Зарядное устройство регулировка по первичной обмотке трансформатора
Решил написать свой способ как собрать зарядное устройство для аккумулятора.
Сразу скажу, что зарядное работает исключительно в ручном режиме и ни сколько не портит аккумулятор, если следить за напряжением и током.
Для сборки нам понадобится:
— трансформатор 220/16 160Вт, то бишь на вторичной обмотке должно быть не менее 16 вольт без нагрузки и 10А максимальный ток. Ток можно меньше (т.к. аккумулятор заряжается 0,1 от номинального тока, то на аккумулятор 60А/ч потребуется ток 6А)
— диммер для электрического освещения квартиры или настольной лампы. Лишь бы мощность подошла. Лично я выбрал такой:
— диодный мост. Можно использовать диодный мост с генератора любого авто, а можно купить 4 диода, рассчитанные на нужный ток, на радиорынке и собрать их по схеме:
— вольтамперметр. Самый простой способ по-моему. Можно заказать прибор на АлиЭкспресс тут.
Всё в одном корпусе — вольтметр и амперметр. Напряжение питания прибора — 4,5 — 30В, измеряет ток до 10А.
Либо можно поставить два стрелочных или цифровых прибора, вольтметр и амперметр соответственно.
— корпус, конденсатор хотя бы на 2200мкФ * 25В, выключатель, предохранитель по 220В, предохранитель по 16В.
Зарядное устройство — это по сути мощный блок питания, имеющий вход 220В, а выход регулируется от
0 до нужного нам тока и напряжения.
Как же мы будем регулировать этот самый ток, ведь он достаточно велик. Некоторые БП строятся на тиристорных или симисторных регуляторах (а так же на полевиках) регулируя вторичный ток. Следовательно эти зарядные устройства дорогие, т.к. мощные тиристоры и так дорогие, дак к ним еще необходимо собрать схему управления.
Я же предлагаю регулировать первичный ток на трансформаторе посредством готового регулятора напряжения (диммер). А ток на вторичной обмотке напрямую зависит от тока на первичной обмотке. Только зная закон Ома ток в первичной обмотке будет значительно отличаться от вторичного (будет гораздо меньше)
А для не большого тока нужны и детали меньше, а следовательно дешевле (по этому диммеры, хоть и построены на симисторе, стоят очень дёшего).
Принципиальная схема прибора:
Если в диммере есть выключатель, то на схеме выключатель SA не нужен. Так же необходимо на проводе или в корпусе установить предохранитель по 16В для защиты от короткого замыкания выхода.
Так же необходимо поверить и откалибровать прибор по образцовому (цешка (мультиметр) в помощь). Калибруется он с помощью двух регуляторов на задней части платы (VR — напряжение и IR — ток)
В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.
Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов – зарядное устройство с регулировкой по первичной обмотке трансформатора.
Управление трансформатором по первичной обмотке
Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.
Особенности регуляторов для первички трансформаторов
Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.
Запас напряжения необходим для регулировки и ограничения зарядного тока.
В разных моделях аппаратов она производится разными способами:
- Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
- Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
- Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.
Схема и назначение тиристорного регулятора напряжения для трансформатора
Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.
Модели для зарядки аккумуляторов
Зарядные устройства делятся на три группы:
- Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
- Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
- Пуско-зарядные. Могут выполнять обе функции.
Принцип действия тиристорного регулятора
Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.
Разновидности и технические характеристики тиристорного регулятора
Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:
- Включить тиристор в диодный мост из 4 диодов на вывода “+” и “-“. Вывода “
” подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.
Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:
- Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
- Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные – тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов: - КУ 202Н – 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
- КУ 201л – 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
- КУ 201а – 25В, 30А, крепление – резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
- КУ 101г – 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
- КУ 104а – 6В, 3А. Так же в силовых цепях не применяются.
Что представляет собой симистор
У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.
Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.
Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.
Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.
Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.
Другие простые варианты регулировки напряжения в первичке
Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:
- Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
- Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
- Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.
Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.
.
Предлагаемая универсальная конструкция предназначена для зарядки кислотных 12-ти и 6-ти вольтовых аккумуляторов и в состоянии обеспечить зарядный ток до 5-6 А. Регулировка тока – плавная. В отличие от распространенных схем, в этой конструкции управляющий элемент (тиристор VS1) включен в цепь первичной обмотки, что значительно уменьшило рассеиваемую на нем мощность и позволило обойтись без установки тиристора на радиатор. Схема контроля, собранная на стрелочном приборе PA1, тоже достаточно экономична, поскольку не имеет мощного шунта, включаемого обычно во вторичную цепь. Взглянем на принципиальную схему зарядного устройства.
Поскольку в качестве управляющего элемента служит тиристор, который не может работать с переменным током, его пришлось включить в диагональ моста, собранного на диодах VD1 – VD4. Регулировка тока через первичную обмотку (а значит, и зарядного тока) производится изменением угла открывания тиристора — за этим следит узел управления, собранный на однопереходном транзисторе VT1.
При изменении сопротивления переменного резистора R6, изменяется и время зарядки конденсатора С1. Чем дольше заряжается конденсатор, тем позже откроется транзистор, а значит и тиристор, после начала периода сетевого напряжения. Таким образом, ток через первичную обмотку трансформатора Т1 можно плавно регулировать от 0 до практически 100%. Напряжение на вторичной обмотке трансформатора при этом будет изменяться от 0 до 18 — 20 В, что и вызовет изменение зарядного тока аккумулятора.
Контролируют величину зарядного тока косвенно, измеряя ток через первичную обмотку при помощи стрелочного прибора PA1, включенного через балластный резистор R2 и зашунтированного двухваттным резистором R1. Лампа HL1 является индикаторной.
В конструкции кроме указанных на схеме могут быть использованы диоды Д231 – Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Устанавливать на радиаторы их не нужно. В качестве VS1 будут работать тиристоры КУ201К,Л, КУ202К,Л,М,Н. Радиатор тиристору тоже не нужен. Во вторичной цепи (на месте VD5 – VD8) кроме указанных на схеме будут работать Д231 – Д233 без буквенного индекса или с буквой А. Их придется установить на радиаторы площадью поверхности не менее 30 см. кв. каждый, (если диоды германиевые – Д305), или 100 см. кв., если кремниевые.
Конденсатор С1 должен быть с минимальным температурным коэффициентом емкости, к примеру, типа К73-17, К73-24. В противном случае при прогреве устройства зарядный ток будет «уходить». В качестве Т1 подойдет любой сетевой трансформатор мощностью не менее 150 Вт, способный отдать со вторичной обмотки напряжение 18-20 В при токе до 6-7 А. Очень удобно для этих целей использовать типовые трансформаторы ТН или ТАН, характеристики которых можно посмотреть в нашем справочнике по трансформаторам. В качестве измерительного прибора PA1 можно использовать любой микроамперметр с током полного отклонения 100 мкА.
Регулировка устройства сводится к подбору номинала резистора R2 для калибровки прибора PA1 с одновременным контролем зарядного тока. Единственный, пожалуй, недостаток такого зарядного устройства – наличие сетевого напряжения на схеме управления, поэтому в целях безопасности на резистор R6 нужно надеть ручку из изоляционного материала.
А.Н. Евсеев «Электронные устройства для дома», 1994 г.
Внимание! Конструкция имеет бестрансформаторное питание, поэтому во время работы на всех ее элементах присутствует опасное для жизни напряжение. Перед любой перепайкой или изменением схемы обязательно отключайте конструкцию от сети!
Зарядное устройство с регулировкой первичной обмотки трансформатора
Автор otransformatore На чтение 6 мин Опубликовано
В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.
Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов – зарядное устройство с регулировкой по первичной обмотке трансформатора.
Управление трансформатором по первичной обмотке
Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.
Особенности регуляторов для первички трансформаторов
Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.
Запас напряжения необходим для регулировки и ограничения зарядного тока.
В разных моделях аппаратов она производится разными способами:
- Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
- Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
- Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.
Схема и назначение тиристорного регулятора напряжения для трансформатора
Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.
Модели для зарядки аккумуляторов
Зарядные устройства делятся на три группы:
- Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
- Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
- Пуско-зарядные. Могут выполнять обе функции.
Принцип действия тиристорного регулятора
Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.
Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.
Разновидности и технические характеристики тиристорного регулятора
Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:
- Включить тиристор в диодный мост из 4 диодов на вывода “+” и “-“. Вывода “~” подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.
- Использовать два тиристора, включенные встречно-параллельно и для управления через переменный резистор соединяются управляющие вывода. Каждый из элементов открывается при своей полярности, а оба вместе управляют напряжением на нагрузке.
Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:
- Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
- Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные – тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов: - КУ 202Н – 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
- КУ 201л – 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
- КУ 201а – 25В, 30А, крепление – резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
- КУ 101г – 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
- КУ 104а – 6В, 3А. Так же в силовых цепях не применяются.
Что представляет собой симистор
У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.
Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.
Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.
Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.
Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.
Другие простые варианты регулировки напряжения в первичке
Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:
- Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
- Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
- Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.
Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.
Схема простого зарядного устройства для автомобильных аккумуляторов
К.СЕЛЮГИН, г.Новороссийск, Краснодарского края.
Кислотные аккумуляторы «не любят длительного пребывания без работы». Глубокий саморазряд бывает губителен для них. Если автомобиль ставится на долгосрочную стоянку, то возникает проблема: что делать с аккумулятором. Его либо отдают кому-нибудь в работу, либо продают, что одинаково неудобно.
Я предлагаю достаточно простое устройство, которое может служить как для зарядки аккумуляторов, так и для их долгосрочного хранения в рабочем состоянии.
Со вторичной обмотки трансформатора Т1, ток в которой ограничен включением последовательно с первичной обмоткой балластного конденсатора (С1 или С1+С2), ток подается на диодно-тиристорный мост, нагрузкой которого является аккумуляторная батарея (GB1). В качестве регулирующего элемента применен автомобильный регулятор напряжения генератора (РНГ) на 14 В любого типа, предназначенный для генераторов с заземленной щеткой. Мною опробованы регулятор типа 121.3702 и интегральный -Я112А. При использовании «интегралки» выводы «Б» и «В» соединяются вместе и с «+» GB1. Вывод «Ш» соединяется с цепью управляющих электродов тиристоров. Таким образом, на аккумуляторной батарее поддерживается напряжение 14В при зарядном токе, определяемом емкостью конденсатора С2, которая ориентировочно рассчитывается по формуле:
где Iз — зарядный ток (А), U2 — напряжение вторичной обмотки при»нормальном»включении трансформатора (В), U1 — напряжение сети.
Трансформатор — любой, мощностью 150…250 ВА, с напряжением на вторичной обмотке 20…36 В. Диоды моста — любые на номинальный ток не менее 10 А. Тиристоры — КУ202 В, Г и т.д.
S1 служит для переключения режимов зарядки и хранения. Ток зарядки выбирается равным 0,1 от численного значения емкости аккумулятора, а ток хранения — 1…1.5А.
Если есть возможность, то периодически, примерно один раз в две недели, желательно производить разряд аккумуляторной батареи током 2Iз с контролем температуры электролита.
Настройки устройство практически не требует. Возможно, придется уточнить емкость конденсатора, контролируя ток амперметром. При этом необходимо замкнуть накоротко выводы 15 и 67 (Б, В и Ш).
(РЛ 5-99)
Зарядное устройство на трансформаторе своими руками
Всем привет, сегодня опять речь пойдёт о зарядных устройствах и поскольку многим надоели всякие импульсные схемы источников питания, покажу я вам довольно универсальную, простую и мега надежную схему зарядного устройства, которую собирали еще наши деды.
Схемка сейчас перед вами
Суровый железный трансформатор, пара мощных тиристоров и узел регулировки. Кстати метод регулировки тут фаза-импульсный, а не линейный. За счет этого кпд схемы довольно высокая.
Тиристоры являются регулирующим звеном и одновременно выпрямителем, поэтому тут нет дополнительного диодного выпрямителя, а это большой плюс.
Схемы подобного класса практически резиновые, взял более мощный трансформатор, поставил тиристоры помощнее и всё, готово пуско-зарядное устройство.
Ну а теперь по традиции давайте посмотрим как это работает…
Линейный и ШИМ метод регулировки мощности вам прекрасно известен, но в случае тиристоров не все так просто, тут нужен совсем иной принцип регулировки.
В случае линейного метода регулировки, который не применим к тиристорам, мощность регулируется за счет того, что регулирующий элемент, как правило транзистор. В зависимости от величины управляющего сигнала изменяет сопротивление открытого перехода линейно от 1 до 100%, чем больше приоткрыт транзистор, тем меньше сопротивление его перехода, а следовательно больше тока он пропускает и больше мощности будет на выходе.
В случаи с ШИМ метода регулировки транзистор либо полностью открыт,
когда на его управляющий вывод подаётся высокий уровень сигнала, либо полностью закрыт,
если на управляющий вывод подается низкий уровень.
Притом регулировка мощности осуществляется за счет времени нахождения транзистора в одном из двух состояний, чем больше времени транзистор открыт, тем больше мощность и наоборот.
Этот метод самый экономичный, так как транзистор работает в ключевом режиме, когда в открытом состоянии сопротивление его перехода ну или канала — минимально, поэтому нагрев на нём практически отсутствует. Отсюда и очень высокий КПД.
В случаи тиристоров не всё так просто… Тиристор это не транзистор и указанные два метода к нему можно сказать не применимы.
Тиристор без проблем можно открыть подавая сигнал на управляющий электрод, но закрыть его принудительно практически невозможно, закроется он только тогда, когда с силовых выводов снимается напряжение.
В цепи переменного тока это происходит автоматически, когда напряжение, проходит через нулевую точку.
Наиболее популярный метод управления тиристором фазо-импульсный принцип регулировки с помощью так называемых релаксационных генераторов.
Генератор может находиться в двух состояниях, на его выходе, либо есть управляющий импульс, либо его нет, величина этого импульса и длительность не меняется. Можно изменять только количество импульсов за единицу времени или чистоту.
В нашей схеме релаксационный генератор построен на базе двух транзисторов и по сути является аналогом однопереходного транзистора, ну или динистор.
Время срабатываний задается номиналами указанных резисторов и конденсатора, работает все это дело простым образом.
Через маломощный диодный выпрямитель от силовой обмотки трансформатора, либо от дополнительной маломощной, переменное напряжение выпрямляется в постоянку и поступает на схему генератора. В цепи питания имеется стабилитрон для стабилизации питающего напряжения генератора, через цепочку резисторов заряжается конденсатор и как только напряжение на нём доходит до некоторого значения, генератор сработает, на его выходе образуется отпирающее для тиристора напряжение. Конденсатор разряжается, импульс пропадает и дальше процесс повторяется заново.
Переменным резистором мы можем уменьшить или увеличить время заряда конденсатора, а следовательно и количество управляющих импульсов за единицу времени, а если попроще, просто меняем частоту импульсов.
Управляются тиристоры через разделительный трансформатор,
на самом деле есть много способов управления, через диоды или транзисторы, но в моем случае задействован именно трансформатор, так как в дальнейшем я собираюсь поэкспериментировать регулировку на в ходе по высоковольтной части, а трансформатор обеспечивает гальваническую развязку, вы же можете воспользоваться другими способами управления.
Трансформатор имеет две вторичные обмотки, именно они управляют тиристорами, при наличии управляющего импульса тиристор сработает, закроется он только при прохождении тока через нулевую точку.
Мы можем открыть тиристор в любой точке полуволны, если мы его открыли в начале полуволны, то естественно через него будет проходить больше тока, если в середине меньше, если в конце то еще меньше.
Фактически тиристор будет обрезать синусоиду пропуская на выход только её части, чем меньше кусок синусоиды, тем меньше мощность на выходе, это если предельно простым и понятным языком надеюсь принцип понятен.
Ну а теперь переходим к компонентом, в принципе с генератором думаю проблем не возникнут, номиналы компонентов не критичны, можно отклонять в ту или иную сторону процентов на 30.
Собран генератор на компактной, печатной плате и её можно скачать в конце статьи.
Трансформатор в моём случае намотан на жёлто-белом колечке от фильтра групповой стабилизации компьютерного блока питания, размеры трансформатора сейчас перед вами
Вначале я намотал вторичные обмотки, 2 по 90 витков проводом 0,31 миллиметр, стараемся мотать аккуратно без перехлёстов, равномерно растягивая витки по всему кольцу, поверх мотаем еще 90 витков — это у нас первичная обмотка.
В моём случае, управляющие или вторичные обмотки, залил эпоксидной смолой, затем только намотал первичную. Это сделано для безопасности, поскольку, как уже сказал ранее мой трансформатор экспериментальной и в дальнейшем будет управлять тиристорами, которые работают непосредственно в сетевой части.
Тут замечу, что в итоге управляющие обмотки этого трансформатора я всё таки спалил вместе с менее мощными тиристорами на 10 ампер во время погони за большим выходным током, так что жадность фраера всё же губит, поэтому процедуру намотки трансформатора пришлось повторить заново. Сердечник из того же материала но размеры чуть меньше.
Для заливки трансформатора я применяю китайскую, эпоксидную смолу, сохнет полностью где-то за 20 минут.
За это время нужно будет повертеть трансформатор в руках для равномерного распределения смолы по всему сердечнику, тут главное не перестараться, смолы не должно быть слишком много, иначе получится неаккуратно.
Можно использовать смолу любого цвета, трансформаторы залитые таким образом получаются предельно надежными и очень красивыми.
После намотки первичной обмотки, всё дополнительно покрыл лаком, но это делать необязательно.
Ещё пару слов об управляющих обмотках, полностью равноценные и мотаются разом, они должны обеспечить достаточное напряжение и ток для отпирания тиристоров, напряжение можно посмотреть осциллографом.
Важно не перепутать начала обмоток, на схеме они указаны точками.
Что касается характеристик схемы, именно мой вариант может обеспечить зарядный ток до 12-13 ампер, но можно получить хоть 200, хоть 500 ампер, если силовые компоненты, тиристоры и трансформатор, позволят этому.
Несколько слов о компонентах, недавно в очередной раз посещал местную барахолку и просто не мог, не купить этих зеленых монстров, это довольно мощные, силовые тиристоры напоминающие о былом величии советского союза, да уж не жалели тогда материала.
Тиристоры всего на 25 ампер, но посмотрите на сечении силового провода, он и сотню ампер пропустит и не шелохнется, естественно для этого тиристора 25 ампер далеко не предел. Тиристоров нужно два штуки.
Теперь о трансформаторе, в моём случае вот такой — это накальный трансформатор с мощностью около 200 ватт, но и он способен на большее.
Вторичных обмоток 4, обмотки по 6,3 вольта с током 8-9 ампер, правда ток одной из обмоток чуть поменьше, чем у остальных, но ничего прорвёмся.
Из-за особенностей такого типа выпрямителя, трансформатор нужен с двумя одинаковыми обмотками, которые соединяются со средней точкой, при том итоговое выходное напряжение или напряжение заряда, будет не больше напряжения одного из плеч, минус потеря на тиристоре.
Поэтому если зарядку делаете для АКБ легкового автомобиля, желательно использовать обмотки по 20 вольт. Для этого трансформатор единственное, логичное подключение обмоток с учётом ситуации показано на рисунке
все обмотки последовательно с отводом от средней точки, но загвоздка в том, что итоговое выходное напряжение будет около 12,6 вольт, этого не достаточно для зарядки аккумуляторов, но транс рассчитан для работы в сетях 220 вольт, а у нас в розетке уже давно 230-240 вольт, то есть и выходное напряжение будет побольше, а если точнее 28 вольт суммарно или около 14 вольт в плече.
Чуть меньше, чем нужно.
Тиристоры удобно установить на общий радиатор, так как их аноды по схеме общие.
Силовые провода стоит использовать с приличным сечением. Не забываем изолировать все соединения.
В конце я нашёл стрелочную, измерительную головку от древнего мультиметра и подумал использовать её в качестве амперметра, шунты также были в наличии, мне тут сказочно повезло, потому что не пришлось ничего рассчитывать и настраивать.
С применением шунта 50 ампер, 75 милливольт самая нижняя шкала очень точно показывает ток до 30 ампер.
Притащил из подвала всеми любимый мультиметр))),
он будет показывать нам напряжение на выходе зарядного устройства, вся шкала 15 вольт.
Чуть не забыл все замеры делаются под нагрузкой, иначе мультиметры сойдут с ума.
Теперь к делу, первый запуск схемы, как всегда делаем через страховочную ограничительную лампу, если все заработает как надо, не забываем установить предохранители по входу и выходу. Всё готово, нагрузка у нас лампа накаливания соответствующего периода.
Пробуем и видим, как ток регулируется и регулируется довольно плавно, 12,13 ампер с такого транса снять можно, можно естественно и больше, но будут просадки и возможен перегрев.
Тиристорам такие токи по барабану, они почти не греются, короткие замыкания при малых и средних токах схема терпит без проблем, мощность ограничивается, при запредельных туках трансформатору придётся несладко, поэтому предохранители обязательно ставить.
Минимальный выходной ток около 4 ампер, теперь проверим стабильность выходного напряжения в зависимости от изменений сетевого, выход зарядного устройства нагружен мало мощными лампами.
Об этом ранее указал и вот подтверждение, цифровой мультиметр показывает сетевое напряжение, стрелочный прибор выходной с зарядного устройства, изменение сетевого напряжения приводит к изменениям выходного и на практике вам нужно контролировать ток заряда.
Это пожалуй основной недостаток таких зарядных устройств, а в целом все работает неплохо.
Недостатки... Современное, зарядное устройство заряжает аккумулятор стабильным током и напряжением, но в те времена никто не заморачивался с этим, нужно понимать, что это дубовое зарядное устройство, которое не будет контролировать напряжение на аккумуляторе и отключать питание при полном заряде АКБ.
Тут пользователь сам решает, каким током и в течение какого времени заряжать аккумулятор. Из-за указанного недостатка советую дополнить устройство узлом автоотключение аккумулятора при полном заряде. Схема подобного узла есть на сайте.
Так же нужно понимать, что отсутствуют всякие узлы защиты помимо предохранителей.
Достоинства... Сверх надежная штука, чтобы спалить такую зарядку нужно очень постараться, схема некапризна, регулировка довольно плавная, высокая повторяемость, очень простая конструкция и низкая себестоимость, почти все комплектующие можно найти в старых запасах.
Довольно высокий КПД за счёт можно сказать импульсного принципа регулировки.
Немаловажный момент… Нет необходимости в дополнительном выпрямителе, сами тиристоры являются и регулирующим органам, и выпрямителем.
Совместно с надежным железным трансформатором, такая схема будет служить десятилетиями, а самое главное она универсальна и может быть использована для зарядки самых разных аккумуляторов.
Ещё один момент, который я честно сказать не определился отнести к достоинствам или недостаткам, аккумулятор будет заряжаться пульсирующим током, многие говорят, что это даже полезно для аккумулятора, лично ничего сказать по этому поводу не могу.
Архив к статье;скачать…Автор; АКА КАСЬЯН
Простое зарядное устройство для аккумуляторов (до 55Ач)
Схема простого зарядного устройства предназначено для зарядки аккумуляторов емкостью до 1980 Кл (55 А*ч) автоматического поддержания зарядного тока на заданном уровне.
Принципиальная схема
Принцип работы устройства основан на перераспределении напряжения питающей сети между последовательно включенными конденсатором и первичной обмоткой трансформатора. В процессе заряда напряжение на зажимах аккумуляторной батареи увеличивается, а зарядный ток уменьшается.
При этом приведенное сопротивление первичной обмотки возрастает, падение напряжения на первичной обмотке увеличивается, что, в свою очередь, приводит к росту напряжения на вторичной обмотке и соответственно тока заряда. Вследствие этого зарядный ток поддерживается на установленном уровне.
Для того чтобы устройство могло обеспечить зарядный ток до 5,5 А, мощность трансформатора не должна быть менее 160…170 Вт. Можно использовать подходящий трансформатор от телевизоров. Площадь сечения магнитопровода трансформатора должна быть 18 см2 или более (если магнитопровод ленточный, то минимальная площадь сечения 10 см2).
Рис. 1. Схема простого зарядного устройства для аккумуляторов (до 55Ач).
С катушки надо снять все вторичные обмотки и намотать новую проводом ПЭВ-2 — 1,4. Напряжение на каждой из половин этой обмотки на холостом ходу должно быть примерно 27 В. Число витков каждой вторичной полуобмотки можно подсчитать, если число витков первичной обмотки на 220 В умножить на коэффициент 0,12 (27/220).
Вторичную обмотку можно наматывать и без вывода от середины. В этом случае общее число витков ее должно быть равно числу витков полуобмотки, но диаметр провода следует выбрать не менее 2 мм. Выпрямитель собирают по мостовой схеме из четырех диодов.
Детали и замена
Кроме указанных на схеме, можно использовать диоды Д234, Д244. Диоды необходимо устанавливать на радиаторы с площадью поверхности не менее 100 см2 (на каждый диод). Конденсаторы С1 и С2 — МБГП на рабочее напряжение 600 В. Каждый из них представляет собой набор из конденсаторов меньшей емкости. Амперметр Р1 может быть любой, рассчитанный на постоянный ток до 6 А.
Переключатель S1 (тумблер ТВ2-1) служит для выбора зарядного тока. В положении 1 зарядный ток равен 5,5 А (для батареи 6СТ-55), а в положении 2 — примерно в два раза меньше. Соответствующим выбором емкостей конденсаторов можно получить любое значение зарядного тока.
Налаживание зарядного устройства сводится к подбору конденсаторов С1 и С2. Переключатель устанавливают в положение 1. Разряженную батарею аккумуляторов 6СТ-55 подключают к устройству и измеряют ток заряда.
Если ток меньше номинального — 5,5 А (0,1 от номинальной емкости батареи, выраженной в ампер-часах), увеличивают емкость конденсаторов С1 и С2, добавляя параллельно каждому из них добавочные конденсаторы емкостью 0,25…0,5 мкФ. Включать зарядное устройство без нагрузки не следует во избежание пробен конденсаторов.
Источник: Борноволоков Э. П., Фролов В. В. — Радиолюбительские схемы.
Регулировка сварочного тока по первичной обмотке
Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.
Наиболее оптимальный вариант — еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.
Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело — цепь первичной обмотки, где токи в пять раз меньше.
После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы — широко известный тиристорный регулятор, схема которого изображена на рис.1.
При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе — работает не иначе, как «часы».
Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.
Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.
Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.
Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.
Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.
В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.
Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.
Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).
Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.
Как сделать регулятор тока для сварочного аппарата своими руками
Одна из главных составляющих по-настоящему качественного шва — это правильная и точная настройка сварочного тока в соответствии с поставленной задачей. Опытным сварщикам часто приходится работать с металлом разной толщины, и порой стандартной регулировки min/max недостаточно для полноценной работы. В таких случаях возникает необходимость многоступенчатой регулировки тока, с точностью до ампера. Эту проблему можно легко решить путем включения в цепь дополнительного прибора — регулятора тока.
Ток можно регулировать по вторичке (вторичной обмотке) и по первичке (первичной обмотке). При этом каждый из способов настройки трансформатора для сварки имеет свои особенности, которые важно учитывать. В этой статье мы расскажем, как осуществляется регулировка тока в сварочных аппаратах, приведем схемы регуляторов для сварочного полуавтомата, поможем грамотно выбрать регулятор сварочного тока по первичной обмотке для сварочного трансформатора.
Способы регулировки тока
Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.
Один из самых часто применяемых методов регулировки тока — это добавление баластника на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.
В этой статье мы подробно описывали принцип работы и особенности использования баластника для сварочного полуавтомата. Там вы найдете подробную инструкцию, как изготовить прибор в домашних условиях и как использовать его в своей работе.
Несмотря на множество достоинств, метод регулировки тока по вторичной обмотке при использовании в связке с трансформатором для сварки может быть не очень удобен, особенно для начинающих сварщиков. Прежде всего, баластник довольно громоздкий и его размер может достигать метра в длину. Еще прибор часто находится под ногами и при этом сильно нагревается, а это грубое нарушение техники безопасности.
Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками. Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.
Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.
Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.
Схема тиристорного регулятора
Выше вы можете видеть схему простейшего регулятор на 2 тиристорах с минимумов недефицитных деталей. Вы также можете сделать регулятор на симисторе, но наша практика показала, что тиристорный регулятор мощности долговечнее и работает более стабильно. Схема для сборки очень простая и по ней вы сможете довольно быстро собрать регулятор, имея минимальные навыки пайки.
Принцип действия данного регулятора тоже прост. У нас есть цепь первичной обмотки, в которую подключается регулятор. Регулятор состоит из транзисторов VS1 и VS2 (для каждой полуволны). RC-цепочка определяет момент, когда откроются тиристоры, вместе с тем меняется сопротивление R7. В результате мы получаем возможность изменять ток по первичке трансформатора, после чего ток меняется и во вторичке.
Обратите внимание! Настройка регулятора осуществляется под напряжением, об этом не стоит забывать. Чтобы избежать фатальных ошибок и не получить травму нужно обязательно изолировать все радиоэлементы.
В принципе, вы можете использовать транзисторы старого образца. Это отличный способ сэкономить, поскольку такие транзисторы можно без проблем найти в старом радиоприемнике или на барахолке. Но учтите, что такие транзисторы должны использоваться на рабочем напряжении не менее 400 В. Если вы посчитаете нужным, можете поставить динисторы вместо транзисторов и резисторов, показанных на схеме. Мы динисторы не использовали, поскольку в данном варианте они работают не очень стабильно. В целом, эта схема регулятора сварочного тока на тиристорах неплохо зарекомендовала себя и на ее основе было изготовлено множество регуляторов, которые стабильно работают и хорошо выполняют свою функцию.
Также вы могли видеть в магазинах регулятор контактной сварки РКС-801 и регулятор контактной сварки РКС-15-1. Мы не рекомендуем изготавливать их самостоятельно, поскольку это займет много времени и несильно сэкономит вам деньги, но если есть такое желание, то можете изготовить РКС-801. Ниже вы видите схему регулятора и схему его подключения к сварочнику. Откройте картинки в новом окне, чтобы лучше видеть текст.
Измерение сварочного тока
После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.
Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.
Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.
Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.
Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.
Вместо заключения
Регулирование сварочного тока на полуавтомате — это не так сложно, как может показаться на первый взгляд. Если вы обладаете минимальными знаниями в области электротехники, то сможете без проблем собрать своими силами регулятор тока для сварочного аппарата на тримисторах, сэкономив на покупке этого прибора в магазине. Самодельные регуляторы особенно важны для домашних мастеров, которые не готовы к дополнительным тратам на оборудование. Расскажите о своем опыте изготовления и использования регулятора тока в комментариях и делитесь этой статьей в своих социальных сетях. Желаем удачи в работе!
Способы регулировки сварочного тока
Качество сварного шва в значительной мере зависит от характеристик электрической дуги. Для каждой толщины металла, в зависимости от его вида требуется определенной силы сварочный ток.
Кроме этого, важна вольтамперная характеристика аппарата для сварки, от этого зависит качество электрической дуги. Для резки металла тоже требуются свои значения электротока. То есть любой сварочный аппарат должен обладать регулятором, управляющим мощностью сварки.
Способы регулирования
Управлять током можно по-разному. Основные способы регулирования такие:
- введение резистивной или индуктивной нагрузки во вторичную обмотку сварочного аппарата;
- изменение количества витков во вторичной обмотке;
- изменение магнитного потока аппарата для сварки;
- использование полупроводниковых приборов.
Схематических реализаций этих способов множество. При изготовлении аппарата для сварки своими руками каждый может выбрать себе регулятор по вкусу и возможностям.
Резистор или индуктивность
Регулировка сварочного тока с использованием сопротивления или катушки индуктивности является самой простой и надежной. К держателю сварочных электродов последовательно подключают мощный резистор или дроссель. За счет этого меняется активное или индуктивное сопротивление нагрузки, что приводит к падению напряжения и изменению сварочного тока.
Регуляторы в виде резисторов применяют для улучшения вольтамперной характеристики сварочного аппарата. Используется набор мощных проволочных сопротивлений или один резистор, выполненный из толстой нихромовой проволоки в виде спирали.
Для изменения сопротивления специальным зажимом их подключают к определенному витку провода. Резистор выполняется в виде спирали для уменьшения габаритов и удобства использования. Номинал резистора не должен превышать 1 Ом.
Переменный ток в определенные моменты времени имеет нулевые или близкие к нему значения. В это время получается кратковременное гашение дуги. При изменении промежутка между электродом и деталью может произойти прилипание или полное ее гашение.
Для смягчения режима сваривания и соответственно получения качественного шва применяют регулятор в виде дросселя, который включается последовательно с держаком в выходной цепи аппарата.
Дополнительная индуктивность вызывает сдвиг фаз между выходным током и напряжением. При нулевых или близких к нему значениях переменного тока напряжение имеет максимальную амплитуду и наоборот. Это позволяет поддерживать стабильную дугу и обеспечивает надежное ее зажигание.
Дроссель можно изготовить из старого трансформатор. Используется только его магнитопровод, все обмотки удаляются. Вместо них наматывают 25-40 витков толстого медного провода.
Данный регулятор был широко распространен при использовании трансформаторных аппаратов переменного тока благодаря своей простоте и наличию комплектующих. Недостатками дроссельного регулятора сварочного тока являются небольшой диапазон управления.
Изменение количества витков
При этом методе регулировка характеристик дуги осуществляется благодаря изменению коэффициента трансформации. Коэффициент трансформации позволяют изменить дополнительные отводы из вторичной катушки. Переключаясь с одного отвода на другой можно менять напряжение в выходной цепи аппарата, что приводит к изменению мощности дуги.
Регулятор должен выдерживать большой сварочный ток. Недостатком является трудность нахождения коммутатора с такими характеристиками, небольшой диапазон регулировок и дискретность коэффициента трансформации.
Изменение магнитного потока
Данный способ управления используется в трансформаторных аппаратах сварки. Изменяя магнитный поток, меняют коэффициент полезного действия трансформатора, это в свою очередь меняет величину сварочного тока.
Регулятор работает за счет изменения зазора магнитопровода, введения магнитного шунта или подвижности обмоток. Изменяя расстояние между обмотками, меняют магнитный поток, что соответственно сказывается на параметрах электрической дуги.
На старых сварочных аппаратах на крышке находилась рукоятка. При ее вращении вторичная обмотка поднималась или опускалась за счет червячной передачи. Этот способ практически изжил себя, он использовался до распространения полупроводников.
Полупроводниковые приборы
Создание мощных полупроводниковых приборов, способных работать с большими токами и напряжениями, позволило разработать сварочные аппараты нового типа.
Они стали способны менять не только сопротивление вторичной цепи и фазы, но и изменять частоту тока, его форму, что также влияет на характеристики сварочной дуги. В традиционном трансформаторном сварочном аппарате используется регулятор сварочного тока на базе тиристорной схемы.
Регулировка в инверторах
Сварочные инверторы – это самые современные аппараты для электродуговой сварки. Использование мощных полупроводниковых выпрямителей на входе устройства и последующей трансформации переменного тока в постоянный, а затем в переменный высокой частоты позволил создать устройства компактные и мощные одновременно.
В инверторных аппаратах основным регулятором является изменение частоты задающего генератора. При одном и том же размере трансформатора мощность преобразования напрямую зависит от частоты входного напряжения.
Чем меньше частота, тем меньшая мощность передается на вторичную обмотку. Ручка регулировочного резистора выводится на лицевую панель инвертора. При ее вращении изменяются характеристики задающего генератора, что приводит к изменению режима переключения силовых транзисторов. В итоге получается требуемый сварочный ток.
При использовании инверторных сварочных полуавтоматов настройка происходит так же, как и при использовании ручной сварки.
Кроме внешних регуляторов в блоке управления инвертором предусмотрены еще много различных управляющих элементов и защит, обеспечивающих стабильную дугу и безопасную работу. Для начинающего сварщика лучшим выбором будет инверторный аппарат для сварки.
Применение тиристорной и симисторной схемы
После создания мощных тиристоров и симисторов их стали использовать в регуляторах силы выходного тока в сварочных аппаратах. Они могут устанавливаться в первичной обмотке трансформатора или во вторичной. Суть их работы заключается в следующем.
На управляющий контакт тиристора со схемы регулятора поступает сигнал, открывающий полупроводник. Длительность сигнала может изменяться в больших пределах, от 0 до длительности полупериода тока протекающего через тиристор.
Управляющий сигнал синхронизирован с регулируемым током. Изменение длительности сигнала вызывает обрезание начала каждого полупериода синусоиды сварочного тока. Увеличивается скважность, в результате средний ток уменьшается. Трансформаторы очень чувствительны к такому управлению.
Такой регулятор имеет существенный недостаток. Время нулевых значений увеличивается, что приводит к неравномерности дуги и ее несанкционированному гашению.
Для уменьшения негативного эффекта дополнительно приходится вводить дроссели, которые вызывают фазовый сдвиг между током и напряжением. В современных аппаратах данный метод практически не используются.
Величина балластного сопротивления для регулятора сварочного тока составляет порядка сотых-десятых долей Ома и подбирается, как правило, экспериментально. В качестве балластного сопротивления издавна применяются мощные проволочные сопротивления, использовавшиеся в подъемных кранах, троллейбусах, или отрезки спиралей ТЭНов (теплоэлектронагревателей), куски толстой высокоомной проволоки. Несколько уменьшить ток можно даже с помощью растянутой дверной пружины из стали. Балластное сопротивление может включаться либо стационарно.
Либо так, чтобы потом можно было относительно легко регулировать сварочный ток. Один конец такого сопротивления подключается к выходу трансформатора, а конец сварочного провода оборудуется съемным зажимом, который легко перебрасывается по длине спирали сопротивления, выбирая нужный ток.
Большинство проволочных резисторов большой мощности изготовлены в виде открытой спирали, установленной на керамический каркас длиной до полуметра, как правило, в спираль смотана и проволока от ТЭНов. Если резистор изготовлен из магнитных сплавов, то в случае его спиральной компоновки, а тем более с какими-либо стальными элементами конструкции внутри спирали, при прохождении больших токов спираль начинает сильно вибрировать. Ведь спираль — это тот же соленоид, а огромные сварочные токи порождают мощные магнитные поля. Уменьшить влияние вибраций можно, растянув спираль и зафиксировав ее на жесткой основе. Кроме спирали, проволоку можно сгибать также змейкой, что тоже уменьшает размеры готового резистора. Сечение токопроводящего материала резистора следует подбирать побольше, потому что при работе он сильно греется. Слишком тонкая проволока или лента будет раскаляться докрасна, хотя даже это, в принципе, не исключает эффективность использования ее в качестве регулятора тока для сварочного аппарата. О реальном значении сопротивления балластных проволочных резисторов судить трудно, так как в нагретом состоянии свойства материалов сильно меняются.
В промышленных сварочных аппаратах способ регулировки тока с помощью включения активных сопротивлений, из-за их громоздкости и нагрева, не получил распространения. Зато очень широко применяется реактивное сопротивление — включение во вторичную цепь дросселя. Дроссели имеют разнообразные конструкции, часто объединенные с магнитопроводом трансформатора в одно целое, но сделаны так, что их индуктивность, а значит, реактивное сопротивление регулируется, в основном, перемещением частей магнитопровода. Заодно дроссель улучшает процесс горения дуги.
Регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами. Через регулирующие устройство проходят значительные токи, что приводит к его громоздкости. Другое неудобство — переключение. Для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200А. Другое дело — цепь первичной обмотки, где токи примерно в пять раз меньше, переключатели для которых являются ширпотребом. Последовательно с первичной обмоткой, так же, как и в предыдущем случае, можно включать балластные сопротивления. Только в этом случаи сопротивление резисторов должно быть на порядок большим, чем в цепи вторичной обмотки. Так, батарея из нескольких параллельно соединенных резисторов ПЭВ-50. 100 суммарным сопротивлением 6-8 Ом способна понизить выходной ток вдвое, а то и втрое, в зависимости от конструкции трансформатора. Можно собрать несколько батарей и установить переключатель. Если же в распоряжении нет мощного переключателя, то можно обойтись несколькими выключателями. Установив резисторы по схеме изображенной ниже, можно, например, сделать регулятор сварочного тока с комбинацией: 0; 4; 6; 10 Ом.
Правда, при включении балластного сопротивления в первичной цепи, теряется выгода, которую придает сопротивление во вторичной, — улучшение падающей характеристики трансформатора. Но зато и к каким-либо отрицательным последствиям в горении дуги включенные по высокому напряжению резисторы не приводят: если трансформатор хорошо варил без них, то с добавочным сопротивлением в первичной обмотке он варить будет.
В режиме холостого хода трансформатор потребляет небольшой ток, а значит, его обмотка обладает значительным сопротивлением. Поэтому дополнительные несколько Ом практически никак не сказываются на выходном напряжении холостого хода.
Вместо резисторов, которые при работе будут сильно греться, в цепь первичной обмотки можно установить реактивное сопротивление — дроссель.
Эту меру следует рассматривать скорее как выход из положения, если никаких других средств понижения мощности не имеется. Включение реактивного сопротивления в цепь высокого напряжения может сильно понижать выходное напряжение холостого хода трансформатора. Падение выходного напряжения наблюдается у трансформаторов с относительно большим током холостого хода — 2-3А. При незначительном потреблении тока — порядка 0,1А — падение выходного напряжения почти незаметно. Кроме того, включенный в первичной обмотке трансформатора, дроссель может приводить к некоторому ухудшению сварочных характеристик трансформатора, хотя и не настолько, чтобы его нельзя было эксплуатировать. В последнем случае все еще сильно зависит от свойств конкретного трансформатора. Для некоторых сварочных аппаратов, включение дросселя в первичную цепь трансформатора никак не сказывается, по крайней мере согласно субъективным ощущениям, на качестве горения дуги.
В качестве дросселя сварочного аппарата, для регулировки тока, можно использовать готовую вторичную обмотку какого-нибудь трансформатора, рассчитанного да выход около 40В и мощностью 200-300 Вт, тогда ничего переделывать не придется. Хотя все же лучше сделать самодельный дроссель, намотав провод на отдельном каркасе от такого же трансформатора — 200-300 Вт, например от телевизора, сделав отводы через каждые 30-60 витков, подключенные к переключателю.
Самодельный дроссель можно изготовить и на незамкнутом — прямом сердечнике. Это удобно, когда уже есть готовая катушка с несколькими сотнями витков подходящего провода. Тогда внутрь нее надо набить пакет прямых пластин из трансформаторного железа. Необходимое реактивное сопротивление выставляется подбором толщины пакета, ориентируясь по сварочному току трансформатора. Для примера: дроссель, изготовленный из катушки, содержащей предположительно около 400 витков провода диаметром 1,4 мм, был набит пакетом железа с общим сечением 4,5 см 2 , длиной, равной длине катушки, 14 см. Это позволило уменьшить сварочный ток трансформатора 120А примерно в два раза. Дроссель такого типа можно сделать и с регулируемым реактивным сопротивлением. Для этого можно менять глубину ввода стержня сердечника в полость катушки. Катушка без сердечника обладает низким сопротивлением, при полностью введенном стержне ее сопротивление максимально. Дроссель, намотанный подходящим проводом, мало греется, но у него сильно вибрирует сердечник. Это надо учитывать при стяжке и фиксации набора пластин железа.
Для самодельных сварочных аппаратов легче всего, еще при намотке обмоток, сделать их с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно разве что для подстройки тока, нежели для его регулировки в широких пределах. Ведь, чтобы уменьшить ток в 2-3 раза, придется слишком увеличивать количество витков первичной обмотки, что неизбежно приведет к падению напряжения во вторичной цепи. Либо же придется наращивать витки всех катушек, что приведет к чрезмерному расходу провода, увеличению габаритов и массы трансформатора.
Для более тонкой регулировки сварочного тока в меньшую сторону, можно использовать индуктивность сварочного кабеля, укладывая его кольцами. Но не стоит перебарщивать, т.к. кабель будет нагреваться.
В последнее время некоторое распространение получили тиристорные и симисторные схемы регулировки тока сварки. При подаче на управляющий вывод тиристора или симистора напряжения определенной величины регулятор открывается и начинает свободно пропускать через себя ток. В схемах регулирования тока, работающих от переменного напряжения, управляющие импульсы обычно поступают на каждом полупериоде. Регулятор открывается в строго определенные (задаваемые) моменты времени, обрезая таким образом начало каждого полупериода синусоиды тока, что уменьшает суммарную мощность проходящего электрического сигнала.
Естественно, ток и напряжение после этого не имеют синусоидальную форму. Такие схемы позволяют регулировать мощность в широких пределах. Человек, разбирающийся в радиоэлектронике, сможет изготовить подобную схему самостоятельно, хотя, надо сказать, устройства такого рода нельзя признать совершенными. При использовании регуляторов данного типа процесс горения дуги несколько ухудшается. Ведь теперь при уменьшении мощности дуга начинает гореть отдельными, все более кратковременными вспышками. У большинства из схем тиристорных регуляторов шкалы не линейны, а калибровка меняется с изменением напряжения сети, ток через тиристор постепенно увеличивается во время работы из-за нагрева элементов схемы. Кроме того, обычно заметно гасится выходная мощность даже при максимальном положении отпирания регулятора, к чему сварочные трансформаторы очень чувствительны. Такой способ регулировки тока сварки, из-за сложности изготовления и невысокой надежности, не получил большого распространения среди самодельных регуляторов сварочного тока.
Измерение сварочного тока
Специфика измерения этим прибором состоит в том, что для измерения не требуется подключаться в электрическую цепь. Сила тока измеряется на расстоянии от провода без прикосновения к нему. У прибора есть специальный разводящийся контур, отчего и название — «клещи», которым охватывается провод с током. Электромагнитное поле тока протекающего в охваченном проводе наводит ток в замкнутом контуре, который и измеряется. На корпусе «клещей» находится переключатель пределов измерения тока, максимальные значения которого обычно достигают — от 100А до 500А для разных моделей приборов. Токоизмерительными клещами можно оперативно воспользоваться практически в любой ситуации, не оказывая никакого влияния на электрическую цепь. Измерять ими можно лишь переменный ток, который создает переменное электромагнитное поле, для постоянного тока этот инструмент бесполезен. Класс точности в данном случае весьма невысок, поэтому можно судить, скорее, только о приблизительных значениях.
Другой способ измерять ток сварки: вмонтировать в электрическую цепь изготавливаемого сварочного аппарата или дорабатываемого промышленного аппарат амперметр, рассчитанный на большие значения тока, а то и просто включать его на время в разрыв цепи сварочных проводов.
Включение амперметра в сварочную цепь также отмечается некоторой спецификой. Дело в том, что последовательно в цепь включается не сам прибор (стрелочный указатель), а его шунт (резистор), стрелочный же индикатор подключается к шунту параллельно.
Шунт обладает собственным сопротивлением: предположительно сотые доли Ома (так как измерить его обычным омметром не удается). На вид это кусок металла в несколько сантиметров в длину прямоугольного сечения с мощными контактными площадками с обеих сторон. От точности сопротивления шунта зависит и точность показания прибора. Для каждой модели амперметра предусмотрен шунт определенного сопротивления, и они должны продаваться вместе.
И уж чего ни в коем случае не нужно делать, так это пробовать включить стрелочный прибор в цепь вообще без шунта. Если у вас где-то завалялся стрелочный прибор, на шкале которого значатся сотни ампер, то это вовсе не значит, что он сам их измеряет. Проверьте его: и сам по себе прибор окажется всего-то микро- или миллиамперметром. Иногда попадаются стрелочные приборы, у которых шунт вмонтирован внутри корпуса и к нему дополнительно ничего больше подключать не нужно. Как правило, такие отличаются огромными размерами и невысоким классом точности.
Немалое значение имеет способность стрелочного указателя измерительного прибора устанавливаться на текущее значение, преодолевая колебательные переходные процессы при изменении тока, иначе стрелка будет судорожно плясать по шкале уже при незначительных изменениях тока, которые неизбежны при горении сварочной дуги.
Самодельные сварочные аппараты, полуавтоматы, схемы
Схема сварочного полуавтомата с регулятором сварочного тока по первичной обмотке.
Представляем вам еще одну схему сварочного полуавтомата с регулировкой тока по первичной обмотке.
Вариантов регулирования сварочного тока очень много, есть вариант в тиристорном исполнении по первичной обмотке, тиристорная по вторичной, галетная по первичной и так далее. Мы предоставляем вам свою схему регулирования тока сварочного трансформатора.
Регулировка тока в данной схеме ведется по первичной обмотке, коммутирующим звеном в которой являются реле 71.3747-01 от автомобиля (16 штук)
Рассмотрим принцип работы регулятора тока сварочного трансформатора в данной схеме.
Регулятор состоит из дешевых отечественных микросхем, двух триггеров на микросхеме К155ТМ2, 2 элемента 2И-НЕ на микросхеме К155ЛА3, счетчика на 155ИЕ7 и дешифратора на 155ИД3.
При нажатии кнопок SA1 (Ток «+») и SA2 (Ток «-«) на выходах дешифратора К155ИД3 появляются сигналы, необходимые для срабатывания коммутирующих реле P1. P16 и загораются соответствующие светодиоды, указывающие на какую обмотку сварочного трансформатора, должен подключиться регулятор во время сварки.
Рассмотрим принцип работы блока управления сварочного полуавтомата.
При нажатии кнопки управления срабатывает реле К1. Своими контактами К1.1 включает реле газа и реле К3, которое своими контактами К3.1 подключает один из блоков реле P1. P16, который был выбран кнопками SA1 (Ток «+») и SA2 (Ток «-«).
Контакты К1.2 включают цепь питания двигателя и в это же время контактами К1.3 включает реле К2, которое своими контактами К2.1 отключает цепь питания двигателя на время, заданное конденсатором С20.
В данный момент идет подача газа, включена цепь сварочного трансформатора, проволока не подается. Идет процесс продувки газом.
После разрядки конденсатора С20, реле К2 своими контактами К2.1 подключает цепь питания двигателя.
В данный момент идет подача газа, включена цепь сварочного трансформатора, двигатель подачи проволоки работает. (Идет процесс сварки)
При отпускании кнопки управления отключается реле К1 контактами К1.2 разрывает цепь питания двигателя, контактами К1.1 мгновенно тормозит двигатель подачи проволоки и отключает реле К3 и реле подачи газа. Реле К3 и реле газа в этот момент остаются включены до момента разряжения конденсатора С19.
В данный момент идет подача газа и ток сварки включен, подача сварочной проволоки прекращена. Идет процесс продувки.
После разрядки конденсатора С19 реле газа и реле К3 (отвечающее за подключение тока сварки) отключаются.
В это время процесс сварки остановлен.
Если объяснить простыми словами весь процесс, то выглядит вот так:
При нажатии кнопки управления подается газ и подключается ток сварки, после разряда конденсатора С20 включается механизм подачи проволоки и идет процесс сварки. После отжатия кнопки управления отключается подача проволоки и через время заданное конденсатором С19 отключается ток сварки и подача газа.
Настройка:
Регулятор сварочного тока при исправных деталях и правильном монтаже, не нуждается в настройке и как правило начинает работать сразу.
Кнопки SA1 (Ток «+») и SA2 (Ток «-«) обычные ПМ22
Настройка блока управления сварочного полуавтомата сводится к подбору емкости конденсаторов С19 и С20. Опытным путем подбираем время удержания реле К2, К3 и клапана газа, которое колеблется в пределах от 1.. 3 сек.
Резистором R29 регулируется скорость подачи сварочной проволоки сварочного аппарата.
Сварочный трансформатор можно намотать так, как это сделано в этой статье Делаем тороидальный сварочный трансформатор и рассчитать так как написано здесь Расчет трансформатора для сварочного полуавтомата, сварочного аппарата.
Так как ступеней регулирования трансформатора 16, нужно при намотке трансформатора сделать 16 отводов от первичной обмотки с тем условием, что бы на вторичной обмотке напряжение менялось с шагом 1 вольт, от 14 до 30 вольт.
Многие скажут, автомобильное реле да еще в первичной обмотке трансформатора-чушь...
Скажем вам прямо, не чушь. Берем мощность трансформатора 3000 ватт, напряжение в сети 220 вольт.. 3000/220=14 А это максимальный ток, который может протекать через первичную обмотку сварочного трансформатора при данной мощности.
Автомобильное реле дальнего света от ВАЗ выдерживает нагрузку от 30 А до 70 А, что в разы больше чем номинальная мощность трансформатора. Отсюда следует, что автомобильные реле имеют запас прочности и могут использоваться в конструкциях данного типа.
Настоятельно не рекомендуем использовать реле коммутирующее цепь стартера рассчитанное на 70А, так как режим работы в нем кратковременный, то есть обмотка реле сильно греется и может перегореть при интенсивном использовании сварочного аппарата.
P.S. Конечно в данной схеме сварочного полуавтомата в качестве регулятора сварочного тока можно использовать мощный галетный переключатель (еще найти нужно), подсоединить к нему кучу проводов (кстати не дешевые) и щелкать как черно белый телевизор «Рекорд».
Это не является приоритетом в данной статье.
Конечно это ваше дело и вам решать, но согласитесь на сколько приятней легким нажатием кнопок регулировать сварочный ток. Это и есть преимущество данной схемы.
Если возникнут вопросы, задавайте их в комментариях, удачи.
Схема зарядного устройства
Обзор схем зарядных устройств автомобильных аккумуляторов
Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле
I=0,1Q
где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.
Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.
Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.
В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.
В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.
Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).
Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.
Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.
Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.
Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.
На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.
Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.
Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:
В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.
Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).
Примечание:
Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.
Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.
В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).
Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:
Примечание:
Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.
В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.
Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному
При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.
Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.
Например:
- Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
- Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
- Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
- Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
- Экстремально низкая температура ускоряет саморазряд
- Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
- Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
- И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.
Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.
Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.
Простая схема зарядного устройства на 12В. Зарядное устройство с регулировкой тока зарядки. Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора. Схема зарядного устройства для аккумулятора с самоотключением после зарядки. Для заряда аккумуляторов емкостью 45 ампер.Схема умного зарядного устройства, которое предупредит о не правильном подключении.Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.
Любая схема автомобильного зарядного устройства состоит из следующих компонентов:
- Блок питания.
- Стабилизатор тока.
- Регулятор силы тока заряда. Может быть ручным или автоматическим.
- Индикатор уровня тока и (или) напряжения заряда.
- Опционально – контроль заряда с автоматическим отключением.
Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.
Схема простого зарядного устройства для автомобильного аккумулятора
Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).
Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.
Классика – резисторный зарядник
Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.
Ток заряда регулируется реостатом.
Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно. Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.
Зарядное устройство своими руками, подробности, схемы – видео
Гасящий конденсатор
Принцип работы изображен на схеме. Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.
Популярное: Преобразователь с 12 на 220: как собрать в домашних условияхЕсли добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении. Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.
Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.
При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.
Схема самодельного зарядного устройства для аккумулятора на тринисторе
Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике. В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.
Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.
Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.
То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.
Популярное: Что измеряет вольтметр? Вопрос понятен всем. Или нет?Схема импульсного зарядного устройства для автомобильного аккумулятора
Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля. Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.
При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.
Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса. В качестве донора может выступить блок питания от системника ПК.
Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.
На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.
Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).
Вывод:
Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».
Схема простого зарядного устройства для АКБ
Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.
Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.
Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.
Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.
Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.
Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.
Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.
Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора, например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.
В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.
Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.
переделал на транзистор
Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером. Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.
Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.
Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.
Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.
По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.
Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).
Плата в формате .lay; скачать…
Автор; АКА КАСЬЯН
Схема автомобильного зарядного устройства
Качественно работающий автомобильный аккумулятор трудно переоценить. Однако, со временем он становится менее емким и способен быстрее разряжаться. На этот процесс оказывают влияние и другие факторы, связанные с условиями эксплуатации. Чтобы не попадать в затруднительную ситуацию, стоит иметь дома или в гараже простое зарядное устройство своими руками.
В большинстве случаев принципиальная схема зарядного устройства самодельной конструкции будет относительно несложной. Собрать такой аппарат удастся из подручных недорогих компонентов. При этом электрический агрегат поможет быстро запустить легковушку. Предпочтительней обзавестись пуско-зарядной аппаратурой, но она требует немного больших мощностей от используемых элементов.
Базовые полезные знания о зарядке батарей
Применять электрическую подпитку для АКБ нужно в тех ситуациях, когда замер на клеммах электроприбора демонстрирует уровень ниже 11,2 В для большинства легковых авто. Хотя двигатель способен запускаться при таком уровне вольтажа, но внутри начинаются нежелательные химические процессы. Происходит сульфатация и разрушение пластин. Емкость заметно снижается.
Важно знать, что во время длительной зимовки или стоянки авто в течение нескольких недель уровень заряда падает, поэтому рекомендуется контролировать данное значение мультиметром, а при необходимости в ход пускать сделанное своими руками ЗУ для автомобильных аккумуляторов либо купленное в автомагазине.
Для подпитки АКБ чаще всего применяются устройства двух типов:
- выдающее на «крокодилах» напряжение постоянного типа;
- системы с импульсным типом работы.
При зарядке от устройства постоянного тока подбирается значение тока заряда арифметически соответствующее 1/10 от установленного производителем значения емкости. Когда имеется в наличии батарея на 60 А*ч, то ампераж отдачи должен быть на уровне 6 А. Стоит учитывать исследования, согласно которым умеренное снижение количества ампер на отдачи способствует уменьшению процессов сульфатации.
Если же пластины частично стали покрываться нежелательным сульфатным налетом, то опытные автомобилисты задействуют операции по десульфатации. Применяемая методика заключается в следующем:
- аккумулятор разряжаем до появления на мультиметре 3—5 В после замера, используя для операции большие токи и малую длительность их воздействия, например, прокручивание стартером;
- на следующей стадии медленно полностью заряжаем блок от одноамперного источника;
- повторяются предыдущие операции на протяжении 7—10 циклов.
Подобный принцип работы задействован в заводских зарядных десульфатирующих устройствах импульсного типа. За один цикл на клеммы АКБ поступает в течение нескольких миллисекунд непродолжительный во времени импульс обратной полярности, сменяющийся прямой полярностью.
Необходимо контролировать состояние устройства и не допускать перезаряда батареи. При достижении значений 12,8—13,2 В на контактах стоит отключать систему от подпитки. В противном случае возникнет явление кипения, повышение концентрации и плотности залитого внутрь электролита и последующее разрушение пластин. Для предотвращения негативных явлений заводская принципиальная электрическая схема зарядного устройства наделена платами электронного контроля и автоматического отключения.
Читайте также: Как проверить аккумулятор без нагрузочной вилкиКакой бывает схема автомобильного зарядного устройства
В гаражных условиях можно воспользоваться несколькими типами зарядок для автомобиля. Они могут быть как максимально примитивными, состоящими из нескольких элементов, так и довольно громоздкими многофункциональными стационарными устройствами. Обычно автовладельцы идут по пути упрощения.
Простейшие схемы
Если в наличии нет заводского зарядного, а реанимировать АКБ необходимо без задержки, то подойдет наиболее простой вариант. В нем участвуют ограничительное сопротивление в виде нагрузки и источник питания, способный генерировать 12—25 В.
Собрать самодельное зарядное устройство получится даже «на коленках», если имеется в доме зарядка для ноутбука. Обычно они выдают около 19 В и 2 А. При сборке стоит учитывать полярность:
- наружный контакт – минус;
- внутренний контакт – плюс.
Важно! Обязательно должно быть установлено ограничительное сопротивление, в качестве которого нередко используют лампочку из салона.
Вывинчивать лампу из поворотник или даже «стопов» не стоит, так как они станут перегрузом для схемы. Цепь состоит из таких соединенных между собой элементов: отрицательная клемма блока ноутбука – лампа – отрицательная клемма заряжаемой батареи – положительная клемма заряжаемой батареи – плюс блока ноутбука. Достаточно полутора-двух часов для возвращения АКБ к жизни на столько, что от него можно будет запустить мотор.
При отсутствии ноутбуков или нетбуков рекомендуем отправиться заранее на радиорынок за мощным диодом, рассчитанным на обратное напряжение более 1000 В и ток выше 3 А. Небольшие габариты детали позволяют возить его с собой в бардачке или багажнике, чтобы не попасть в нежелательное положение.
Воспользоваться таким диодом можно в самодельной схеме. Предварительно откидываем и достаем аккумулятор. На следующем этапе монтируем цепочку из элементов: первый контакт бытовой розетки в квартире – отрицательный контакт на диоде – положительный контакт диода – лимитирующая нагрузка – отрицательная клемма аккумулятора – плюс аккумулятора – второй контакт бытовой розетки.
Лимитирующей нагрузкой в подобной сборке обычно служит мощная лампа накаливания. Их предпочтительней выбирать от 100 Вт. Получаемый ток можно определить из школьной формулы:
U * I = W, где
- U – напряжение, В;
- I – сила тока, А;
- W – мощность, кВт.
Исходя из расчетов при нагрузке в 100-ваттной нагрузке и 220-вольтном напряжении выдача мощности ограничивается примерно половиной ампера. За ночь аккумулятор получит около 5 А, что обеспечит заводку движку. Утроить мощность и одновременно ускорить зарядку удастся с помощью добавления в цепь еще пары таких ламп. Не стоит переусердствовать и запускать к такой системе мощных потребителей типа электроплиты, так как можно вывести из строя диод и АКБ.
Важно знать, что собранная прямозарядная схема автомобильного зарядного устройства своими руками рекомендуется к применению в крайнем случае, если иного выхода нет.
Переделка компьютерного блока питания
Прежде чем приступать к экспериментам с электроприборами, нужно объективно оценить собственные силы по реализации задуманного варианта исполнения. После можно приступать к сборкам.
Читайте также: Как поменять замок зажигания на ПриореВ первую очередь проводится подбор материальной базы. Нередко для такого дела используют старые компьютерные системники. Из них вынимают блок питания. Традиционно они снабжены выводами разного вольтажа. Кроме пятивольтовых контактов, имеются отводы на 12 В. Последние также наделены током в 2 А. Подобных параметров почти хватает для сборки схемы своими руками.
Рекомендуем поднять напряжение до уровня 15 В. Часто это осуществляется эмпирически. Для корректировки понадобится килоомное сопротивление. Такой резистор накидывают параллельно другим имеющимся резисторам в блоке возле восьминожной микросхемы во вторичной цепи БП.
Подобным методом меняют значение коэффициента передачи цепи обратной связи, что оказывает влияние на выходной вольтаж. Способ обеспечивает обычно поднятие до 13,5 В, чего хватает для простых задач с автомобильным аккумулятором.
На выходные контакты накидываются защипы-крокодилы. Дополнительных лимитирующих защит ставить не нужно, так как внутри имеется ограничивающая электроника.
Трансформаторная схема
Из-за своей доступности, надежности и простоты давно востребована у бывалых водителей. В ней используются трансформаторы со вторичной обмоткой, выдающей 12—18 В. Такие элементы встречаются в старых телевизорах, магнитофонах и прочей бытовой технике. Из более современных приборов можно посоветовать отработанные бесперебойники. Они доступны на вторичном рынке за небольшую плату.
В наиболее минималистичном варианте схемы присутствует такой набор:
- диодный выпрямляющий мостик;
- подобранный по параметрам трансформатор;
- рассчитанная соответственно сети защитная нагрузка.
Так как по лимитирующей нагрузке течет большой ток, то от этого она перегревается. Чтобы сбалансировать ампераж, не допуская превышения тока зарядки, в цепь добавляют конденсатор. Его место – первичная цепь трансформатора.
В экстремальных ситуациях при грамотно просчитанном объеме конденсатора можно рискнуть и удалить трансформатор. Однако, подобная схема станет небезопасной в плане поражения электрическим током.
Оптимальными можно назвать цепи, в которых имеется регулировка параметров и лимитирование тока заряда. Представляем на странице один из примеров.
Получить диодный мостик удастся с минимальным усилием из вышедшего из строя автомобильного генератора. Достаточно выпаять его и перекоммутировать при необходимости.
Основы безопасности при сборке и эксплуатации схем
Во время работы по комплектации зарядного устройства для автомобильной АКБ стоит учитывать определенные факторы:
- все должно быть смонтировано и установлено на пожаробезопасной площадке;
- при работе с прямоточными примитивными зарядными устройствами нужно вооружиться средствами защиты от поражения током: резиновыми перчатками и ковриком;
- в процессе зарядки АКБ первый раз самодельными аппаратами необходимо контролировать текущее состояние работающей системы;
- контрольными точками являются сила тока с напряжением на выходе зарядки, допустимая степень нагрева батареи и зарядного устройства, недопущение закипания электролита;
- если оставлять оборудование на ночь, то важно оснастить схему устройством защитного отключения.
Важно! Рядом должен всегда находиться порошковый огнетушитель, чтобы уберечь от возможного распространения огня.
Диаграммы нагрузки и нагрузки трансформатора
В предыдущих руководствах по трансформатору мы предполагали, что трансформатор идеален, то есть такой, в котором отсутствуют потери в сердечнике или потери в меди в обмотках трансформатора. Однако в реальных трансформаторах всегда будут потери, связанные с нагрузкой трансформатора, поскольку трансформатор находится «под нагрузкой». Но что мы подразумеваем под: Нагрузка трансформатора .
Что ж, сначала давайте посмотрим, что происходит с трансформатором, когда он находится в состоянии «холостого хода», то есть когда к его вторичной обмотке не подключена электрическая нагрузка и, следовательно, вторичный ток не течет.
Считается, что трансформатор работает без нагрузки, когда его вторичная обмотка разомкнута, другими словами, ничего не подключено и нагрузка трансформатора равна нулю. Когда источник переменного тока синусоидальной формы подключен к первичной обмотке трансформатора, небольшой ток I OPEN будет протекать через обмотку первичной катушки из-за наличия напряжения первичного источника питания.
Когда вторичная цепь разомкнута и ничего не подключено, противо-ЭДС вместе с сопротивлением первичной обмотки ограничивают протекание этого первичного тока.Очевидно, что этот первичный ток холостого хода (Io) должен быть достаточным для поддержания достаточного магнитного поля для создания требуемой обратной ЭДС. Рассмотрим схему ниже.
Состояние «холостого хода» трансформатора
Амперметр выше покажет небольшой ток, протекающий через первичную обмотку, даже если вторичная цепь разомкнута. Этот первичный ток холостого хода состоит из следующих двух компонентов:
- Синфазный ток, I E , который обеспечивает потери в сердечнике (вихревые токи и гистерезис).
- Небольшой ток, I M при 90 o до напряжения, создающего магнитный поток.
Обратите внимание, что этот первичный ток холостого хода Io очень мал по сравнению с нормальным током полной нагрузки трансформатора. Также из-за потерь в стали в сердечнике, а также из-за небольшого количества потерь в меди в первичной обмотке, Io не отстает от напряжения питания Vp точно на 90 o , (cosφ = 0), будет небольшая разница фазового угла.
Пример нагрузки трансформатора №1
Однофазный трансформатор имеет энергетический компонент I E на 2 А и намагничивающий компонент I M на 5 А. Рассчитайте ток холостого хода, Io и результирующий коэффициент мощности.
Трансформатор «под нагрузкой»
Когда электрическая нагрузка подключена ко вторичной обмотке трансформатора и поэтому нагрузка трансформатора больше нуля, ток течет во вторичной обмотке и выходит к нагрузке.Этот вторичный ток возникает из-за индуцированного вторичного напряжения, создаваемого магнитным потоком, создаваемым в сердечнике из первичного тока.
Вторичный ток I S , который определяется характеристиками нагрузки, создает самоиндуцированное вторичное магнитное поле Φ S в сердечнике трансформатора, которое течет в направлении, прямо противоположном основному первичному полю, Φ П . Эти два магнитных поля противостоят друг другу, что приводит к объединенному магнитному полю с меньшей магнитной напряженностью, чем одиночное поле, создаваемое одной только первичной обмоткой, когда вторичная цепь была разомкнута.
Это комбинированное магнитное поле снижает обратную ЭДС первичной обмотки, вызывая незначительное увеличение первичного тока I P . Первичный ток продолжает увеличиваться до тех пор, пока магнитное поле сердечника не вернется к своей исходной напряженности, и для правильной работы трансформатора всегда должно существовать сбалансированное состояние между первичным и вторичным магнитными полями. Это приводит к тому, что мощность уравновешивается и одинакова как на первичной, так и на вторичной стороне. Рассмотрим схему ниже.
Трансформатор «под нагрузкой»
Мы знаем, что коэффициент трансформации трансформатора утверждает, что полное индуцированное напряжение в каждой обмотке пропорционально количеству витков в этой обмотке, а также что выходная мощность и потребляемая мощность трансформатора равны вольтам, умноженным на амперы, ( V x I). Следовательно:
Но мы также знаем ранее, что коэффициент напряжения трансформатора равен коэффициенту витков трансформатора как: «коэффициент напряжения = коэффициент передачи».Тогда взаимосвязь между напряжением, током и числом витков в трансформаторе может быть связана вместе и поэтому дается как:
Коэффициент трансформации
- Где:
- N P / N S = V P / V S — представляет собой отношение напряжений
- N P / N S = I S / I P — представляет коэффициент текущей ликвидности
Обратите внимание, что ток обратно пропорционален как напряжению, так и количеству витков.Это означает, что при нагрузке трансформатора на вторичную обмотку, чтобы поддерживать сбалансированный уровень мощности на обмотках трансформатора, если напряжение повышается, ток должен быть понижен, и наоборот. Другими словами, «большее напряжение — меньший ток» или «меньшее напряжение — больший ток».
Поскольку коэффициент трансформации — это соотношение между числом витков в первичной и вторичной обмотках, напряжением на каждой обмотке и током через обмотки, мы можем изменить приведенное выше уравнение коэффициента трансформации, чтобы найти значение любого неизвестного напряжения, ( V) ток, (I) или количество витков (N), как показано.
Полный ток, потребляемый первичной обмоткой от источника питания, представляет собой векторную сумму тока холостого хода Io и дополнительного тока питания I 1 в результате нагрузки вторичного трансформатора, который отстает от напряжения питания на величину угол Φ. Мы можем показать это соотношение в виде векторной диаграммы.
Ток нагрузки трансформатора
Если нам заданы токи I S и Io, мы можем вычислить первичный ток I P следующими способами.
Пример нагрузки трансформатора №2
Однофазный трансформатор имеет 1000 витков на первичной обмотке и 200 витков на вторичной обмотке. Ток холостого хода трансформатора, снимаемый с источника питания, составляет 3 А при коэффициенте мощности 0,2 с запаздыванием. Вычислите ток первичной обмотки I P и соответствующий ему коэффициент мощности φ, когда вторичный ток, питающий нагрузку трансформатора, составляет 280 А при запаздывании 0,8.
Возможно, вы заметили, что фазовый угол первичного тока φ P почти такой же, как и фазовый угол вторичного тока, φ S .Это связано с тем, что ток холостого хода в 3 ампера очень мал по сравнению с более высокими 56 амперами, потребляемыми первичной обмоткой от источника питания.
В реальных условиях обмотки трансформатора имеют импедансы X L и R. Эти импедансы необходимо учитывать при построении векторных диаграмм, поскольку эти внутренние импедансы вызывают падение напряжения внутри обмоток трансформатора. Внутренние импедансы возникают из-за сопротивления обмоток и падения индуктивности, называемого реактивным сопротивлением рассеяния, возникающего из-за потока рассеяния.Эти внутренние импедансы представлены как:
Таким образом, первичная и вторичная обмотки трансформатора обладают как сопротивлением, так и реактивным сопротивлением. Иногда может быть более удобным, если все эти значения импеданса объединить вместе на одной стороне трансформатора, чтобы немного упростить математические вычисления.
Можно переместить импедансы первичной обмотки на вторичную сторону или импедансы вторичной обмотки на первичную сторону. Комбинированные значения импедансов R и L называются «приведенными импедансами» или «отраженными значениями».Цель здесь состоит в том, чтобы сгруппировать вместе импедансы внутри трансформатора и получить только одно приведенное значение R и X L для первичной или вторичной стороны в наших расчетах, как показано.
Суммирование импедансов трансформатора
Чтобы связать сопротивление или реактивное сопротивление от одной стороны трансформатора к другой, мы должны умножить или разделить на квадрат отношения витков (Коэффициент витков 2 ). Таким образом, относя (или отражая) импедансы (сопротивление и реактивное сопротивление) от вторичной к первичной стороне трансформатора, мы умножаем на квадрат отношения витков, N 2 , а когда относим первичные импедансы к вторичной стороне, мы должны разделить на коэффициент поворотов в квадрате.Таким образом, вторичное отражение по отношению к первичному увеличивает R и X, в то время как отражение от первичного к вторичному уменьшает R и X на величину, определенную N 2 . Это указание или отражение импедансов в равной степени относится и к сопротивлению подключенной нагрузки, и к реактивному сопротивлению.
Так, например, если отнести сопротивление вторичной обмотки 2 Ом к первичной обмотке с соотношением витков 8: 1, будет получено новое значение сопротивления первичной обмотки: 2 x 8 2 = 128 Ом, в то время как сопротивление первичной обмотки равно 2 Ом. приведет к вторичному резистивному значению: 0.03125 Ом.
Регулирование напряжения трансформатора
Стабилизация напряжения трансформатора определяется как изменение вторичного напряжения на клеммах, когда нагрузка трансформатора максимальна, то есть при полной нагрузке, когда первичное напряжение питания остается постоянным. Регулирование определяет падение (или увеличение) напряжения, которое происходит внутри трансформатора, когда напряжение нагрузки становится слишком низким в результате слишком высокой нагрузки трансформатора, что, следовательно, влияет на его производительность и эффективность.
Регулировка напряжения выражается в процентах (или на единицу) от напряжения холостого хода. Тогда, если E представляет вторичное напряжение холостого хода, а V представляет вторичное напряжение полной нагрузки, процентное регулирование трансформатора задается как:
Так, например, трансформатор выдает 100 В на холостом ходу, а напряжение падает до 95 В при полной нагрузке, регулировка будет 5%. Значение E — V будет зависеть от внутреннего импеданса обмотки, который включает ее сопротивление R и, что более важно, ее реактивное сопротивление X переменного тока, ток и фазовый угол.
Также регулирование напряжения обычно увеличивается по мере того, как коэффициент мощности нагрузки становится более запаздывающим (индуктивным). Регулирование напряжения относительно нагрузки трансформатора может быть положительным или отрицательным по величине, то есть с напряжением холостого хода в качестве эталона, понижением регулирования при приложении нагрузки или с полной нагрузкой в качестве эталона и изменением. повышается в регулировке при уменьшении или снятии нагрузки.
В общем, регулирование трансформатора с сердечником при высокой нагрузке трансформатора хуже, чем у трансформатора с кожухом.Это связано с тем, что трансформатор оболочечного типа имеет лучшее распределение магнитного потока из-за переплетения обмоток катушки.
В следующем уроке о трансформаторах мы рассмотрим трансформатор с несколькими обмотками, который имеет более одной первичной обмотки или более одной вторичной обмотки, и увидим, как мы можем соединить две или более вторичных обмоток вместе, чтобы подавать большее напряжение или больше тока на подключенная нагрузка.
Практические рекомендации — Трансформаторы | Трансформеры
Мощность
Как уже отмечалось, трансформаторы должны быть хорошо спроектированы, чтобы обеспечить приемлемую связь по мощности, точное регулирование напряжения и низкие искажения тока возбуждения.Кроме того, трансформаторы должны быть спроектированы так, чтобы без проблем передавать ожидаемые значения тока первичной и вторичной обмоток.
Это означает, что проводники обмотки должны быть изготовлены из проволоки соответствующего калибра, чтобы избежать проблем с нагревом.
Идеальный трансформатор
Идеальный трансформатор должен иметь идеальную связь (без индуктивности рассеяния), идеальное регулирование напряжения, идеально синусоидальный ток возбуждения, отсутствие гистерезиса или потерь на вихревые токи и достаточно толстый провод, чтобы выдерживать любой ток.К сожалению, идеальный трансформатор должен быть бесконечно большим и тяжелым, чтобы соответствовать этим целям проектирования.
Таким образом, при разработке практического трансформатора необходимо идти на компромиссы.
Кроме того, изоляция проводов обмотки является проблемой там, где встречаются высокие напряжения, как это часто бывает в повышающих и понижающих распределительных трансформаторах.
Обмотки не только должны быть хорошо изолированы от стального сердечника, но и каждая обмотка должна быть достаточно изолирована от другой, чтобы поддерживать электрическую изоляцию между обмотками.
Номинальные характеристики трансформатора
С учетом этих ограничений трансформаторы рассчитаны на определенные уровни напряжения и тока первичной и вторичной обмоток, хотя номинальный ток обычно выводится из номинального значения вольт-ампер (ВА), присвоенного трансформатору.
Например, возьмите понижающий трансформатор с номинальным напряжением первичной обмотки 120 В, номинальным напряжением вторичной обмотки 48 В и номинальной мощностью 1 кВА (1000 ВА) в ВА. Максимальные токи обмотки можно определить как таковые: кВА (1000 ВА).Максимальные токи обмоток можно определить как таковые:
Иногда обмотки имеют номинальный ток в амперах, но это обычно наблюдается на небольших трансформаторах. Большие трансформаторы почти всегда рассчитываются по напряжению обмотки и ВА или кВА.
Потери энергии
Трансформаторы передают мощность с минимальными потерями. Как было сказано ранее, КПД современных силовых трансформаторов обычно превышает 95%.Однако хорошо знать, куда уходит часть этой утраченной силы и что вызывает ее потерю.
Конечно, возможны потери мощности из-за сопротивления обмоток проводов. Если не используются сверхпроводящие провода, всегда будет рассеиваться мощность в виде тепла через сопротивление проводников с током. Поскольку для трансформаторов требуются провода такой большой длины, эти потери могут быть существенным фактором.
Увеличение диаметра обмоточного провода — один из способов минимизировать эти потери, но только при значительном увеличении стоимости, размера и веса.
Вихретоковые потери
Помимо резистивных потерь, большая часть потерь мощности трансформатора происходит из-за магнитных эффектов в сердечнике. Возможно, наиболее значительным из этих «потерь в сердечнике» являются потери на вихревые токи , которые представляют собой рассеивание резистивной мощности из-за прохождения индуцированных токов через железо сердечника.
Поскольку железо является проводником электричества, а также отличным «проводником» магнитного потока, в железе будут индуцироваться токи так же, как есть токи, индуцированные во вторичных обмотках из-за переменного магнитного поля.
Эти наведенные токи — как описано в пункте о перпендикулярности закона Фарадея — стремятся проходить через поперечное сечение сердечника перпендикулярно виткам первичной обмотки.
Круговое движение дало им свое необычное название: как водовороты в потоке воды, которые циркулируют, а не движутся по прямым линиям.
Железо является хорошим проводником электричества, но не так хорошо, как медь или алюминий, из которых обычно делаются проволочные обмотки. Следовательно, эти «вихревые токи» должны преодолевать значительное электрическое сопротивление, когда они циркулируют по сердечнику.
Преодолевая сопротивление утюга, они рассеивают энергию в виде тепла. Следовательно, у нас есть источник неэффективности трансформатора, который трудно устранить.
Индукционный нагрев
Это явление настолько ярко выражено, что его часто используют как средство нагрева черных (железосодержащих) материалов. На фотографии ниже показан блок «индукционного нагрева», повышающий температуру большого участка трубы.
Петли из проволоки, покрытые высокотемпературной изоляцией, опоясывают окружность трубы, вызывая вихревые токи внутри стенки трубы за счет электромагнитной индукции.Чтобы максимизировать эффект вихревых токов, используется высокочастотный переменный ток, а не частота линии электропередачи (60 Гц).
Блоки в правой части изображения вырабатывают высокочастотный переменный ток и регулируют величину тока в проводах, чтобы стабилизировать температуру трубы на заранее определенном «заданном значении».
Индукционный нагрев: Первичная изолированная обмотка наводит ток в железную трубу с потерями (вторичную).
Снижение вихревых токов
Основная стратегия уменьшения этих расточительных вихревых токов в сердечниках трансформаторов состоит в том, чтобы сформировать железный сердечник в виде листов, каждый из которых покрыт изоляционным лаком, чтобы сердечник был разделен на тонкие пластинки.В результате ширина сердечника очень мала для циркуляции вихревых токов:
Разделение стального сердечника на тонкие изолированные пластинки сводит к минимуму потери на вихревые токи.
Ламинированные сердечники , подобные показанному здесь, входят в стандартную комплектацию почти всех низкочастотных трансформаторов. Напомним, что на фотографии трансформатора, разрезанного пополам, железный сердечник состоял из множества тонких листов, а не из одной цельной детали.
Потери на вихревые токи увеличиваются с увеличением частоты, поэтому в трансформаторах, предназначенных для работы от высокочастотной энергии (например, 400 Гц, используемой во многих военных и авиационных приложениях), необходимо использовать более тонкие пластины, чтобы снизить потери до приемлемого минимума.
Это имеет нежелательный эффект увеличения стоимости изготовления трансформатора.
Другой аналогичный метод минимизации потерь на вихревые токи, который лучше подходит для высокочастотных приложений, состоит в том, чтобы сделать сердечник из железного порошка, а не из тонких листов железа.
Подобно ламинированным листам, эти гранулы железа индивидуально покрыты электроизоляционным материалом, который делает сердечник непроводящим, за исключением ширины каждой гранулы.Сердечники из порошкового железа часто используются в трансформаторах, работающих с радиочастотными токами.
Магнитный гистерезис
Еще одна «потеря в сердечнике» — это магнитный гистерезис . Все ферромагнитные материалы имеют тенденцию сохранять некоторую степень намагниченности после воздействия внешнего магнитного поля.
Эта тенденция оставаться намагниченным называется «гистерезисом», и требуются определенные затраты энергии, чтобы преодолеть это противодействие, чтобы изменяться каждый раз, когда магнитное поле, создаваемое первичной обмоткой, меняет полярность (дважды за цикл переменного тока).
Этот тип потерь может быть уменьшен за счет правильного выбора материала сердечника (выбор сплава сердечника с низким гистерезисом, о чем свидетельствует «тонкая» гистерезисная кривая B / H) и проектирования сердечника с минимальной магнитной индукцией (большая площадь поперечного сечения ).
Скин-эффект на высоких частотах
Потери энергии в трансформаторе увеличиваются с увеличением частоты. Скин-эффект внутри проводников обмотки уменьшает доступную площадь поперечного сечения для потока электрического заряда, тем самым увеличивая эффективное сопротивление при повышении частоты и создавая больше мощности, теряемой из-за резистивной диссипации.
Потери в магнитном сердечнике также увеличиваются из-за более высоких частот, вихревых токов и эффектов гистерезиса. По этой причине трансформаторы значительных размеров предназначены для эффективной работы в ограниченном диапазоне частот.
В большинстве систем распределения электроэнергии, где частота сети очень стабильна, можно подумать, что чрезмерная частота никогда не будет проблемой. К сожалению, это происходит в виде гармоник, создаваемых нелинейными нагрузками.
Как мы видели в предыдущих главах, несинусоидальные сигналы эквивалентны аддитивным сериям нескольких синусоидальных сигналов с разными амплитудами и частотами.В энергосистемах эти другие частоты являются целыми числами, кратными основной (линейной) частоте, что означает, что они всегда будут выше, а не ниже проектной частоты трансформатора.
В значительной степени они могут вызвать серьезный перегрев трансформатора. Силовые трансформаторы могут быть спроектированы для обработки определенных уровней гармоник энергосистемы, и эта способность иногда обозначается рейтингом «K-фактор».
Паразитная емкость и индуктивность
Помимо номинальной мощности и потерь мощности, трансформаторы часто имеют другие нежелательные ограничения, о которых следует знать разработчикам схем.Подобно их более простым аналогам — индукторам — трансформаторы обладают емкостью из-за изоляционного диэлектрика между проводниками: от обмотки к обмотке, от витка к витку (в одной обмотке) и от обмотки к сердечнику.
Частота резонанса трансформатора
Обычно эта емкость не имеет значения в силовых приложениях, но приложения с малым сигналом (особенно высокочастотные) могут плохо переносить эту причуду.
Кроме того, эффект наличия емкости наряду с расчетной индуктивностью обмоток дает трансформаторам способность резонировать с на определенной частоте, что определенно является проблемой проектирования в сигнальных приложениях, где приложенная частота может достигать этой точки (обычно резонансная частота силовой трансформатор выходит далеко за пределы частоты переменного тока, для которой он был разработан).
Удерживание флюса
Сдерживание потока (обеспечение того, чтобы магнитный поток трансформатора не ускользнул, чтобы не мешать другому устройству, и убедиться, что магнитный поток других устройств экранирован от сердечника трансформатора) — еще одна проблема, которую разделяют как индукторы, так и трансформаторы.
Индуктивность утечки
Индуктивность рассеяния тесно связана с проблемой удержания потока. Мы уже видели пагубное влияние индуктивности рассеяния на регулирование напряжения с помощью моделирования SPICE в начале этой главы.Поскольку индуктивность рассеяния эквивалентна индуктивности, последовательно соединенной с обмоткой трансформатора, она проявляется как последовательное сопротивление с нагрузкой.
Таким образом, чем больше ток потребляет нагрузка, тем меньше напряжения на выводах вторичной обмотки. Обычно при проектировании трансформатора требуется хорошее регулирование напряжения, но существуют и исключительные области применения.
Как указывалось ранее, цепи разрядного освещения требуют повышающего трансформатора с «слабым» (плохим) регулированием напряжения для обеспечения пониженного напряжения после возникновения дуги в лампе.Один из способов удовлетворить этот критерий проектирования — спроектировать трансформатор с путями рассеяния магнитного потока в обход вторичной (ых) обмотки (ов).
Результирующий поток рассеяния будет создавать индуктивность рассеяния, которая, в свою очередь, приведет к плохому регулированию, необходимому для разрядного освещения.
Насыщенность ядра
Трансформаторытакже ограничены в своих характеристиках из-за ограничений магнитного потока сердечника. Для трансформаторов с ферромагнитным сердечником необходимо учитывать пределы насыщения сердечника.
Помните, что ферромагнитные материалы не могут поддерживать бесконечную плотность магнитного потока: они имеют тенденцию «насыщаться» на определенном уровне (продиктованном материалом и размерами сердечника), что означает, что дальнейшее увеличение силы магнитного поля (ммс) не приводит к пропорциональному увеличению поток магнитного поля (Φ).
Когда первичная обмотка трансформатора перегружается из-за чрезмерного приложенного напряжения, поток сердечника может достигать уровней насыщения в пиковые моменты цикла синусоидальной волны переменного тока.Если это произойдет, напряжение, индуцированное во вторичной обмотке, больше не будет соответствовать форме волны, как напряжение, питающее первичную катушку.
Другими словами, перегруженный трансформатор будет искажать форму волны от первичной до вторичной обмоток, создавая гармоники на выходе вторичной обмотки. Как мы обсуждали ранее, содержание гармоник в энергосистемах переменного тока обычно вызывает проблемы.
Пиковые трансформаторы
Специальные трансформаторы, известные как трансформаторы максимального напряжения , используют этот принцип для создания коротких импульсов напряжения вблизи пиков формы волны напряжения источника.Ядро рассчитано на быстрое и резкое насыщение при уровнях напряжения значительно ниже пикового.
Это приводит к сильно обрезанной форме волны потока синусоидальной волны и импульсам вторичного напряжения только при изменении потока (ниже уровней насыщения):
Формы сигналов напряжения и магнитного потока для пикового трансформатора.
Работа на частотах ниже нормы
Другой причиной ненормального насыщения сердечника трансформатора является работа на частотах ниже нормы.Например, если силовой трансформатор, предназначенный для работы на частоте 60 Гц, вместо этого вынужден работать на частоте 50 Гц, магнитный поток должен достичь более высоких пиковых уровней, чем раньше, чтобы создать такое же противодействующее напряжение, необходимое для балансировки с напряжением источника.
Это верно, даже если напряжение источника такое же, как и раньше.
Магнитный поток выше в сердечнике трансформатора, работающем на 50 Гц, по сравнению с 60 Гц для того же напряжения.
Поскольку мгновенное напряжение на обмотке пропорционально скорости изменения мгновенного магнитного потока в трансформаторе, форма волны напряжения, достигающая того же пикового значения, но требующая большего количества времени для завершения каждого полупериода, требует, чтобы магнитный поток поддерживал та же скорость изменения, что и раньше, но на более длительные периоды времени.
Таким образом, если поток должен расти с той же скоростью, что и раньше, но в течение более длительных периодов времени, он поднимется до более высокого пикового значения.
Математически это еще один пример исчисления в действии. Поскольку напряжение пропорционально скорости изменения потока, мы говорим, что форма волны напряжения — это производная формы волны потока, «производная» — это операция вычисления, определяющая одну математическую функцию (форму волны) с точки зрения скорости: из-за смены другого.
Однако, если мы возьмем противоположную точку зрения и свяжем исходную форму волны с ее производной, мы можем назвать исходную форму волны интегралом производной формы волны. В этом случае форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.
Интеграл любой математической функции пропорционален площади, накопленной под кривой этой функции. Поскольку каждый полупериод сигнала 50 Гц накапливает большую площадь между ним и нулевой линией графика, чем будет форма сигнала 60 Гц — а мы знаем, что магнитный поток является интегралом напряжения, — поток будет достигать более высоких значений в рисунок ниже.
Поток, изменяющийся с той же скоростью, возрастает до более высокого уровня при 50 Гц, чем при 60 Гц.
Еще одна причина насыщения трансформатора — наличие постоянного тока в первичной обмотке. Любая величина постоянного напряжения, падающего на первичную обмотку трансформатора, вызовет дополнительный магнитный поток в сердечнике. Это дополнительное «смещение» или «смещение» потока будет подталкивать форму волны переменного магнитного потока ближе к насыщению в одном полупериоде, чем в другом.
Постоянный ток в первичной обмотке сдвигает пики формы волны в сторону верхнего предела насыщения.
Для большинства трансформаторов насыщение сердечника является очень нежелательным эффектом, и его можно избежать за счет хорошей конструкции: конструирования обмоток и сердечника так, чтобы плотности магнитного потока оставались значительно ниже уровней насыщения.
Это гарантирует, что соотношение между mmf и Φ будет более линейным на протяжении всего цикла потока, что хорошо, поскольку способствует меньшим искажениям в форме волны тока намагничивания.
Кроме того, проектирование сердечника для низких плотностей магнитного потока обеспечивает безопасный запас между нормальными пиками магнитного потока и пределами насыщения сердечника, чтобы приспособиться к случайным, ненормальным условиям, таким как изменение частоты и смещение постоянного тока.
Пусковой ток
Когда трансформатор первоначально подключен к источнику переменного напряжения, может возникнуть значительный скачок тока через первичную обмотку, называемый пусковым током . Это аналогично пусковому току электродвигателя, который запускается при внезапном подключении к источнику питания, хотя броски тока трансформатора вызваны другим явлением.
Мы знаем, что скорость изменения мгновенного потока в сердечнике трансформатора пропорциональна мгновенному падению напряжения на первичной обмотке. Или, как указывалось ранее, форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.
В непрерывно работающем трансформаторе эти две формы сигнала сдвинуты по фазе на 90 °. Поскольку поток (Φ) пропорционален магнитодвижущей силе (mmf) в сердечнике, а mmf пропорционален току обмотки, форма волны тока будет синфазной с формой волны магнитного потока, и оба будут отстать от формы волны напряжения на 90 °:
Непрерывный установившийся режим: Магнитный поток, как и ток, отстает от приложенного напряжения на 90 °.
Предположим, что первичная обмотка трансформатора внезапно подключается к источнику переменного напряжения в точный момент времени, когда мгновенное напряжение достигает своего положительного пикового значения.
Для того, чтобы трансформатор создавал противоположное падение напряжения, чтобы уравновеситься с этим приложенным напряжением источника, должен генерироваться магнитный поток быстро возрастающей величины. В результате ток в обмотке увеличивается быстро, но на самом деле не быстрее, чем при нормальных условиях:
Подключение трансформатора к сети при пиковом напряжении переменного тока: поток быстро увеличивается от нуля, как и в установившемся режиме.
И магнитный поток сердечника, и ток катушки начинаются с нуля и достигают тех же пиковых значений, которые наблюдаются при непрерывной работе. Таким образом, в этом сценарии нет «всплеска», «броска» или тока.
В качестве альтернативы, давайте рассмотрим, что произойдет, если подключение трансформатора к источнику переменного напряжения произойдет в точный момент времени, когда мгновенное напряжение равно нулю.
Во время непрерывной работы (когда трансформатор был запитан в течение некоторого времени), это момент времени, когда и магнитный поток, и ток обмотки достигают своих отрицательных пиков, испытывая нулевую скорость изменения (dΦ / dt = 0 и di / dt = 0).
По мере того, как напряжение достигает своего положительного пика, формы волны магнитного потока и тока нарастают до своих максимальных положительных скоростей изменения и повышаются до своих положительных пиков по мере того, как напряжение опускается до нулевого уровня:
Запуск при e = 0 В — это не то же самое, что работа в непрерывном режиме на рисунке выше. Эти ожидаемые формы сигналов неверны — Φ и я должен начинать с нуля.
Однако существует значительная разница между работой в непрерывном режиме и условием внезапного пуска, предполагаемым в этом сценарии: во время непрерывной работы уровни магнитного потока и тока были на своих отрицательных пиках, когда напряжение было в нулевых точках; Однако в трансформаторе, который простаивает, и магнитный поток, и ток обмотки должны начинаться с нуля .
Когда магнитный поток увеличивается в ответ на повышение напряжения, он будет увеличиваться от нуля вверх, а не от ранее отрицательного (намагниченного) состояния, как это обычно бывает в трансформаторе, который какое-то время находится под напряжением.
Таким образом, в трансформаторе, который только что «запускается», магнитный поток будет примерно в два раза больше обычного пикового значения, поскольку он «интегрирует» область под первым полупериодом формы волны напряжения:
Начиная с e = 0 В, Φ начинается с начального состояния Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, если предположить, что это не насыщает сердечник.
В идеальном трансформаторе ток намагничивания также увеличился бы примерно в два раза по сравнению с нормальным пиковым значением, генерируя необходимый mmf для создания этого потока, превышающего нормальный.
Однако большинство трансформаторов не спроектированы с достаточным запасом между нормальными пиками магнитного потока и пределами насыщения, чтобы избежать насыщения в таких условиях, и поэтому сердечник почти наверняка будет насыщаться в течение этого первого полупериода напряжения.
Во время насыщения для генерации магнитного потока необходимо непропорционально большое количество ммс.Это означает, что ток обмотки, который создает МДС, вызывающую магнитный поток в сердечнике, непропорционально возрастет до значения , легко превышающего , в два раза превышающего нормальный пик:
Начиная с e = 0 В, ток также увеличивается в два раза по сравнению с нормальным значением для ненасыщенного сердечника или значительно выше в случае (рассчитанном на) насыщение.
Это механизм, вызывающий пусковой ток в первичной обмотке трансформатора при подключении к источнику переменного напряжения.Как видите, величина пускового тока сильно зависит от точного времени, когда электрическое подключение к источнику выполнено.
Если трансформатор имеет некоторый остаточный магнетизм в его сердечнике в момент подключения к источнику, бросок тока может быть еще более серьезным. Из-за этого устройства максимальной токовой защиты трансформатора обычно относятся к «медленнодействующим», чтобы выдерживать такие скачки тока без размыкания цепи.
Тепло и шум
Помимо нежелательных электрических эффектов, трансформаторы могут также проявлять нежелательные физические эффекты, наиболее заметными из которых являются выделение тепла и шума.Шум — это прежде всего неприятный эффект, но нагрев — потенциально серьезная проблема, поскольку изоляция обмотки будет повреждена, если будет допущен перегрев.
Нагрев можно минимизировать за счет хорошей конструкции, гарантирующей, что сердечник не приближается к уровням насыщения, что вихревые токи сведены к минимуму, и что обмотки не будут перегружены или работают слишком близко к максимальной допустимой нагрузке.
Силовые трансформаторы большой мощности имеют сердечник и обмотки, погруженные в масляную ванну для передачи тепла и глушения шума, а также для вытеснения влаги, которая в противном случае нарушила бы целостность изоляции обмотки.
Теплоотводящие «радиаторные» трубки на внешней стороне корпуса трансформатора обеспечивают конвективный путь потока масла для передачи тепла от сердечника трансформатора к окружающему воздуху:
Большие силовые трансформаторы погружены в теплоизолирующее масло.
Безмасляные или «сухие» трансформаторы часто оцениваются с точки зрения максимального «повышения» рабочей температуры (превышения температуры окружающей среды) в соответствии с системой буквенного класса: A, B, F или H.Эти буквенные коды расположены в порядке от наименьшей термостойкости до наибольшей:
.- Класс A: Повышение температуры обмотки не более чем на 55 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
- Класс B: Повышение температуры обмотки не более чем на 80 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
- Класс F: Повышение температуры обмотки не более чем на 115 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
- Класс H: Повышение температуры обмотки не более чем на 150 ° C при температуре окружающего воздуха 40 ° C (максимум).
Звуковой шум — это эффект, в основном возникающий из явления магнитострикции : небольшое изменение длины, проявляемое ферромагнитным объектом при намагничивании.
Знакомый «гул», слышимый вокруг больших силовых трансформаторов, — это звук расширения и сжатия железного сердечника с частотой 120 Гц (в два раза выше системной частоты, которая в США составляет 60 Гц) — один цикл сжатия и расширения сердечника для каждого пика. формы волны магнитного потока — плюс шум, создаваемый механическими силами между первичной и вторичной обмотками.
Опять же, поддержание низких уровней магнитного потока в сердечнике является ключом к минимизации этого эффекта, что объясняет, почему феррорезонансные трансформаторы, которые должны работать в режиме насыщения для большей части формы волны тока, работают как горячими, так и шумными.
Потери из-за наматывающих магнитных сил
Еще одно шумовое явление в силовых трансформаторах — это физическая сила реакции между первичной и вторичной обмотками при большой нагрузке.
Если вторичная обмотка разомкнута, через нее не будет тока и, следовательно, магнитодвижущая сила (ммс), создаваемая ею.Однако, когда вторичная обмотка «загружена» (в настоящее время подается на нагрузку), обмотка генерирует МДС, которой противодействует «отраженная» МДС в первичной обмотке, чтобы предотвратить изменение уровней магнитного потока сердечника.
Эти противоположные МДС, возникающие между первичной и вторичной обмотками в результате вторичного (нагрузочного) тока, создают физическую силу отталкивания между обмотками, которая заставляет их вибрировать.
Проектировщики трансформаторов должны учитывать эти физические силы при конструкции обмоток, чтобы обеспечить адекватную механическую опору для выдерживания напряжений.Однако в условиях большой нагрузки (высокого тока) эти напряжения могут быть достаточно большими, чтобы вызвать слышимый шум, исходящий от трансформатора.
ОБЗОР:
- Силовые трансформаторы ограничены по количеству мощности, которую они могут передавать от первичной обмотки (обмоток) ко вторичной. Большие блоки обычно имеют номинальные значения в ВА (вольт-амперы) или кВА (киловольт-амперы).
- Сопротивление в обмотках трансформатора снижает эффективность, так как ток рассеивает тепло, тратя энергию.
- Магнитные эффекты в железном сердечнике трансформатора также способствуют снижению эффективности. Среди эффектов — вихревые токи , (циркулирующие индукционные токи в железном сердечнике) и гистерезис , (потеря мощности из-за преодоления тенденции железа к намагничиванию в определенном направлении).
- Повышенная частота приводит к увеличению потерь мощности в силовом трансформаторе. Присутствие гармоник в энергосистеме является источником частот, значительно превышающих нормальные, что может вызвать перегрев больших трансформаторов.
- И трансформаторы, и катушки индуктивности обладают определенной неизбежной емкостью из-за изоляции проводов (диэлектрика), отделяющей витки обмотки от стального сердечника и друг от друга. Эта емкость может быть достаточно значительной, чтобы дать трансформатору естественную резонансную частоту , что может быть проблематичным в сигнальных приложениях.
- Индуктивность утечки возникает из-за того, что магнитный поток не на 100% связан между обмотками трансформатора. Любой поток, не связанный с , передающий энергию от одной обмотки к другой, будет накапливать и выделять энергию, как работает (само) индуктивность.Индуктивность утечки имеет тенденцию ухудшать регулировку напряжения трансформатора (вторичное напряжение «проседает» больше при заданной величине тока нагрузки).
- Магнитное насыщение сердечника трансформатора может быть вызвано чрезмерным первичным напряжением, работой на слишком низкой частоте и / или наличием постоянного тока в любой из обмоток. Насыщение можно минимизировать или избежать с помощью консервативной конструкции, которая обеспечивает достаточный запас прочности между пиковыми значениями плотности магнитного потока и пределами насыщения сердечника. Трансформаторы
- часто испытывают значительные пусковые токи при первоначальном подключении к источнику переменного напряжения. Пусковой ток наиболее велик, когда подключение к источнику переменного тока выполняется в момент, когда мгновенное напряжение источника равно нулю.
- Шум — обычное явление, проявляемое трансформаторами, особенно силовыми трансформаторами, и в первую очередь вызвано магнитострикцией сердечника. Физические силы, вызывающие вибрацию обмотки, также могут создавать шум в условиях большой (сильноточной) нагрузки вторичной обмотки.
Что такое регулирование напряжения трансформатора? Примеры и применение
Регулирование напряжения трансформатора — формулы и примеры
Что такое регулирование напряжения?Регулировка напряжения трансформатора — это отношение разницы между выходным напряжением холостого хода трансформатора и выходным напряжением полной нагрузки к выходному напряжению полной нагрузки, выраженное в процентах (%).
Другими словами, регулировка напряжения трансформатора — это мера подачи постоянного выходного напряжения при различных токах нагрузки.
Простыми словами, изменение величины входного и выходного напряжения трансформатора известно как регулирование напряжения. то есть изменение напряжения на клеммах вторичной обмотки трансформатора от холостого хода до полной нагрузки, связанное с напряжением холостого хода, известно как «регулирование напряжения».
Математически регулирование напряжения выражается следующей формулой.
Регулировка напряжения первичной обмотки трансформатора
Где:
- E 1 = Напряжение первичной обмотки без нагрузки
- В 1 = Напряжение первичной обмотки при полной нагрузке
- E 2 = Напряжение на клеммах вторичной обмотки без нагрузки
- В 2 = Напряжение на клеммах вторичной обмотки при полной нагрузке
A Трансформатор обычно обеспечивает более высокое выходное напряжение без нагрузки, чем при полной нагрузке трансформатора в соответствии с номинальной мощностью, указанной на паспортной табличке трансформатора.Другими словами, под нагрузкой выходное напряжение трансформатора немного падает.
Силовой трансформатор должен обеспечивать постоянное выходное напряжение (в идеале, поскольку это невозможно в реальности). Таким образом, это лучший вариант — иметь как можно меньшие колебания выходного напряжения при разных токах нагрузки. В этом сценарии регулирование напряжения показывает, насколько трансформатор может обеспечить постоянное вторичное напряжение с различными нагрузками, подключенными к выходу трансформатора.
Следующая основная схема трансформатора и решенный пример поясняют концепцию регулирования напряжения трансформатора.
В первом сценарии предположим, что к вторичной обмотке трансформатора не подключена нагрузка. В этом случае разомкнутой цепи:
- Ток нагрузки не протекает из-за разомкнутой цепи.
- Когда ток нагрузки не течет, на резисторе и катушках индуктивности нет падения напряжения и реактивных падений.
- Падения напряжения на первичных клеммах незначительны.
Во втором сценарии трансформатор загружен, т.е. нагрузка подключена к клеммам вторичной обмотки трансформатора.В случае нагруженной цепи:
- Ток нагрузки протекает из-за замкнутой цепи и нагрузки, подключенной к вторичным клеммам.
- Ток нагрузки протекает через нагрузку, поэтому на резисторах и индукторах должны быть падения напряжения.
- Таким образом, среднее значение стабилизации напряжения больше, чем у трансформатора без нагрузки.
Для лучшей производительности регулировка напряжения должна быть низкой (идеальный ноль), т. Е. Чем выше регулировка напряжения, тем хуже будет КПД и производительность трансформатора.
Из приведенной выше схемы и пояснения делаются следующие два вывода:
- В трансформаторе значение первичного напряжения всегда больше, чем наведенная ЭДС в первичных обмотках.
В 1 > E 1
- В трансформаторе значение вторичного напряжения на клеммах без нагрузки всегда больше, чем вторичное напряжение на клеммах при полной нагрузке.
E 2 > V 2
На основании информации, приведенной выше на указанной принципиальной схеме, можно составить следующие два уравнения:
- V 1 = I 1 R 1 Cosθ 1 + I 1 X 1 Sinθ 1 + E 1
- E 2 = I 2 R 2 Cosθ 2 + I 2 X 2 Sinθ 2 + V 2
Для различных нагрузок i.е. индуктивные и емкостные нагрузки и т. д., следующее выражение при вторичном напряжении холостого хода.
Ниже приводится выражение вторичного напряжения холостого хода для различных типов нагрузок, например индуктивных и емкостных нагрузок и т. Д.
Регулировка напряжения для индуктивных нагрузок (коэффициент мощности с запаздыванием)E 2 = I 2 R 02 Cosθ 2 + I 2 X 02 Sinθ 2 + V 2
E 2 — V 2 = I 2 R 02 Cosθ 2 + I 2 X 02 Sinθ 2
Регулировка напряжения трансформатора с запаздывающим коэффициентом мощности (индуктивная нагрузка):
Регулировка напряжения для емкостных нагрузок (опережающий коэффициент мощности)E 2 = I 2 R 02 Cosθ 2 — I 2 X 02 Sinθ 2 + V 2
E 2 — V 2 = I 2 R 02 Cosθ 2 — I 2 X 02 Sinθ 2
Регулировка напряжения трансформатора с опережающим коэффициентом мощности (емкостная нагрузка):
Где:
- (I 2 R 02 / E 2 ) x 100 — это падение сопротивления в процентах
- (I 2 X 02 / E 2 ) x 100 — это падение реактивного сопротивления в процентах
Соответствующий пост: Уравнение ЭДС трансформатора
Примеры регулирования напряжения
Пример 1:
Предположим, трансформатор имеет напряжение холостого хода 240 вольт и напряжение полной нагрузки 230 вольт.Регулировка трансформатора рассчитывается следующим образом.
% стабилизации напряжения = [{(напряжение холостого хода — напряжение полной нагрузки) / напряжение полной нагрузки} x 100]
% стабилизации напряжения = [{(240 В — 230 В) / 230} x 100]
% стабилизации напряжения = 4.347%
Не доволен базовым примером, как указано выше, давайте немного усложним, как показано ниже.
Пример 2:
Трансформатор 50 кВА имеет 200 витков и 40 витков на первичной и вторичной обмотках соответственно.Сопротивление на первичной и вторичной обмотках составляет 0,15 Ом и 0,005 Ом соответственно. Величина реактивного сопротивления утечки на первичной и вторичной обмотках составляет 0,55 и 0,0175 Ом соответственно. Если напряжение питания на первичной стороне составляет 1100 В, рассчитайте:
- Эквивалентный импеданс, передаваемый на первичные обмотки
- Напряжение вторичной клеммы при полной нагрузке с запаздывающим коэффициентом мощности 0,8.
- Регулировка напряжения
Решение:
Данные:
- Первичное напряжение: 1100 В
- Первичные витки: 200
- Вторичные витки: 40
- R 1 = 0.15 Ом
- R 2 = 0,005 Ом
- X 1 = 0,55 Ом
- X 2 = 0,0175 Ом
- Коэффициент мощности = Cos θ = 0,8 Запаздывание
(1)
Поворот соотношение = K = N 2 / N 1 = 40/200 = 1/5
R 01 = R 1 + R 2 / K 2 = 0,15 Ом + 0,005 Ом / (1/5) 2 = 0,275 Ом
X 01 = X 1 + X 2 / K 2 = 0.55 Ом + 0,0175 Ом / (1/5) 2 = 0,987 Ом
Z 01 = 0,275 + j 0,987 = 1,025 ∠74,43 o
Z 02 = K 2 Z 01 = (1/5) 2 (0,275 + j 0,987) = (0,011 + j 0,039)
(2)
Вторичное напряжение холостого хода = KV 1 = (1/5) × 1100 В = 220 В
Вторичный ток: I 2 = 50 x10 3 /220 В = 227,27 A… (I = P / V = 50 кВА / 220 В)
I 2 = 227.27 A
Падение напряжения при полной нагрузке относительно вторичного
= I 2 (R 02 Cos θ + X 02 Sin θ)
= 227,27 A (0,011 × 0,8 — 0,039 × 0,6) = — 3,32 В
Напряжение вторичной клеммы под нагрузкой = 220 В — 3,32 В = 216,68 В
Вторичное напряжение при полной нагрузке: 216,68 В
(3)
% Регулировка = 3,32 В × 100/220 = 1,51
или
Стабилизация напряжения:
% Стабилизация напряжения = (В Без нагрузки — В Полная нагрузка / В Полная нагрузка ) x 100
= (220 В — 216.68 В / 216,68 В) x 100 = 1,53
% Регулировка напряжения = 1,53
Регулировка нулевого напряжения трансформатораРегулировка нулевого напряжения означает, что «напряжение холостого хода» и «напряжение полной нагрузки» трансформатора равны, т. Е. между ними нет разницы. Регулировка нулевого напряжения указывает на максимально возможную производительность трансформатора, которая возможна только в теоретическом и идеальном трансформаторе.
Помимо теории, чем ниже процент регулирования напряжения, тем более стабильным и постоянным будет вторичное напряжение на клеммах нагрузки при лучшем регулировании.
Приложения с плохим регулированиемВ некоторых приложениях требуется плохое регулирование напряжения трансформатора, например, в «газоразрядной лампе». В этом случае требуется повышающий трансформатор для обеспечения высокого напряжения на начальном этапе для зажигания лампы, а затем снижения уровня напряжения после зажигания, и ток начинает течь в цепи разрядного освещения. Этот процесс может быть хорошо выполнен с помощью повышающего трансформатора, имеющего плохую регулировку (высокий% регулирования напряжения).
Аналогичным образом, плохое регулирование напряжения необходимо в аппаратах для дуговой сварки, которые на самом деле являются понижающим трансформатором, обеспечивающим низкое напряжение и большой ток для процесса дуговой сварки.
Полезно знать: Регулировка высокого напряжения означает плохое регулирование или плохие характеристики.
Как улучшить регулирование трансформатора?Устройство, известное как феррорезонансный трансформатор (комбинация трансформатора и LC-резонансного контура), используется для улучшения регулирования трансформатора (т.е.е. уменьшить процент регулирования напряжения трансформатора). Железный сердечник феррорезонансного трансформатора заполнен магнитным потоком (магнитными линиями) на протяжении большей части цикла переменного тока. Таким образом, первичный ток трансформатора и колебания напряжения питания мало влияют на плотность магнитного потока сердечника трансформатора. Это означает, что на выходе вторичных клемм трансформатора почти постоянное напряжение, на которое не влияют сильные колебания напряжения питания первичных обмоток трансформатора.
Похожие сообщения:
Зарядные устройства и методы зарядки
Схемы зарядкиЗарядное устройство имеет три основные функции
- Зарядка в АКБ (Зарядка)
- Оптимизация скорости зарядки (стабилизация)
- Знание, когда остановиться (Завершение)
Схема начисления платы представляет собой комбинацию методов начисления и завершения.
Прекращение начисленияКогда аккумулятор полностью заряжен, необходимо как-то рассеять зарядный ток. В результате выделяется тепло и газы, которые вредны для аккумуляторов. Суть хорошей зарядки состоит в том, чтобы иметь возможность определять, когда восстановление активных химикатов завершено, и останавливать процесс зарядки до того, как будет нанесен какой-либо ущерб, при постоянном поддержании температуры элемента в безопасных пределах.Обнаружение этой точки отключения и прекращение заряда имеет решающее значение для продления срока службы батареи. В простейших зарядных устройствах это происходит при достижении заранее определенного верхнего предела напряжения, часто называемого напряжением завершения . Это особенно важно для устройств быстрой зарядки, где опасность перезарядки выше.
Безопасная зарядкаЕсли по какой-либо причине существует риск чрезмерной зарядки аккумулятора из-за ошибок в определении точки отключения или неправильного обращения, это обычно сопровождается повышением температуры.Условия внутренней неисправности в батарее или высокие температуры окружающей среды также могут привести к выходу батареи за пределы ее безопасных рабочих температур. Повышенные температуры ускоряют выход батарей из строя, а мониторинг температуры элементов — хороший способ обнаружить признаки неисправности по разным причинам. Температурный сигнал или сбрасываемый предохранитель можно использовать для выключения или отсоединения зарядного устройства при появлении знаков опасности, чтобы не повредить аккумулятор. Эта простая дополнительная мера предосторожности особенно важна для аккумуляторных батарей большой мощности, где последствия отказа могут быть как серьезными, так и дорогостоящими.
Время зарядкиВо время быстрой зарядки можно перекачивать электрическую энергию в аккумулятор быстрее, чем химический процесс может на нее отреагировать, что приводит к разрушительным результатам.
Химическое воздействие не может происходить мгновенно, и будет происходить градиент реакции в объеме электролита между электродами, при этом электролит, ближайший к преобразуемым или «заряжаемым» электродам, будет происходить раньше, чем электролит дальше.Это особенно заметно в элементах большой емкости, которые содержат большой объем электролита.
Фактически, в химических превращениях клетки участвуют по крайней мере три ключевых процесса.
- Один из них — это «перенос заряда», который представляет собой фактическую химическую реакцию, происходящую на границе электрода с электролитом, и она протекает относительно быстро.
- Второй — это процесс «массопереноса» или «диффузии», в котором материалы, преобразованные в процессе переноса заряда, перемещаются с поверхности электрода, давая возможность другим материалам достичь электрода и принять участие в процессе преобразования.Это относительно медленный процесс, который продолжается до тех пор, пока все материалы не будут преобразованы.
- Процесс зарядки также может подвергаться другим значительным эффектам, время реакции которых также следует принимать во внимание, например, «процессу интеркаляции», при котором литиевые элементы заряжаются, при котором ионы лития вставляются в кристаллическую решетку основного электрода. См. Также Литиевое покрытие из-за чрезмерной скорости зарядки или зарядки при низких температурах.
Все эти процессы также зависят от температуры.
Кроме того, могут быть другие паразитные или побочные эффекты, такие как пассивация электродов, образование кристаллов и скопление газа, которые все влияют на время зарядки и эффективность, но они могут быть относительно незначительными или нечастыми, или могут возникать только в условиях неправильного обращения. . Поэтому они здесь не рассматриваются.
Таким образом, процесс зарядки аккумулятора имеет по меньшей мере три характерные постоянные времени, связанные с достижением полного преобразования активных химикатов, которые зависят как от используемых химикатов, так и от конструкции элемента.Постоянная времени, связанная с переносом заряда, может составлять одну минуту или меньше, тогда как постоянная времени массопереноса может достигать нескольких часов или более в большой ячейке с большой емкостью. Это одна из причин, по которой элементы могут передавать или принимать очень высокие импульсные токи, но гораздо более низкие постоянные токи (еще один важный фактор — это отвод тепла). Эти явления нелинейны и относятся как к процессу разрядки, так и к зарядке. Таким образом, существует предел скорости приема заряда элемента.Продолжая перекачивать энергию в элемент быстрее, чем химические вещества могут реагировать на заряд, может вызвать локальные условия перезаряда, включая поляризацию, перегрев, а также нежелательные химические реакции вблизи электродов, что приведет к повреждению элемента. Быстрая зарядка увеличивает скорость химической реакции в элементе (как и быстрая разрядка), и может потребоваться «периоды покоя» во время процесса зарядки, чтобы химические воздействия распространялись через основную массу химической массы в элементе и для стабилизации на прогрессивном уровне заряда.
Узнайте больше о периодах отдыха и о том, как их можно использовать для увеличения срока службы батареи и повышения точности измерений SOC на странице «Программно конфигурируемая батарея».
См. Также влияние химических изменений и скорости зарядки в разделе Срок службы батареи.
Запоминающееся, хотя и не совсем эквивалентное явление — налив пива в стакан.Очень быстрое наливание приводит к образованию большого количества пены и небольшому количеству пива на дне стакана. Медленное наливание по краю стакана или, как вариант, дать пиву отстояться, пока пена не рассеется, а затем долить, чтобы стакан наполнился полностью.
Гистерезис
Постоянные времени и вышеупомянутые явления, таким образом, вызывают гистерезис в батарее.Во время зарядки химическая реакция отстает от приложения зарядного напряжения, и аналогично, когда к батарее прикладывается нагрузка для ее разрядки, происходит задержка, прежде чем полный ток может пройти через нагрузку. Как и в случае с магнитным гистерезисом, энергия теряется во время цикла заряда-разряда из-за эффекта химического гистерезиса.
На приведенной ниже диаграмме показан эффект гистерезиса в литиевой батарее.
Допущение коротких периодов стабилизации или отдыха во время процессов заряда-разряда для учета времени химической реакции будет иметь тенденцию к уменьшению, но не устранению разницы напряжений из-за гистерезиса.
Истинное напряжение батареи в любом состоянии заряда (SOC), когда батарея находится в состоянии покоя или в спокойном состоянии, будет где-то между кривыми заряда и разряда.Во время зарядки измеренное напряжение элемента во время периода покоя будет медленно перемещаться вниз в сторону состояния покоя, поскольку химическое преобразование в элементе стабилизируется. Точно так же во время разряда измеренное напряжение элемента во время периода покоя будет перемещаться вверх в направлении состояния покоя.
Быстрая зарядка также вызывает повышенный джоулев нагрев элемента из-за более высоких токов, а более высокая температура, в свою очередь, вызывает увеличение скорости процессов химического преобразования.
В разделе «Скорость разряда» показано, как скорость разряда влияет на эффективную емкость элемента.
В разделе «Конструкция ячеек» описывается, как можно оптимизировать конструкции ячеек для быстрой зарядки.
Эффективность заряда
Это относится к свойствам самого аккумулятора и не зависит от зарядного устройства.Это соотношение (выраженное в процентах) между энергией, удаленной из аккумулятора во время разряда, по сравнению с энергией, используемой во время зарядки для восстановления первоначальной емкости. Также называется Coulombic Efficiency или Charge Acceptance .
Прием заряда и время заряда в значительной степени зависят от температуры, как указано выше. Более низкая температура увеличивает время зарядки и снижает прием заряда.
Обратите внимание на , что при низких температурах аккумулятор не обязательно получит полную зарядку, даже если напряжение на клеммах может указывать на полную зарядку. См. Факторы, влияющие на состояние заряда.
Основные методы зарядки
- Постоянное напряжение Зарядное устройство постоянного напряжения — это в основном источник питания постоянного тока, который в своей простейшей форме может состоять из понижающего трансформатора от сети с выпрямителем для подачи постоянного напряжения для зарядки аккумулятора.Такие простые конструкции часто встречаются в дешевых зарядных устройствах для автомобильных аккумуляторов. Свинцово-кислотные элементы, используемые для автомобилей и систем резервного питания, обычно используют зарядные устройства постоянного напряжения. Кроме того, в литий-ионных элементах часто используются системы постоянного напряжения, хотя они обычно более сложные с добавленной схемой для защиты как батарей, так и безопасности пользователя.
- Постоянный ток Зарядные устройства постоянного тока изменяют напряжение, подаваемое на батарею, для поддержания постоянного тока и отключаются, когда напряжение достигает уровня полной зарядки.Эта конструкция обычно используется для никель-кадмиевых и никель-металлогидридных элементов или батарей.
- Конический ток Это зарядка от нерегулируемого источника постоянного напряжения. Это не контролируемый заряд, как в V Taper выше. Ток уменьшается по мере нарастания напряжения элемента (противо-ЭДС). Существует серьезная опасность повреждения элементов из-за перезарядки. Чтобы избежать этого, следует ограничить скорость и продолжительность зарядки.Подходит только для батарей SLA.
- Импульсный заряд Импульсные зарядные устройства подают зарядный ток в аккумулятор импульсами. Скорость зарядки (на основе среднего тока) можно точно контролировать, изменяя ширину импульсов, обычно около одной секунды. Во время процесса зарядки короткие периоды отдыха от 20 до 30 миллисекунд между импульсами позволяют стабилизировать химическое воздействие в батарее за счет выравнивания реакции по всему объему электрода перед возобновлением заряда.Это позволяет химической реакции идти в ногу со скоростью поступления электрической энергии. Также утверждается, что этот метод может уменьшить нежелательные химические реакции на поверхности электрода, такие как газообразование, рост кристаллов и пассивация. (См. Также Импульсное зарядное устройство ниже). При необходимости можно также измерить напряжение холостого хода батареи во время периода покоя.
Оптимальный профиль тока зависит от химического состава и конструкции клетки.
- Рывочная зарядка Также называется Reflex или Зарядка с отрицательным импульсом Используется вместе с импульсной зарядкой, он применяет очень короткий импульс разрядки, обычно в 2–3 раза превышающий зарядный ток в течение 5 миллисекунд, во время периода покоя зарядки. деполяризовать клетку. Эти импульсы вытесняют любые пузырьки газа, которые образовались на электродах во время быстрой зарядки, ускоряя процесс стабилизации и, следовательно, общий процесс зарядки.Высвобождение и распространение пузырьков газа известно как «отрыжка». Были сделаны противоречивые заявления об улучшении как скорости заряда, так и срока службы батареи, а также об удалении дендритов, которое стало возможным с помощью этого метода. Самое меньшее, что можно сказать, это то, что «не повреждает аккумулятор».
- IUI Charging Это недавно разработанный профиль зарядки, используемый для быстрой зарядки стандартных свинцово-кислотных аккумуляторов от определенных производителей.Он подходит не для всех свинцово-кислотных аккумуляторов. Первоначально аккумулятор заряжается с постоянной (I) скоростью, пока напряжение элемента не достигнет заданного значения — обычно напряжения, близкого к тому, при котором происходит газообразование. Эта первая часть цикла зарядки известна как фаза объемной зарядки. По достижении заданного напряжения зарядное устройство переключается в фазу постоянного напряжения (U), и ток, потребляемый батареей, будет постепенно падать, пока не достигнет другого заданного уровня. Эта вторая часть цикла завершает нормальную зарядку аккумулятора с медленно убывающей скоростью.Наконец, зарядное устройство снова переключается в режим постоянного тока (I), и при выключении зарядного устройства напряжение продолжает повышаться до нового более высокого предустановленного значения. Эта последняя фаза используется для выравнивания заряда отдельных ячеек в батарее, чтобы максимально продлить срок ее службы. См. Балансировка ячеек.
- Капельная зарядка Капельная зарядка предназначена для компенсации саморазряда аккумулятора. Непрерывный заряд. Долговременная зарядка постоянным током для использования в режиме ожидания.Скорость зарядки зависит от частоты разрядки. Не подходит для некоторых типов батарей, например NiMH и литий, которые могут выйти из строя из-за перезарядки. В некоторых приложениях зарядное устройство предназначено для переключения на непрерывную зарядку, когда аккумулятор полностью заряжен.
- Плавающий заряд . Аккумулятор и нагрузка постоянно подключены параллельно к источнику заряда постоянного тока и поддерживаются при постоянном напряжении ниже верхнего предела напряжения аккумулятора.Используется для систем резервного питания аварийного питания. В основном используется со свинцово-кислотными аккумуляторами.
- Случайная зарядка Все вышеперечисленные приложения включают контролируемую зарядку аккумулятора, однако есть много приложений, в которых энергия для зарядки аккумулятора доступна только или доставляется случайным, неконтролируемым образом. Это относится к автомобильным приложениям, где энергия зависит от частоты вращения двигателя, которая постоянно меняется. Проблема стоит более остро в приложениях EV и HEV, в которых используется рекуперативное торможение, поскольку при торможении возникают большие всплески мощности, которые должна поглощать аккумулятор.Более щадящие применения находятся в установках солнечных батарей, которые можно заряжать только при ярком солнце. Все это требует специальных методов для ограничения зарядного тока или напряжения до уровней, которые может выдержать аккумулятор.
Тарифы на оплату
Батареи можно заряжать с разной скоростью в зависимости от требований. Типичные ставки указаны ниже:
- Медленная зарядка = ночь или 14-16 часов зарядки при 0.1С рейтинг
- Быстрая зарядка = от 3 до 6 часов зарядки при скорости 0,3 ° C
- Быстрая зарядка = менее 1 часа зарядки при скорости 1.0C
Медленная зарядка
Медленная зарядка может выполняться в относительно простых зарядных устройствах и не должна приводить к перегреву аккумулятора. По окончании зарядки аккумуляторы следует вынуть из зарядного устройства.
- Никады, как правило, наиболее устойчивы к перезарядке, и их можно оставить на непрерывной подзарядке в течение очень длительных периодов времени, поскольку процесс их рекомбинации имеет тенденцию поддерживать напряжение на безопасном уровне. Постоянная рекомбинация поддерживает высокое внутреннее давление в ячейке, поэтому уплотнения постепенно протекают. Он также поддерживает температуру ячейки выше окружающей среды, а более высокие температуры сокращают срок службы.Так что жизнь еще лучше если снять с зарядного устройства.
- Свинцово-кислотные батареи немного менее надежны, но могут выдерживать кратковременную подзарядку. Затопленные батареи, как правило, расходуют воду, а соглашения об уровне обслуживания, как правило, рано умирают из-за коррозии сети. Свинцово-кислотные соединения следует либо оставить в неподвижном состоянии, либо подзаряжать (поддерживать постоянное напряжение значительно ниже точки выделения газа). С другой стороны, никель-металлгидридные элементы
- будут повреждены при длительной подзарядке. Однако литий-ионные элементы
- не допускают перезарядки или перенапряжения, и заряд должен быть немедленно прекращен при достижении верхнего предела напряжения.
Быстрая / быстрая зарядка
По мере увеличения скорости зарядки возрастает опасность перезарядки или перегрева аккумулятора. Предотвращение перегрева батареи и прекращение заряда, когда батарея полностью заряжена, становятся гораздо более важными.Химический состав каждого элемента имеет свою характеристическую кривую зарядки, и зарядные устройства для аккумуляторов должны быть спроектированы таким образом, чтобы определять условия окончания заряда для конкретного химического состава. Кроме того, должна быть предусмотрена некоторая форма отключения по температуре (TCO) или тепловой предохранитель, чтобы предотвратить перегрев аккумулятора во время процесса зарядки.
Для быстрой зарядки и быстрой зарядки требуются более сложные зарядные устройства. Поскольку эти зарядные устройства должны быть разработаны для определенного химического состава ячеек, обычно невозможно зарядить один тип элементов в зарядном устройстве, которое было разработано для другого химического состава ячеек, и вероятно повреждение.Универсальные зарядные устройства, способные заряжать все типы элементов, должны иметь сенсорные устройства для определения типа элемента и применения соответствующего профиля зарядки.
Обратите внимание на , что для автомобильных аккумуляторов время зарядки может быть ограничено доступной мощностью, а не характеристиками аккумулятора. Внутренние кольцевые силовые цепи на 13 А могут выдавать только 3 кВт. Таким образом, при условии отсутствия потери эффективности в зарядном устройстве, десятичасовая зарядка потребляет максимум 30 кВт · ч энергии.Достаточно примерно на 100 миль. Сравните это с заправкой автомобиля бензином.
Требуется около 3 минут, чтобы поместить в бак достаточно химической энергии, чтобы обеспечить 90 кВт-ч механической энергии, достаточной для того, чтобы автомобиль проехал 300 миль. Подача 90 кВт / ч электроэнергии в батарею за 3 минуты было бы эквивалентно скорости зарядки 1,8 мегаватт !!
Способы прекращения начисления
В следующей таблице приведены методы прекращения зарядки для популярных аккумуляторов.Это объясняется в разделе ниже.
Способы прекращения начисления | ||||
---|---|---|---|---|
SLA | Nicad | NiMH | Литий-ионный | |
Медленная зарядка | Таймер | Предел напряжения | ||
Быстрая зарядка 1 | Имин | NDV | дТ / дт | Imin при пределе напряжения |
Быстрая зарядка 2 | Delta TCO | дТ / дт | dV / dt = 0 | |
Прекращение резервного копирования 1 | Таймер | TCO | TCO | TCO |
Прекращение резервного копирования 2 | DeltaTCO | Таймер | Таймер | Таймер |
TCO = отключение по температуре
Delta TCO = Превышение температуры окружающей среды
I min = минимальный ток
Методы контроля заряда
Было разработано множество различных схем зарядки и оконечной нагрузки для разного химического состава и различных приложений.Ниже приведены наиболее распространенные из них.
Управляемая зарядка
Обычная (медленная) зарядка
- Полупостоянный ток Простой и экономичный. Самый популярный. Таким образом, при слабом токе тепло не выделяется, а происходит медленно, обычно от 5 до 15 часов. Скорость заряда 0,1C. Подходит для Nicads
- Система зарядки с таймером Простая и экономичная.Надежнее, чем полупостоянный ток. Использует таймер IC. Зарядки со скоростью 0,2 ° C в течение заданного периода времени с последующей подзарядкой 0,05 ° C. Избегайте постоянного перезапуска таймера, вставляя и вынимая аккумулятор из зарядного устройства, поскольку это снизит его эффективность. Рекомендуется установка абсолютного отсечки температуры. Подходит для аккумуляторов Nicad и NiMH.
Быстрая зарядка (1-2 часа)
- Отрицательный треугольник V (NDV) Система отсечки заряда
- dT / dt Система зарядки NiMH аккумуляторы не демонстрируют такого выраженного падения напряжения NDV, когда они достигают конца цикла зарядки, как это видно на графике выше, и поэтому метод отключения NDV не является надежным для завершения NiMH заряжать.Вместо этого зарядное устройство определяет скорость увеличения температуры элемента в единицу времени. Когда достигается заданная скорость, быстрая зарядка останавливается, и метод зарядки переключается на непрерывную зарядку. Этот метод более дорогой, но позволяет избежать перезарядки и продлевает срок службы. Поскольку длительная непрерывная зарядка может повредить никель-металлгидридный аккумулятор, рекомендуется использовать таймер для регулирования общего времени зарядки.
- Постоянный ток Система заряда с постоянным напряжением (CC / CV) .Используется для зарядки литиевых и некоторых других батарей, которые могут быть повреждены при превышении верхнего предела напряжения. Указанная производителем скорость зарядки при постоянном токе — это максимальная скорость зарядки, которую аккумулятор может выдержать без повреждения аккумулятора. Необходимы особые меры предосторожности, чтобы максимально увеличить скорость зарядки и обеспечить полную зарядку аккумулятора, в то же время избегая перезарядки. По этой причине рекомендуется переключать метод зарядки на постоянное напряжение до того, как напряжение элемента достигнет своего верхнего предела.Обратите внимание, что это означает, что зарядные устройства для литий-ионных элементов должны быть способны контролировать как зарядный ток, так и напряжение аккумулятора.
- Управляемая напряжением система заряда. Быстрая зарядка со скоростью от 0,5 до 1,0 С. Зарядное устройство выключилось или переключилось на непрерывный заряд при достижении заданного напряжения.Должен быть объединен с датчиками температуры в батарее, чтобы избежать перезаряда или теплового разгона.
- В — Система заряда с конусным управлением. Аналогична системе с контролем напряжения. Как только заданное напряжение достигнуто, ток быстрой зарядки постепенно уменьшается за счет уменьшения напряжения питания, а затем переключается на непрерывный заряд. Подходит для аккумуляторов SLA, позволяет безопасно достичь более высокого уровня заряда. (См. Также ток конуса ниже)
- Таймер отказоустойчивости
Ограничивает ток заряда, который может протекать, чтобы удвоить емкость элемента.Например, для элемента емкостью 600 мАч ограничьте заряд до 1200 мАч. В крайнем случае, если отключение не достигнуто другими способами.
- Предварительная зарядка
- Интеллектуальная система зарядки
Интеллектуальные системы зарядки объединяют системы управления в зарядном устройстве с электроникой внутри батареи, что позволяет более точно контролировать процесс зарядки. Преимущества — более быстрая и безопасная зарядка и более длительный срок службы аккумулятора. Такая система описана в разделе «Системы управления батареями».
Это самый популярный способ быстрой зарядки для Nicads.
Батареи заряжаются постоянным током со скоростью от 0,5 до 1,0 С. Напряжение аккумулятора повышается по мере того, как зарядка достигает пика при полной зарядке, а затем падает. Это падение напряжения, -delta V, связано с поляризацией или накоплением кислорода внутри элемента, которое начинает происходить, когда элемент полностью заряжен. В этот момент элемент попадает в зону опасности перезаряда, и температура начинает быстро расти, так как химические изменения завершены, и избыточная электрическая энергия преобразуется в тепло.Падение напряжения происходит независимо от уровня разряда или температуры окружающей среды, и поэтому его можно обнаружить и использовать для определения пика и, следовательно, для отключения зарядного устройства, когда аккумулятор полностью заряжен, или переключения на непрерывный заряд.
Этот метод не подходит для зарядных токов менее 0,5 C, так как дельта V становится трудно обнаружить. Ложная дельта V может возникнуть в начале заряда при чрезмерно разряженных элементах. Это преодолевается с помощью таймера, который задерживает обнаружение дельты V в достаточной степени, чтобы избежать проблемы.Свинцово-кислотные аккумуляторы не демонстрируют падения напряжения после завершения зарядки, поэтому этот метод зарядки не подходит для аккумуляторов SLA.
Чтобы поддерживать заданную скорость зарядки постоянного тока, зарядное напряжение должно увеличиваться синхронно с напряжением элемента, чтобы преодолеть обратную ЭДС элемента по мере его зарядки. Это происходит довольно быстро в режиме постоянного тока до тех пор, пока не будет достигнут верхний предел напряжения элемента, после чего зарядное напряжение поддерживается на этом уровне, известном как плавающий уровень, во время режима постоянного напряжения.В течение этого периода постоянного напряжения ток уменьшается до тонкой струйки по мере того, как заряд приближается к завершению. Отключение происходит при достижении заданной минимальной точки тока, которая указывает на полный заряд. См. Также Литиевые батареи — Зарядка и производство батарей — Формирование.
Примечание 1 : Когда указаны скорости Быстрая зарядка , они обычно относятся к режиму постоянного тока.В зависимости от химического состава ячейки этот период может составлять от 60% до 80% времени до полной зарядки. Эти значения не следует экстраполировать для оценки времени полной зарядки аккумулятора, поскольку скорость зарядки быстро падает в течение периода постоянного напряжения.
Note 2: Поскольку литиевые батареи нельзя заряжать со скоростью зарядки C, указанной производителями, в течение всего времени зарядки, также невозможно оценить время зарядки полностью разряженной батареи, просто разделив Емкость аккумулятора в ампер-часах с указанной скоростью зарядки C, так как эта скорость изменяется во время процесса зарядки.Следующее уравнение, однако, дает разумное приближение времени для полной зарядки разряженной батареи при использовании стандартного метода зарядки CC / CV:
Время зарядки (час) = 1,3 * (емкость аккумулятора в Ач) / (ток зарядки в режиме CC)
В качестве меры предосторожности для аккумуляторов большой емкости часто используется предварительная зарядка. Цикл зарядки инициируется низким током. Если нет соответствующего повышения напряжения батареи, это указывает на возможное короткое замыкание в батарее.
Примечание
Большинство зарядных устройств, поставляемых с устройствами бытовой электроники, такими как мобильные телефоны и портативные компьютеры, просто обеспечивают постоянный источник напряжения.Требуемый профиль напряжения и тока для зарядки аккумулятора обеспечивается (или должен предоставляться) от электронных схем, либо внутри самого устройства, либо внутри аккумуляторной батареи, а не от зарядного устройства. Это обеспечивает гибкость при выборе зарядных устройств, а также служит для защиты устройства от потенциального повреждения из-за использования неподходящих зарядных устройств.
Измерение напряжения
Во время зарядки для простоты напряжение аккумулятора обычно измеряется на проводах зарядного устройства.Однако для сильноточных зарядных устройств может наблюдаться значительное падение напряжения на проводах зарядного устройства, что приводит к недооценке истинного напряжения батареи и, как следствие, к недозаряду батареи, если напряжение батареи используется в качестве триггера отключения. Решение состоит в том, чтобы измерить напряжение с помощью отдельной пары проводов, подключенных непосредственно к клеммам аккумулятора. Поскольку вольтметр имеет высокое внутреннее сопротивление, падение напряжения на выводах вольтметра будет минимальным, и показания будут более точными.Этот метод называется соединением Кельвина. См. Также DC Testing.
Типы зарядных устройств
Зарядные устройстваобычно включают в себя некоторую форму регулирования напряжения для управления зарядным напряжением, подаваемым на аккумулятор. Выбор технологии зарядного устройства обычно зависит от цены и качества. Ниже приведены некоторые примеры:
- Регулятор режима переключения (Switcher) — Использует широтно-импульсную модуляцию для управления напряжением.Низкое рассеивание мощности при больших колебаниях входного напряжения и напряжения батареи. Более эффективен, чем линейные регуляторы, но более сложен.
Требуется большой пассивный выходной фильтр LC (катушка индуктивности и конденсатор) для сглаживания импульсной формы волны. Размер компонента зависит от текущей пропускной способности, но может быть уменьшен за счет использования более высокой частоты переключения, обычно от 50 кГц до 500 кГц., Поскольку размер требуемых трансформаторов, катушек индуктивности и конденсаторов обратно пропорционален рабочей частоте.
Коммутация сильных токов вызывает электромагнитные помехи и электрические помехи. Регулятор серии - (линейный) — Менее сложный, но с большими потерями — требуется радиатор для рассеивания тепла в последовательном транзисторе с понижением напряжения, который компенсирует разницу между напряжением питания и выходным напряжением. Весь ток нагрузки проходит через регулирующий транзистор, который, следовательно, должен быть устройством большой мощности. Поскольку нет переключения, он обеспечивает чистый постоянный ток и не требует выходного фильтра.По той же причине конструкция не страдает проблемой излучаемых и кондуктивных выбросов и электрических шумов. Это делает его подходящим для малошумных беспроводных и радиоприложений.
С меньшим количеством компонентов они также меньше. - Шунтирующий регулятор — Шунтирующие регуляторы широко используются в фотоэлектрических (PV) системах, поскольку они относительно дешевы в сборке и просты в конструкции. Ток зарядки контролируется переключателем или транзистором, подключенным параллельно фотоэлектрической панели и аккумуляторной батарее.Перезаряд батареи предотвращается за счет короткого замыкания (шунтирования) выхода PV через транзистор, когда напряжение достигает заданного предела. Если напряжение батареи превышает напряжение питания фотоэлектрической батареи, шунт также защитит фотоэлектрическую панель от повреждения из-за обратного напряжения, разряжая батарею через шунт. Регуляторы серии обычно обладают лучшими характеристиками контроля и заряда.
- Понижающий регулятор Импульсный регулятор, который включает понижающий преобразователь постоянного тока в постоянный.У них высокий КПД и низкие тепловые потери. Они могут выдерживать высокие выходные токи и генерировать меньше радиопомех, чем обычный импульсный стабилизатор. Простая бестрансформаторная конструкция с низким коммутационным напряжением и небольшим выходным фильтром.
- Импульсное зарядное устройство . Использует последовательный транзистор, который также можно переключать. При низком напряжении батареи транзистор остается включенным и проводит ток источника непосредственно к батарее. Когда напряжение батареи приближается к желаемому регулирующему напряжению, последовательный транзистор подает импульс входного тока для поддержания желаемого напряжения.Поскольку он действует как импульсный источник питания в течение части цикла, он рассеивает меньше тепла и поскольку он действует как линейный источник питания в течение части времени, выходные фильтры могут быть меньше. Импульсный режим позволяет аккумулятору стабилизироваться (восстанавливаться) с небольшими приращениями заряда при прогрессивно высоких уровнях заряда во время зарядки. В периоды покоя поляризация клетки снижается. Этот процесс обеспечивает более быструю зарядку, чем это возможно при одной продолжительной зарядке высокого уровня, которая может повредить аккумулятор, поскольку не позволяет постепенно стабилизировать активные химические вещества во время зарядки.Импульсные зарядные устройства обычно нуждаются в ограничении тока на входе источника по соображениям безопасности, что увеличивает стоимость.
- Зарядное устройство для универсальной последовательной шины (USB)
- Индуктивная зарядка
- Зарядные станции для электромобилей
Спецификация USB была разработана группой производителей компьютеров и периферийных устройств для замены множества патентованных стандартов механических и электрических соединений для передачи данных между компьютерами и внешними устройствами. Он включал двухпроводное соединение для передачи данных, линию заземления и линию питания 5 В, обеспечиваемую главным устройством (компьютером), которая была доступна для питания внешних устройств.Неправильное использование порта USB заключалось в обеспечении источника 5 В не только для непосредственного питания периферийных устройств, но и для зарядки любых батарей, установленных в этих внешних устройствах. В этом случае само периферийное устройство должно включать в себя необходимую схему управления зарядом для защиты аккумулятора. Исходный стандарт USB определял скорость передачи данных 1,5 Мбит / с и максимальный ток зарядки 500 мА.
Питание всегда течет от хоста к устройству, но данные могут передаваться в обоих направлениях.По этой причине разъем USB-хоста механически отличается от разъема устройства USB, и поэтому кабели USB имеют разные разъемы на каждом конце. Это предотвращает подключение любого 5-вольтового соединения от внешнего источника USB к главному компьютеру и, таким образом, возможное повреждение хост-машины.
Последующие обновления увеличили стандартную скорость передачи данных до 5 Гбит / с, а доступный ток — до 900 мА. Однако популярность USB-подключения привела к появлению множества нестандартных вариантов, в частности, к использованию USB-разъема для обеспечения чистого источника питания без соответствующего подключения для передачи данных.В таких случаях порт USB может просто включать в себя регулятор напряжения для подачи 5 В от автомобильной шины питания 12 В или выпрямитель и регулятор для подачи 5 В постоянного тока от сети переменного тока 110 или 240 В с выходными токами до 2100 мА. В обоих случаях устройство, принимающее питание, должно обеспечивать необходимый контроль заряда. Источники питания USB с питанием от сети, часто известные как «глупые» зарядные устройства USB, могут быть встроены в корпус сетевых вилок или в отдельные розетки USB в настенных розетках переменного тока.
См. Дополнительную информацию о USB-соединениях в разделе, посвященном шинам передачи данных от батарей.
Индуктивная зарядка не относится к процессу зарядки самой батареи. Имеется в виду конструкция зарядного устройства. По сути, входная сторона зарядного устройства, часть, подключенная к сети переменного тока, состоит из трансформатора, который разделен на две части. Первичная обмотка трансформатора размещена в блоке, подключенном к сети переменного тока, а вторичная обмотка трансформатора размещена в том же герметичном блоке, который содержит аккумулятор вместе с остальной частью обычной электроники зарядного устройства.Это позволяет заряжать аккумулятор без физического подключения к сети и без обнажения каких-либо контактов, которые могут вызвать поражение электрическим током пользователя.
Примером малой мощности является электрическая зубная щетка. Зубная щетка и зарядная база образуют трансформатор, состоящий из двух частей: первичная индукционная катушка находится в основании, а вторичная индукционная катушка и электроника содержатся в зубной щетке.Когда зубная щетка помещается в основание, создается полный трансформатор, и индуцированный ток во вторичной катушке заряжает аккумулятор. При использовании прибор полностью отключен от электросети, а поскольку аккумуляторный блок находится в герметичном отсеке, зубную щетку можно безопасно погружать в воду.
Техника также используется для зарядки имплантатов медицинских батарей.
Примером высокой мощности является система зарядки, используемая для электромобилей.По концепции аналогична зубной щетке, но в большем масштабе, это также бесконтактная система. Индукционная катушка в электромобиле принимает ток от индукционной катушки в полу гаража и заряжает автомобиль в течение ночи. Чтобы оптимизировать эффективность системы, воздушный зазор между статической катушкой и съемной катушкой можно уменьшить, опуская приемную катушку во время зарядки, и транспортное средство должно быть точно размещено над зарядным устройством.
Аналогичная система использовалась для электрических автобусов, которые принимают ток от индукционных катушек, встроенных под каждой автобусной остановкой, что позволяет увеличить дальность действия автобуса или, наоборот, для одного и того же маршрута могут быть указаны батареи меньшего размера.Еще одно преимущество этой системы заключается в том, что если заряд батареи постоянно пополняется, глубина разряда может быть минимизирована, а это приводит к увеличению срока службы. Как показано в разделе «Срок службы батареи», время цикла увеличивается экспоненциально по мере уменьшения глубины разряда.
Более простая и менее дорогая альтернатива этой возможной зарядке состоит в том, что транспортное средство создает токопроводящую связь с электрическими контактами на подвесном портале на каждой автобусной остановке.
Также были сделаны предложения по установке сетки индуктивных зарядных катушек под поверхностью вдоль дорог общего пользования, чтобы позволить транспортным средствам собирать заряд во время движения, однако практических примеров еще не было установлено.
Подробнее о специализированных зарядных устройствах высокой мощности, используемых для электромобилей, см. В разделе «Инфраструктура для зарядки электромобилей».
Зарядное устройство Источники питания
При указании зарядного устройства также необходимо указать источник, от которого зарядное устройство получает свою мощность, его доступность, а также его напряжение и диапазон мощности. Следует также учитывать потери эффективности зарядного устройства, особенно для зарядных устройств большой мощности, где величина потерь может быть значительной. Ниже приведены некоторые примеры.
Управляемая зарядка
Простота установки и управления.
- Сеть переменного тока
- Регулируемый источник питания постоянного тока
- Специальные зарядные устройства
Многие портативные зарядные устройства малой мощности для небольших электроприборов, таких как компьютеры и мобильные телефоны, должны работать на международных рынках. Поэтому они имеют автоматическое определение напряжения сети и, в особых случаях, частоты сети с автоматическим переключением на соответствующую входную цепь.
Для приложений с более высокой мощностью могут потребоваться специальные меры. Мощность однофазной сети обычно ограничивается примерно 3 кВт. Трехфазное питание может потребоваться для зарядки аккумуляторов большой емкости (более 20 кВтч), например, используемых в электромобилях, которые могут потребовать скорости зарядки более 3 кВт для достижения разумного времени зарядки.
Может поставляться установками специального назначения, например, передвижным генерирующим оборудованием для индивидуальных приложений.
Портативные источники, такие как солнечные батареи.
Возможность зарядки
Зарядка с возможностью подзарядки — это зарядка аккумулятора при наличии питания или между частичными разрядками, а не ожидание полной разрядки аккумулятора. Он используется с батареями в циклическом режиме и в приложениях, когда энергия доступна только с перерывами.
Доступность энергии и уровни мощности могут сильно отличаться. Для защиты аккумулятора от перенапряжения требуется специальная управляющая электроника. Избегая полной разрядки аккумулятора, можно увеличить срок службы.
Доступность влияет на спецификацию аккумулятора, а также на зарядное устройство.
Типичные области применения: —
- Бортовые автомобильные зарядные устройства (Генераторы, рекуперативное торможение)
- Зарядные устройства индукционные (на остановках автотранспорта)
Механическая зарядка
Это применимо только к определенному химическому составу клеток.Это не зарядное устройство в обычном понимании этого слова. Механическая зарядка используется в некоторых батареях большой мощности, таких как батареи Flow и воздушно-цинковые батареи. Цинково-воздушные батареи заряжаются заменой цинковых электродов. Аккумуляторы Flow можно перезарядить, заменив электролит.
Механическая зарядка выполняется за считанные минуты. Это намного быстрее, чем длительное время зарядки, связанное с традиционной электрохимией обратимых ячеек, которое может занять несколько часов.Поэтому воздушно-цинковые батареи использовались для питания электрических автобусов, чтобы решить проблему чрезмерного времени зарядки.
Производительность зарядного устройства
Тип аккумулятора и область применения, в которой он используется, устанавливают требования к характеристикам, которым должно соответствовать зарядное устройство.
- Чистота выходного напряжения
Зарядное устройство должно обеспечивать чистое регулируемое выходное напряжение с жесткими ограничениями на выбросы, пульсации, шум и радиочастотные помехи (RFI), которые могут вызвать проблемы для аккумулятора или цепей, в которых оно используется.
Для приложений с большой мощностью производительность зарядки может быть ограничена конструкцией зарядного устройства.
- КПД
- Пусковой ток
- Коэффициент мощности
При зарядке аккумуляторов большой мощности потери энергии в зарядном устройстве могут значительно увеличить время зарядки и эксплуатационные расходы приложения. Типичный КПД зарядного устройства составляет около 90%, отсюда и необходимость в эффективных конструкциях.
Когда зарядное устройство изначально подключается к разряженной батарее, пусковой ток может быть значительно выше, чем максимальный указанный зарядный ток. Поэтому зарядное устройство должно быть рассчитано либо на передачу, либо на ограничение этого импульса тока.
Это также может быть важным фактором для зарядных устройств большой мощности.
См. Также «Контрольный список для зарядного устройства»
(PDF) Новый трансформатор для источника питания высокого напряжения
TELKOMNIKA ISSN: 2302-4046
Новый трансформатор для источника питания высокого напряжения (Jianming Liu)
983
Из-за влияния распределенного конденсатора , зарядный ток уменьшается
при увеличении напряжения конденсатора.Через определенное время резонансное время продолжающегося потока
в диоде короче. Но время резонанса проводящей части в трубке переключателя
инвариантно.
6. Заключение
Разработана новая стратегия управления зарядкой и топология источника питания для заряда конденсаторов высокого напряжения
. Проанализированы характеристики резонансного мягкого переключателя. Испытаны два новых трансформатора
с разной структурой каркаса обмотки.Поскольку первичная обмотка и вторичная обмотка
сильно связаны в новой структуре каркаса трансформатора, индуктивность утечки
меньше. Поскольку паразитная емкость во вторичной обмотке трансформатора больше,
резонансный цикл части с непрерывным потоком в диоде резонансного тока уменьшается до
напряжения конденсатора до фиксированного значения напряжения. Для реализации зарядки постоянным током и повышения максимальной выходной эффективности трансформатора
применяется ряд технологий.
Требования к зарядке могут быть в основном выполнены за счет вышеуказанной конструкции. Осуществлена зарядка постоянного тока
в высоковольтном конденсаторе. Новый высокочастотный трансформатор
применяется для зарядки источника питания электромагнитного излучения.
Благодарность
Авторы выражают благодарность инженерам Key Lab of Industrial Computer Control
Engineering провинции Хэбэй. Эта работа была поддержана грантом Национальной программы научных исследований и разработок в области высоких технологий
(863) для военных в 2009 году, Китай.
Справочная информация
[1] Гао YH, Sun YH, Yan P. Высокочастотный источник питания высокого напряжения для зарядки 20 кДж / с. Высокое напряжение
Технология. 2008; 34 (6): 1292-1294.
[2] Ван Л., Сюй СМ, Ду ХК, Мэн Л. Оценка состояния электролитического конденсатора с подгонкой параметров.
ТЕЛКОМНИКА. 2013; 11 (8): 4461-4469.
[3] Цзянь П.З., Ян Х, Цян Х., Бишенг З. Конструкция источника питания с ЧПУ для большого тока и широкого диапазона
Частотный импульсв SEAM.ТЕЛКОМНИКА Индонезийский журнал электротехники. 2013; 11 (7):
3665-3672.
[4] Ву З, Ци Д., Вэй Ю.М., Юань Дж., Хуафу З. Исследование высокочастотного амплитудного затухания в генераторе с быстродействующими электрическими процессами
. ТЕЛКОМНИКА Индонезийский журнал электротехники. 2013;
11 (1): 97-102.
[5] Кумар Маллисетти Раджеш, Ленин Дурайсами, Бабу Чаи. Регулируемая частота коммутации с повышающим преобразователем коррекции коэффициента мощности
.ТЕЛКОМНИКА Индонезийский журнал электротехники. 2011;
9 (1): 47-54,
[6] Zhong HQ, Xu ZI, Zou YP. Влияние паразитной емкости на характеристики последовательного резонансного источника питания
для зарядки конденсаторов. Китайский журнал машиностроения. 2005; 25 (10): 50-57.
[7] Чжэн Г., Цзинь С., Ши М. Анализ и обработка распределенной емкости в высокочастотном высокочастотном трансформаторе
. Электрическая и электронная техника.2002; 36 (10): 54-57.
[8] Донг Дж. К., Чен У. Моделирование и анализ влияния емкости при высокочастотном переключении мощности
Силовой трансформатор. Китайский журнал машиностроения. 2007; 27 (31): 121-126.
[9] Чжао Цзы, Гун Ц.Ю., Цинь ХХ. Факторный анализ распределительной емкости в высокочастотном трансформаторе
. Китайский журнал машиностроения. 2008; 28 (9): 55-60.
[10] Zhao CF, Yu Z, Wang ZY. Конструкция высокочастотного импульсного трансформатора.Трансформатор. 2003;
40 (10): 6-8.
[11] Zhong HQ, Xu ZX, Zou XD, et al. Исследование высоковольтных источников питания с мягкой коммутацией. High
Voltage Engineering. 2003; 29 (8): 7-9
Трансформатор напряжения — обзор
IA Краткая история
Фундамент современной передачи электроэнергии был заложен в 1882 году, когда Томас А. Эдисон построил станцию на Перл-Стрит, генератор постоянного тока и радиальную линию передачи. Система, используемая в основном для освещения, была построена в Нью-Йорке.Развитие передачи переменного тока в Соединенных Штатах началось в 1885 году, когда Джордж Вестингауз купил патенты на системы переменного тока, разработанные Л. Голаром и Дж. Д. Гиббсом из Франции. Энергетические системы переменного и постоянного тока в то время состояли из коротких радиальных линий между генераторами и нагрузками и обслуживали потребителей в непосредственной близости от генерирующих станций.
Первая высоковольтная линия электропередачи переменного тока в США была построена в 1890 году и прошла 20 км между водопадом Уилламетт в Орегон-Сити и Портлендом, штат Орегон.Технология передачи переменного тока быстро развивалась (Таблица I), и вскоре были построены многие линии переменного тока, но в течение нескольких лет большинство из них работали как изолированные системы. По мере увеличения расстояний передачи и роста спроса на электроэнергию возникла потребность в перемещении более крупных блоков мощности, стали важны факторы надежности, и начали строиться взаимосвязанные системы (электрические сети). Взаимосвязанные системы обеспечивают значительные экономические преимущества. Меньше генераторов требуется в качестве резервной мощности на период пикового спроса, что снижает затраты на строительство для коммунальных предприятий.Точно так же требуется меньше генераторов во вращающемся резерве, чтобы справиться с внезапным, неожиданным увеличением нагрузки, что еще больше снижает инвестиционные затраты. Электросети также предоставляют коммунальным предприятиям возможности для выработки электроэнергии, позволяя использовать наименее дорогие источники энергии, доступные для сети в любое время. Энергетические системы продолжают расти, и типичные региональные электрические сети сегодня включают десятки крупных генерирующих станций, сотни подстанций и тысячи километров линий электропередачи. Развитие обширных региональных сетей и сетей в 1950-х и 1960-х годах привело к большей потребности в согласовании критериев проектирования, схем защитных реле и управления потоком энергии и привело к развитию компьютеризированных систем диспетчерского управления и сбора данных (SCADA).
ТАБЛИЦА I. Исторические тенденции в высоковольтной передаче электроэнергии
Напряжение системы (кВ) | |||||||
---|---|---|---|---|---|---|---|
Номинальное | Максимальное 00 | Максимальное Год выпуска | пропускная способность (МВт) | Типичная ширина полосы отвода (м) | | ||
Переменный ток | |||||||
115 | 121 | 1915 | 50–200 | ||||
230 | 242 | 1921 | 200–500 | 30–40 | |||
345 | 362 | 1952 | 400–1500 | 3513840 | 500 911964 | 1000–2500 | 35–45 |
765 | 800 | 1965 | 2000–5000 | 40–55 | |||
1100 | 1200 | Проверено 1970-е годы | 3000–10000 | 50–75 | |||
Постоянный ток | |||||||
50 | 1954–8100 251387 | ||||||
200 | (± 100) | 1961 | 200–500 | 30–35 | |||
500 | (± 250) | 1965 | 750–1500 | ||||
800 | (± 400) | 1970 | 1500–2000 | 35–40 | |||
1000 | (± 500) | 1984 | 2000–3000 | 35–82 | |||
(± 600) | 1985 | 3000–6000 | 40–55 |
Первое коммерческое применение высоковольтной передачи постоянного тока было разработано R.Тюри во Франции на рубеже веков. Эта система состояла из ряда генераторов постоянного тока, соединенных последовательно у источника для получения желаемого высокого напряжения. Позже были разработаны ионные преобразователи, и в 1930-х годах в штате Нью-Йорк был установлен демонстрационный проект на 30 кВ. Первая современная коммерческая система передачи постоянного тока высокого напряжения с использованием ртутных дуговых клапанов была построена в 1954 году, соединив подводным кабелем остров Готланд и материковую часть Швеции. С тех пор за ним последовали многие другие системы передачи постоянного тока, в последнее время использующие тиристорную технологию.Проекты включают воздушные линии и подземные кабели, а также подводные кабели, чтобы полностью использовать мощность постоянного тока, чтобы снизить стоимость передачи на большие расстояния, избежать проблем с реактивной мощностью, связанных с длинными кабелями переменного тока, и служат в качестве асинхронных связей между сетями переменного тока. .
Сегодня коммерческие энергосистемы с напряжением до 800 кВ переменного тока и ± 600 кВ постоянного тока работают по всему миру. Созданы и испытаны опытные образцы систем переменного тока напряжением от 1200 до 1800 кВ. Возможности передачи электроэнергии увеличились до нескольких тысяч мегаватт на линию, а экономия на масштабе привела к повышению номинальных характеристик оборудования подстанции.Распространены блоки трансформаторов сверхвысокого напряжения (СВН) мощностью 1500 МВА и выше. Подстанции стали более компактными, так как все большее распространение получают автобусы с металлической обшивкой и газовой изоляцией SF 6 . Автоматическое регулирование выработки электроэнергии и потока мощности имеет важное значение для эффективной работы взаимосвязанных систем. Для этих приложений широко используются компьютеры и микропроцессоры.
IB Компоненты системы
Целью системы передачи электроэнергии является передача электроэнергии от генерирующих станций к центрам нагрузки или между регионами безопасным, надежным и экономичным способом при соблюдении применимых требований федеральных, государственных и местных органов власти. правила и положения.Удовлетворение этих потребностей наиболее эффективным и безопасным образом требует значительных капиталовложений в линии электропередачи, подстанции и оборудование для управления и защиты системы. Ниже приведены некоторые из основных компонентов современной системы передачи электроэнергии высокого напряжения.
Воздушные линии электропередачи передают электроэнергию от генерирующих станций и подстанций к другим подстанциям, соединяющим центры нагрузки с электрической сетью, и передают блоки основной мощности на стыках между региональными сетями.Линии передачи высокого напряжения переменного тока представляют собой почти исключительно трехфазные системы (по три проводника на цепь). Для систем постоянного тока типичны биполярные линии (два проводника на цепь). Воздушные линии электропередачи рассчитаны на заданную мощность передачи при конкретном стандартизованном напряжении (например, 115 или 230 кВ). Уровни напряжения обычно основываются на экономических соображениях, и линии строятся с учетом будущего экономического развития в местности, где они заканчиваются.
Подземные кабели служат тем же целям, что и воздушные линии электропередачи.Подземные кабели требуют меньше полосы отчуждения, чем воздушные линии, но, поскольку они проложены под землей, их установка и обслуживание дороги. Подземная передача часто в 5–10 раз дороже, чем воздушная передача той же мощности. По этим причинам подземные кабели используются только в местах, где воздушное строительство небезопасно или технически неосуществимо, где земля для проезда недоступна или где местные власти требуют прокладки под землей.
Подстанции или коммутационные станции служат в качестве соединений и точек переключения для линий передачи, фидеров и цепей генерации, а также для преобразования напряжений до требуемых уровней.Они также служат точками для компенсации реактивной мощности и регулирования напряжения, а также для измерения электроэнергии. Подстанции имеют шинные системы с воздушной или газовой изоляцией (CGI). Основное оборудование может включать в себя трансформаторы и шунтирующие реакторы, силовые выключатели, разъединители, батареи конденсаторов, приборы для измерения тока и напряжения, измерительные приборы, разрядники для защиты от перенапряжения, реле и защитное оборудование, а также системы управления.
Преобразовательные подстанции переменного / постоянного тока — это специальные типы подстанций, на которых выполняется преобразование электроэнергии из переменного в постоянный (выпрямление) или из постоянного в переменный (инвертирующее).Эти станции содержат обычное оборудование подстанции переменного тока и, кроме того, такое оборудование, как вентили преобразователя постоянного тока (тиристоры), соответствующее оборудование управления, преобразовательные трансформаторы, сглаживающие реакторы, реактивные компенсаторы и фильтры гармоник. Они также могут содержать дополнительные средства управления демпфированием или средства контроля устойчивости при переходных процессах.
Силовые трансформаторы используются на подстанциях для повышения или понижения напряжения, а также для регулирования напряжений. Для получения желаемого напряжения и поддержания соотношения фазовых углов используются разные схемы обмоток.Обычно используются автотрансформаторы и многообмоточные трансформаторы. Силовые трансформаторы обычно оснащены переключателями ответвлений под нагрузкой или без нагрузки для регулирования напряжения и могут иметь специальные обмотки для подачи электроэнергии на станцию. Фазовращатели, заземляющие трансформаторы и измерительные трансформаторы — это специальные типы трансформаторов.
Шунтирующие реакторы используются на подстанциях для поглощения реактивной мощности для регулирования напряжения в условиях низкой нагрузки и повышения стабильности системы. Они также помогают снизить переходные перенапряжения во время переключения.Специальные схемы шунтирующего реактора иногда используются для настройки линий передачи для гашения вторичной дуги в случае однополюсного переключения.
Силовые выключатели используются для переключения линий и оборудования, а также для отключения токов короткого замыкания во время аварийных ситуаций в системе. Срабатывание силового выключателя инициируется вручную оператором или автоматически цепями управления и защиты. В зависимости от изоляционной среды между главными контактами силовые выключатели бывают с воздушной, масляной или газовой изоляцией (SF 6 ).
Выключатели-разъединители используются для отключения или обхода линий, шин и оборудования в зависимости от условий эксплуатации или технического обслуживания. Выключатели-разъединители не подходят для отключения токов нагрузки. Однако они могут быть оснащены последовательными прерывателями для прерывания токов нагрузки.
Синхронные конденсаторы — это вращающиеся машины, которые улучшают стабильность системы и регулируют напряжения при различных нагрузках, обеспечивая необходимую реактивную мощность; они не распространены в Соединенных Штатах.Иногда они используются в преобразовательных подстанциях постоянного тока для обеспечения необходимой реактивной мощности, когда пропускная способность приемной системы переменного тока мала.
Шунтирующие конденсаторы используются на подстанциях для подачи реактивной мощности для регулирования напряжения в условиях большой нагрузки. Шунтирующие конденсаторные батареи обычно переключаются группами, чтобы минимизировать скачкообразные изменения напряжения.
Статические вольт-амперные реактивные компенсаторы (ВАР) сочетают в себе функции шунтирующих реакторов и конденсаторов, а также связанного с ними управляющего оборудования. В статических компенсаторах VAR часто используются конденсаторы с тиристорным управлением или насыщающийся реактор для получения более или менее постоянного напряжения в сети путем непрерывной регулировки реактивной мощности, передаваемой в энергосистему.
Ограничители перенапряжения состоят из последовательно соединенных нелинейных резистивных блоков из оксида цинка (ZnO) или карбида кремния (SiC) и, иногда, из последовательных или шунтирующих разрядников. Ограничители перенапряжения используются для защиты трансформаторов, реакторов и другого основного оборудования от перенапряжений.
Стержневые зазоры служат той же цели, что и разрядники для защиты от перенапряжений, но с меньшими затратами, но с меньшей надежностью. В отличие от разрядников для защиты от перенапряжений, зазоры в стержнях при срабатывании вызывают короткое замыкание, что приводит к срабатыванию выключателя.
Конденсаторы сериииспользуются в линиях передачи на большие расстояния для уменьшения последовательного импеданса линии для управления напряжением.Снижение импеданса линии снижает реактивные потери в линии, увеличивает пропускную способность и улучшает стабильность системы.
Релейное и защитное оборудование устанавливается на подстанциях для защиты системы от ненормальных и потенциально опасных условий, таких как перегрузки, сверхтоки и перенапряжения, путем срабатывания силового выключателя.
Коммуникационное оборудование жизненно важно для потока информации и данных между подстанциями и центрами управления. Линия передачи, радио, микроволновая и волоконно-оптическая линии связи широко используются.
Центры управления, мозг любой электрической сети, используются для управления системой. Они состоят из сложных систем диспетчерского управления, систем сбора данных, систем связи и управляющих компьютеров.
% PDF-1.7 % 387 0 объект > эндобдж xref 387 76 0000000016 00000 н. 0000003120 00000 н. 0000003310 00000 н. 0000003346 00000 п. 0000003969 00000 н. 0000004004 00000 п. 0000004143 00000 п. 0000004282 00000 п. 0000004900 00000 н. 0000005120 00000 н. 0000005917 00000 н. 0000006048 00000 н. 0000006385 00000 п. 0000006793 00000 н. 0000007116 00000 н. 0000007460 00000 н. 0000007487 00000 н. 0000007802 00000 н. 0000007839 00000 п. 0000008121 00000 н. 0000008205 00000 н. 0000008562 00000 н. 0000008676 00000 н. 0000008788 00000 н. 0000009422 00000 н. 0000009970 00000 н. 0000010378 00000 п. 0000010645 00000 п. 0000010992 00000 п. 0000011681 00000 п. 0000011785 00000 п. 0000012147 00000 п. 0000013854 00000 п. 0000014781 00000 п. 0000016199 00000 п. 0000016742 00000 п. 0000016881 00000 п. 0000017915 00000 п. 0000018598 00000 п. 0000019129 00000 п. 0000020360 00000 п. 0000021692 00000 п. 0000023061 00000 п. 0000024856 00000 п.