер). Обычно чем выше ток — тем больше падение напряжения на симисторе.

Данная характеристика необходима при тепловых расчетах, ибо она косвенно сообщает разработчику о максимальной потенциальной величине рассеиваемой корпусом симистора мощности, что важно при подборе радиатора. Также с ее помощью предоставляется возможность оценить эквивалентное сопротивление симистора в заданных температурных условиях.

Минимальный постоянный ток управления, необходимый для включения симистора

Минимальный ток управляющего электрода симистора, измеряется в миллиамперах, зависит от полярности включения симистора в текущий момент времени, а так же от полярности управляющего напряжения.

Для нашего примера данный ток лежит в диапазоне от 5 до 22 мА в зависимости от полярности напряжения в управляемой симистором цепи. При разработке схемы управления симистором лучше приблизить величину управляющего тока к максимальному значению, для нашего примера это 35 или 70 мА (в зависимости от полярности).

Отпирающее напряжение управления, соответствующее минимальному постоянному отпирающему току

Чтобы установить минимальный ток в цепи управляющего электрода симистора, необходимо к этому электроду приложить определенное напряжение. Оно зависит от напряжения, приложенного в данный момент в силовой цепи симистора, а еще от температуры симистора.

Так, для нашего примера, при напряжении 12 вольт в силовой цепи, для гарантированной установки тока управления в 100 мА, необходимо приложить минимум 1,5 вольт. А при температуре кристалла в 100 °C, при напряжении в рабочей цепи 400 вольт, требуемое для цепи управления напряжение составит 0,4 вольта.

Критическая скорость нарастания напряжения в закрытом состоянии

Данный параметр измеряется в вольтах за микросекунду. Для нашего примера критическая скорость нарастания напряжения на силовых электродах составляет 250 вольт за микросекунду. Если эту скорость превысить, то симистор может ошибочно открыться невпопад даже без подачи на его управляющий электрод какого-либо управляющего напряжения.

Чтобы этого не случилось, необходимо обеспечить такие рабочие условия, чтобы напряжение на аноде (катоде) изменялось медленнее, а также исключить любые помехи, динамика которых превышает данный параметр (всякие импульсные помехи и т.д).

Критическая скорость нарастания тока в открытом состоянии

Измеряется в амперах за микросекунду. Если превысить эту скорость, то симистор будет пробит. Для нашего примера максимальная скорость нарастания тока в открытом состоянии составляет 50 ампер за микросекунду.

Для нашего примера это время составляет 2 микросекунды. Это то время, которое проходит от момента достижения током затвора 10% его пикового значения до момента, когда напряжение между анодом и катодом симистора упало до 10% его первоначального значения.

Рабочий диапазон температур

Обычно этот диапазон таков — от -40°C до +125°C. Для данного диапазона температур в документации приводятся динамические характеристики симистора.

В нашем примере корпус to220ab, он удобен тем, что допускает крепление симистора к небольшому радиатору. Для тепловых расчетов в документации на симистор приводится таблица зависимости рассеиваемой мощности от среднего тока симистора.

Симистор

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023
Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Что такое симистор (триак) и как он работает. Проверка мультиметром

Современные тенденции в технике любого типа и вида — замена механических и электромеханических элементов на электронные или полупроводниковые. Они имеют более миниатюрные размеры, работают надежнее, позволяют реализовать более широкую функциональность. Во многих электронный устройствах применяется тиристор, или его подвид — симистор. О том, что это за прибор, как он работает и для чего используется и будем говорить.

Что это за устройство, его обозначение

Симистор — это симметричный тиристор. В англоговорящих странах используется название triak, встречается и у нас транслитерация этого названия — триак. Понять принцип его работы несложно, если знаете как работает тиристор. Если коротко, тиристор пропускает ток только в одном направлении. И в этом он похож на диод, но ток проходит только при появлении сигнала на управляющем выводе. То есть, ток проходит только при определенных условиях. Прекращается его «подача» при снижении силы тока ниже определенного значения или разрывом цепи (даже кратковременным). Так как симистор, по сути, двусторонний тиристор, при появлении управляющего сигнала он пропускает ток в обоих направлениях направления.

В открытом состоянии симистор проводит ток в обоих направлениях.

На схеме он изображается как два включенных навстречу друг на другу тиристора с общим управляющим выводом.

Внешний вид симистора и его обозначение на схемах

Симистор имеет три вывода: два силовых и один управляющий. Через силовые выводы можно пропускать ток высокого напряжение, на управляющий подаются низковольтные сигналы. Пока на управляющем выводе не появится потенциал, ток не будет протекать ни в одном направлении.

Где используется и как выглядит

Чаще всего симистор используется для коммутации в цепях переменного тока (подачи питания на нагрузку). Это удобно, так как при помощи напряжения малого номинала можно управлять высоковольтным питанием. В некоторых схемах ставят симистор вместо обычного электромеханического реле. Плюс очевиден — нет физического контакта, что делает включение питания более надежным. Второе достоинство — относительно невысокая цена. И это при значительном времени наработки и высокой надежности схемы.

Минусы тоже есть. Приборы могут сильно нагреваться под нагрузкой, поэтому необходимо обеспечить отвод тепла. Мощные симисторы (называют обычно «силовые») монтируются на радиаторы. Еще один минус — напряжение на выходе симистора пилообразное. То есть подключаться может только нагрузка, которая не предъявляет высоких требований к качеству электропитания. Если нужна синусоида, такой способ коммутации не подходит.

Заменить симистор можно двумя тиристорами. Но надо правильно подобрать их по параметрам, да и схему управления придется переделывать — в таком варианте управляющих вывода два

По внешнему виду отличить тиристор и симистор нереально. Даже маркировка может быть похожей — с буквой «К». Но есть и серии, у которых название начинается с «ТС», что означает «тиристор симметричный». Если говорить о цоколевке, то это то, что отличает тиристор от симистора. У тиристора есть анод, катод и управляющий вывод. У симистора названия «анод» и «катод» неприменимы, так как вывод может быть и катодом, и анодом. Так что их обычно называют просто «силовой вывод» и добавляют к нему цифру. Тот который левее — это первый, который правее — второй. Управляющий электрод может называться затвором (от английского слова Gate, которым обозначается этот вывод).

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током. Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток (а именно, больший управляющий ток требуется в четвёртом квадранте, то есть когда напряжение на условном аноде имеет отрицательную полярность, а на управляющем электроде — положительную).

Как проверить симистор

Привычка проверять все элементы пред пайкой приходит с годами. Проверить симистор можно при помощи мультиметра и при помощи небольшой проверочной схемы с батарейкой и лампочкой. В любом случае надо сначала разобраться, как располагаются выводы на вашем приборе. Сделать это можно по цоколевке каждой конкретной серии. Для этого в поисковик забиваем маркировку, которая есть на корпусе. В некоторых случаях можно добавить «цоколевка». Если есть русскоязычные описания, будет несколько проще. Если на русском информации нет, придется искать в интернете. Заменяем слово «цоколевка» словом «datasheet». Иногда можно ввести русскими буквами «даташит». В переводе это «техническая спецификация». По имеющимся в описании таблицам и рисункам легко понять, где расположены силовые выходы (T1 и T2), а где затвор (G).

Пример цоколевки. Все можно понять и без знания языка

С мультиметром

Проверка мультиметром симистора основана на принципе его работы. Берем обычный мультиметр, ставим его в положение прозвонки. Силовые выходы между собой должны звониться в обоих направлениях. Прикасаемся щупами к выходам Т1 и Т2. На экране должны высвечиваться цифры. Это сопротивление перехода. Если поменять щупы местами, сопротивление может измениться, но ни обрыва, ни короткого быть не должно.

Зато между затвором и силовыми выходами должен быть «обрыв» (бесконечно большое сопротивление). То есть, «звониться» они не должны при любом расположении щупов. Проверив сопротивление между разными выводами, можно сделать вод о работоспособности симистора.

С лампочкой и батарейкой

Для проверки симистора без мультиметра придется собрать простенькую проверочную схему с питанием от девятивольтовой батарейки «Крона». Нужны будут три провода длиной около 20 см. Провода желательно гибкие, многожильные. Проще, если они будут разных цветов. Лучше всего красный, синий и любой другой. Пусть будет желтый. Синий разрезаем пополам, припаиваем лампочку накаливания на 9 В (или смотрите по напряжению, которое выдает ваша батарейка). Один кусок провода на резьбу, другой — на центральный вывод с нижней части цоколя. Чтобы работать было удобнее, на каждый провод лучше припаять «крокодилы» — пружинные зажимы.

Как проверить симистор без мультиметра

Собираем схему. Подключаем провода в таком порядке:

  • Красный одним концом на плюс кроны, вторым — на вывод Т1.
  • Синий — на минус кроны и на Т2.
  • Желтый провод одним краем цепляем к затвору G.

После того как собрали схему, лампочка не должна гореть. Если она горит, симистор пробит. Если не горит, проверяем дальше. Свободным концом желтого провода кратковременно прикасаемся к Т2. Лампочка должна загореться. Это значит, что симметричный тиристор открылся. Чтобы его закрыть, надо коснуться проводом вывода Т1. Если все работает, прибор исправен.

Как избежать ложных срабатываний

Так как для срабатывания симистора достаточно небольшого потенциала, возможны ложные срабатывания. В некоторых случаях они не страшны, но могут привести и к поломке. Поэтому лучше заранее принять меры. Есть несколько способов уменьшить вероятность ложных включений:

  • Уменьшить длину линии к затвору, соединять цепь управления — затвор и Т1 — напрямую. Если это невозможно, использовать экранированный кабель или витую пару.
  • Снизить чувствительность затвора. Для этого параллельно ставят сопротивление (до 1 кОм).

Практически во всех схемах с симисторами в цепи затвора есть резистор, уменьшающий чувствительность прибора

Как уже говорили, симистор управляется током. Это дает возможность подключать его напрямую к выходам микросхем. Есть одно ограничение — ток не должен превышать максимально допустимый. Обычно это 25 мА.

Особенности монтажа

Так же как и тиристоры, симисторы при работе греются, поэтому при сборке необходимо обеспечивать отвод тепла. Если нагрузка маломощная или питание импульсное (кратковременное подключение на промежуток менее 1 сек) допускается монтаж без радиатора. В остальных случаях необходимо обеспечить качественный контакт с охлаждающим устройством.

Есть три способа фиксации симистора на радиаторе: клепка, на винте и на зажиме. Первый вариант при самостоятельном монтаже не рекомендуется, так как существует высокая вероятность повреждения корпуса. Наиболее простой способ монтажа в домашних условиях — винтовой.

Порядок монтажа симистора

Перед тем, как начинают монтаж, осматривают корпус прибора и радиатора (охладителя) на предмет царапин и сколов. Их быть не должно. Затем поверхность протирают от загрязнений чистой ветошью, обезжиривают, накладывают термопасту. После чего вставляют в отверстие с резьбой в радиаторе и зажимают шайбу. Крутящий момент должен быть 0.55Nm- 0.8Nm. То есть, необходимо обеспечить должный контакт, но перетягивать тоже нельзя, так как есть риск повредить корпус.

Схема регулятора мощности для индуктивной нагрузки на симисторе

Обратите внимание, что монтаж симистора производится до пайки. Это снижает механическую нагрузку на отводы прибора. И еще: при установке следите за тем, чтобы корпус плотно прижимался к охладителю.

Обозначение и принцип действия симистора: объяснение для «чайников»

Полупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Конструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.

Что такое симистор (триак), характеристики, схемы

В данной статье мы подробно разберем что такое симистор (триак), рассмотрим его схему и символ на схеме, кривые характеристики триака, а так же фазовый контроль симистора.

Введение

Будучи твердотельным устройством, тиристоры могут использоваться для управления лампами, двигателями или нагревателями и т.д. Однако одна из проблем использования тиристора для управления такими цепями заключается в том, что, подобно диоду, «тиристор» является однонаправленным устройством, что означает, что он пропускает ток только в одном направлении, от анода к катоду .

Для цепей переключения постоянного тока эта «однонаправленная» характеристика переключения может быть приемлемой, поскольку после запуска вся мощность постоянного тока подается прямо на нагрузку. Но в синусоидальных цепях переключения переменного тока это однонаправленное переключение может быть проблемой, поскольку оно проводит только в течение одной половины цикла (например, полуволнового выпрямителя), когда анод является положительным, независимо от того, что делает сигнал затвора. Затем для работы от переменного тока тиристором подается нагрузка только на половину мощности.

Чтобы получить двухволновое управление мощностью, мы могли бы подключить один тиристор внутри двухполупериодного мостового выпрямителя, который срабатывает на каждой положительной полуволне, или соединить два тиристора вместе в обратной параллели (спина к спине), как показано ниже. но это увеличивает как сложность, так и количество компонентов, используемых в схеме переключения.

Тиристорные конфигурации

Существует, однако, другой тип полупроводникового устройства, называемый «Триодный выключатель переменного тока» или «Триак» для краткости. Триаки также являются членами семейства тиристоров, и, как и кремниевые выпрямители, управляемые кремнием, они могут использоваться в качестве полупроводниковых переключателей питания, но что более важно, триаки являются «двунаправленными» устройствами. Другими словами, симистор может быть запущен в проводимость как положительными, так и отрицательными напряжениями, приложенными к его аноду, и положительными и отрицательными импульсами запуска, приложенными к его клемме затвора, что делает его двухквадрантным коммутирующим устройством, управляемым затвором.

Симистор ведет себя так же, как два обычных тиристоров, соединенных вместе в обратной параллельно (спина к спине) по отношению друг к другу и из — за этой конструкции два тиристоры имеют общий терминал Gate все в пределах одного трехтерминальной пакета.

Поскольку триак проводит в обоих направлениях синусоидальной формы волны, концепция анодной клеммы и катодной клеммы, используемая для идентификации главных силовых клемм тиристора, заменена обозначениями: MT 1 для главной клеммы 1 и MT 2 для главной клеммы 2.

В большинстве устройств переключения переменного тока клемма симисторного затвора связана с клеммой MT 1, аналогично взаимосвязи затвор-катод тиристора или взаимосвязи база-эмиттер транзистора. Конструкция, легирование PN и условные обозначения, используемые для обозначения триака, приведены ниже.

Схема и символ симистора

Теперь мы знаем, что «триак» — это четырехслойное PNPN в положительном направлении и NPNP в отрицательном направлении, трехполюсное двунаправленное устройство, которое блокирует ток в своем состоянии «ВЫКЛ», действующее как выключатель разомкнутой цепи, но в отличие от обычного тиристора, симистор может проводить ток в любом направлении при срабатывании одним импульсом затвора. Тогда симистор имеет четыре возможных режима срабатывания следующим образом.

  • Mode + Mode = положительный ток MT 2 (+ ve), положительный ток затвора (+ ve)
  • Mode — Mode = положительный ток MT 2 (+ ve), отрицательный ток затвора (-ve)
  • Mode + Mode = MT 2 отрицательный ток (-ve), положительный ток затвора (+ ve)
  • Mode — Mode = отрицательный ток MT 2 (-ve), отрицательный ток затвора (-ve)

И эти четыре режима, в которых может работать триак, показаны с использованием кривых характеристик триака IV.

Кривые характеристики триака IV

В квадранте tri триак обычно запускается в проводимость положительным током затвора, обозначенным выше как режим Ι +. Но это также может быть вызвано отрицательным током затвора, режим Ι–. Аналогичным образом, в квадранте Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока, как симистор может быть включен «ON» либо положительным или отрицательным импульсом Gate, независимо от полярности питания переменного тока в то время. Это делает триак идеальным для управления лампой или нагрузкой двигателя переменного тока с помощью базовой схемы переключения триака, приведенной ниже.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Симисторы характеристики и параметры

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который

проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его «довольно архаичным», пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор — это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 — это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно.
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 «анодный» вывод, цифрой 2 — «катодный», поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).


Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте — никакой, схема получается проще, но главное — исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на «аноде» симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.

То бишь — всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — симистор будет открываться при замыкании S1 в каждый момент превышения «анодным» напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.


Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 — динистор. Для интересующихся отмечу — на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

Тип U макс, В I max, А Iу отп, мА
КУ208Г 400 5
BT 131-600 600 1
BT 134-500 500 4
BT 134-600 600 4
BT 134-600D 600 4
BT 136-500Е 500 4
BT 136-600Е 600 4
BT 137-600Е 600 8
BT 138-600 600 12
BT 138-800 800 12
BT 139-500 500 16
BT 139-600 600 16
BT 139-800 800 16
BTA 140-600 600 25
BTF 140-800 800 25
BT 151-650R 650 12
BT 151-800R 800 12
BT 169D 400 12
BTA/BTB 04-600S 600 4
BTA/BTB 06-600C 600 6
BTA/BTB 08-600B 600 8
BTA/BTB 08-600C 600 8
BTA/BTB 10-600B 600 10
BTA/BTB 12-600B 600 12
BTA/BTB 12-600C 600 12
BTA/BTB 12-800B 800 12
BTA/BTB 12-800C 800 12
BTA/BTB 16-600B 600 16
BTA/BTB 16-600C 600 16
BTA/BTB 16-600S 600 16
BTA/BTB 16-800B 800 16
BTA/BTB 16-800S 800 16
BTA/BTB 24-600B 600 25
BTA/BTB 24-600C 600 25
BTA/BTB 24-800B 800 25
BTA/BTB 25-600В 600 25
BTA/BTB 26-600A 600 25
BTA/BTB 26-600B 600 25
BTA/BTB 26-700B 700 25
BTA/BTB 26-800B 800 25
BTA/BTB 40-600B 600 40
BTA/BTB 40-800B 800 40
BTA/BTB 41-600B 600 41
BTA/BTB 41-800B 800 41
MAC8M 600 8
MAC8N 800 8
MAC9M 600 9
MAC9N 800 9
MAC12M 600 12
MAC12N 800 12
MAC15M 600 15
MAC12N 800 15

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Вта 100 600 подключение трансформатору. Симисторы,симисторы BTA,симисторы BTB. Как отпирается симистор

На сайт уже были обзоры, посвященные созданию аппаратов для точечной сварки. Предмет очень дорогой при покупке в готовом виде, но часто очень нужный в хозяйстве для тех, кто любит что то поделать руками. Напомню, что этот аппарат позволяет легко приваривать контактные пластины к аккумуляторам, сваривать тонкие листы металла, варить стальную проволоку и тд. Под катом моя версия реализации данного агрегата. Читателей ожидают размышления, схемы, платы, программирование, конструирование (все элементы колхозинга) с множеством фото и видео…

Так как в обзоре будут использоваться многие детальки, то я по ходу обзора приведу на них ссылки, возможно сейчас есть эти же детали дешевле у других продавцов.

Предмет обзора приехал в жесткой пластиковой упаковке, в которой лежало 10 экземпляров симистора BTA41-800B.

Данный элемент нам требуется для включения и выключения в нужные моменты сварочного аппарата.
Максимальное обратное напряжение 800 В
Максимальное значение тока в открытом состоянии 40 А
Рабочая температура от -40 до 125 °C
Корпус TOP-3

Симистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. Следует отметить, что симистop изобретён и запатентован был в СССР (в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г.).
Блок схема этого элемента:

A1 и A2 — силовые электроды
G — управляющий электрод
В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях.

Подробно характеристики BTA41-800B можно посмотреть в .

Для управления симистором обычно используются специальные симисторные оптроны (triac driver). Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения.

.

В большинстве случаев предпочтительным является использование оптосимисторов с детекцией нуля, по целому ряду причин. Иногда (при резистивной нагрузке детекция нуля не важна. А иногда нужно включать нагрузку например на максимуме синусоиды сетевого напряжения, тогда приходится сооружать свою схему детеции и, конечно, использовать оптосимистор без детекции нуля.

Перейдем к нашему устройству. Так уж сложились звезды, что мне потребовалось заменить банки в паре аккумуляторов шуруповертов и в руки попала неисправная микроволновка… И в то же время, в голове давненько витала мысль о необходимости соорудить себе точечную сварку. И я решился на этот шаг.

Далее необходимо намотать толстый провод вместо извлеченной вторичной обмотки. Я использовал вот такой многожильный провод сечением 70 мм2:


Старое его название ПВ3-70. Больших усилий намотка провода не требовала, получилось так:


Я купил 2 метра провода, думаю, можно было обойтись и одним метром.
Зачищаем концы:


Готовим паяльное оборудование (флюс лти-120, катушка 2мм припоя и газовая горелка надетая на баллон газа):


Наконечник лучше использовать из луженной меди под провод 70 мм (ТМЛ 70-12-13):


Обильно смачиваем флюсом внутренние поверхности наконечников и провода. Вставляем провод в наконечник подгибая непослушные проводки (не быстрая процедура), и греем горелкой подавая сбоку припой. Результат примерно такой:


Все ужасы закроем термоусадкой:


На мой провод отлично уселась вот такая:


На этой стадии уже можно подключить трансформатор к розетке проводом от микроволновки (он уже имеет клеммы для подключения) и даже попробовать сделать первую сварку, коммутируя нажатием на концы толстого провода, единственное, я рекомендую прикрутить какие-то медные детали, так как наконечники портить не желательно. Варить получится разве что какие-то толстые детали — так как возможности коммутации весьма ограничены.

Перейдем к электрической части. Я уже говорил что коммутацию первичной обмотки решил делать симистором, осталось решить вопрос каким оптосимистором им управлять. Я решил делать схему распознавания нуля, поэтому выбрал вариант без детекции нуля, взяв . на эту микросхему. Типовое включение следующее:


Вентилятор от микроволновки я решил использовать для охлаждения трансформатора и платы. Так как он тоже на 220 В, то для его включения я решил использовать релюшку , она компактная и хорошо справляется с маломощной нагрузкой.

Для управления логикой я решил использовать контроллер в корпусе QFP32.

Блок питания нужен на 5 Вольт, я применил . Он рассчитан на 600 мА, чего вполне достаточно.

Основной фокус в данном деле это синхронизация с сетью 220 В. Нужно научиться включать нагрузку в момент когда сетевое напряжение имеет определенное значение. В итоге я пришел к такой схеме:


Особенности: VD1 — нужно выбирать быстрый диод (я взял MUR) — он нужен для шунтирования оптрона и избегания появления на нем обратного напряжения более 5 В, VD2 — подойдет любой выпрямительный (подойдет 1N4007 — он существенно снизит тепловую нагрузку на R2, убрав лишнюю полуволну), R2- следует взять мощностью 1-2 Вт (у меня под рукой не было и я поставил 2 резистора параллельно по 90 КОм на 1/4 Вт, температура оказалась приемлемой). А6 — это аналоговый вход контроллера, который использовал я для этих целей. R1 подтягивает вход контроллера к земле. В остальном схема довольно простая.

Нарисовал плату в программе Sprint Layout:


Изготавливаем плату ЛУТ-ом. После травления в хлорном железе:


После смывки тонера:


После лужения:


Вопреки привычной тактике, я сначала спаял силовую часть, чтобы ее отладить независимо от контроллера, на симистор решил приклеить радиатор, выпиленный из алюминиевого профиля:


Получилось так:


Убедился что все хорошо:


Схема слежения за нулем выдает вот такое:

Припаял остальные элементы:


Прошиваем загрузчик (благо я специально вывел пины SPI), и начинаем писать тестировать, исправлять, перепаивать…


Для отладки интенсивно использовался осциллограф, я использую на даче , дома конечно удобнее стационарный:

Теперь можно припаять провода для подключения нагрузки (трансформатора и вентилятора), я использовал провода с клеммами от той же микроволновки, в этот момент промелькнула мысль не перепутать бы их при сборке…

Для проверки подключил лампу накаливания вместо трансформатора, на этом этапе сварка выглядит так:

Сдвиг в 3 мс — дает вот такие управляющие импульсы:


А вот так выглядит то, что идет в нагрузку (масштаб сетевого напряжения специально взят иной):


И вот так при другой длительности:

Для визуализации я использовал (использовал только 2: синий и зеленый), с общим катодом. Когда сварочник включен в сеть, горит зеленый свет, когда идет сварка синий. Также используется звуковая сигнализация с помощью вот , при нажатии кнопки сварки проигрывается одна мелодия, после другая.
Для визуализации процесса настройки, я использовал с диагональю 1.3″. Он компактный и хорошо виден из-за своей яркости — по моему оптимальное решение.

Стартовый экран выглядит так:


Рабочий режим так:


Как видно, можно задать три параметра: длительность сварочного импульса, количество импульсов и сдвиг относительно распознанного начала положительной полуволны.

Все параметры настраиваются . Я решил сделать такую логику: переключение режимов настройки осуществляется кратковременным нажатием энкодера, изменение текущего параметра в заданном диапазоне вращением энкодера, а чтобы сохранить текущие параметры нужно использовать длительное нажатие энкодера, тогда при загрузке будут именно они использоваться (значения по умолчанию).

Видео тестовой сварки с экранчиком и применением энкодера, в качестве нагрузки вместо трансформатора все та же лампочка 75 Вт:

Первый опыт сварки на жести от консервной банки, еще без корпуса:


Результатом я остался доволен.

Но нужен корпус. Корпус решил изготовить из дерева. Один мебельный щит из Леруа у меня был, второй купил. Прикинул расположение и напилил, навырезал (получилось не особо аккуратно, но меня как корпус для аппарата точечной сварки вполне устраивает:


Все управление решил сделать в передней части корпуса для удобства настройки в процессе работы:


Сзади предусмотрел отверстия для забора воздуха:


В качестве кнопки включения и предохранителя установил автомат на 10А.

Корпус покрасил черной краской:


Для защиты установил решетки на заднюю панель:

Немного про кнопку включения. Ее решил делать отдельно, причем, мне хотелось иметь два варианта кнопки: стационарный — для длительной работы и мобильный — для быстрой сварки. Соответственно требовался разъем, в качестве которого выступил стандартный разъем для питания (припаял к нему проводки и изолировал термоусадкой):


Стационарный вариант кнопки решил соорудить в виде :


К ней шел коротенький проводок, видимо предполагается ее присоединение к длинному. Разбираем:


Припаиваем ПВС 2х0.5:


В исходном кабеле шло три провода:


Нам черный не нужен.
Собираем все обратно. И припаиваем на другой конец провода штекер:


Мобильную версию изготовил совсем просто:

Экранчик и разъем для кнопки крепим в корпус:


Туда же крепим нашу плату:


Внутри довольно плотно:


Помните я писал о мысли про неперепутывание нагрузок… так вот я перепутал. OMRON G3MB-202P — отправился к праотцам, начав находится включенным независимо от управляющего сигнала… Во он:


Пришлось снимать стенку, потом плату и перепаивать релюху. Процесс сопровождался небольшим количеством нецензурных выражений. Причем плату до этого я уже покрыл защитным лаком в 2 слоя… Но не будем о грустном. Все получилось, прибор заработал.

Как известно, вращение вентилятора, особенно такого не маленького как в нашем случае, сопровождается вибрацией и нагрузкой на крепление, резьбовое соединение постепенно ослабевает и процесс усугубляется. Чтобы этого не происходило, я в своих поделках стараюсь пользоваться отечественным фиксатором резьбы Автомастергель от «Регион Спецтехно». Обзор этого замечательного геля я даже :


Данный фиксатор является анаэробным, то есть полимеризуется именно там где нужно — в плотной скрутке резьбы.

На дно корпуса прикрутил гламурные ножки:

Тестовая сварка, принесла немало положительных эмоций:


В качестве электродов нужно использовать медные пластины, у меня их не было, сплющил трубку от кондиционера — вполне нормально.
Варилось вот это:

Итоговый вид агрегата:


Вид сзади:

Гвозди сваривает вполне нормально:

Немного измерений. Параметры дачной электросети:


Потребление холостого хода:


При включенном вентиляторе:


Из-за инерционности прибора и сварки короткими импульсами скорее всего прибор не может определить максимальную мощность, вот столько он показал:


Токовые клещи у меня не умеют показывать пик, то что удалось зафиксировать кнопкой:


В реальности я видел цифру в 400 А.
Напряжение на контактах:

Теперь полезное применение. У одного человека (привет ему:)) Шуруповерт перезимовал на даче и весной или даже осенью был затоплен паводком. Жалобы были на очень короткое время работы акумов 1-2 шурупа и все… Вот такая картина вскрытия:


Акумы чувствовали себя явно не в порядке, позже это подтвердилось тестами:


На замену были заказаны новые банки. И после окончания работ со сварочником, самое время было их заменить:


Оторвать руками полоски у меня не вышло. Платка была отмыта провода тоже заменены::


Аккумулятор начал новую жизнь:


Видео сварки аккумуляторов:


Результат всегда стабилен, оптимальное время 34 мс, количество импульсов 1, сдвиг 3 мс.

Спасибо всем, кто дочитал этот огромный обзор до конца, надеюсь кому-то данная информация окажется полезной. всем крепких соединений и добра!

Планирую купить +166 Добавить в избранное Обзор понравился +279 +504

Из статьи вы узнаете о том, что такое симистор, принцип работы этого прибора, а также особенности его применения. Но для начала стоит упомянуть о том, что симистор — это то же, что и тиристор (только симметричный). Следовательно, не обойтись в статье без описания принципа функционирования тиристоров и их особенностей. Без знания основ не получится спроектировать и построить даже простейшую схему управления.

Тиристоры

Тиристор является переключающим который способен пропускать ток только в одном направлении. Его нередко называют вентилем и проводят аналогии между ним и управляемым диодом. У тиристоров имеется три вывода, причем один — это электрод управления. Это, если выразиться грубо, кнопка, при помощи которой происходит переключение элемента в проводящий режим. В статье будет рассмотрен частный случай тиристора — симистор — устройство и работа его в различных цепях.

Тиристор — это еще выпрямитель, выключатель и даже усилитель сигнала. Нередко его используют в качестве регулятора (но только в том случае, когда вся электросхема запитывается от источника переменного напряжения). У всех тиристоров имеются некоторые особенности, о которых нужно поговорить более подробно.

Свойства тиристоров

Среди огромного множества характеристик этого полупроводникового элемента можно выделить самые существенные:

  1. Тиристоры, подобно диодам, способны проводить только в одном направлении. В этом случае они работают в схеме, как
  2. Из отключенного во включенное состояние тиристор можно перевести, подав на управляющий электрод сигнал с определенной формой. Отсюда вывод — у тиристора как у выключателя имеется два состояния (причем оба устойчивые). Таким же образом может функционировать и симистор. Принцип работы ключа электронного типа на его основе достаточно прост. Но для того чтобы произвести возврат в исходное разомкнутое состояние, необходимо, чтобы выполнялись определенные условия.
  3. Ток сигнала управления, который необходим для перехода кристалла тиристора из запертого режима в открытый, намного меньше, нежели рабочий (буквально измеряется в миллиамперах). Это значит, что у тиристора есть свойства усилителя тока.
  4. Существует возможность точной регулировки среднего тока, протекающего через подключенную нагрузку, при условии, что нагрузка включена с тиристором последовательно. Точность регулировки напрямую зависит от того, какая длительность сигнала на электроде управления. В этом случае тиристор выступает в качестве регулятора мощности.

Тиристор и его структура

Тиристор — это полупроводниковый элемент, который имеет функции управления. Кристалл состоит из четырех слоев р и п типа, которые чередуются. Так же точно построен и симистор. Принцип работы, применение, структура этого элемента и ограничения в использовании рассмотрены детально в статье.

Описанную структуру еще называют четырехслойной. Крайнюю область р-структуры с подключенным к ней положительной полярности выводом источника питания, называют анодом. Следовательно, вторая область п (тоже крайняя) — это катод. К ней приложено отрицательное напряжение источника питания.

Какими свойствами обладает тиристор

Если провести полный анализ структуры тиристора, то можно найти в ней три перехода (электронно-дырочных). Следовательно, можно составить эквивалентную схему на полупроводниковых транзисторах (полярных, биполярных, полевых) и диодах, которая позволит понять, как ведет себя тиристор при отключении питания электрода управления.

В том случае, когда относительно катода анод положительный, диод закрывается, и, следовательно, тиристор тоже ведет себя аналогично. В случае смены полярности оба диода смещаются, тиристор также запирается. Аналогичным образом функционирует и симистор.

Принцип работы на пальцах, конечно, объяснить не очень просто, но мы попробуем сделать это далее.

Как работает отпирание тиристора

Для понимания нужно обратить внимание на эквивалентную схему. Она может быть составлена из двух полупроводниковых триодов (транзисторов). Вот на ней и удобно рассмотреть процесс отпирания тиристоров. Задается некоторый ток, который протекает через электрод управления тиристора. При этом ток имеет смещение прямой направленности. Этот ток считается базовым для транзистора со структурой п-р-п.

Поэтому в коллекторе ток у него будет больше в несколько раз (необходимо значение тока управления умножить на коэффициент усиления транзистора). Далее можно видеть, что это значение тока базовое для второго транзистора со структурой проводимости р-п-р, и он отпирается. При этом коллекторный ток второго транзистора будет равен произведению коэффициентов усиления обоих транзисторов и первоначально заданного тока управления. Симисторы (принцип работы и управление ими рассмотрены в статье) обладают аналогичными свойствами.

Далее этот ток необходимо суммировать с ранее заданным током цепи управления. И получится именно то значение, которое необходимо, чтобы поддерживать первый транзистор в отпертом состоянии. В том случае, когда ток управления очень большой, два транзистора одновременно насыщаются. Внутренняя ОС продолжает сохранять свою проводимость даже тогда, когда исчезает первоначальный ток на управляющем электроде. Одновременно с этим на аноде тиристора обнаруживается довольно высокое значение тока.

Как отключить тиристор

Переход в запертое состояние тиристора возможен в том случае, если к электроду управления открытого элемента не прикладывается сигнал. При этом ток спадает до определенной величины, которая называется гипостатическим током (или током удержания).

Тиристор отключится и в том случае, если произойдет размыкание в цепи нагрузки. Либо когда напряжение, которое прикладывается к цепи (внешней), меняет свою полярность. Это происходит под конец каждого полупериода в случае, когда питается схема от источника переменного тока.

Когда тиристор работает в цепи запирание можно осуществить при помощи простого выключателя или кнопки механического типа. Он соединяется с нагрузкой последовательно и применяется для обесточивания цепи. Аналогичен и принцип работы правда, имеются в схеме некоторые особенности.

Поэтому желательно располагать выключатель так, чтобы он находился между катодом и электродом управления. Это позволит гарантировать, что тиристор отключится нормально, а удерживающий ток отсечется. Иногда для удобства и повышения быстродействия и надежности применяют вместо механического ключа вспомогательный тиристор. Стоит отметить, что работа симистора во многом схожа с функционированием тиристоров.

Симисторы

А теперь ближе к теме статьи — нужно рассмотреть частный случай тиристора — симистор. Принцип работы его схож с тем, что был рассмотрен ранее. Но имеются некоторые отличия и характерные особенности. Поэтому нужно поговорить о нем более подробно. Симистор представляет собой прибор, в основе которого находится кристалл полупроводника. Очень часто используется в системах, которые работают на переменном токе.

Самое простое определение этого прибора — выключатель, но управляемый. В запертом состоянии он работает точно так же, как и выключатель с разомкнутыми контактами. При подаче сигнала на электрод управления симистора происходит переход прибора в открытое состояние (режим проводимости). При работе в таком режиме можно провести параллель с выключателем, у которого контакты замкнуты.

Когда сигнал в цепи управления отсутствует, в любой из полупериодов (при работе в цепях переменного тока) происходит переход симистора из режима открытого в закрытый. Симисторы широко используются в режиме релейном (например, в конструкциях светочувствительных выключателей или термостатов). Но они же нередко применяются и в системах регулирования, которые функционируют по принципам фазового управления напряжения на нагрузке (являются плавными регуляторами).

Структура и принцип работы симистора

Симистор — это не что иное, как симметричный тиристор. Следовательно, исходя из названия, можно сделать вывод — его легко заменить двумя тиристорами, которые включаются встречно-параллельно. В любом направлении он способен пропустить ток. У симистора имеется три основных вывода — управляющий, для подачи сигналов, и основные (анод, катод), чтобы он мог пропускать рабочие токи.

Симистор (принцип работы для «чайников» этого полупроводникового элемента предоставлен вашему вниманию) открывается, когда на управляющий вывод подается минимальное необходимое значение тока. Или в том случае, когда между двумя другими электродами разность потенциалов выше предельно допустимого значения.

В большинстве случаев превышение напряжения приводит к тому, что симистор самопроизвольно срабатывает при максимальной амплитуде питающего напряжения. Переход в запертое состояние происходит в случае смены полярности или при уменьшении рабочего тока до уровня ниже, чем ток удержания.

Как отпирается симистор

При питании от сети происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора — минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Какие накладываются ограничения при использовании симисторов

Его сложно использовать, когда нагрузка индуктивного типа. Скорость изменения напряжения и тока ограничивается. Когда симистор переходит из запертого режима в открытый, во внешней цепи возникает значительный ток. Напряжение не падает мгновенно на силовых выводах симистора. А мощность будет мгновенно развиваться и достигает довольно больших величин. Та энергия, которая рассеивается, за счет малого пространства резко повышает температуру полупроводника.

Симисторы представляют собой двунаправленные тиристоры, что позволяет их напрямую использовать в цепях переменного тока. Симистор, как выключатель, может находиться в одном из двух состояний — открытом, в этом случае он пропускает ток, и в закрытом, когда он имеет очень большое сопротивление. Изменять состояние симистора можно путем подачи управляющего импульса между одним из анодов и управляющим электродом. И хотя симистор является симметричным прибором, а оба силовых вывода называются анодами (А1 и А2 или Т1 и Т2), ток управления должен протекать по цепи управляющий электрод — первый анод (А1 или Т1). Поэтому при монтаже или замене симистора нужно быть внимательным — аноды нельзя менять местами, в этом случае вы рискуете что-нибудь спалить. Если требуется гальваническая развязка для мощного симистора, в управляющую цепь включают маломощный оптосимистор, в некоторых типах может быть встроена схема контроля смены полярности переменного напряжения (перехода через ноль). Если включать симистор в этот момент, то процесс коммутации проходит без ненужных бросков тока, что продляет срок службы включаемого оборудования и не дает помех в сети. Отключается симистор самостоятельно в конце каждого полупериода, поэтому для поддержания его в открытом состоянии нужно иметь постоянное напряжение на управляющем электроде.

Симисторы являются основой для твердотельных (электронных) реле переменного тока. Также на управляющий электрод симистора можно подавать напряжение не в начале полупериода, а с некоторым запаздыванием. В этом случае на выходе получится синусоида с отрезанными частями полуволн. Изменяя задержку открывания симистора, мы можем изменять значение действующего напряжения на нагрузке. Это свойство часто используется в разного рода диммерах и регуляторах напряжения. Такие регуляторы нельзя использовать для реактивных нагрузок, а с чисто активными потребителями — такими как лампы накаливания или нагревательные приборы — они справляются прекрасно. В промышленности симисторы активно используются в мощных электроприводах, имеют внушительные размеры и устанавливаются на мощные радиаторы. В бытовых электроприборах симисторы работают с токами до десятков ампер и напряжениями в сотни вольт, внешне они похожи на транзисторы и обычно выпускаются в корпусах типа ТО-220, ТО-92 и т.п.

Основными параметрами симисторов являются максимальные ток и напряжение в силовой цепи и в цепи управления, а также минимальный ток управления, необходимый для открывания. При больших токах симистор нагревается, и поэтому для его нормальной работы нужен теплоотвод.

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка.

Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Для понимания процесса, разберем, что такое тиристор:

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями.

Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.


Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении , симистор способен проводить ток в двух направлениях . Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле , то его достоинства неоспоримы:

    Невысокая стоимость.

    По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

    Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

    Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

    Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

    Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г . Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

    Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

    В импульсном режиме напряжение точно такое же.

    Максимальный ток в открытом состоянии – 5А.

    Максимальный ток в импульсном режиме – 10А.

    Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

    Наименьший импульсный ток – 160 мА.

    Открывающее напряжение при токе 300 мА – 2,5 V.

    Открывающее напряжение при токе 160 мА – 5 V.

    Время включения – 10 мкс.

    Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023


Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от N ot C onnect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Каталог продукции — Полупроводниковые приборы, микросхемы, радиолампы — Тиристоры, симисторы — Симисторы

Каталог продукции

Обновлен: 22.08.2021 в 20:30

  • Aвтоматика, Робототехника, Микрокомпьютеры
  • Акустические компоненты
  • Блоки питания, батарейки, аккумуляторы
  • Датчики
  • Двигатели, вентиляторы
  • Измерительные приборы и модули
  • Инструмент, оборудование, оснастка
    • Аксессуары для пайки
    • Антистатические принадлежности
    • Бокорезы, ножницы, резаки
    • Дрели, фрезеры, бормашины
    • Жала для паяльников и станций
    • Инструмент для зачистки изоляции
    • Инструмент для обжима
    • Лупы, микроскопы
    • Нагреватели инфракрасные
    • Ножи, скальпели
    • Отвёртки
    • Отсосы для припоя
    • Паяльники газовые и горелки
    • Паяльники электрические
    • Паяльные станции и ванны, сварочные автоматы
    • Пинцеты, зажимы
    • Плоскогубцы, круглогубцы
    • Подставки для паяльников и штативы
    • Принадлежности для паяльников и станций
    • Прочий инструмент и оснастка
    • Сверла, фрезы, боры
    • Термоклеевые пистолеты
    • Тиски, станины
    • Штангенциркули, линейки
  • Источники света, индикаторы
  • Кабель, провод, шнуры
  • Коммутация, реле
  • Конструктивные элементы, корпуса, крепеж
  • Материалы и расходники
  • Пассивные элементы
  • Полупроводниковые приборы, микросхемы, радиолампы
  • Разъёмы, клеммы, соединители, наконечники
  • Текстолит, платы
  • Товары бытового назначения
  • Трансформаторы, сердечники, магниты
Информация обновлена 22.08.2021 в 20:30

Вид:

Сортировка:

По наличиюпо алфавитупо цене

Кол-во на странице: 244860120

Bta100 800b схема подключения — Морской флот

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) – допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Описание Симистор BTA 100

Мощный симистор BTA 100 на 50 ампер.

Технические параметры симистора ВТА
Модель: BTA 100 800
Максимальная рабочая температура TJ: +-40 125°C
Количество выводов: 4 вывода.
Пиковое напряжение в закрытом состоянии: Vdrm ≥800 В.
Пиковый ток в открытом состоянии СКЗ IT(rms) 100 А.
Тип корпуса симистора: нестандартный TO
Максимальный Отпирающий Ток Затвора (QI), Igt 35 мА.
Максимальное Отпирающее Напряжение Затвора Vgt 1.5В
Пиковая Мощность Затвора 1Вт
Пиковый Импульсный Ток Itsm 50Гц 300А

Управление триггером полюс тока Т2+г+ ИГТ ма ≤50 ВАК=12В,RН=10Ω
Максимальный Ток Удержания Ih 50мА

Отличие симистора от транзистора — Мастер Фломастер

Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.

Выводы тиристора — это анод, катод и управляющий электрод.

Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.

Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.

Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.

Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.

В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.

Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.

Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.

Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.

Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.

Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.

Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.

В 1963 году у многочисленного семейства тринисторов появился еще один «родственник» — симистор. Чем же он отличается от своих «собратьев» — тринисторов (тиристоров)? Вспомните о свойствах этих приборов. Их работу часто сравнивают с действием обычной двери: прибор заперт — ток в цепи отсутствует (дверь закрыта — прохода нет), прибор открыт — в цепи возникает электрический ток (дверь отворилась — входите). Но у них есть общий недостаток. Тиристоры пропускают ток только в прямом направлении — так обычная дверь легко открывается «от себя», но сколько ни тяни ее на себя — в противоположную сторону, все усилия окажутся бесполезными.

Увеличив число полупроводниковых слоев тиристора с четырех до пяти и снабдив его управляющим электродом, ученые обнаружили, что прибор с такой структурой (названный впоследствии симистором) способен пропускать электрический ток как в прямом, так и в обратном направлениях.

Посмотрите на рисунок 1, изображающий строение полупроводниковых слоев симистора. Внешне они напоминают транзисторную структуру р- n -р типа, но отличаются тем, что имеют три дополнительные области с n -проводимостью. И вот что интересно: оказывается, две из них, расположенные у катода и анода, выполняют функции только одного полупроводникового слоя — четвертого. Пятый образует область с n -проводимостью, лежащая около управляющего электрода.

Ясно, что работа такого прибора основана на более сложных физических процессах, чем у других типов тиристоров. Чтобы лучше разобраться в принципе действия симистора, воспользуемся его тиристорным аналогом. Почему именно тиристорным? Дело в том, что разделение четвертого полупроводникового слоя симистора не случайно. Благодаря такой структуре при прямом направлении тока, протекающего через прибор, анод и катод выполняют свои основные функции, а при обратном они как бы меняются местами — анод становится катодом, а катод, наоборот, анодом, то есть симистор можно рассматривать как два встречно-параллельно включенных тиристора (рис. 2).

Тринисторный аналог симистора

Представим, что на управляющий электрод подан отпирающий сигнал. Когда на аноде прибора напряжение положительной полярности, а на катоде — отрицательной, электрический ток потечет через левый по схеме тринистор. Если полярность напряжения на силовых электродах поменять на противоположную, включится правый по схеме тринистор. Пятый полупроводниковый слой, подобно регулировщику, руководящему движением автомобилей на перекрестке, направляет отпирающий сигнал, зависимости от фазы тока на один из тринисторов. При отсутствии отпирающего сигнала симистор закрыт.

В целом его действие можно сравнить, например, с вращающейся дверью на станции метро — в какую сторону ни толкни ее, она обязательно откроется. Действительно, подадим отпирающее напряжение на управляющий электрод симистора — «подтолкнем» его, и электроны, словно спешащие на посадку или выход пассажиры, потекут через прибор в направлении, диктуемом полярностью включения анода и катода.

Этот вывод подтверждается и вольтамперной характеристикой прибора (рис. 3). Она состоит из двух одинаковых кривых, повернутых относительно друг друга на 180°. Их форма соответствует вольтамперной характеристике динистора, а области непроводящего состояния, как и у тринистора, легко преодолеваются, если на управляющий электрод подать отпирающее напряжение (изменяющиеся участки кривых показаны штриховыми линиями).

Благодаря симметричности вольтамперной характеристики новый полупроводниковый прибор был назван симметричным тиристором (сокращенно — симистор). Иногда его называют триаком (термин, пришедший из английского языка).

Симистор унаследовал от своего предшественника — тиристора все его лучшие свойства. Но самое главное достоинство новинки в том, что в ее корпусе расположили сразу два полупроводниковых прибора. Судите сами. Для управления цепью постоянного тока необходим один тиристор, для цепи переменного тока приборов должно быть два (включены встречно-параллельно). А если учесть, что для каждого из них нужен отдельный источник отпирающего напряжения, который к тому же должен включать прибор точно в момент изменения фазы тока, становится ясно, каким сложным будет такой управляющий узел. Для симистора же род тока не имеет значения. Достаточно лишь одного такого прибора с источником отпирающего напряжения, и универсальное управляющее устройство готово. Его можно использовать в силовой цепи постоянного или переменного тока.

Близкое родство тиристора и симистора привело к тому, что у этих приборов оказалось много общего. Так электрические свойства симистора характеризуются теми же параметрами, что и у тиристора. Маркируются они тоже одинаково — буквами КУ, трехзначным числом и буквенным индексом в конце обозначения. Иногда симисторы обозначают несколько иначе — буквами ТС, что означает «тиристор симметричный».

Условное графическое обозначение симисторов на принципиальных схемах показано на рисунке 4.

Для практического знакомства с симисторами выберем приборы серии КУ208 — триодные симметричные тиристоры п-р-п-р типа. На разновидности приборов указывают буквенные индексы в их обозначении — А, Б, В или Г. Постоянное напряжение, которое выдерживает в закрытом состоянии симистор с индексом А, составляет 100 В, Б — 200 В, В — 300 В и Г — 400 В. Остальные параметры у этих приборов идентичные: максимальный постоянный ток в открытом состоянии — 5 А, импульсный —10 А, ток утечки в закрытом состоянии — 5 мА, напряжение между катодом и анодом в проводящем состоянии — -2 В, величина отпирающего напряжения на управляющем электроде равна 5 В при токе 160 мА, рассеиваемая корпусом прибора мощность— 10 Вт, предельная рабочая частота — 400 Гц.

А теперь обратимся к электроосветительным приборам. Нет ничего проще управлять работой любого из них. Нажал, к примеру, клавишу выключателя — ив комнате загорелась люстра, нажал еще раз — погасла. Иногда, правда, это достоинство неожиданно превращается в недостаток, особенно если вы хотите сделать свою комнату уютной, создать ощущение комфорта, а для этого так важно удачно подобрать освещение. Вот если бы свечение ламп менялось плавно.

Оказывается, в этом нет ничего невозможного. Нужно только вместо обычного выключателя подсоединить электронное устройство, управляющее яркостью светильника. Функции регулятора, «командующего» лампами, в таком приборе выполняет полупроводниковый симистор.

Построить простое регулирующее устройство, которое поможет управлять яркостью свечения настольной лампы или люстры, изменять температуру электроплитки или жала паяльника, вы сможете, воспользовавшись схемой, представленной на рисунке 5.

Рис. 5. Принципиальная схема регулятора

Трансформатор Т1 преобразует сетевое напряжение 220 В в 12 — 25 В. Оно выпрямляется диодным блоком VD1—VD4 и подается на управляющий электрод симистора VS1. Резистор R1 ограничивает ток управляющего электрода, а переменным резистором R2 регулируют величину управляющего напряжения.

Рис. 6. Временные диаграммы напряжения: а — в сети; б — на управляющем электроде симистора, в — на нагрузке.

Чтобы легче было разобраться в работе прибора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке (рис. 6). После включения устройства в сеть на его вход поступает переменное напряжение 220 В (рис. 6а). Одновременно на управляющий электрод симистора VS1 подается отрицательное напряжение синусоидальной формы (рис. 66). В момент, когда его величина превысит напряжение включения, прибор откроется и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания прибора. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь пилообразную форму (рис. 6в)

Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. При крайнем левом по схеме положении движка переменного резистора R2 нагрузка станет поглощать полные «порции» мощности. Если регулятор R2 повернуть в противоположную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор останется в закрытом состоянии и ток через нагрузку не потечет.

Нетрудно догадаться, что наш прибор регулирует мощность, потребляемую нагрузкой, изменяя тем самым яркость свечения лампы или температуру нагревательного элемента.

В устройстве можно применить следующие элементы. Симистор КУ208 с буквой В или Г. Диодный блок КЦ405 или КЦ407 с любым буквенным индексом, подойдут также четыре полупроводниковых диода серий Д226, Д237. Постоянный резистор — МЛТ-0,25, переменный — СПО-2 или любой другой мощностью не менее 1 Вт. ХР1 — стандартная сетевая вилка, XS1 — розетка. Трансформатор Т1 рассчитан на напряжение вторичной обмотки 12—25 В.

Если подходящего трансформатора нет, изготовьте его самостоятельно. Сердечник из пластин Ш16, толщина набора 20 мм, обмотка I содержит 3300 витков провода ПЭЛ-1 0,1, а обмотка II — 300 витков ПЭЛ-1 0,3.

Тумблер — любой сетевой, предохранитель должен быть рассчитан на максимальный ток нагрузки.

Регулятор собирается в пластмассовом корпусе. На верхней панели крепятся тумблер, переменный резистор, держатель предохранителя и розетка. Трансформатор, диодный блок и симистор устанавливаются на дне корпуса. Симистор необходимо снабдить теплорассеивающим радиатором толщиной 1 — 2 мм и площадью не менее 14 см2. В одной из боковых стенок корпуса просверлите отверстие для сетевого шнура.

Устройство не нуждается в налаживании и при правильном монтаже и исправных деталях начинает работать сразу после включения в сеть.

ПОЛЬЗУЯСЬ РЕГУЛЯТОРОМ, НЕ ЗАБЫВАЙТЕ О МЕРАХ БЕЗОПАСНОСТИ. ВСКРЫВАТЬ КОРПУС МОЖНО, ТОЛЬКО ОТКЛЮЧИВ ПРИБОР ОТ СЕТИ!

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его «довольно архаичным», пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор — это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 — это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно.
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 «анодный» вывод, цифрой 2 — «катодный», поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).


Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте — никакой, схема получается проще, но главное — исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на «аноде» симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.

То бишь — всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — симистор будет открываться при замыкании S1 в каждый момент превышения «анодным» напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.


Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 — динистор. Для интересующихся отмечу — на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

ТипU макс, ВI max, АIу отп, мА
КУ208Г4005
BT 131-6006001
BT 134-5005004
BT 134-6006004
BT 134-600D6004
BT 136-500Е5004
BT 136-600Е6004
BT 137-600Е6008
BT 138-60060012
BT 138-80080012
BT 139-50050016
BT 139-60060016
BT 139-80080016
BTA 140-60060025
BTF 140-80080025
BT 151-650R65012
BT 151-800R80012
BT 169D40012
BTA/BTB 04-600S6004
BTA/BTB 06-600C6006
BTA/BTB 08-600B6008
BTA/BTB 08-600C6008
BTA/BTB 10-600B60010
BTA/BTB 12-600B60012
BTA/BTB 12-600C60012
BTA/BTB 12-800B80012
BTA/BTB 12-800C80012
BTA/BTB 16-600B60016
BTA/BTB 16-600C60016
BTA/BTB 16-600S60016
BTA/BTB 16-800B80016
BTA/BTB 16-800S80016
BTA/BTB 24-600B60025
BTA/BTB 24-600C60025
BTA/BTB 24-800B80025
BTA/BTB 25-600В60025
BTA/BTB 26-600A60025
BTA/BTB 26-600B60025
BTA/BTB 26-700B70025
BTA/BTB 26-800B80025
BTA/BTB 40-600B60040
BTA/BTB 40-800B80040
BTA/BTB 41-600B60041
BTA/BTB 41-800B80041
MAC8M6008
MAC8N8008
MAC9M6009
MAC9N8009
MAC12M60012
MAC12N80012
MAC15M60015
MAC12N80015

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Нормализующая сеть avlsi с контролируемыми свойствами «победитель получает все»

1 C Аналоговые интегрированные схемы и обработка сигналов, 47 5, Kluwer Academic Publishers. Произведено в Нидерландах. Нормализующая сеть avls с управляемыми свойствами «победитель получает все» SHH-CH LU Институт нейроинформатики, Цюрихский университет и ETH Zurich, Winterthurerstrasse 9, CH-857 Zurich, Switzerland Поступила 8 июня; Отредактировано 6 июня; Принято в июле, тезисы.Мы описываем сеть avls, состоящую из группы возбуждающих нейронов и глобального тормозного нейрона. Выход тормозящего нейрона нормализуется по отношению к силе входов таким образом, чтобы это было полезно в любой системе, где мы хотим, чтобы выходной сигнал кодировал только силу входов и не зависел от количества активных входов. Схема в каждом нейроне эквивалентна схеме Lazzaro «победитель получает все» (WTA) [] с одним дополнительным транзистором и источником опорного напряжения.Как и в схеме Лаззаро, выходы возбуждающих нейронов кодируют нейрон с наибольшим входом. Новшество в том, что можно выбрать несколько победителей (soft-max). Изменяя один параметр, сеть может работать в режиме soft-max или в режиме WTA. Мы показываем результаты для двух различных сфабрикованных сетей. Ключевые слова: схема «победитель получает все», нормализующая схема, аналоговая VLS, нейронные сети. Введение Функция «победитель получает все» (WTA) — полезное вычисление в самоорганизующихся нейронных сетях [] и приложениях для обработки сигналов.t выбирает одного победителя из нескольких результатов. Он использовался в различных AVL-системах для вычисления стерео [], отслеживания объектов [4 7] и сжатия изображений []. Лаззаро и его коллеги [] были первыми, кто реализовал аппаратную модель сети WTA, состоящей из нескольких возбуждающих нейронов, которые подавляются глобальным тормозящим нейроном. Сеть вычисляет единственного победителя, личность которого указывается выходными сигналами возбуждающих нейронов. Локализованные победители могут быть получены путем соединения соседних нейронов через резистивные боковые соединения.Были реализованы варианты этой сети, которые включают боковые соединения, самоусиление через механизмы положительной обратной связи и каскадную конфигурацию [4,5,8,9]. Сходные сети связанных возбуждающих и тормозных нейронов, которые проявляют свойства softmax и WTA, были использованы для моделирования различных типов кортикальной обработки []. Такая сеть также использовалась для моделирования свойств управления усилением ячеек, выбирающих направление, в визуальной системе мух []. В этой работе мы описываем сеть из нескольких возбуждающих нейронов и одного тормозящего нейрона, которая выполняет либо вычисление soft-max (нет единственного победителя), либо вычисление WTA (есть только один победитель).В режиме soft-max выходы возбуждающих нейронов кодируют относительную силу входа: они зависят от количества входов, относительной силы входа и настроек двух параметров. Они также нормированы по постоянному току смещения. Глобальный запрещающий сигнал также может использоваться в качестве выхода. Этот выход насыщается с увеличением числа активных входов: уровень насыщения не зависит от количества входов и зависит только от входных значений. Схема, реализованная для каждого нейрона, эквивалентна схеме в сети WTA Лаззаро с дополнительным транзистором и смещением глобального параметра.Этот уклон определяет режим работы сети. Выходы возбуждающих нейронов также могут кодировать абсолютную мощность входов, используя вариант этой сети. Результаты двух изготовленных сетей нейронов показывают различные режимы работы. Описание схемы сети Общая архитектура рекуррентной сети с возбуждающими нейронами и одним тормозным нейроном показана на рис. Каждый возбуждающий нейрон получает внешний вход, ei , и тормозящий нейрон получает

2 48 Liu NPUTS LNEAR — ПОРОГ ЕДИНИЦЫ ВЫХОДОВ ei yi wieiyi wi e i + w i + y i + наибольший входной ток.Глобальный параметр V a определяет режим работы сети. В режиме WTA только один из токов oi равен b, а остальные выходные токи равны нулю. В режиме soft-max более чем один из выходных токов будет отличным от нуля, и относительные величины этих токов зависят от V a. В следующих двух подразделах мы выводим зависимость выходных токов и тормозного тока от V a и входных токов, т.е. AGGREGATON NHBTORY SGNAL Рис. Архитектура рекуррентной сети, которая состоит из N линейных пороговых возбуждающих нейронов (заштрихованные кружки) и одного глобального тормозящего нейрона (открытый эллипс).Входы в возбуждающие нейроны описываются e. Общий тормозящий сигнал y T для возбуждающих нейронов зависит от весов w и выходных состояний y нейронов. входы y i (взвешенные по w i) от возбуждающих нейронов. Выход тормозящего нейрона y T, в свою очередь, подавляет возбуждающие нейроны. Схема для двух возбуждающих нейронов и одного тормозящего нейрона показана на рис. Возбуждающий нейрон, который состоит из транзисторов от M до M, получает входной ток. Состояние нейрона представлено током r (или напряжением V r).Каждый возбуждающий нейрон представляет собой линейную пороговую единицу, потому что r не может быть отрицательным. Тормозящий ток T для каждого нейрона определяется выходными токами o и o. Эти токи суммируются с током смещения b, подаваемым транзистором M 4. Обратите внимание, что ток T не может превышать y T .. Зависимость от V a Тормозящий ток T в каждом нейроне определяется напряжением V T. Использование Кирхгофа s текущий закон в VT и предполагая, что транзисторы работают в режиме слабой инверсии, мы можем решить для VT в терминах b и V ri.Напряжение V ri определяется входным током i и T. Мы можем косвенно вычислить зависимость T от b: (N) () α κ b = i NTT i Параметр κ — это эффективность связи между затвором и канал транзистора в подпороговом режиме, N — количество активных возбуждающих нейронов (то есть нейронов, у которых i> T), и α = e κv a / u T. Предполагая, что κ =, мы можем решить для T напрямую: ii T = α b + α N = iib / α + N () Это уравнение показывает, что T нормировано на количество активных входов.M r V r TMM o VT o M5 V r T r M 6 V a V b M 4 b V a Возбуждающий нейрон, подавляющий нейрон Возбуждающий нейрон Рис. Схема для двух возбуждающих нейронов и нейрона глобального подавления, M 4. Схема в каждый возбуждающий нейрон состоит из источника входного тока и транзисторов от M до M. Тормозной транзистор является источником фиксированного тока b. Выходные токи o и o нормированы относительно b. Ширина и длина всех транзисторов в цепи возбуждающего нейрона 7 мкм.

3 A Нормализация avls Сеть 49 Мы решаем выходные токи oi, используя транслинейный принцип на транзисторах от M до M 6: oi = ri i T b = j N rj j (j T) b () Оба уравнения () и () действительны только тогда, когда токи ri конечны и сеть работает в режиме soft-max.В этом режиме V a меньше, чем V ri. Если мы увеличим V a, в конечном итоге все токи ri упадут до нуля, и мы сможем не учитывать транзисторы с диодным соединением. Сеть сокращается до сети Лаззаро и отображает нормальный ответ WTA, где только один oi не равен нулю. В режиме soft-max узел V ri в каждом нейроне является узлом с низким импедансом (или низким коэффициентом усиления). В режиме WTA этот узел становится узлом с высоким импедансом (или высоким коэффициентом усиления): различия входных токов значительно усиливаются. Коэффициент усиления в узле V ri зависит от проводимости стока транзисторов и определяется начальным напряжением.Для получения высокого коэффициента усиления мы можем увеличить раннее напряжение транзисторов, сделав транзистор M и входной транзистор, обеспечивающий длительное питание. В этой схеме выходные токи oi нормированы относительно b. Если мы заменим транзистор источника тока M 4 транзистором с диодным соединением, выходные токи отражают относительные величины входных токов. Эта ситуация была проанализирована в [4] … Зависимость от режима soft-max, количество активных нейронов, которые вносят вклад в T, зависит от относительной силы входных токов, параметра V a и тока смещения b.Чтобы вывести условия, при которых нейрон i активен, мы используем уравнения () и () и решаем oi как функцию от i: oi = ijj (b + α N) α () Отметив, что oi не должно быть отрицательным для активных входов, мы получаем i α (4) b + N α Мы рассмотрим конкретный случай N возбуждающих нейронов, где α часть нейронов получает входной ток величины β i (β), а остальные нейроны получают входной сигнал. ток величиной i. Используя уравнение (4), мы знаем, что последние нейроны активны, когда выполняется следующее условие: αn (β) b / α (5) Относительные величины входных сил и относительное количество нейронов с входными β i определяют, будет ли остальные нейроны активны.. Результаты чипа j j Сеть, состоящая из возбуждающих нейронов и тормозных нейронов, как показано на рис., Была изготовлена ​​на этапе a. мкм CMOS процесс. Результаты этой схемы описаны в разделах. и .. Модифицированная сеть (рис.), состоящая из возбуждающих нейронов, которые связаны вместе в узлах V ri и VT горизонтальными диффузорами [5] или псевдопроводимостью [6] (M 5 и M 6), была изготовлена ​​с помощью процесса CMOS мкм . V g V дюйм V g V дюйм / 7/7 V h MM 6 M 6/8 o M 5 r 7/7 V ho V a TMM 4 VTM 7 6/8 V b V a 7/7 6/7 V b Инжир.. Сеть возбуждающих нейронов, которые связаны вместе диффузорами или псевдопроводимостью (M 6 и M 7). Тормозной транзистор M является локальным для каждого нейрона. Размеры транзисторов указаны в микрометрах. Эта схема была изготовлена ​​по технологии КМОП мкм.

4 5 Liu Каждый нейрон имеет свой собственный транзистор источника тока, M 4. Диффузоры действуют как боковые резисторы и смещаются на V g и V h соответственно. Эта сеть позволяет локализовать регионы конкуренции.Результаты этого чипа описаны в разделе …. Результаты взаимодействия -nput Мы рассмотрели взаимодействие между двумя входными нейронами в различных режимах сети на рис. напряжение на затворе равно V in. Это напряжение было установлено на одно и то же значение в двух нейронах; остальные нейроны получают нулевой вход. Мы варьировали V a (тем самым меняя режим работы сети) и измеряли выходные токи нейронов. Измеренные токи o и o в зависимости от V a показаны на рис.4 (а). Четыре кривые соответствуют четырем различным значениям V in. Токи o и o были равны при низком значении V a, как и ожидалось в режиме soft-max. По мере увеличения V a соотношение выходных токов начинало отклоняться от. Один из двух выходов начинает учитывать большую часть тока смещения b из-за небольшого несоответствия между двумя входными токами. В конце концов, этот выходной ток переходит в b при дальнейшем увеличении V a. Значение V a, когда выходные токи начинают отклоняться друг от друга, зависит от величины входного тока (V in).Когда V a приближается к V ri выигравшего нейрона, мы используем закон Кирхгофа по току в узле VT и получаем κv a = VT + κv b (6) Поскольку VT зависит от входного тока, V a увеличивается с уменьшением V in (увеличение входного Текущий). Различные режимы работы сети, соответствующие различным значениям V a, также можно увидеть, измеряя o и o при изменении дифференциального напряжения между двумя входами, как показано на рис. 4 (b). Здесь V in было дифференциально развернуто вокруг фиксированного входного напряжения V in = 4.V для четырех параметров настройки V a.asv a был увеличен с 4 В до 7 В, диапазон дифференциального линейного входа уменьшился примерно с 4 мВ (режим soft-max) до mv (режим WTA) … Результаты Multi Взаимодействие с входом Мы показываем здесь взаимодействие между несколькими входами в сети, где пиксели соединены вместе с диффузорами, как показано на рис .. Вместо измерения выходных токов oi мы преобразовали эти токи в напряжение с помощью встроенного сканера [ 7], внешний усилитель считывания тока и резистор.В этом эксперименте мы демонстрируем нормализующее поведение сети в режиме soft-max. Входной ток одного нейрона (который мы называем нейроном переднего плана) был установлен на более высокое значение (V in = 0,6 В), чем у остальных фоновых нейронов (V in = 0,7 В). Несмотря на то, что сеть допускает локальные области конкуренции, мы устанавливаем смещения для боковых диффузоров V h и V g на V и 7 В соответственно, чтобы нейроны конкурировали за постоянный ток смещения. Выходные напряжения нейронов в зависимости от количества нейронов на переднем плане показаны на рис.5 (а). Четыре кривые соответствуют измеренному V.5 o, o (A) 5 4 V in 4. V 4. V 4. V o, o (A) .5 VV a.7 VV a.4 VV a.6 VV a V (V) a .. V in V in (V) (a) (b) Рис. 4. Отклик двух нейронов в сети, показанной на рис. Параметр V a определяет, работает ли сеть в программном обеспечении. max или режим WTA. (a) Выходные токи o и o как функции от V a для подпорогового тока смещения и V in = 4. V до 4. V. (b) Выходные токи как функции дифференциального входного напряжения, V in V in, с V в = 4.V.

5 A Нормализация avls Сеть 5 Измеренный ответ (V) V n Увеличение числа нейронов на переднем плане Измеренный ответ (V) .5 нейронов нейронов нейронов 5 нейронов 5 5 Номер нейрона 5 (a) Число нейронов (b) Рис. Ответ сети, показанной на рис., Для увеличивающегося числа нейронов (на переднем плане), которые получили больший входной ток, чем остальные нейроны. V a был настроен таким образом, чтобы сеть работала в режиме soft-max (V a = 0,6 В). Выходные токи нейронов преобразовывались в напряжения через внешний усилитель считывания и резистор M.(а) Следы, соответствующие разному количеству нейронов на переднем плане, сдвинуты относительно друг друга для облегчения сравнения. Самая нижняя кривая — это отклик сети для одного нейрона, который получил больший входной ток (V in = 0,6 В), чем остальные нейроны (V in = 0,7 В). Остальные три кривые были измеренными выходными напряжениями нейронов, когда все большее количество нейронов переднего плана получало больший входной ток. Самая верхняя кривая — это отклик сети для пяти нейронов переднего плана.(б) Увеличенные отклики выходных напряжений нейронов переднего плана. Кривые показывают снижение выходного напряжения (сплошная кривая) 9-го нейрона (начального единственного нейрона переднего плана) по мере добавления большего количества нейронов с большим входным током. Эти ответы иллюстрируют нормализующее поведение сети в этом режиме. выходные токи для ,,, и 5 нейронов переднего плана. По мере того, как на передний план добавлялось больше нейронов, выходное напряжение исходного единственного нейрона на переднем плане уменьшалось, как показано увеличенными наложенными кривыми на рис.5 (б). Выходное напряжение нейрона переднего плана было нормализовано к увеличению числа нейронов, разделяющих один и тот же входной ток. Отклик сети в двух режимах работы для двух пространственно разделенных групп из четырех нейронов, входные токи которых выше (V in = 0,5 В), чем у остальных нейронов (V in = 0,7 В), показан в следующем эксперименте. Отклик сети в режиме soft-max показан на самой нижней кривой на рис. 6. Есть несколько победителей, что проиллюстрировано аналогичными выходными напряжениями нейронов в двух группах.Выходные напряжения победителей немного отличаются из-за несоответствия в схемах нейронов. Коэффициент вариации (стандартное отклонение / среднее значение) фактических текущих выходов составлял около%. Когда мы увеличиваем V a, сеть переходит в режим WTA, и только один из нейронов в двух группах побеждает, как показано на самом верхнем графике Рис. Отклик напряжения общего узла, VT Напряжение общего узла VT схемы в Рис. Отражает ток подавления возбуждающего нейрона. Измеренный ответ (V) 5 4 V n возрастающий V a Число нейронов Рис.6. Отклик сети на рис. С двумя пространственно разделенными группами из четырех нейронов переднего плана: эти группы получают более высокий входной ток (V in = 0,5 В), чем остальные нейроны (V in = 0,7 В). Нейроны в сети разделяют постоянный ток смещения. Три кривые соответствуют трем значениям V a (0,85 В, V и V). Кривые сдвинуты относительно друг друга для облегчения сравнения. Самая нижняя кривая показывает реакцию сети, работающей в режиме soft-max (V a = 0,85 В).Самая верхняя кривая показывает реакцию сети при работе в режиме WTA. Один нейрон выигрывает и забирает весь ток смещения. роны. t кодирует силу входов независимо от количества входов. В этих экспериментах мы измеряли VT изготовленной схемы по мере увеличения

6 5 Liu V V.9 VVT (V) VV в 4. VVT (V) .4..8 V.7 VV a.6 V Количество входы (а) Количество входов (б) Рис. 7. (а) Напряжение общего узла VT как функция количества активных нейронов с одинаковым входным током.Сеть работала в режиме soft-max (V a = 0,8 В, V b = 0,7 В). Напряжение V T кодирует входную мощность независимо от количества активных нейронов. Значение насыщения V T увеличивается с увеличением входного тока. (б) Количество нейронов, на которых V T насыщается, зависит от V a. Различные кривые соответствуют V a в диапазоне от 6 В до V и V in = 4. V. AsV a увеличивается, кривая раньше выходит на насыщение. количество нейронов, получающих входной ток. Эти измерения (рис. 7 (а)) показывают, что это напряжение первоначально увеличивалось и в конечном итоге достигало насыщения по мере того, как все больше нейронов получали тот же входной ток.Этот ответ описывается уравнением (). Эксперимент был повторен для двух других входных напряжений; значение, при котором V T насыщается, зависит от входного напряжения. Количество входов, на которых V T насыщается, зависит от отношения b / α (описывается уравнением ()). Удерживая V постоянным и изменяя V a (таким образом, α), мы видим, что самая нижняя кривая на рис. 7 (a) насыщается в разных точках, как показано на рис. 7 (b). 4. Заключение Мы описали нормализующую avls-сеть с управляемыми свойствами «победитель получает все».Изменяя параметр, сеть может переключаться между режимом softmax и режимом «победитель получает все». Недавняя сеть avls от Hahnloser [8] также отображает свойства softmax. Эта сеть не проявляет свойства «победитель принимает все», если нейроны не получают дополнительного самовозбуждения. Запрещающий сигнал генерируется через транзистор с диодным соединением, а не через источник тока, и в нейронной цепи используется больше транзисторов. Наша сеть полезна в задаче обработки сигналов, которая требует вычисления либо soft-max, либо «победитель получает все».Глобальный тормозной сигнал кодирует относительные величины входных мощностей в режиме soft-max. Сеть может использоваться для моделирования свойств управления усилением избирательности по направлению в зрительной системе мух и нормализующих свойств кортикальной обработки. Выражение признательности Родни Дугласу за поддержку этой работы; а также Тобиасу Дельбрюку и Адриану Ватли за вычитку этого документа. Работа частично поддержана грантом Швейцарского национального фонда исследований SPP и фондом U.С. Управление военно-морских исследований. Использованная литература. Лаззаро, Дж., Рикебуш, С., Маховальд, М. А. и Мид, К. А. Сети победителя, получающие все, сложности O (n). n: Д. Турецкий (ред.), Развитие систем обработки нейронной информации. Морган Кауфманн: Сан-Матео, Калифорния, стр. 7 7, Фанг, В., Шеу, Б., Чен, О. и Чой, Дж., Нейронный процессор VLS для сжатия данных изображений с использованием самоорганизующейся сети. EEE Trans. Neural Network (), стр. 99 .. Mahowald, M. и Delbruck, T., Аналоговая реализация VLS алгоритма стерео соответствия Marr-Poggio, в Proc.ntl. Neural Network Soc., Бостон, Массачусетс, Индивери, Дж., Сети, где победитель получает все, с боковым возбуждением. Аналоговые интегрированные схемы и обработка сигналов (/), стр. 85. 9, Моррис, Т., Хориучи, Т. и Нибур, Э., Отбор на основе объектов в аналоговой системе визуального внимания VLS. EEE Trans. on Circuits and Systems 45 (), стр, Хориучи, Т. и Нибур, Э., Поиск соединения с использованием -D, аналогового чипа поиска / отслеживания на основе VLS. in Conference on Advanced Research in VLS, Atlanta, GA, 4 марта 999.

7 Нормализующая сеть avls 5 7.ndiveri, G., Whatley, A. M. и Kramer, J., Реконфигурируемая нейроморфная многокристальная система VLS, применяемая для вычисления визуального движения, Proceedings of the Seventh nt. Конференция по микроэлектронике для нейронных, нечетких и биологических систем; Microneuro 99. Компьютерное общество EEE: Лос-Аламитос, Калифорния, стр. 7 44, Чой, Дж. И Шеу, Б., Высокоточная VLS-схема с принципом «победитель получает все» для самоорганизующихся нейронных сетей. EEE Trans. Схемы и системы 8 (5), стр., Старзик, Дж. И Фанг, X., Схема «победитель получает все» в токовом режиме CMOS с возбуждающей и тормозящей обратной связью.Electronics Letters 9 (), стр. 98 9, 99 .. Амари, С., Арбиб, М., Конкуренция и сотрудничество в нейронных сетях. n: Дж. Метцлер (ред.), Системная неврология. Academic Press: New York, pp. 9 65, Гроссберг, В., Нелинейные нейронные сети: принципы, механизмы и архитектуры. Нейронные сети, стр. 7 6, Салинас, Э. и Эбботт, Л., Модель мультипликативных нейронных ответов в теменной коре. в Proc. Natl. Акад. Sci. USA 9, pp, Reichardt, W., Poggio, T. и Hausen, K. Различение фигуры и фона посредством относительного движения в зрительной системе мухи, Часть: На пути к нейронной схеме.Биологическая кибернетика 46, стр., Лю С.-К., Схема, в которой победитель получает все, с управляемым свойством мягкого максимума. n: С. А. Солла, Т. К. Лин, К.-Р. Мюллер (ред.), Достижения в системах обработки нейронной информации. MT Press: Cambridge, MA, pp. 77 7 ,. 5. Андреу А., Боахен К. Транслинейные схемы в подпороговых МОП. Аналоговые интегрированные схемы и обработка сигналов 9, стр. 4 66, Виттоц, Э. А., Псевдорезистивные сети и их приложения для аналоговых коллективных вычислений, Proceedings of MicroNeuro 97, Dresden, pp.6 7, Мид К. и Дельбрюк Т. Сканеры для визуализации активности аналоговых схем VLS. Аналоговый VLS и обработка сигналов, стр. 9 6, Ханлозер, Р., О кусочном анализе сетей линейных пороговых нейронов. Neural Networks, pp, 998. Shih-Chii Liu получил степень бакалавра наук. степень в области электротехники Массачусетского технологического института в 98 г., а также степень магистра наук. степень в области электротехники в Калифорнийском университете в Лос-Анджелесе в 988 году. Она получила степень доктора философии. степень в программе вычислительных и нейронных систем Калифорнийского технологического института в 997 году.В настоящее время она работает врачом-уберассистентином в Институте нейроинформатики ETH / UNZ в Цюрихе, Швейцария. Доктор Лю работала в Gould American Microsystems с 98 по 985 год и с LS Logic с 985 по 988 год. Она работала в Rockwell nternational Research Labs с 988 по 997. Ее исследовательские интересы включают нейроморфное моделирование визуальной и корковой обработки, сети для генерации поведения. и гибридная аналогово-цифровая обработка сигналов.

LD39150 — Стабилизатор напряжения Bicmos со сверхнизким падением напряжения

AM2520EG / 4YD5V : Сверхминиатюрная твердотельная лампа.Желтый (пиковая длина волны 590 Нм). Тип линзы: желтая рассеянная ..

QEV55-AT100DT20 : 77,76 МГц Dil14 / 4 контакта Vcxo. Рабочая температура Стабильность частоты Старение при 25 ° C Напряжение питания Потребляемый ток Диапазон напряжения Время нарастания и спада Нагрузка Совместимость с HCMOS / TTL Рабочий цикл Джиттер -40C ~ + 85C 20 ppm 3 ppm макс. / Год 45 мА макс. > 100 ppm 1 нс макс. 15 пФ макс 150 пс п-п КРАТКАЯ ФОРМА Технические данные — Для получения более подробной информации, пожалуйста, свяжитесь с нами ОФИСЫ ПО ПРОДАЖАМ:.

SN74ALS232B : биполярный-> семейство ALS.Асинхронный FIFO: 16×4. Независимые асинхронные входы и выходы 16 слов по 4 бита Скорость передачи данных до 40 МГц Время спада 14 нс Типовые варианты комплектации выходов с 3 состояниями включают пластиковый корпус малого размера (DW), пластиковые держатели микросхем (FN) и стандартный пластиковый 300- mil DIPs (N) Эта 64-битная память с высокой скоростью и малым временем восстановления. Он организован как 16 слов по 4 бита.

ICS83054I : 4: 1, ОДНОСТОРОННИЙ МУЛЬТИПЛЕКСОР ICS83054I — это односторонний мультиплексор с низким перекосом, 4: 1, входящий в семейство высокопроизводительных тактовых решений HiPerClockS от ICS.ICS83054I имеет четыре выбираемых несимметричных тактовых входа и один несимметричный тактовый выход. Выход имеет вывод VDDO, который может быть установлен на 3,3 В, 2,5 В или 1,8 В, что и делает устройство.

CSNE571 : Твердотельные датчики Датчики тока с замкнутым контуром. Твердотельные датчики Датчики тока с замкнутым контуром СИСТЕМА НОМЕРОВ КАТАЛОГА ОБРАТИТЕ ВНИМАНИЕ: Эта матрица предназначена только для того, чтобы помочь вам идентифицировать списки датчиков в каталогах. Он не является всеобъемлющим и не должен использоваться для формирования новых списков. Пример: CSNA111 CSN Диапазон тока датчика тока с обратной связью (пиковое / среднеквадратичное значение ном.) A / 50 A среднекв. Ном. A / 50 A среднекв. Ном. A / 50 A среднекв. Ном.

AM29DL800BB120ED : 8 Мегабит (1 M x 8 бит / 512 K x 16 бит) CMOS, только 3,0 В, флэш-память для одновременной работы.

SDR622G : сверхбыстрый выпрямитель, 20 ампер, 100-200 вольт, 35 нс. 14701Firestone Blvd * La Mirada, CA 90638 Телефон: 404-7855 * Факс: (562) 404-1773 [email protected] * www.ssdi-power.com Заменяет устройства 1N5816. Сверхбыстрое восстановление: 35 нс, максимум, высокий уровень скачков напряжения, низкий Обратный ток утечки Низкая емкость перехода Герметичный блок питания для поверхностного монтажа Золото Эвтектическое крепление матрицы Доступный ультразвуковой алюминий.

HV9986 : трехканальная ИС драйвера светодиода с замкнутым контуром и режимом переключения с внешним сбросом. HV9986 — это трехканальный ШИМ-контроллер в режиме пикового тока для управления преобразователями с одним переключателем в режиме постоянного выходного тока. Его можно использовать для управления светодиодами RGB или несколькими каналами белых светодиодов. HV9986 — это линейный стабилизатор на 40 В, который обеспечивает питание 5 В.

09 30 006 0443 : КАПОТ, HAN 6B, ВЫСОКИЙ ВХОД, МЕТАЛЛ. s: Серия: Han B; Тип аксессуара: капюшон; Для использования с: стандартными разъемами Han; Размер корпуса разъема: 6B; Угол выхода кабеля: 180; Материал корпуса разъема: металл.

GLEA01A2B : Переключатели Basic / мгновенного действия / концевые .165Nm 1,50 дюйма фунт 10A 1NC 1NO SPDT Snap. s: Производитель: Honeywell; Категория продукта: Базовые / мгновенного действия / концевые выключатели; RoHS: подробности; Контактная форма: SPDT — 1 NC / 1 NO; Привод: рычаг; Текущий рейтинг (макс.): 10 ампер; Номинальное напряжение переменного тока: 300 вольт; Номинальное напряжение постоянного тока: 250 вольт; Рабочая сила: 0,165.

195D225X06R3C2T : танталовый конденсатор 2,2F 0905 (2114 метрическая система) 6,3 В; КРЫШКА 2.2 мкФ 6.3V 20% 0905. s: Емкость: 2.2F; Напряжение — номинальное: 6,3 В; Допуск: 20%; : Общее назначение ; Рабочая температура: -55C ~ 125C; Расстояние между выводами: -; ESR (эквивалентное последовательное сопротивление): -; Срок службы при температуре: -; Тип установки: поверхностное крепление; Тип: Конформное покрытие; Упаковка / футляр :.

0760552105 : Золотая объединительная плата со сквозными отверстиями — специализированные разъемы, соединительный разъем, штыревые контакты; ЖАТКА CONN BP 150POS 10COL GOLD. s: Цвет: черный; Тип разъема: ударный, левая направляющая; Тип разъема: Заголовок, штекерные контакты; Использование разъема: объединительная плата, промежуточная плата, ортогональная; Контактная отделка: золото; Толщина контактной отделки: 30 дюймов (0.76м); Типовое расположение контактов :.

568-0704-801F : светодиод, круглый с выпуклым верхом, 3 мм, 2,1 В, 30 мА, зеленый, 20 мА, желтый, зеленый, желтый (x 4), сквозное отверстие, под прямым углом; Светодиод CBI 3MM 4X1 Y / G, Y / G, Y / G, Y / G. s: Цвет: зеленый, желтый (4 шт.); Тип установки: на сквозное отверстие, под прямым углом; Конфигурация: 4 High; Номинальное напряжение: 2,1 В; Ток: 30 мА зеленый, 20 мА желтый; Тип / размер линз: Круглый с выпуклым верхом, 3 мм; Упаковка:.

ERA-2AEB1181X : Чип резистор 1,18 кОм 0,063 Вт, 1/16 Вт — поверхностный монтаж; RES 1.18 кОм 1/16 Вт. 1% 0402 SMD. s: Сопротивление (Ом): 1,18 кОм; Мощность (Вт): 0,063 Вт, 1/16 Вт; Допуск: 0,1%; Упаковка: лента и катушка (TR); Состав: Тонкая пленка; Температурный коэффициент: 25 частей на миллион / C; Статус без свинца: без свинца; Статус RoHS: Соответствует RoHS.

RT0805CRD07316KL : Чип резистор 316 кОм 0,125 Вт, 1/8 Вт — поверхностный монтаж; RES 316K OHM 1 / 8W. 25% SMD 0805. s: Сопротивление (Ом): 316K; Мощность (Вт): 0,125 Вт, 1/8 Вт; Допуск: 0,25%; Упаковка: лента и катушка (TR); Состав: Тонкая пленка; Температурный коэффициент: 25 частей на миллион / C; Статус без свинца: без свинца; Статус RoHS: Соответствует RoHS.

PLA171PTR : реле SSR 50 мА 1,4 В постоянного тока 0,1 А 800 В 6-контактный FPAK T / R. divRelay SSR 50mA 1,4V DC-IN 0,1A 800V 6-контактный FPAK, 1000pc Лента и катушка / дел.

SM4172 : ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ МОЩНОСТИ ВЧ / СВЧ-диапазона от 10 МГц до 250 МГц. s: Тип усилителя: Усилитель мощности; Области применения: микроволновая печь RF; Диапазон частот: от 10 до 250 МГц; Минимальное усиление: 12 дБ; Входной КСВН: 2 1; Выходной КСВН: 2 1; Тип упаковки: TO-8, 4 PIN; Рабочая температура: от -55 до 85 C (от -67 до 185 F).

172493-1 : 18 КОНТАКТ (-Ы), ВНУТРЕННИЙ, СОЕДИНИТЕЛЬ ПИТАНИЯ, РАЗЪЕМ. s: Тип разъема: СОЕДИНИТЕЛЬ ПИТАНИЯ; Женский пол ; Кол-во контактов: 18.

1963460000 : РАЗЪЕМ ВНУТРЕННИЙ, ТЕЛЕКОМ И ДАТАКОМ, IDC. s: Приложения: Телекоммуникации / Данные / Сетевые разъемы; Женский пол ; Типы завершения: IDC.

AHDP04-24-31PR-WTA : Стандартный круглый разъем RCP 24 SZ 31 PIN СТАНДАРТНАЯ КОНСТРУКЦИЯ RD01 SEAL WT. Amphenol Sine Systems AHDP Dura | Пластиковые круглые соединители Mate для тяжелых условий эксплуатации представляют собой многополюсные многополюсные круглые соединители из термопласта с защитой от окружающей среды, обеспечивающие систему байонетного замка с быстрым соединением.Разъемы AHDP Dura | Mate совместимы с промышленными корпусами размером 24.

AHDP06-24-21PN-WTA | Amphenol Sine Systems Corp | Круглые соединители — корпуса

Быстрый запрос

AHDP06-24-21PN-WTA

— Palun Вали —United StatesChinaFranceGermanyIndiaJapanKorea, Республика ofRussian FederationTaiwanUnited KingdomAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова ( Мальвинские острова) Фарерские острова ФиджиФинляндияФранцияФранцузская ГвианаФранцузская ПолинезияФранцузские Южные территорииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГватемалаПодлинная aGuinea-bissauGuyanaHaitiHeard Island и МакДональда IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика ofIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика ofKorea, Республика ofKosovo, Республика ofKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, бывшая югославская Республика ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты ofMoldova, Республика ofMonacoMongoliaMontenegro, РеспубликаМонсерратМароккоМозамбикМьянмаНамибияНауруНепалНидерландыНидерландские Антильские островаНовая КаледонияРегионНовая ЗеландияНикарагуаНигерНигерияНиуэНорфолк ОстровСеверные Марианские островаНорвегияОманПакистанПалауПалестинские территории, оккупированныеПанамаПарагуа-Новая Гвань daSaint HelenaSaint Киттс и NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Том и PrincipeSaudi ArabiaSenegalSerbia, Республика ofSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия и Южный Сэндвич IslandsSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, Объединенная Республика ofThailandTimor-lesteTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабского EmiratesUnited KingdomUnited Внешние малые острова США УругвайУзбекистан Вануату Венесуэла Вьетнам Виргинские острова, Британские Виргинские острова, СШАС.Уоллис и Футуна, Западная Сахара, Йемен, Замбия, Зимбабве,

.

AHDP04-24-09PR-WTA | Amphenol Sine Systems Corp | Круглые соединители — корпуса

Быстрый запрос

AHDP04-24-09PR-WTA

— Palun Вали —United StatesChinaFranceGermanyIndiaJapanKorea, Республика ofRussian FederationTaiwanUnited KingdomAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова ( Мальвинские острова) Фарерские острова ФиджиФинляндияФранцияФранцузская ГвианаФранцузская ПолинезияФранцузские Южные территорииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГватемалаПодлинная aGuinea-bissauGuyanaHaitiHeard Island и МакДональда IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика ofIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика ofKorea, Республика ofKosovo, Республика ofKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, бывшая югославская Республика ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты ofMoldova, Республика ofMonacoMongoliaMontenegro, РеспубликаМонсерратМароккоМозамбикМьянмаНамибияНауруНепалНидерландыНидерландские Антильские островаНовая КаледонияРегионНовая ЗеландияНикарагуаНигерНигерияНиуэНорфолк ОстровСеверные Марианские островаНорвегияОманПакистанПалауПалестинские территории, оккупированныеПанамаПарагуа-Новая Гвань daSaint HelenaSaint Киттс и NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Том и PrincipeSaudi ArabiaSenegalSerbia, Республика ofSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия и Южный Сэндвич IslandsSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, Объединенная Республика ofThailandTimor-lesteTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабского EmiratesUnited KingdomUnited Внешние малые острова США УругвайУзбекистан Вануату Венесуэла Вьетнам Виргинские острова, Британские Виргинские острова, СШАС.Уоллис и Футуна, Западная Сахара, Йемен, Замбия, Зимбабве,

.

% PDF-1.4 % 488 0 объект > эндобдж xref 488 258 0000000016 00000 н. 0000006867 00000 н. 0000007076 00000 н. 0000007120 00000 н. 0000007156 00000 н. 0000009495 00000 н. 0000009674 00000 п. 0000009823 00000 п. 0000010038 00000 п. 0000010186 00000 п. 0000010888 00000 п. 0000011361 00000 п. 0000011535 00000 п. 0000011702 00000 п. 0000012112 00000 п. 0000012529 00000 п. 0000012989 00000 п. 0000013175 00000 п. 0000013363 00000 п. 0000013400 00000 п. 0000013604 00000 п. 0000013669 00000 п. 0000014629 00000 п. 0000014817 00000 п. 0000015253 00000 п. 0000015459 00000 п. 0000015649 00000 п. 0000015842 00000 п. 0000015928 00000 п. 0000016343 00000 п. 0000016530 00000 п. 0000016980 00000 п. 0000037565 00000 п. 0000048191 00000 п. 0000053907 00000 п. 0000059515 00000 п. 0000064408 00000 п. 0000069856 00000 п. 0000070397 00000 п. 0000070526 00000 п. 0000075342 00000 п. 0000084462 00000 п. 0000087155 00000 п. 0000097655 00000 п. 0000105676 00000 н. 0000106666 00000 н. 0000111713 00000 н. 0000111773 00000 н. 0000112028 00000 н. 0000112209 00000 н. 0000113133 00000 н. 0000113312 00000 н. 0000113689 00000 н. 0000113873 00000 н. 0000114407 00000 н. 0000114527 00000 н. 0000128464 00000 н. 0000128503 00000 н. 0000129181 00000 н. 0000129334 00000 н. 0000129621 00000 н. 0000129769 00000 н. 0000130380 00000 н. 0000130533 00000 н. 0000131117 00000 н. 0000131270 00000 н. 0000131839 00000 н. 0000131992 00000 н. 0000132562 00000 н. 0000132715 00000 н. 0000133277 00000 н. 0000133430 00000 н. 0000133975 00000 н. 0000134128 00000 н. 0000134662 00000 н. 0000134815 00000 н. 0000135357 00000 н. 0000135510 00000 н. 0000136038 00000 н. 0000136191 00000 п. 0000136726 00000 н. 0000136879 00000 п. 0000137396 00000 н. 0000137549 00000 н. 0000138147 00000 н. 0000138300 00000 н. 0000138818 00000 н. 0000138971 00000 н. 0000139491 00000 п. 0000139644 00000 н. 0000140173 00000 п. 0000140326 00000 н. 0000140846 00000 н. 0000140999 00000 н. 0000141524 00000 н. 0000141677 00000 н. 0000142194 00000 н. 0000142347 00000 н. 0000142950 00000 н. 0000143103 00000 п. 0000143255 00000 н. 0000143408 00000 н. 0000143561 00000 н. 0000143714 00000 н. 0000143867 00000 н. 0000144020 00000 н. 0000144172 00000 н. 0000144791 00000 н. 0000144945 00000 н. 0000145098 00000 н. 0000145250 00000 н. 0000145403 00000 п. 0000145556 00000 п. 0000145709 00000 н. 0000145862 00000 н. 0000146015 00000 н. 0000146168 00000 н. 0000146321 00000 н. 0000146474 00000 н. 0000146626 00000 н. 0000146779 00000 н. 0000146932 00000 н. 0000147085 00000 н. 0000147238 00000 п. 0000147391 00000 н. 0000147544 00000 н. 0000147697 00000 н. 0000147850 00000 п. 0000148003 00000 н. 0000148156 00000 н. 0000148308 00000 н. 0000148461 00000 п. 0000148614 00000 н. 0000148767 00000 н. 0000148920 00000 н. 0000149073 00000 н. 0000149225 00000 н. 0000149378 00000 н. 0000149531 00000 н. 0000149683 00000 н. 0000149836 00000 н. 0000149987 00000 н. 0000150139 00000 н. 0000150291 00000 н. 0000150444 00000 н. 0000150597 00000 н. 0000150750 00000 н. 0000150903 00000 н. 0000151056 00000 н. 0000151209 00000 н. 0000151362 00000 н. 0000151515 00000 н. 0000151668 00000 н. 0000151821 00000 н. 0000151974 00000 н. 0000152127 00000 н. 0000152280 00000 н. 0000152433 00000 н. 0000152586 00000 н. 0000152739 00000 н. 0000152891 00000 н. 0000153044 00000 н. 0000153197 00000 н. 0000153348 00000 н. 0000153501 00000 н. 0000153654 00000 п. 0000153807 00000 н. 0000153960 00000 н. 0000154113 00000 н. 0000154266 00000 н. 0000154419 00000 н. 0000154572 00000 н. 0000154725 00000 н. 0000154878 00000 н. 0000155031 00000 н. 0000155184 00000 н. 0000155336 00000 н. 0000155489 00000 н. 0000155642 00000 н. 0000155795 00000 н. 0000155948 00000 н. 0000156101 00000 п. 0000156254 00000 н. 0000156407 00000 н. 0000156560 00000 н. 0000156713 00000 н. 0000156866 00000 н. 0000157019 00000 п. 0000157172 00000 н. 0000157325 00000 н. 0000157477 00000 н. 0000157629 00000 н. 0000158226 00000 н. 0000158379 00000 н. 0000158956 00000 н. 0000159109 00000 н. 0000159695 00000 н. 0000159848 00000 н. 0000160414 00000 н. 0000160567 00000 н. 0000161010 00000 н. 0000161058 00000 н. 0000163242 00000 н. 0000163720 00000 н. 0000164520 00000 н. 0000165328 00000 н. 0000166136 00000 н. 0000166936 00000 н. 0000167741 00000 н. 0000168548 00000 н. 0000169348 00000 н. 0000170150 00000 н. 0000170950 00000 н. 0000171751 00000 н. 0000172094 00000 н. 0000172895 00000 н. 0000173696 00000 н. 0000174497 00000 н. 0000175177 00000 н. 0000175225 00000 н. 0000175830 00000 н. 0000176289 00000 н. 0000176337 00000 н. 0000176735 00000 н. 0000177948 00000 н. 0000178480 00000 н. 0000178528 00000 н. 0000178919 00000 н. 0000179211 00000 н. 0000179636 00000 н. 0000180442 00000 н. 0000180514 00000 н. 0000180656 00000 н. 0000180775 00000 н. 0000180899 00000 н. 0000181063 00000 н. 0000181395 00000 н. 0000181513 00000 н. 0000181671 00000 н. 0000181889 00000 н. 0000182157 00000 н. 0000182314 00000 н. 0000182455 00000 н. 0000182579 00000 н. 0000182719 00000 н. 0000182851 00000 н. 0000182983 00000 н. 0000183115 00000 н. 0000183247 00000 н. 0000183405 00000 н. 0000183616 00000 н. 0000183895 00000 н. 0000184052 00000 н. 0000184297 00000 н. 0000184568 00000 н. 0000184861 00000 н. 0000185134 00000 н. 0000005456 00000 н. трейлер ] / Назад 940752 >> startxref 0 %% EOF 745 0 объект > поток h ޜ U Lg ~ kZ (X) `i: D! a-vb; qaZYEp2l: sbXT1EcaM0ed: : h ܾ vM% {{} год

тиристор% 20xo% 20602% 20 мА лист данных и примечания по применению

2002 — Симистор к 220

Аннотация: Тиристорный симистор 400 В 16 А TRIAC 25 А 600 В симистор 600 В 25 А симистор 400 В 25 А Симистор 3 А 600 В симистор 10 А Тиристор 400 В 3 А 600 В Тиристор to 220
Текст: нет текста в файле


Оригинал
PDF ET013 ET015 ET020 SLA0201 STA203A STA221A TF321M TF321M-A TF321S TF341M Симистор to220 Тиристор симистор 400v 16a TRIAC 25a 600v симистор 600в 25а симистор 400в 25а Симистор 3а 600в симистор 10а 400в тиристор 3а 600в Тиристор к220
2008 — анодный затвор тиристор

Аннотация: 3-фазная схема запуска тиристора схемы управления затвором быстрого тиристора 200A 3-фазный тиристорный привод постоянного тока pgh25016am 600A тиристорный scr демпфер ДЛЯ 3-фазного МОСТОВОГО выпрямителя схема запуска тиристора 200A схема управления тиристорным затвором 6 схема драйвера тиристора
Текст: нет текста в файле


Оригинал
PDF 108мм ПГх408 тиристор с анодным затвором Трехфазная схема включения тиристора быстрые тиристорные схемы управления затвором 200А 3-х фазный тиристорный привод постоянного тока pgh25016am 600А тиристорный scr демпфер ДЛЯ 3-ФАЗНОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ схема включения тиристора Схема управления тиристорным затвором на 200 А 6 тиристорная схема драйвера
2011 — анодный затвор тиристор

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 5×1014 1×107 DEAR0000112) тиристор с анодным затвором
1999 — Тиристор 470 А

Реферат: тиристорный эквивалент 1 кОм 4-контактный резисторный массив Тиристор Т 25 тиристорный направляющий тиристорный конденсатор 23 мкФ MITSUBISHI GATE ARRAY PULSE тиристор SA04
Текст: нет текста в файле


Оригинал
PDF ASA100) Тиристор 470 А тиристорный эквивалент 1 кОм 4-контактный резистор Тиристор Т 25 направляющая тиристора тиристор конденсатор 23 мкФ MITSUBISHI GATE ARRAY ИМПУЛЬСНЫЙ тиристор SA04
Тиристор ГТО

Реферат: Тиристор GTO 40A, тиристорный драйвер GTO, схема тиристорного инвертора THYRISTOR GTO, тиристор GTO Примечания по применению Схема привода затвора gto vvvf регулирование скорости 3-фазного асинхронного двигателя Блок привода затвора GTO Теория, конструкция и применение демпфирующих цепей
Текст: нет текста в файле


Оригинал
PDF
1998 — тиристор лтт

Реферат: SIEMENS THYRISTOR Тиристоры Siemens EUPEC Тиристор LTT постоянного тока в переменный, преобразователь тиристором BREAK OVER DIODE плата управления тиристорная защита тиристора абстрактный срок службы тиристора преобразователь переменного тока в постоянный тиристором
Текст: нет текста в файле


Оригинал
PDF D-91362 тиристор лтт SIEMENS THYRISTOR Тиристоры Сименс EUPEC Тиристор LTT преобразователь постоянного тока в переменный с помощью тиристора ПЕРЕРЫВ НАД ДИОДОМ плата управления тиристором Аннотация тиристорной защиты срок службы тиристора преобразователь переменного тока в постоянный с помощью тиристора
fgt313

Реферат: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096, диод ry2a
Текст: нет текста в файле


Оригинал
PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
2015 — Тиристор с МОП-управлением

Реферат: срок службы тиристора
Текст: нет текста в файле


Оригинал
PDF
2001 — ТР250-180У

Реферат: TS600-170 «Power over LAN» TR250-145 REBD TS250-130-RA TSL250-080
Текст: нет текста в файле


Оригинал
PDF
2002 — микросхема драйвера scr выпрямителя 3 фазы

Реферат: OPTOCOUPLER микросхема драйвера тиристорного затвора SCR TRIGGER PULSE Схема OPTOCOUPLER для тиристорного затвора однофазный полумост, управляемый выпрямитель scr Оптопара с тиристором SCR Phase Control IC SCR TRIGGER PULSE scr драйвер ic для выпрямителя 3 фазы 6 выхода
Текст: нет текста в файле


Оригинал
PDF
тиристор тт 500 н 16

Реферат: тиристорный выпрямитель с фазовым регулированием тиристор t 500 n 1800 однофазный тиристорный выпрямитель тиристор tt 121 трехфазный мост полностью управляемый выпрямитель тиристор t 500 n 18 диод ECONOPACK w3 диод b6
Текст: нет текста в файле


Оригинал
PDF
2004 — драйвер затвора scr ic

Аннотация: микросхема драйвера scr для выпрямителя микросхема драйвера трехфазного тиристора OPTOCOUPLER для затвора тиристора микросхема управления трехфазным мостом SCR ИМПУЛЬСНАЯ СИСТЕМА ОПТИЧЕСКОГО ПУЛЬТА ИМПУЛЬСНЫЙ ОПТОМАТИЧЕСКИЙ СОЕДИНИТЕЛЬ SCR OPTOCOUPLER тиристор Схема управления тиристором схема контактов тиристора
Текст: нет текста в файле


Оригинал
PDF
1998 — Трехфазный мостовой полностью управляемый выпрямитель

Реферат: tt 60 n 16 kof press-pack igbt однофазный полностью управляемый выпрямитель с тиристорным управлением с датчиком тока от постоянного к постоянному току с помощью тиристора.
Текст: нет текста в файле


Оригинал
PDF
2003 — EUPEC tt 162 n 16

Аннотация: тиристорный тиристорный модуль tt 162 n bsm 25 gp 120 igbt модуль bsm 100 gb 60 дл ДИСК ТИРИСТОРНЫЙ диод EUPEC tt 105 N 16 тиристорный модуль высокой мощности scr IGBT FZ
Текст: нет текста в файле


Оригинал
PDF кука-2003-инхальт EUPEC tt 162 n 16 тиристор тт 162 н тиристор большой мощности модуль bsm 25 gp 120 igbt модуль bsm 100 гб 60 дл ДИСК ТИРИСТОР диод EUPEC tt 105 N 16 тиристор большой мощности scr Модуль IGBT FZ
2001-ТИРИСТОР

Реферат: применение тиристора тиристор 10A примечания по применению тиристора технические характеристики тиристора тиристор высокой мощности тиристор с фазовым управлением тиристор eupec
Текст: нет текста в файле


Оригинал
PDF 119мм 05ITSM ТИРИСТОР применение тиристора тиристор 10А указания по применению тиристоров заметки по применению ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ тиристоров фазовый контроль тиристор большой мощности тиристор с фазовым регулированием eupec
тиристор тт 162 н

Реферат: быстрый тиристор 1000 В тиристор tt 162 n 16 IGBT модуль FZ 400 тиристор td 162 n тиристор TT 162 тиристор КОНФИГУРАЦИЯ ВЫВОДОВ тиристор tt 500 n 16 THYRISTOR H 1500 тиристор 162
Текст: нет текста в файле


Оригинал
PDF
метод испытания тиристоров eupec

Реферат: SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR для HVDC для 500 кВ ИМПУЛЬСНЫЙ тиристор автомобильный тиристор hvdc тиристор LTT тиристорный преобразователь проектирование схемы зажигания Схемы применения тиристоров
Текст: нет текста в файле


Оригинал
PDF D-81541 D-59581 D- метод испытания тиристоров eupec SIEMENS hvdc THYRISTOR SIEMENS THYRISTOR тиристор для HVDC на 500 кВ ИМПУЛЬСНЫЙ тиристор автомобильный тиристор hvdc тиристор лтт схема зажигания тиристорного преобразователя Схемы применения тиристоров
2001 — ТР250-180У

Реферат: Тиристор SiBar TSL250-080 TSV250-130 «Power over LAN» TR600-150-RA TR600-150 TR250-145 TR250-120 GR-974
Текст: нет текста в файле


Оригинал
PDF
Тиристор с обратной проводимостью

Реферат: CRD5CM Тиристор to220 тиристорный регулятор CRD5C обратнопроводящий тиристор Gate Turn-off Thyristor to220
Текст: нет текста в файле


Оригинал
PDF 2010 — Ренесас О-220 Тиристор с обратной проводимостью CRD5CM Тиристор к220 тиристорный регулятор CRD5C обратнопроводящий тиристор Тиристор выключения затвора to220
2002 — тиристор EUPEC

Реферат: EUPEC Тиристор LTT тиристор ltt все типы тиристоров и схема Infineon процесс распределения энергии Тиристор LTT Срок службы тиристора с использованием системы питания 6-дюймовый тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
Текст: нет текста в файле


Оригинал
PDF D-59581 D-81541 EUPEC Тиристор EUPEC Тиристор LTT тиристор лтт все типы тиристоров и схемы Процесс распространения энергии Infineon LTT тиристор срок службы тиристора тиристорное использование энергосистемы 6 «тиристор для HVDC ВЫСОКОВОЛЬТНЫЙ ТИРИСТОР
тиристор тт 162 н 12

Реферат: тиристор tt 162 n тиристор TT 46 N тиристор TT 162 асимметричный тиристор тиристор tt 25 тиристор TD 25 N dd 55 n 14 тиристор powerblock tt 105 n 16 powerblock tt 162
Текст: нет текста в файле


Оригинал
PDF кука-2006-де-инхальт тиристор тт 162 н 12 тиристор тт 162 н тиристор ТТ 46 Н тиристор ТТ 162 асимметричный тиристор тиристор тт 25 тиристор ТД 25 Н dd 55 n 14 powerblock тиристор тт 105 н 16 powerblock tt 162
Тиристор Westcode

Аннотация: WESTCODE TB 1KHZ тиристор R216Ch22FJO тиристор T 95 F 700 SM12CXC190 тиристор 910 тиристор h 250 tb 16 диодов westcode S антипараллельный тиристор
Текст: нет текста в файле


OCR сканирование
PDF 151JL Тиристор Westcode WESTCODE TB Тиристор 1 кГц R216Ch22FJO тиристор Т 95 Ф 700 SM12CXC190 тиристор 910 тиристор h 250 тб 16 диоды westcode S Антипараллельный тиристор
OPTOCOUPLER тиристор

Реферат: тиристорный контактор, тиристор, использующий схему перехода через нуль, автомобильный тиристор, все типы тиристоров и приложения Оптопара с тиристором, модуль тиристоров перехода через нуль код тиристора BR6000T br6000
Текст: нет текста в файле


Оригинал
PDF IEC60439-1 / 2/3: D-81617 105 / V3 OPTOCOUPLER тиристор тиристорный контактор тиристор с использованием схемы перехода через нуль автомобильный тиристор все типы тиристоров и приложений Оптопара с тиристором Модуль тиристоров переключения с нулевым переходом код тиристора BR6000T br6000
однофазный мостовой полностью управляемый выпрямитель

Реферат: EUPEC DD 105 N 16 L однофазный полностью управляемый выпрямитель 3-фазный тиристорный выпрямительный контур EUPEC DD 151 N 14 k EUPEC tt 105 N 16 тиристор TT 18 N eupec FZ 800 R 16 EUPEC Тиристор B / B0615 DIODE
Текст: нет текста в файле


Оригинал
PDF
1999 — тиристор Т10

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 120 мА 180 мА тиристор Т10

Ece | PDF | Модуляция

Вы читаете бесплатный превью
Страницы с 17 по 27 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 36 по 43 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 52 по 71 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 80 по 93 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы 102–121 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 140 по 206 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 217 по 225 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 236 по 254 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 285 по 288 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 304 по 324 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 340 по 362 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 370 по 396 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 408 по 411 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 415 по 416 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 420 по 431 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 435 по 441 не показаны при предварительном просмотре.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *