Site Loader

Содержание

Неполярный конденсатор из двух полярных или как сделать пусковой конденсатор | Электронные схемы

неполярный конденсатор из двух неполярных

неполярный конденсатор из двух неполярных

Из двух полярных электролитических конденсаторов большой емкости можно сделать один неполярный конденсатор.

В сети есть несколько схем,испытал две популярные схемы.Для проверки взял три электролитических конденсатора емкостью по 470 мкФ и на напряжение 10 В.Источником переменного тока является трансформатор напряжением 6.3В действующего или около 10 В амплитудного значения напряжения.

Для начала испытал один электролитический конденсатор на переменном токе.Подключил к выводам конденсатора источник тока и через пять секунд конденсатор взорвался, испустив при этом электролит в виде пара через предохранительный клапан.Полярный конденсатор нельзя подключать к переменному току.Далее собрал неполярный конденсатор по схеме с двумя диодами.Конденсаторы чуть теплые,амплитуда напряжения на каждом из них около 5 В при подключении к выводам 10 В,то есть напряжение делится наполовину.

неполярный конденсатор из двух полярных электролитических

неполярный конденсатор из двух полярных электролитических

Емкость такого конденсатора равняется емкости одного конденсатора из двух.Каждый полярный конденсатор по 470 мкФ,а общая емкость неполярного конденсатора 225 мкФ.

неполярный конденсатор для запуска трехфазного электродвигателя

неполярный конденсатор для запуска трехфазного электродвигателя

Потом сделал неполярный конденсатор без диодов.Два полярных конденсатора подключаются минус к минусу.Все осциллограммы и характеристики почти соответствуют конденсатору,который был сделан с диодами.Выходит так,что две разные схемы идентичны,но диоды должны защищать конденсаторы,возможно схема с диодами будет лучше работать.Надо еще учитывать,что напряжение на полярном конденсаторе указано для постоянного тока,при работе на переменном токе и при работе с пульсациями рабочее напряжение конденсатора выбирают больше уровня пульсации.

подключение конденсаторов последовательно

подключение конденсаторов последовательно

Полярный конденсатор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Полярный конденсатор

Cтраница 1


Полярные конденсаторы работоспособны при условии, что на их положительный электрод ( анод) подается положительный потенциал источника. Электролитические конденсаторы выпускают с большим интервалом емкости ( от десятых долей до десятков тысяч микрофарад) и напряжением от 3 до 500 В.  [2]

Если полярный конденсатор включить в сето переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, который может выйти из строя.  [3]

Если полярный конденсатор включить в сеть переменного напряжения, то через его диэлектрик пойдет переменный ток, нагревая конденсатор, и он может выйти из строя.  [4]

Для различных применений изготовляются

полярные конденсаторы как с гладкими, так и с травлеными анодами, а также неполярные конденсаторы.  [6]

Как уже говорилось, АЭК — полярные конденсаторы, поэтому напряжение обратной полярности предотвращается там, где это необходимо, подключением диода параллельно конденсатору. Падение на диоде порядка 0 8 В является допустимым. Обратные напряжения 1 5 В допустимы для конденсатора за время до 1 с при условии, что такой режим работы не является повторяющимся.  [7]

Использование полупроводниковой сегнетокерамики позволяет получить и полярные конденсаторы с одним омическим и одним неомическим контактами, обладающие в несколько раз большей емкостью, чем неполярные конденсаторы.  [8]

Если максимальное значение переменного напряжения, приложенного к полярному конденсатору, невелико, по сравнению с тем напряжением, при котором проводилась формовка оксидного слоя, то в течение некоторого времени конденсатор может работать без заметного ухудшения своих характеристик. Тем не менее применять полярные конденсаторы даже при малых значениях переменного напряжения для длительной работы не рекомендуется, если вместе с переменным напряжением к конденсатору не прикладывается одновременно поляризующее постоянное напряжение, превышающее по величине амплитуду переменного напряжения.  [9]

Конденсаторы этого типа обладают большой емкостью и относятся к виду полярных конденсаторов. В качестве наполнителя в них используется электролит в жидком или порошкообразном виде. Конденсаторы с жидким электролитом в настоящее время почти не используются из-за необходимости соблюдения осторожности в обращении с электролитом.  [10]

Вторичная формовка неполярных конденсаторов выполняется в том же режиме, что и для полярных конденсаторов, с той разницей, что она производится последовательно для каждой обкладки конденсатора, вследствие чего требует в два раза больше времени.  [11]

Полярность или условные обозначения выводов микроэлементов на схеме сборки указывают около соответствующих точек: для диодов или полярных конденсаторов — знаки или -; для транзисторов — Б; Э; К; для трансформаторов — номера выводов.  [12]

В зависимости от материала диэлектрика конденсаторы бывают бумажные, вакуумные, воздушные, керамические, слюдяные, стекло-керамические, стеклянные, оксидные и др. В зависимости от материала электродов и вида конструкции конденсаторы делятся на фольговые, с металлизированными обкладками, с герметичной конструкцией корпуса, с уплотненной конструкцией корпуса, с изолированным корпусом ( неполярный конденсатор), с неизолированным корпусом (

полярный конденсатор) и др. По признаку функциональной принадлежности конденсаторы бывают импульсные, поме-хоподавляющие, защитные, проходные и др. Малыми размерами при относительно большой номинальной емкости до 1 мкФ обладают керамические конденсаторы, получившие в связи с этим наибольшее распространение.
Наибольшую номинальную емкость ( до 22 000 мкФ) при относительно малых размерах имеют оксидные ( электролитические) конденсатеоы.  [13]

В зависимости от материала диэлектрика конденсаторы бывают бумажные, вакуумные, воздушные, керамические, слюдяные, стеклокерамические, стеклянные, оксидные и др. В зависимости от материала электродов и вида конструкции конденсаторы делят на фольговые, с металлизированными обкладками, с герметичной конструкцией корпуса, с уплотненной конструкцией корпуса, с изолированным корпусом ( неполярный конденсатор), с неизолированным корпусом (

полярный конденсатор) и др. По признаку функциональной принадлежности конденсаторы бывают импульсные, помехоподавляющие, защитные, проходные и др. Малыми размерами при относительно большой номинальной емкости до 1 мкФ обладают керамические конденсаторы, получившие в связи с этим наибольшее распространение. Наибольшую номинальную емкость ( до 470 000 мкФ) при относительно малых размерах имеют оксидные ( электролитические) конденсаторы.  [14]

В Советском Союзе выпускаются сухие полярные и неполярные танталовые электролитические конденсаторы с анодами из гладкой фольги.

Полярные конденсаторы обозначаются — тип ЭТ, неполярные — тип ЭТН.  [15]

Страницы:      1    2

Полярные и неполярные конденсаторы — в чем отличие. Маркировка конденсаторов

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре.

(Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 — 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатораТип конденсатора
КерамическийЭлектролитическийНа основе металлизированной пленки
От 2,2 пФ до 10 нФОт 100 нФ до 68 мкФ1 мкФ до 16 мкФ
± 10 и ± 20-10 и +50± 20
50 — 2506,3 — 400250 — 600
Стабильность конденсатораДостаточнаяПлохаяДостаточная
От -85 до +85От -40 до +85От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатораТип конденсатора
СлюдянойНа основе полиэстераНа основе полипропилена
Диапазон изменения емкости конденсаторовОт 2,2 пФ до 10 нФОт 10 нФ до 2,2 мкФОт 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), %± 1± 20± 20
Рабочее напряжение конденсаторов, В3502501000
Стабильность конденсатораОтличнаяХорошаяХорошая
Диапазон изменения температуры окружающей среды, о СОт -40 до +85От -40 до +100От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторовОт 10 нФ до 10 мкФОт 10 пФ до 10 нФОт 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), %± 20± 2,5± 20
Рабочее напряжение конденсаторов, В63 — 6301606,3 — 35
Стабильность конденсатораОтличнаяХорошаяДостаточная
Диапазон изменения температуры окружающей среды, о СОт -55 до +100От -40 до +70От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М — 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора — 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10 -6 Ф), пикофарадой (1 пФ = 10 -12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов . Конденсаторы можно соединять последовательно и параллельно. При последовательном

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /C эк = 1 /C 1 + 1 /C 2 + 1 /C 3

эквивалентное емкостное сопротивление

X C эк = X C 1 + X C 2 + X C 3

результирующее емкостное сопротивление

C эк = C 1 + C 2 + C 3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /X C эк = 1 /X C 1 + 1 /X C 2 + 1 /X C 3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения u c При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток I нач =U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе u с и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными , и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т 1 и T 2 , соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т 3 и разряда Т р, т. е. сопротивлениями резисторов, включенных в эти цепи.

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Конденсатор – устройство, способное накапливать электрический заряд. В зависимости от назначения и конструкции конденсаторы делятся на ряд видов.В статье рассмотрим основные электрические параметры конденсаторов.

Электрические параметры конденсаторов

Основные характеристики и единицы их измерения приведены в таблице

Фарада – физическая величина, названная в честь английского физика Майкла Фарадея. Она слишком велика для использования в электротехнике. На практике емкость измеряют в микрофарадах (1мкФ = 10 -6 Ф), нанофарадах (1нФ = 10 -9 Ф) или пикофарадах (1пФ=10 -12 Ф)

При нанесении величины емкости на корпус конденсатора для обозначения «нФ» дополнительно используют символы «nF», «пФ» — «рФ», а микрофараду обозначают сокращением «мкФ» или «μФ».


Емкость конденсаторов не может принимать произвольные значения. Они унифицированы и выбираются из стандартных рядов емкостей.

Допустимое отклонение емкости указывает, с какой точностью изготовлен конденсатор. Она указывает, в каком допустимом диапазоне может находиться величина емкости в процентах от номинала. Для измерительных устройств этот параметр выбирается как можно меньшим.

Номинальное напряжение – это напряжение, которое выдерживают обкладки конденсатора длительное время. При превышении этого параметра конденсатор выйдет из строя. Для переменного тока руководствуются не действующим, а амплитудным значением напряжения. Например, при выборе конденсатора для пуска электродвигателя на номинальное напряжение 380 В нужно использовать конденсатор на рабочее напряжение U>380∙√2=537, то есть, на 600 В.


Температурная стабильность характеризует диапазон, в котором изменяется емкость при изменении температуры окружающей среды. Для устройств, сохраняющих работоспособность в широком диапазоне температур, значение этого параметра выбирается более низким.

Конструктивные исполнения конденсаторов

Конденсаторы, емкость которых не может изменяться, называются конденсаторами постоянной емкости .

Но в некоторых цепях для обеспечения возможности регулировки работы схемы и установки точных параметров ее работы применяются подстроечные конденсаторы . Емкость их изменяется при помощи отвертки.

В отличие от них конденсаторы переменной емкости применяются для выполнения пользовательских регулировок, например, для настройки радиоприемника на нужную волну.


Существуют конденсаторы специального назначения. Например, конденсаторы для защиты от радиопомех и сглаживающих фильтров, располагающихся парами в одном корпусе.


Отдельно выделяются конденсаторы для поверхностного монтажа или . Они технологичны для монтажа на автоматических конвейерных линиях, а размеры позволяют минимизировать габаритные размеры устройств.

Классификация конденсаторов по виду диэлектрика

Воздух в качестве диэлектрика использовался только для конденсаторов переменной емкости старого образца. Чем меньше материал между обкладками конденсатора проводит электрический ток, тем меньших размеров может быть изготовлен этот элемент на то же рабочее напряжение. При использовании определенных материалов можно получить конденсаторы с необходимыми свойствами.

В зависимости от материала диэлектрика между обкладками выпускаются конденсаторы:

Из всего этого перечня самыми распространенными в электротехнике являются бумажные и металлобумажные конденсаторы, использующиеся для схем запуска однофазных двигателей и для компенсации реактивной мощности. Всем известны электролитические конденсаторы, используемые в выпрямителях для сглаживающих фильтров. Их главная особенность – невозможность работы на переменном токе.


При ошибках в полярности подключения электролитических конденсаторов они выходят из строя, иногда – со взрывом. То же произойдет при превышении номинального напряжения электролитического и металлобумажного конденсатора, так как они выпускаются в герметичных корпусах.

Условные обозначения конденсаторов

Подстроечный конденсатор
Электролитический конденсатор
Два конденсатора в общей обкладкой в одном корпусе

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

пошагово, полярный и неполярный конденсатор

Конденсаторы встречаются в самой разной технике. Но они зачастую и приводят к неисправностям механизмов. Для того, чтобы своевременно определить неисправность и устранить её, необходимо понимать общие принципы проверки конденсатора мультиметром. Этот способ является наиболее простым.

Рассмотрим варианты применения недорогого и эффективного прибора, чтобы выявить элементы, вышедшие из строя. В статье подробно представлены различные виды конденсаторов, а также последовательность их проверки. Благодаря практическим советам вы без труда сможете обнаружить неисправность в любой схеме.

Для чего используют конденсатор?

Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:

  • автомобилестроении;
  • радиотехнике;
  • электронике;
  • электробытовой технике;
  • приборостроении.

Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.

Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.

В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.

Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.

Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.

Неполярные и полярные разновидности

Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.

Специфика полярных конденсаторов

Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — «минус» к «минусу», а «плюс» к «плюсу». Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.

В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.

Справка! Полярные конденсаторы предназначены для выравнивания электрофильтрации поступающих сигналов. Метка «+» имеет большую длину. Пометка «-» обозначена на самом корпусе.

Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.

Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.

Отличительные особенности неполярных конденсаторов

Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.

Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:

  1. Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
  2. Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
  3. Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
  4. Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
  5. Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.

Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.

Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.

Алгоритм диагностики мультиметром

Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.

Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.

Как произвести тестирование полярного конденсатора

Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.

Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:

  1. Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
  2. Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
  3. Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.

В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.

Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.

Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.

Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.

Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.

Неполярный конденсатор и его диагностика

Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.

В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.

При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом., что ограничит мощность первичного токового броска.

Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.

До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.

Определение ёмкости конденсатора

Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.

Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе. Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры.

Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.

Справочная информация! Когда последует писк, то надлежит поменять щупы местами, тогда звук повторится. Его будет слышно при показателях ёмкости в районе от 0,1 мкФ. Чем выше данное значение, тем продолжителльнее воспроизводится звук.

Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.

Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.

На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.

Определение напряжения при помощи мультиметра

Проверить исправную работу конденсатора возможно благодаря измерению напряжения, сравнив затем полученный результат с номиналом. Для выполнения диагностики, необходим источник питания, у которого напряжение должно быть немного меньше, чем у исследуемого элемента.

Например, если у конденсатора показатель в 25 В, то подойдёт 9-вольтный источник. Подсоединяют щупы к ножкам, предварительно обращая внимание на полярность, затем ждут немного времени — примерно несколько секунд. Случается, что время прошло, а просроченный компонент всё еще функционирует, хотя характеристики приведены иные. В подобном случае его требуется систематически контролировать.

Мультиметр следует настроить на режим определения напряжения и производят диагностику. При быстром появлении на дисплее значения равного номинальному, элемент полностью годен к использованию. В противоположном случае конденсатор надлежит поменять.

Проверка конденсаторов без выпаивания из платы

Можно обойтись без выпаивания из платы конденсаторов для их тестирования. Главное условие, чтобы сама плата была полностью обесточена. После обесточивания потребуется определённое время подождать, чтобы электрические компоненты разрядились.

Следует знать, что для получения 100% результата, невозможно будет обойтись без выпаивания элемента из платы. Детали, которые располагаются рядом, мешают достоверной проверке. Надлежит удостовериться лишь в отсутствии пробоя.

Для проверки исправного функционирования конденсатора, не выпаивая, необходимо к выводам элемента прикоснуться щупами для измерения сопротивления. Исходя из разновидности конденсатора, будет отличаться и диагностика самого параметра.

Советы по проверке электронных компонентов (конденсаторов)

У конденсаторных элементов имеется одно не очень приятное свойство. Дело в том, что при пайке, когда происходит воздействие на детали тепла, они часто не подлежат восстановлению. Однако качественно исследовать элемент возможно лишь, если выпаять его из схемы. В ином случае детали, которые находятся поблизости, станут его шунтировать. По данной причине необходимо учитывать определённые нюансы.

Когда продиагностированный конденсатор можно будет снова впаять в схему, потребуется ввести в работу ремонтируемый прибор. Это позволит отследить его работу. Если работоспособность благополучно возобновилась, устройство стало функционировать эффективнее, то протестированный компонент меняет на новый.

Важная информация! Для сокращения проверки, следует выпаивать не два, а лишь один из выводов. Требуется учитывать и понимать, что для подавляющего большинства электролитических элементов данный способ нельзя применять. Это связано со специфическими конструктивными особенностями самого корпуса.

Если схема сложная и включает в себя значительное количество конденсаторов, то дефекты вычисляют благодаря измерению напряжения на них. При несоответствии параметра требованиям, деталь, которая вызывает подозрение, надлежит убрать и произвести проверку.

При фиксировании в схеме сбоев, требуется перепроверить дату изготовления электронного компонента. Усыхание элемента происходит в течение пяти лет функционирования и составляет более 65%. Подобную деталь, даже если она в рабочем состоянии, надлежит заменить. В противоположном случае она станет ухудшать работу всей схемы.

Мультиметры современного поколения отличаются тем, что их наивысшим показателем для измерения является параметр ёмкости, который варьируется в районе 200 мкФ. При превышении данного показателя контрольный прибор способен выйти из рабочего состояния, даже если он и имеет предохранитель. В электротехнике нового поколения есть высокотехнологичные smd электроконденсаторы. Их отличие и преимущество состоит в очень небольших размерах.

Выпаять один вывод от подобного компонента очень непростая задача. Здесь наилучшим выходом будет поднять один из выводов уже после отпаивания, затем произвести изоляцию его от схемы, или вовсе отделить два вывода.

Итоги и практические рекомендации

Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.

Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.

Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.

Также вам может быть интересно как соединять провода между собой.

Каталог продукции — Пассивные элементы — Конденсаторы — Конденсаторы электролитические — Конденсаторы неполярные электролитические

Каталог продукции

Обновлен: 01. 06.2021 в 20:30

  • Aвтоматика, Робототехника, Микрокомпьютеры
  • Акустические компоненты
  • Блоки питания, батарейки, аккумуляторы
  • Датчики
  • Двигатели, вентиляторы
  • Измерительные приборы и модули
  • Инструмент, оборудование, оснастка
    • Аксессуары для пайки
    • Антистатические принадлежности
    • Бокорезы, ножницы, резаки
    • Дрели, фрезеры, бормашины
    • Жала для паяльников и станций
    • Инструмент для зачистки изоляции
    • Инструмент для обжима
    • Лупы, микроскопы
    • Нагреватели инфракрасные
    • Ножи, скальпели
    • Отвёртки
    • Отсосы для припоя
    • Паяльники газовые и горелки
    • Паяльники электрические
    • Паяльные станции и ванны, сварочные автоматы
    • Пинцеты, зажимы
    • Плоскогубцы, круглогубцы
    • Подставки для паяльников и штативы
    • Принадлежности для паяльников и станций
    • Прочий инструмент и оснастка
    • Сверла, фрезы, боры
    • Термоклеевые пистолеты
    • Тиски, станины
    • Штангенциркули, линейки
  • Источники света и индикация
  • Кабель, провод, шнуры
  • Коммутация, реле
  • Конструктивные элементы, корпуса, крепеж
  • Материалы и расходники
  • Пассивные элементы
  • Полупроводниковые приборы, микросхемы, радиолампы
  • Разъёмы, клеммы, соединители, наконечники
  • Текстолит, платы
  • Товары бытового назначения
  • Трансформаторы, сердечники, магниты
Информация обновлена 01. 06.2021 в 20:30

Вид:

Сортировка:

По наличиюпо алфавитупо цене

Кол-во на странице: 244860120

Как проверить конденсатор мультиметром

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.
Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.
Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.
Проверка конденсатора мультиметром
Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.
Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.
Существует два вида конденсаторов:

  • 1) полярные;
  • 2) неполярные.
  • Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.
    Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.
    Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).
    Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.
    Как проверить конденсатор с помощью приборов
    Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.
    Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.
    Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.
    Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».
    При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.
    Проверяем конденсатор мультиметром в режиме омметра
    В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

    Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.
    Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

    Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

    Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.
    Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.
    Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

    В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.
    Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

    Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).
    Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

    На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

    По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.
    Как проверить емкость конденсатора мультиметром

    Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.
    Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?
    Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

    Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (10000 пФ = 100 нФ = 0.1 мкФ).
    Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

    Следующий экземпляр электролитический конденсатор с номинальной емкостью 3. 3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

    Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

    Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

    Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

    Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.
    Как проверить конденсатор тестером (стрелочным прибором)
    Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

    Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.
    Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

    Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

    На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.
    Похожие материалы на сайте:

  • 1) Как работать с мультиметром
  • 2) Конусное сверло для электрика
  • 3) Прозвонка для проводов своими руками
  • Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

    Можете ли вы сделать неполярный электролитический конденсатор из двух обычных электролитических конденсаторов?

    Резюме:

    • Да, «поляризованные» алюминиевые «мокрые электролитические» конденсаторы могут быть законно подключены «спина к спине» (то есть последовательно с противоположными полярностями) для образования неполярного конденсатора.

    • C1 + C2 всегда равны по емкости и номинальному напряжению.
      Ceffective = = C1 / 2 = C2 / 2

    • Veffective = рейтинг C1 и C2.

    • См. «Механизм» в конце, чтобы узнать, как это (вероятно) работает.


    При этом принято считать, что оба конденсатора имеют одинаковую емкость.
    Результирующий конденсатор с половиной емкости каждого отдельного конденсатора.
    например, если два x 10 мкФ конденсатора установлены последовательно, результирующая емкость будет 5 мкФ.

    Я делаю вывод, что полученный конденсатор будет иметь такое же номинальное напряжение, что и отдельные конденсаторы. (Я могу ошибаться).

    Я видел, как этот метод использовался во многих случаях на протяжении многих лет, и, что более важно, видел метод, описанный в примечаниях по применению от ряда производителей конденсаторов. Смотрите в конце для одной такой ссылки.

    Понимание того, как отдельные конденсаторы становятся правильно заряженными, требует либо веры в заявления изготовителей конденсаторов («действуйте так, как если бы они были обойдены диодами», либо дополнительной сложности, НО понять, как работает схема после ее запуска, проще.
    Представьте себе две заглушки друг к другу). с полностью заряженным Cl и полностью разряженным Cr.
    Если через последовательное устройство пропускается ток, так что Cl затем разряжается до нулевого заряда, то обратная полярность Cr заставит его заряжаться до полного напряжения. Попытки подать дополнительный ток и дальнейший разряд Cl, так что предполагается, что неправильная полярность приведет к тому, что Cr будет заряжаться выше его номинального напряжения, т. е. может быть предпринята попытка, НО будет вне спецификации для обоих устройств.

    Учитывая вышеизложенное, можно ответить на конкретные вопросы:

    Какие есть причины для подключения конденсаторов последовательно?

    Можно создать биполярный колпачок из 2-х полярных колпачков.
    ИЛИ может удвоить номинальное напряжение до тех пор, пока соблюдаются меры по выравниванию распределения напряжения. Иногда для достижения баланса используются резисторы Paralleld.

    «Оказывается, что то, что может выглядеть как два обычных электролитика, на самом деле не является двумя обычными электролитами».

    Это можно сделать с помощью обычных электролитиков.

    «Нет, не делайте этого. Он также будет действовать как конденсатор, но как только вы пропустите несколько вольт, он вырвет изолятор».

    Работает нормально, если рейтинги не превышены.

    Вроде как «вы не можете сделать BJT из двух диодов»

    Причина сравнения отмечена, но не является действительной. Каждая половина конденсатора по-прежнему подчиняется тем же правилам и требованиям, что и в одиночестве.

    «это процесс, который не может сделать тинкер»

    Может Tinkerer — вполне законно.

    Так неполярный (NP) электролитический колпачок электрически идентичен двум электролитическим колпачкам в обратной серии или нет?

    Конечно, но производители обычно вносят изменения в производство, так что есть две анодные пленки, НО результат одинаков.

    Разве это не переживает те же напряжения?

    Номинальное напряжение соответствует номиналу одной крышки.

    Что происходит с крышкой с обратным смещением, когда на комбинацию подается большое напряжение?

    При нормальной работе НЕТ обратного смещения крышки. Каждая крышка обрабатывает полный цикл переменного тока, эффективно видя половину цикла. Смотрите мое объяснение выше.

    Есть ли практические ограничения, кроме физического размера?

    Нет очевидного ограничения, о котором я могу думать.

    Имеет ли значение какая полярность снаружи?

    Нет. Нарисуйте то, что каждая шапка видит изолированно, без ссылки на то, что «снаружи». Теперь измените их порядок в цепи. То, что они видят, идентично.

    Я не вижу, в чем разница, но многие люди думают, что есть одна.

    Ты прав. Функционально с точки зрения «черного ящика» они одинаковы.


    ПРИМЕР ПРОИЗВОДИТЕЛЯ:

    В этом документе « Руководство по применению, алюминиевые электролитические конденсаторы» от Cornell Dubilier, компетентного и уважаемого производителя конденсаторов, говорится в нем (в возрасте 2.183 и 2.184).

    • Если два алюминиевых электролитических конденсатора одинакового значения соединены последовательно, вплотную с подключенными положительными или отрицательными клеммами, то получающийся в результате одиночный конденсатор является неполярным конденсатором с половиной емкости.

      Два конденсатора выпрямляют приложенное напряжение и действуют так, как если бы они были обойдены диодами.

      При подаче напряжения конденсатор правильной полярности получает полное напряжение.

      В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах с пусковым электродвигателем вторая анодная фольга заменяет катодную фольгу для достижения неполярного конденсатора в одном корпусе.

    Для понимания общего действия важен этот комментарий на странице 2.183.

    • Хотя может показаться, что емкость находится между двумя фольгами, фактически емкость находится между анодной фольгой и электролитом.

      Положительная пластина — анодная фольга;

      диэлектрик представляет собой изолирующий оксид алюминия на анодной фольге;

      истинная отрицательная пластинка — проводящий жидкий электролит, а катодная фольга просто соединяется с электролитом.

      Эта конструкция обеспечивает колоссальную емкость, поскольку травление фольги может увеличить площадь поверхности более чем в 100 раз, а диэлектрик из оксида алюминия имеет толщину менее микрометра. Таким образом, полученный конденсатор имеет очень большую площадь пластины, и пластины очень близко друг к другу.


    ДОБАВЛЕНО:

    Как и Олин, я интуитивно чувствую, что необходимо обеспечить средства поддержания правильной полярности. На практике кажется, что конденсаторы хорошо справляются с учетом «граничных условий» запуска. Cornell Dubiliers «ведет себя как диод» нуждается в лучшем понимании.


    МЕХАНИЗМ:

    Я думаю, что ниже описано, как работает система.

    Как я описал выше, как только один конденсатор будет полностью заряжен в одной из крайностей формы волны переменного тока, а другой полностью разряжен, тогда система будет работать правильно, с зарядом, передаваемым во внешнюю «пластину» одного колпачка, напротив внутренней пластины этого крышка к другой крышке и «из другого конца». т. е. совокупность зарядов переносится между двумя конденсаторами и между ними и обеспечивает поток чистого заряда в двойную крышку и из нее. Пока проблем нет.

    Правильно смещенный конденсатор имеет очень низкую утечку.
    Конденсатор с обратным смещением имеет большую утечку и, возможно, намного выше.
    При запуске один колпачок смещается в обратном направлении в каждом полупериоде и протекает ток утечки.
    Поток заряда таков, что приводит конденсаторы к правильно сбалансированному состоянию.
    Это и есть «действие диода» — не формальное выпрямление, а утечка при неправильном смещении.
    После ряда циклов баланс будет достигнут. Чем «утечка» крышки в обратном направлении, тем быстрее будет достигнут баланс.
    Любые недостатки или неравенства будут компенсированы этим саморегулирующимся механизмом. Очень аккуратный.

    Конденсатор

    и типы конденсаторов

    Различные типы конденсаторов с характеристиками и областями применения

    Конденсатор — один из наиболее часто используемых электронных компонентов, который используется практически в любых схемах. Его использование и характеристики зависят от типа конденсатора. В этой статье мы кратко обсудим разные типы конденсаторов.

    Конденсатор:

    Конденсатор — это пассивный электронный компонент с двумя выводами, который накапливает заряд в электрическом поле между своими металлическими пластинами.он состоит из двух металлических пластин (электродов), разделенных изолятором, известным как диэлектрик .

    Емкость

    Емкость — это способность конденсатора накапливать заряд на своих металлических пластинах (электродах). Его единица — фарада F .

    Один фарад — это величина емкости, когда заряд один кулон вызывает разность потенциалов один вольт на его выводах.Емкость всегда положительная, отрицательной быть не может.

    Символы различных типов конденсаторов

    Символы различных типов конденсаторов и их альтернативные символы приведены ниже.

    Типы конденсаторов: полярные и неполярные конденсаторы с символами

    Типы конденсаторов

    Существуют различные типы конденсаторов, классифицируемые по размеру, форме и материалам. Ниже приведены подробные сведения о различных типах конденсаторов.

    Два основных типа конденсаторов: конденсаторы постоянной емкости и конденсаторы переменной емкости .

    1) Конденсаторы постоянной емкости:

    Как следует из названия, конденсатор постоянной емкости имеет фиксированное значение емкости. Это не может быть изменено. Конденсаторы постоянной емкости делятся на два типа:

    1. 1. Полярные конденсаторы
    1. 2. Неполярные конденсаторы

    1.1) Полярные конденсаторы:

    Полярные конденсаторы или поляризованные Конденсаторы — это такой тип конденсатора, выводы (электроды) которого имеют полярность; положительный и отрицательный.

    Положительная клемма должна быть подключена к положительной клемме питания, а отрицательная — к отрицательной. Изменение полярности приведет к повреждению конденсатора. Конденсаторы этого типа используются только в приложениях DC .

    Конденсаторы Polar подразделяются на два типа:

    1.1.1. Конденсаторы электролитические
    1.1.2. Суперконденсаторы

    1.1.1) Электролитические конденсаторы:

    Электролитический конденсатор — это тип полярного конденсатора, в котором в качестве одного из электродов используется электролит для сохранения большого заряда. Он состоит из двух металлических пластин, положительная (анодная) пластина которых покрыта изолирующим оксидным слоем через анодирование . Этот изолирующий слой действует как диэлектрик. Электролит используется как второй оконечный катод.Электролиты могут быть твердыми, жидкими или газообразными.

    Конденсаторы такого типа имеют высокое значение емкости в диапазоне от 1 мкФ до 47000 мкФ . Они используются только в цепях DC .

    Электролитические конденсаторы делятся на три семейства

    1.1.1.1. Алюминиевые электролитические конденсаторы
    1.1.1.2. Конденсаторы электролитические танталовые
    1.1.1.3. Конденсаторы электролитические ниобиевые

    1.1.1.1) Алюминиевые электролитические конденсаторы

    В алюминиевых электролитических конденсаторах используются электроды из чистого алюминия. Однако анодный (положительный) электрод изготавливается путем формирования изолирующего слоя из оксида алюминия ( Al 2 O 3 ) посредством анодирования. Электролит (твердый или нетвердый) помещается на изолирующую поверхность анода. Этот электролит технически действует как катод. Второй алюминиевый электрод помещается поверх электролита, который действует как его электрическое соединение с отрицательной клеммой конденсатора.

    В зависимости от электролита они делятся на два подтипа

    1. Нетвердые или влажные алюминиевые электролитические конденсаторы
    2. Твердые алюминиевые электролитические конденсаторы (SAL)

    1) Нетвердые алюминиевые электролитические конденсаторы

    В нетвердых алюминиевых электролитических конденсаторах используется жидкий или гелевый электролит. Они сделаны из двух алюминиевых фольг с бумагой между ними, пропитанной жидким или гелеобразным электролитом.Анодная алюминиевая фольга окисляется с образованием диэлектрика ( AL 2 O 3 ). Катодная фольга служит для электрического контакта с электролитом. Однако катодная фольга имеет естественный оксидный слой, образованный воздухом, что увеличивает ее емкость.

    Обычно используются нетвердые электролиты

    • Borax (этиленгликоль и борная кислота), они имеют максимальное номинальное напряжение 600 В при максимальной температуре 85 ° C 105 ° С .
    • Органические растворители , такие как диметилформамид ( DFM ), диметилацетамид ( DMA ) или гамма-бутиролактон. Они имеют относительно высокотемпературный рейтинг ( GBL ) и ток утечки.
    • Вода , содержащая растворители с водой до 70% известна своим низким ESR (эффективное последовательное сопротивление ) и невысокой стоимостью.

    Алюминиевая фольга с бумагой между ними наматывается.Они пропитываются электролитом, а затем покрываются алюминиевым кожухом.

    Преимущества и недостатки

    Преимущества

    • Недорогой
    • Механизм самовосстановления, образует новую форму оксида после подачи напряжения.

    Недостатки

    • Из-за испарения со временем высыхают, снижая здоровье.
    • СОЭ увеличивается со временем.
    • Используется только в цепях постоянного тока.
    • Они чувствительны к механическим воздействиям.

    Приложение

    • Коррекция коэффициента мощности.
    • Конденсатор вспышки для фотоаппарата.
    • Фильтры ввода-вывода в источниках питания переменного тока
    • Соединение, развязка.

    2) Твердые алюминиевые электролитические конденсаторы (SAL)

    SAL имеет ту же конструкцию, что и мокрый электролитический конденсатор, за исключением того, что в них используются твердые электролиты:

    • Диоксид марганца (MnO 2 )
    • Полимерный электролит
    • Гибридные электролиты (твердый полимер с жидкостью)

    После анодирования алюминиевой фольги между двумя слоями анодированной фольги между двумя слоями алюминия помещается сэндвич .Затем их складывают вместе для перламутрового типа или наматывают для радиального стиля .

    Преимущества и недостатки

    Преимущества

    • Из-за сухой природы электролита не происходит испарения
    • Они имеют более длительный срок службы
    • Они имеют низкий ESR

  • 7 Недостатки Они дорогие
  • Нет механизма самовосстановления, кроме гибридного полимерного конденсатора
  • Приложения

    Их применение аналогично применению нетвердых электролитических конденсаторов.

    1.1.1.2) Танталовые электролитические конденсаторы

    В электролитических конденсаторах такого типа в качестве анодного электрода используется металлический тантал . Поддон тантала окисляется с образованием изолирующего оксидного слоя, который действует как диэлектрик. Этот поддон погружают в электролит (твердый или жидкий). Электролит действует как катод. Однако слой графита и серебра нанесен поверх электролита для электрического соединения катода.

    Благодаря тонкому слою оксида танталовые конденсаторы имеют большую емкость на единицу объема по сравнению с другими электролитическими конденсаторами.Они меньше по размеру.

    В зависимости от состояния электролита они подразделяются на два подсемейства:

    1. Танталовые электролитические конденсаторы с жидким или нетвердым покрытием
    2. Твердые электролитические конденсаторы

    1) Влажные или нетвердые -Твердые танталовые электролитические конденсаторы

    В мокрых танталовых конденсаторах используется жидкий электролит, такой как серная кислота , поскольку слой оксида тантала инертен и стабилен.Эти конденсаторы работают при относительно высоких напряжениях до 630 В и с самым низким током утечки по сравнению с другими электролитическими конденсаторами.

    2) Твердые танталовые электролитические конденсаторы

    В твердом танталовом конденсаторе используются твердые электролиты, такие как диоксид марганца (MnO 2 ) или полимер.

    MnO 2 электролиты обладают высокой стабильностью, тогда как проводимость полимерных электролитов со временем ухудшается.

    Области применения танталового конденсатора

    • Благодаря высокой емкости на единицу объема, он может заменить алюминиевый электролитический конденсатор там, где температура повышается из-за плотной упаковки компонентов.
    • Они используются в медицинской электронике для получения высококачественных результатов.
    • Из-за низкого тока утечки они используются в цепях выборки и хранения .
    • Наиболее распространенное применение — фильтрация в компьютерных блоках питания из-за небольшого размера и надежности.

    Преимущества и недостатки

    • Они доступны в небольших размерах и с высокой емкостью.
    • Он очень стабилен и надежен, а значит, имеет более длительный срок службы.
    • Может работать в широком диапазоне температур от -55 ° C до + 125 ° C .
    • Они дорогие.
    • Они не допускают обратного напряжения.
    1.1.1.3) Ниобиевые электролитические конденсаторы

    В ниобиевых электролитических конденсаторах анод изготовлен из металлического ниобия (оксид ниобия).Он окисляется путем анодирования с образованием изолирующего слоя из пентоксида ниобия . Этот слой действует как диэлектрик.

    Электролит, используемый в ниобиевом электролитическом конденсаторе, представляет собой твердый , т.е. либо диоксид марганца , либо электролит полимера . Этот электролит покрывает поверхность анода. Электролит действует как катод.

    Слой графита и серебра помещен поверх электролита для электрического контакта катодного вывода.

    1.1.2) Суперконденсаторы:

    Суперконденсатор также известен как суперконденсатор или Super cap . Суперконденсатор — это тип полярного конденсатора, который имеет очень высокую емкость, но низкое напряжение.

    Конденсаторы такого типа могут заряжаться намного быстрее, чем батарея, и накапливать больше заряда, чем электролитический конденсатор на единицу объема. Вот почему между и батареей и считается электролитический конденсатор .

    Емкость суперконденсатора колеблется от 100 F до 12000 F при низком напряжении приблизительно от 2,5 В до 2,7 В .

    Суперконденсаторы по конструкции в чем-то похожи на электролитические. Они изготовлены из металлической фольги (электроды), каждый из которых покрыт активированным углем . Эти пленки помещают разделитель между ними. Сепаратор представляет собой ионопроницаемую мембрану, такую ​​как графен (используется в современных суперконденсаторах), которая обеспечивает изоляцию и обмен ионами электролита между электродами.

    Затем эти фольги складываются для прямоугольной или прокатываются для цилиндрической формы и помещаются в алюминиевый кожух. Затем он пропитывается электролитом, электролит богат ионами и проводит ионы между электродами. Затем корпус герметично закрывают.

    Суперконденсатор накапливает заряд либо с использованием электростатической двухслойной емкости ( EDLC ), либо с электрохимической псевдоемкостью , либо с обоими способами, известными как гибридная емкость .Таким образом, суперконденсаторы классифицируются на указанные выше типы.

    1.1.2.1) Электростатические двухслойные конденсаторы (EDLC)

    Это тип суперконденсатора, который электростатически накапливает заряд в двухслойном слое. Электроды изготовлены из активированного угля . Когда на его электроды подается напряжение, образуются два слоя заряда. Один слой появляется на поверхности электродов, что вызывает появление другого слоя ионов противоположной полярности в электролите.Эти два слоя разделены поляризованным монослоем молекул растворителя. Он известен как самолет Гельмгольца.

    Отсутствует перенос заряда между электродами и электролитом, который может вызвать химические изменения. Таким образом, заряд не сохраняется в химической связи (электрохимически). Вместо этого между ионами существует электростатическая сила, поэтому EDLC сохраняет заряд электростатически.

    1.1.2.2) Электрохимические псевдоконденсаторы

    Это тип суперконденсатора, который накапливает энергию за счет передачи заряда между электролитом и электродом, также известный как фарадеевский перенос заряда электрона.Таким образом, они накапливают заряд электрохимически .

    Это очень быстрая обратимая окислительно-восстановительная реакция, при которой восстановление происходит на одном электроде, а окисление — на другом во время зарядки и наоборот во время разряда.

    Перенос заряда фарадеевских электронов происходит с помощью двухслойной емкости. Ионы проходят через внутренний слой Гельмгольца и достигают электрода. Перенос заряда между ионом и электродом вызывает емкость, известную как Псевдоемкость .Его емкость превышает емкость двойного слоя в , 100 раз в .

    Когда ионы переносят заряд на электрод, они плавятся (адсорбируются) на поверхности электрода. Между ионами и электроном нет химической реакции, поскольку происходит только перенос заряда.

    Электроды псевдоконденсатора изготовлены из оксида переходного металла ( MnO 2 , IrO 2 ) с добавлением активированного угля и проводящего полимера, что обеспечивает пористую и губчатую структуру.Его конструктивная конструкция напоминает EDLC .

    1.1.2.3) Гибридные суперконденсаторы

    Гибридный суперконденсатор использует технологию как , так и EDLC и псевдоконденсатора с использованием двух типов электродов. Один тип электрода используется для двухслойной емкости, такой как активированный уголь (обычно используемый в качестве катода). Другой электрод используется для определения псевдоемкости.

    Примером гибридного суперконденсатора является литий-ионный конденсатор .Его анодный вывод изготовлен из графита с добавлением ионов лития во время производства, что увеличивает его выходное напряжение по сравнению с другими суперконденсаторами. Его максимальное напряжение достигает 3,8 В .

    Катод формирует двухслойную электрическую емкость на своей стороне, а анод формирует псевдоемкость . Между катодом и анодом используется сепаратор для предотвращения электрического контакта между ними.

    Гибридные конденсаторы обеспечивают высокую плотность энергии, высокую удельную мощность при высокой надежности.

    Применение суперконденсаторов

    Современные технологии имеют очень много применений суперконденсаторов. Некоторые из них приведены ниже.

    • Аккумуляторная электрическая отвертка, которую можно зарядить за несколько минут.
    • Светодиодные фонарики в цифровых фотоаппаратах.
    • Для стабилизации питания портативных компьютеров, портативных устройств и т. Д.
    • Источник бесперебойного питания ( ИБП ), заменяющий батареи электролитических конденсаторов.

    Связанное сообщение: Код конденсатора: Как узнать стоимость керамических конденсаторов?

    1.2) Неполярные конденсаторы:

    Неполярные или неполяризованные конденсаторы — это такие типы конденсаторов, клеммы которых не имеют фиксированной полярности. Их можно использовать в цепи любым способом. Благодаря неполяризованным клеммам они используются в цепях DC , а также в цепях AC .

    Они дешевле конденсаторов Polar, но имеют низкую емкость и широкий диапазон номинальных напряжений от нескольких вольт до тысяч вольт.

    Неполярные конденсаторы подразделяются на три типа

    1.2.1. Керамический конденсатор
    1.2.2. Слюдяной конденсатор
    1.2.3. Пленочный конденсатор

    1.2.1) Керамические конденсаторы:

    Как следует из названия, керамический конденсатор представляет собой тип неполярного конденсатора, в котором используется диэлектрик из керамического материала .

    Он изготовлен из двух слоев металла (обычно никеля и меди) с керамикой ( Para electric или Ferroelectric ) в качестве диэлектрика.Эти чередующиеся слои сложены вместе, чтобы обеспечить высокое значение емкости.

    Минимальная толщина керамического диэлектрического слоя составляет около 0,5 мкм . Номинальное напряжение конденсатора зависит от его диэлектрической прочности. Кроме того, клеммы прикреплены к электродам, а конденсатор покрыт керамическим защитным слоем от влаги.

    Связанный пост: В чем разница между батареей и конденсатором?

    Керамические конденсаторы доступны в различных формах и стилях.

    • Форма керамического диска : наиболее часто используемый тип керамического конденсатора, имеющий один слой керамического диска, зажатый между электродами со сквозными выводами.
    • MLCC : многослойный керамический чип прямоугольной формы с несколькими чередующимися слоями металла и керамики с выводами для поверхностного монтажа

    Параметры керамического конденсатора зависят от различных составов керамического диэлектрика.Благодаря этому они делятся на четыре класса.

    1.2.1.1) Керамический конденсатор класса 1

    использует параэлектрический материал, такой как диоксид титана ( TiO 2 ). Они наиболее точны при наиболее стабильном напряжении и температуре. У них самые низкие потери. Величина его емкости не зависит от приложенного напряжения. Они не стареют.

    Керамический конденсатор класса 1 имеет очень низкий объемный КПД (низкая емкость на большом пространстве), поэтому они имеют низкое значение емкости.Это связано с тем, что параэлектрический материал имеет низкую проницаемость.

    Они используются в приложениях, где стабильность емкости и низкие потери являются высшими требованиями, например, в резонансных цепях.

    1.2.1.2) Класс 2

    В керамических конденсаторах класса 2 в качестве диэлектрика используется сегнетоэлектрический материал с другими добавками. Он имеет высокую проницаемость, что обеспечивает относительно более высокий объемный КПД, чем керамический конденсатор класса 1. Они намного меньше, чем class1.

    Они обладают низкой точностью и стабильностью с нелинейным изменением емкости в зависимости от температуры. Кроме того, значение емкости меняется в зависимости от приложенного напряжения, и они со временем стареют.

    Конденсаторы этого типа используются для связи, развязки и байпаса, где не требуется стабильность емкости.

    1.2.1.3) Класс 3 и 4

    Класс 3, также известный как керамический барьерный слой Конденсаторы используют диэлектрик с более высокой проницаемостью, чем класс 2.По этой причине они имеют лучший объемный КПД, но с худшими электрическими параметрами.

    Его емкость изменяется нелинейно с температурой с очень большим запасом. Также это зависит от приложенного напряжения. У него худшая стабильность и точность с очень большими потерями. Они стареют со временем.

    В современной электронной технике они считаются устаревшими, вместо них предпочтительны керамические конденсаторы 2-го класса. Класс 4 имеет еще худшие параметры, чем класс 3, и на сегодняшний день они также устарели.

    1.2.2) Слюдяные конденсаторы:

    Слюдяные конденсаторы, как следует из названия, представляют собой неполярный конденсатор, в котором в качестве диэлектрика используется слюда (химически инертный и стабильный материал ).

    Есть два типа слюдяных конденсаторов

    1.2.2.1. Слюдяной конденсатор с зажимом
    1.2.2.2. Серебряный слюдяной конденсатор

    1.2.2.1) Слюдяные конденсаторы с зажимом

    Эти типы конденсаторов использовались в начале 20 -го века.Они были построены из тонких листов слюды и металлической (обычно медной) фольги. Эти листы и фольга складываются вместе и зажимаются. Затем они были заключены в изоляционный материал.

    Допуск и стабильность зажатого слюдяного конденсатора хуже, чем у других конденсаторов, потому что поверхность слюды не плоская и гладкая.

    В настоящее время существуют устаревшие и замененные конденсатором серебряной слюды , обсуждаемым ниже.

    1.2.2.2) Серебряные слюдяные конденсаторы:

    В отличие от зажимного слюдяного конденсатора, в котором листы слюды зажаты металлической фольгой, серебряный слюдяной конденсатор изготовлен из листов слюды с металлическим (серебряным электродом), покрытым с обеих сторон. .Несколько слоев складываются вместе, чтобы увеличить его емкость. Затем его погружают в эпоксидный изолятор для защиты от влаги, воздуха и т. Д.

    Они очень стабильны и имеют низкие потери. У них низкий допуск около +/- 1% . Его емкость очень мало зависит от приложенного напряжения. Герметизация защищает электроды от коррозии. Таким образом, они сохраняют более длительный срок службы.

    Они дорогие и имеют больший объем по сравнению с керамическими конденсаторами.Он может работать при высоком напряжении от 100 В до 10 кВ с емкостью от 47 пФ до 3000 пФ .

    Они все еще используются в современных электронных схемах из-за своих возможностей обработки высокого напряжения и мощности, таких как радиопередатчик, усилители, высоковольтные инверторы, резонансные цепи и т. Д.

    1.2.3) Пленочные конденсаторы:

    Пленочные Конденсатор, также известный как конденсатор с полимерной пленкой или конденсатор с пластиковой пленкой, представляет собой тип неполярного конденсатора, в котором в качестве диэлектрика используется пленка обычно из пластика, а иногда из бумаги.

    Его конструкция имеет два типа или формата конфигурации

    • Металлизированный конденсатор
    • Пленочный / фольгированный конденсатор

    Связанная публикация: Высокий пусковой ток при переключении конденсаторов и способы его предотвращения.

    1.2.3.1) Металлизированные конденсаторы

    Металлизированные конденсаторы — это конденсаторы, в которых используется металлизированная диэлектрическая пленка, которая создается путем нанесения металлического слоя на диэлектрическую пленку.Используемый металл может быть алюминием или цинком.

    Такая конфигурация обеспечивает свойство самовосстановления, и пленка может быть намотана вместе для достижения емкости до 100 мкФ

    1.2.3.2) Пленочные / фольговые конденсаторы

    Конденсаторы такого типа строятся по принципу сэндвича диэлектрическая пленка с металлической фольгой. Металлом обычно является алюминий, который действует как электроды.

    Такая конфигурация позволяет конденсатору выдерживать высокие импульсные токи.

    Пленочные конденсаторы делятся на разные типы конденсаторов в зависимости от типа диэлектрической пленки.

    1.2.3.3) Бумажные конденсаторы

    Это первый пленочный конденсатор, в котором пропитанная маслом бумага использовалась в качестве диэлектрика между алюминиевой фольгой.

    Основным недостатком конденсатора из бумажной пленки / фольги было то, что он впитывает влагу, что со временем ухудшает его характеристики. Они были довольно громоздкими.

    В настоящее время металлизированные бумажные пленки используются в качестве диэлектрика со свойством самовосстановления.Бумага комбинируется с полипропиленовой пленкой для увеличения номинального напряжения и улучшения характеристик.

    Силовой конденсатор , в котором в качестве диэлектрика используется бумага, заполнен маслом для заполнения воздушных зазоров , увеличивая его напряжение пробоя.

    1.2.3.4) Конденсаторы из полиэфирной (ПЭТ) пленки или майлара

    Конденсатор из полиэфирной пленки, также известный под торговой маркой Майларовый конденсатор использует диэлектрик из полиэтилентерефталата ( ПЭТ) , который является термопластичный полярный полимер.Они построены как в металлизированной пленке , так и в структуре пленка / фольга .

    Его способность противостоять влаге позволяет использовать конденсатор без покрытия. Его высокая проницаемость и диэлектрическая прочность обеспечивают высокий объемный КПД. Однако его емкостной температурный коэффициент немного выше, чем у других пленочных конденсаторов. Он может работать при температуре до 125 ° C. Это также позволяет использовать его в качестве конденсатора SMD .Они работают при максимальном напряжении около 60 кВ . Они имеют допуск от 5% до 10%.

    1.2.3.5) Пленочные конденсаторы из полипропилена (ПП)

    Полипропилен — это неполярный органический полимерный материал, который используется в качестве диэлектрика в этом конденсаторе.

    Они производятся в обеих конфигурациях, т.е. металлизированная пленка и пленка / фольга .

    Они даже более устойчивы к влаге, чем конденсаторы из полиэфирной пленки, поэтому не нуждаются в защитном покрытии.Их емкость меньше зависит от температуры и частоты по сравнению с полиэфиром, но его рабочая частота ниже с максимальным пределом 100 кГц . Его максимальная рабочая температура составляет 105 ° C . Они имеют высокое рабочее напряжение с максимальным номинальным напряжением 400 кВ .

    Они используются в мощных индукционных нагревателях и маломощных приложениях, таких как выборка и удержание и VCO и т. Д., Они также используются в качестве конденсатора для работы двигателя переменного тока и конденсатора для коррекции коэффициента мощности .

    1.2.3.6) Пленочные конденсаторы из полиэтилена нафталата (PEN)

    Диэлектрическим материалом, используемым в пленочных конденсаторах такого типа, является Полиэтиленнафталат (PEN) , который принадлежит к семейству полиэфиров. Эти конденсаторы доступны только с металлизированной диэлектрической структурой .

    Основным преимуществом конденсаторов PEN является их высокотемпературная стабильность около 175 ° C . За счет высокотемпературной стабильности; выпускаются в упаковке SMD .

    Он имеет низкую объемную эффективность, поскольку диэлектрик PEN имеет более низкую проницаемость и прочность по сравнению с PET . Однако зависимость его емкости от температуры и частоты аналогична конденсаторам из полиэтилентерефталата, поэтому они используются в приложениях, где температурные зависимости не требуются.

    Используются для соединения, развязки и фильтрации.

    1.2.3.7) Пленочные конденсаторы на основе полифениленсульфида (PPS)

    Эти пленочные конденсаторы доступны только в виде металлизированной пленки .Их емкость очень мало зависит от температуры и частоты по сравнению с другими пленочными конденсаторами.

    Он обеспечивает очень стабильный отклик при температуре ниже 100 ° C . Его диэлектрик выдерживает температуру 270 ° C . Поэтому они также производятся в упаковке SMD . Однако они дороги по сравнению с другими пленочными конденсаторами.

    Они используются в приложениях, где существуют высокие рабочие температуры.

    1.2.3.8) Пленочные конденсаторы из политетрафторэтилена (ПТФЭ)

    Также известный под торговой маркой Тефлон, использует синтетический полимер политетрафторэтилен (ПТФЭ) в качестве диэлектрика. Они производятся как в металлизированном типе , так и в пленке / фольге .

    Они довольно громоздкие и дорогие. Температурная зависимость его емкости немного выше, чем у пленочного конденсатора из полипропилена (PP) . Но они очень устойчивы к температуре около 200 ° C с очень низкими потерями.

    Они используются в высококачественных приложениях для аэрокосмического и военного оборудования.

    1.2.3.9) Пленочные конденсаторы из полистирола (PS)

    Основным преимуществом этих конденсаторов является то, что они обеспечивают практически нулевое изменение емкости при работе в своем температурном диапазоне. Но они имеют очень низкотемпературный рейтинг с максимальным пределом 85 ° C .

    Эти пленочные конденсаторы представляют собой дешевых конденсаторов с очень низкими потерями и высокой стабильностью.Они производятся в трубчатой ​​форме и теперь заменены конденсаторами из полиэфирной пленки.

    Они используются для общих приложений, имеющих низкие температуры и частоту.

    1.2.3.10) Пленочные конденсаторы из поликарбоната (ПК)

    В этих пленочных конденсаторах используется диэлектрик из поликарбоната , который изготавливается как в металлизированной , так и в пленочной / фольгированной структуре .

    Они предлагают очень высокую стабильность и очень низкие потери.Он практически не зависит от температуры в диапазоне от -55 ° C до + 125 ° C . Пленка из поликарбоната обеспечивает высокую устойчивость, что увеличивает ее надежность .

    Они используются в приложениях, где требуются низкие потери и температурная стабильность, такие как схемы фильтрации и синхронизации в в суровых условиях .

    1.2.3.11) Силовые пленочные конденсаторы

    Они имеют такую ​​же конструкцию, как и пленочные конденсаторы.Слои намотаны вместе, чтобы получить больший размер и выдержать большую мощность. Они используются в приложениях переменного и постоянного тока большой мощности.

    2) Конденсаторы переменной емкости:

    Конденсаторы такого типа, емкость которых можно изменять механически или электрически, известны как конденсаторы переменной емкости . У них нет фиксированного значения емкости, вместо этого они предоставляют диапазон значений. Они используются в цепях настройки LC для радиоприемника, согласовании импеданса в антеннах.

    Эти переменные конденсаторы делятся на два основных типа в зависимости от их рабочего механизма

    2.1. С механическим управлением
    2.2. Электрически управляемый

    Связанный пост: Изоляционные и диэлектрические материалы — Типы, свойства и применение

    2.1) Переменные конденсаторы с механическим управлением

    Эти переменные конденсаторы могут быть изменены механически с помощью ручки или отвертки.Они сделаны из полукруглых металлических пластин с диэлектриком между ними.

    Один набор пластин, который является подвижным, известен как ротор , а другой набор пластин, который является неподвижным, известен как статор . Ротор вращается вокруг вала, который увеличивает или уменьшает расстояние между пластинами, что изменяет емкость конденсатора.

    Конденсаторы с механическим управлением подразделяются на два подтипа.

    2.1.1. Конденсаторы настройки
    2.1.2. Подстроечные конденсаторы

    2.1.1) Настроечные конденсаторы

    Этот тип переменного конденсатора используется для настройки и обычно используется в LC-схемах для настройки радио. Его емкость можно изменять, вращая ручку , которая вращает ротор поперек статора с диэлектриком между ними. Используемый диэлектрик — воздух или слюда .

    Это более надежный тип переменного конденсатора. Он используется в таких схемах, где необходимо изменять емкость более одного раза для достижения желаемого выхода.

    2.1.2) Подстроечные конденсаторы

    Этот тип переменной емкости конденсатора изменяется с помощью отвертки. Они не очень терпимы к постоянному изменению емкости. Они выдерживают лишь несколько корректировок.

    Имеет ту же конструкцию, что и настроечный конденсатор.В подстроечном конденсаторе используется диэлектрик воздух или керамика .

    Они используются в таких схемах, где не требуется изменять емкость более нескольких раз. Они используются в схемах калибровки оборудования. Их небольшой размер позволяет использовать его на PCB (печатная плата).

    Связанный пост: Все о системах, устройствах и блоках электрической защиты

    2.2) Переменные конденсаторы с электрическим управлением

    Такой тип переменного конденсатора состоит из полупроводникового устройства P-N junction , емкость перехода которого регулируется с помощью обратного напряжения.

    Варакторный диод или более известный как Vericap — это особый тип диода, который использует напряжение обратного смещения для изменения емкости перехода.

    Они используются в PLL ( ФАПЧ ) как VCO ( генератор, управляемый напряжением ) и как синтезаторы частоты

    Применения конденсаторов

    Существуют некоторые общие приложения для все типы конденсаторов.

    • Выход блока питания сглаживания.
    • Коррекция коэффициента мощности
    • Частотные фильтры, фильтры верхних и нижних частот.
    • Сопряжение и развязка сигналов.
    • Мотор стартер.
    • Демпфер (поглотитель перенапряжения и шумовой фильтр)
    • Генераторы

    Разные и устаревшие типы конденсаторов

    Ниже приведены другие типы конденсаторов.

    Интегрированный конденсатор : Они производятся внутри ИС путем металлизации и изоляции подложки.

    Вакуумный конденсатор : Они используются для передачи ВЧ высокой мощности.

    Специальный конденсатор : Они разработаны на многослойной печатной плате.

    Устаревшие конденсаторы: Эти типы конденсаторов на сегодняшний день считаются устаревшими и заменены далеко продвинутыми технологиями.

    • Layden jars конденсатор
    • Конденсатор с воздушным зазором

    Похожие сообщения:

    Разница между полярными и неполярными конденсаторами!

    Отличие полярных конденсаторов от неполярных!

    1.Разные носители

    Полярный конденсатор: Среда — это вещество между двумя пластинами конденсатора. В большинстве полярных конденсаторов в качестве диэлектрического материала используется электролит, обычно такой же объем конденсатора имеет большую емкость. Кроме того, емкость поляризованного конденсатора одного и того же объема, изготовленного из разных материалов и процессов электролита, будет различной. Кроме того, сопротивление давлению также тесно связано с использованием диэлектрических материалов.

    Неполярный конденсатор: существует множество диэлектрических материалов для неполярных конденсаторов, в большинстве из которых используется пленка из оксида металла и полиэстер. Поскольку обратимые или необратимые характеристики среды определяют среду использования полярных и неполярных конденсаторов. Кому

    2. Различная производительность

    Полярный конденсатор: производительность — это требование использования, а максимальная потребность — это требование использования. Если для фильтрации в блоке питания телевизора используется металлооксидный пленочный конденсатор, необходимо обеспечить емкость конденсатора и выдерживаемое напряжение, необходимые для фильтрации.Боюсь, что в корпус можно установить только один блок питания. Поэтому в качестве фильтров можно использовать только полярные конденсаторы, а полярные конденсаторы необратимы.

    То есть положительный полюс должен быть подключен к концу с высоким потенциалом, а отрицательный полюс должен быть подключен к концу с низким потенциалом. Обычно электролитический конденсатор имеет емкость более 1 мкФ для связи, развязки, фильтрации мощности и т. Д.

    Неполярные конденсаторы: большинство неполярных конденсаторов имеют емкость менее 1 мкФ и участвуют в резонансе, связи, выборе частоты, ограничении тока и т. Д.Конечно, есть также большая емкость и высокое выдерживаемое напряжение, которые в основном используются для компенсации реактивной мощности электроэнергии, фазового сдвига двигателей и переключения мощности с переменной частотой.

    Что такое неполяризованный конденсатор

    Ⅰ I ntroduction

    Неполяризованный конденсатор является одним из многих конденсаторов. По полярности конденсатора конденсатор можно разделить на неполяризованный конденсатор и поляризованный конденсатор.И эта статья подробно расскажет: что такое неполяризованный конденсатор? Для чего его используют? Как выбрать неполяризованные конденсаторы? В чем разница между поляризованным конденсатором и неполяризованным конденсатором? Давайте посмотрим

    Поляризованный конденсатор против неполяризованного конденсатора

    Как проверить неполяризованный конденсатор?

    C atalog

    Ⅱ Conception

    Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности.Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в цепь и не будут протекать, в основном используются в цепях связи, развязки, обратной связи, компенсации и колебаний. На рисунке ниже показана справочная схема неполяризованного конденсатора.

    Рисунок 1. Конденсатор неполяризованный

    Идеальный конденсатор не имеет полярности. Однако на практике для получения большой емкости используются некоторые специальные материалы и конструкции, что приводит к тому, что сами конденсаторы несколько поляризованы. Общие поляризованные конденсаторы включают алюминиевые электролитические конденсаторы и танталовые электролитические конденсаторы. Электролитические конденсаторы обычно имеют относительно большую емкость. Сделать неполяризованный конденсатор большой емкости не так-то просто, потому что объем станет очень большим. Вот почему в реальной цепи так много поляризованных конденсаторов. Поскольку его размер невелик, а напряжение в этой цепи имеет только одно направление, могут пригодиться поляризованные конденсаторы.

    Мы используем поляризованные конденсаторы, чтобы избежать их недостатков и воспользоваться их преимуществами.Мы можем понять это так: Поляризованный конденсатор на самом деле является конденсатором, который может использоваться только в одном направлении напряжения. Для неполяризованных конденсаторов можно использовать оба направления напряжения. Следовательно, только с точки зрения направления напряжения неполяризованные конденсаторы лучше, чем поляризованные. Вполне возможно заменить поляризованные конденсаторы неполяризованными конденсаторами, если емкость, рабочее напряжение, объем и т. Д. Могут соответствовать требованиям.


    Ⅲ Функция

    Неполяризованные конденсаторы, применяемые в цепях чистого переменного тока, и из-за их небольшой емкости их также можно применять для фильтрации высоких частот.Вот пример, иллюстрирующий применение конденсатора:

    В этом случае в основном используется RC-искрогаситель. Когда антенна принимает радио- и телепрограмму, если люминесцентная лампа включена, а люминесцентная лампа мигает, будет слышен нерегулярный звук радио или динамика телевизора. Многие сильные яркие линии и яркие пятна на экране телевизора — это высокочастотные помехи, вызванные электрическими искрами.

    При отключении цепей с индуктивностью между контактами возникает искра. Как показано в схеме слева на рисунке 2, переключатель S внезапно выключается, и ток быстро исчезает, то есть изменение тока велико, поэтому на обоих концах катушки генерируется большая самоиндукция. . Эта электродвижущая сила может препятствовать изменению тока, и ее направление согласуется с направлением приложенного напряжения. Когда они накладываются друг на друга, напряжение U1 на переключателе будет очень высоким, а когда напряжение выше определенного значения, это «резкое» напряжение разрушит воздух и образует электрическую искру.

    Искра может вызвать абляцию контактов и окисление, что приведет к неисправности. Поэтому важно исключить искру между контактами. При отключении цепи, пока ток управляющей катушки не упадет, напряжение на двух концах катушки не будет слишком большим, поэтому искры не будет, как показано на схеме справа внизу. RC-цепь искрогасителя подключена к обоим концам индуктора. Когда переключатель внезапно выключается, i1 заряжает конденсатор.Часть энергии магнитного поля в катушке индуктивности рассеивается на R и r, а часть преобразуется в энергию электрического поля в конденсаторе C, что вызывает повторный разряд конденсатора C, тем самым устраняя искру.

    Рисунок 2. Цепь с индуктивностью и цепью поглощения искры


    Ⅳ Как выбрать неполяризованные конденсаторы?

    Неполяризованные конденсаторы очень удобны в выборе и использовании.Вы можете напрямую выбрать конденсаторы той же модели и тех же технических характеристик. Если ни одно из вышеперечисленных условий не выполняется, вы можете обратиться к следующим методам:

    1. Выберите конденсатор разумной точности. В большинстве случаев требования к емкости не очень высоки, и допустимо иметь емкость, примерно равную эталонной емкости. В колебательных схемах, схемах фильтрации, схемах задержки и схемах тонального сигнала абсолютное значение ошибки должно быть в пределах 0.3% -0,5%.

    2. Выберите конденсатор в соответствии с требованиями схемы. Бумажный конденсатор обычно используется для низкочастотной цепи байпаса переменного тока. Слюдяной конденсатор или керамический конденсатор обычно используются в цепях с высокой частотой или высоким напряжением.

    3. Можно выбрать конденсаторы с номинальным напряжением, большим или равным фактическим потребностям.

    4. Высокочастотные конденсаторы нельзя заменить низкочастотными.

    5. Учитывайте рабочую температуру, рабочий диапазон, температурный коэффициент конденсатора в зависимости от случая применения.

    6. Последовательный или параллельный метод может использоваться, когда номинальная емкость не может быть достигнута, но добавляемое к конденсатору напряжение должно быть меньше выдерживаемого напряжения конденсатора.


    Ⅴ Разница между неполяризованными конденсаторами и поляризованными конденсаторами

    И полярные, и неполяризованные конденсаторы имеют одинаковые принципы, то есть накопление и высвобождение зарядов; напряжение на пластине (здесь электродвижущая сила накопления заряда называется напряжением) не может внезапно измениться

    Различные носители, разная производительность, разная емкость и разная структура приводят к разным условиям использования и использованию.И наоборот, с развитием науки и технологий и открытием новых материалов появятся более совершенные и разнообразные конденсаторы.

    Рисунок 3. Различные типы конденсаторов

    5.1 Другой диэлектрик

    Что такое диэлектрик? Другими словами, это вещество между двумя пластинами конденсатора. В большинстве конденсаторов полярности в качестве диэлектрика используются электролиты, благодаря чему конденсатор полярности имеет большую емкость по сравнению с другими конденсаторами того же объема.Кроме того, конденсаторы полярности, произведенные из различных материалов и процессов электролита, будут иметь разную емкость. Между тем, устойчивость к напряжению в основном связана с диэлектрическим материалом. Также существует множество неполяризованных материалов, в том числе наиболее часто используемые металлооксидные пленки и полиэстер, использование полярности и неполяризованных конденсаторов определяется тем, является ли природа диэлектрика обратимой.

    Рисунок 4. Неполяризованный конденсатор и поляризованный конденсатор

    5.2 Различная производительность

    Производительность и максимизация спроса — это требование использования. Если в блоке питания телевизора используется металлооксидный пленочный конденсатор в качестве фильтра, и если для соответствия фильтру требуются емкость и выдерживаемое напряжение, я боюсь, что внутри корпуса можно установить только источник питания.

    Следовательно, в фильтре можно использовать только конденсатор полярности, а емкость полярности необратима. Как правило, электролитический конденсатор имеет более 1 МФ, который участвует в связи, развязке, фильтрации источника питания и т. Д.Неполярный конденсатор обычно меньше 1 MF, который участвует в резонансе, связи, выборе частоты, ограничении тока и так далее. Конечно, существуют также неполярные конденсаторы большой емкости и высокого напряжения, которые в основном используются для компенсации реактивной мощности, фазового сдвига двигателя, фазового сдвига мощности с преобразованием частоты и других целей. Есть много видов неполяризованных конденсаторов.

    Рисунок 5. Конденсаторы

    5.3 Различная емкость

    Как упоминалось ранее, конденсаторы одного объема имеют разную емкость при разном диэлектрике.

    5.4 Другая конструкция

    В принципе, можно использовать конденсатор любой формы в окружающей среде без учета точечного разряда. Чаще всего используются электролитические конденсаторы круглой формы, а квадратные — редко. Конденсаторы имеют различную форму: трубчатые, деформированные прямоугольные, листовые, квадратные, круглые, комбинированные квадратные или круглые и т. Д., В зависимости от того, где они используются. Конечно, есть и невидимые конденсаторы, называемые распределенными конденсаторами, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.

    5.5 Различные условия использования и использования

    Из-за внутреннего материала и конструкции емкость конденсатора полярности (например, электролиз алюминия) может быть очень большой, но его высокочастотные характеристики не очень хороши, поэтому он подходит для питания фильтры и другие случаи. Есть еще полярные конденсаторы с хорошими высокочастотными характеристиками — танталовые электролизеры, цена которых относительно высока;

    Включая керамические конденсаторы, монолитные конденсаторы, полиэтиленовые (CBB) конденсаторы и т. Д., Эти неполяризованные конденсаторы имеют небольшой размер, низкую цену и хорошие высокочастотные характеристики, но они не подходят для большой емкости. Керамические конденсаторы обычно используются в высокочастотной фильтрации, колебательном контуре.

    Рисунок 6. Конденсаторы разные

    Магнитные диэлектрические конденсаторы используют керамический материал в качестве мезона и слой серебра на поверхности в качестве электрода. Обладая стабильной производительностью и малой утечкой, магнитные диэлектрические конденсаторы подходят для использования в высокочастотных и высоковольтных цепях.

    Вообще говоря, в зависимости от изоляционного материала между двумя полюсами конденсатора.Материал с большой диэлектрической проницаемостью (например, сегнетокерамика, электролиты) подходит для конденсаторов большой емкости и небольшого объема, потери которых также велики. Материал с небольшой диэлектрической проницаемостью (например, керамика) имеет низкие потери и подходит для высокочастотных применений.

    Ⅵ FAQ

    1. Можно ли использовать неполяризованный конденсатор вместо поляризованного?

    Практически всегда можно заменить электролитический (полярный) конденсатор на электростатический (неполярный) того же номинала с необходимым номинальным напряжением.Однако обратное невозможно.

    2. В чем основное отличие полярного конденсатора от неполярного (кроме наличия или отсутствия полюсов)? Где мы их используем?

    Главное отличие в том, из чего они сделаны. Кстати, это также определяет, насколько они должны быть большими для данной емкости и сколько они стоят.

    Конденсаторы

    Polar также известны как электролитические конденсаторы, поскольку в качестве диэлектрика они используют электролит.Он обеспечивает чрезвычайно высокую емкость с небольшим током утечки в небольшом корпусе. Керамический конденсатор с эквивалентной емкостью должен быть очень и очень большим.

    Существует множество различных типов неполярных конденсаторов. Два самых распространенных из них, которые я видел, — это керамика и слюда. Керамика дешевая, слюда дороже, но я считаю, что слюдяные конденсаторы выдерживают более высокое напряжение. В целом они предлагают меньший ток утечки, чем электролитические, но также меньшую емкость в зависимости от размера.Основным преимуществом является то, что они сохраняют свою емкость при смещении в обоих направлениях.

    Электролитические конденсаторы полезны в местах, где напряжение никогда не изменит полярность на них при правильных условиях использования. Их высокая емкость означает, что их можно более эффективно использовать для фильтрации источника питания, уменьшения пульсаций в выпрямителе и смягчения включения / выключения.

    Но для развязки компонентов они не так хороши, потому что без очень хорошего смещения они получат обратное напряжение, а при обратном напряжении они ломаются, теряют свою емкость и утекают как сумасшедшие.

    Они также испускают «волшебный дым» при слишком высоком обратном смещении. Неполярные конденсаторы этого не делают.

    3. Что такое полярные и неполярные конденсаторы?

    Все электростатические конденсаторы могут быть подключены к цепям переменного или постоянного тока без ссылки на какие-либо соединения, маркированные для положительной или отрицательной полярности. Каким бы способом они ни были соединены, они обладают одинаковыми свойствами. Это неполярные конденсаторы.

    Электролитические конденсаторы имеют диэлектрик, сформированный в виде оксидного слоя на одном электроде за счет химического воздействия под действием тока в одном направлении.Пропускание тока в обратном направлении приведет к повреждению конденсатора.

    Поэтому клеммы электролитических конденсаторов имеют специальную маркировку с положительной и отрицательной полярностью (в большинстве случаев маркирована отрицательная клемма). Конденсаторы обязательно должны быть подключены в цепи с одинаковой соответствующей полярностью. Это полярные конденсаторы.

    4. Как узнать, что конденсатор неполяризован?

    В случае неполяризованного конденсатора подключите его в любом случае, поскольку они не имеют полярности.Теперь проверьте показания цифрового мультиметра. Если показания мультиметра ближе к реальным значениям (указанным на конденсаторе), то конденсатор можно считать хорошим конденсатором.

    5. Почему предпочтительны неполяризованные конденсаторы?

    Электролитические конденсаторы имеют более высокую емкость, но для большинства целей предпочтительнее неполяризованный конденсатор. Они дешевле, могут устанавливаться в любом направлении и служат дольше.

    6.Могу ли я заменить поляризованный конденсатор на неполяризованный?

    Неполяризованные конденсаторы — это надмножества поляризованных конденсаторов. … В общем, вы можете заменить поляризованный конденсатор поляризованным или неполяризованным конденсатором той же емкости и номинальным напряжением оригинала или выше.

    7. Можно ли подключить неполяризованный конденсатор к цепи постоянного тока?

    Неполяризованные конденсаторы можно подключать к цепям постоянного или переменного тока…. Ток может течь только во время зарядки или разрядки конденсатора.

    8. В чем разница между фиксированными и поляризованными конденсаторами?

    Электростатические конденсаторы неполярны, то есть их можно подключать с любой полярностью, и нет никакой разницы. Электролитические конденсаторы полярны по своей природе. Их можно подключать только с фиксированной полярностью клемм. Маркируются положительные и отрицательные клеммы.

    9.Какая польза от неполяризованного конденсатора?

    Неполяризованные конденсаторы — это конденсаторы без положительной или отрицательной полярности. Два электрода неполяризованных конденсаторов могут быть произвольно вставлены в цепь и не будут протекать, в основном используются в цепях связи, развязки, обратной связи, компенсации и колебаний.

    10. Все ли электролитические конденсаторы поляризованы?

    Почти все электролитические конденсаторы поляризованы, что означает, что напряжение на положительном выводе всегда должно быть больше, чем напряжение на отрицательном выводе…. Они имеют типичную емкость от 1 мкФ до 47 мФ и рабочее напряжение до нескольких сотен вольт постоянного тока.


    Вам может понравиться:

    Как выбрать конденсатор

    Что такое коррекция коэффициента мощности (компенсация)

    Что такое технология распознавания лиц?

    Конденсатор полярности и неполярности

    Неполяризованный конденсатор постоянной емкости
    Неполяризованный («неполярный») конденсатор — это тип конденсатора, который не имеет явной полярности — он может быть подключен любым способом в цепи.Керамические, слюдяные и некоторые электролитические конденсаторы неполяризованы. Иногда вы также слышите, как люди называют их «биполярными» конденсаторами.

    Поляризованный конденсатор постоянной емкости

    Поляризованный («полярный») конденсатор — это тип конденсатора, имеющий неявную полярность — он может быть подключен только в одной цепи. Положительный вывод показан на схеме (и часто на конденсаторе) небольшим символом «+». Отрицательный вывод обычно не показан на схеме, но может быть отмечен на конденсаторе полосой или символом «-».Поляризованные конденсаторы обычно являются электролитическими.
    , вам действительно нужно обратить внимание на правильное подключение поляризованного конденсатора (как в отношении полярности, так и в отношении того, чтобы конденсатор не превышал его номинальное напряжение). Если вы достаточно сильно «толкнете» поляризованный конденсатор, можно начать «электролиз» влажного электролита. Современные электролитические конденсаторы обычно имеют вентиляционное отверстие для сброса давления, чтобы предотвратить катастрофическое повреждение алюминиевой банки.

    Не понимаю, почему вы не можете их заменить.Просто помните, что поляризованные конденсаторы обычно имеют большую емкость на единицу объема по сравнению с неполярными конденсаторами (например, керамическими) … поэтому может быть трудно найти неполярный конденсатор с эквивалентным значением. и пока совпадают напряжение и емкость. С технической точки зрения это нормально, но предположим, что вам нужно заменить один электролитический конденсатор емкостью 100 мкФ на неполярный. Размер неполярного более чем в десять раз больше электролитического, и он намного дороже.

    ———- Сообщение добавлено в 12:08 ———- Предыдущее сообщение было в 12:06 ———-

    использование поляризованный или неполяризованный конденсатор зависит от применения.Никогда не следует прикладывать отрицательное напряжение к поляризованному конденсатору, иначе он лопнет / взорвется / загорится. Поэтому, если в вашем приложении нет ситуации, когда вход на клемму + ve поляризованного колпачка становится меньше, чем на его выводе -ve, то можно использовать любой колпачок.
    В такой ситуации следует использовать только неполяризованные крышки

    В чем сходство и различие между полярными и неполярными конденсаторами с точки зрения производительности и принципиальной конструкции?

    В чем сходство и различие между полярными и неполярными конденсаторами с точки зрения производительности и принципиальной конструкции?

    912 Опубликовано в Октябрь 14,2019

    В чем сходство и различие между полярными и неполярными конденсаторами с точки зрения производительности и принципиальной конструкции?

    Полярный конденсатор относится к конденсатору, например, электролитическому конденсатору.Он образован алюминиевой фольгой анода и электролитом катода соответственно, а два электрода образованы пленкой оксида алюминия, сформированной на анодной алюминиевой фольге в качестве диэлектрического конденсатора. Структура имеет полярность. Когда конденсатор подключен положительно, пленка оксида алюминия остается стабильной из-за электрохимической реакции. При обратном подключении слой оксида алюминия станет тоньше, так что конденсатор легко повредится в результате пробоя. Поэтому электролитический конденсатор в схеме должен обращать внимание на полярность.Обычный конденсатор неполярный, и два анода или катода электролитического конденсатора могут быть соединены последовательно, образуя неполярный электролитический конденсатор.

    1. Принцип тот же. (1) Оба хранят заряд и высвобождают заряд; (2) Напряжение на пластине (где нарастает электрический потенциал заряда, называется напряжением) не может быть резко изменено.

    2. СМИ разные. Что такое среда? Грубо говоря, это вещество между двумя пластинами конденсатора.В большинстве полярных конденсаторов в качестве диэлектрического материала используется электролит, и обычно такой же объем конденсатора имеет большую емкость. Кроме того, различные материалы и процессы электролита позволяют производить полярные конденсаторы одинаковой емкости. Также существует тесная взаимосвязь между сопротивлением давлению и использованием диэлектрических материалов. Также существует множество неполярных диэлектрических материалов для конденсаторов, в основном с использованием пленки оксида металла, полиэстера и так далее. Из-за обратимых или необратимых характеристик среды определяется среда с экстремальной и неполярной емкостью.

    3. Производительность разная. Производительность — это требование использования, а максимальное увеличение спроса — это требование для использования. Если блок питания телевизора фильтруется с помощью металлооксидного пленочного конденсатора, должны быть достигнуты емкость конденсатора и выдерживаемое напряжение, необходимые для фильтрации. Боюсь, что мне удастся установить блок питания только внутри корпуса. Поэтому в качестве фильтра можно использовать только полярные конденсаторы, а полярные конденсаторы необратимы. То есть положительный полюс должен быть подключен к концу с высоким потенциалом, а отрицательный полюс должен быть подключен к концу с низким потенциалом.Обычно электролитический конденсатор имеет емкость более 1 мкФ и используется для связи, развязки и фильтрации источника питания. Большинство неполярных конденсаторов имеют емкость менее 1 мкФ, участвуют в резонансе, связи, выборе частоты, ограничении тока и т. Д. Конечно, есть также большая емкость и высокое выдерживаемое напряжение, которые часто используются для компенсации реактивной мощности электроэнергии, фазового сдвига двигателя и источника питания с переменной частотой. Есть много типов неполярных конденсаторов, не говоря уже о них один за другим.

    4, вместимость разная. Как было сказано выше, конденсаторы одного объема имеют разную емкость и не описываются по очереди. 5. Структура разная. В принципе, можно использовать конденсатор любой формы в среде, в которой не учитывается разряд на игле. Обычно используемые электролитические конденсаторы (с полярным конденсатором) имеют круглую форму, а квадратная форма используется редко. Форма неполярного конденсатора очень разнообразна. Как тип трубы, деформированный прямоугольник, листовой тип, квадратный тип, круглый тип, комбинированный квадратный и круглый тип и т. Д., он используется там, где он используется. Конечно, есть невидимое, здесь невидимое относится к распределенной емкости. Для распределенных конденсаторов нельзя игнорировать устройства высокой и промежуточной частоты. Функция такая же. Основное отличие состоит в том, что с точки зрения емкости из-за влияния структуры материала емкость обычных неполярных конденсаторов относительно мала, обычно ниже 10 мкФ, а емкость полярных конденсаторов обычно велика. Например, при фильтрации мощности необходимо использовать полярные конденсаторы большой емкости.

    Основной принцип проектирования схем — требовать от проектировщиков полного понимания и освоения реальных компонентов. Используемые компоненты являются стандартными и общими частями. Лучше всего быть наиболее распространенным типом на рынке (чем выше универсальность компонентов. Чем проще приобретение, тем выше производительность поставщика и тем ниже стоимость закупок. Для компонентов, используемых на чертежах, если материалы доступны только для настройки, стоимость конечно не низкая.Если ее нет в наличии, то такая конструкция приравнивается к макулатуре.

    Кроме того, конденсаторы большой емкости подходят для фильтрации низкочастотных сигналов, а конденсаторы малой емкости используются для фильтрации высокочастотных сигналов (см. Основу схемы, емкостное реактивное сопротивление и частоту). Однако развязка — лишь одна из функций конденсатора. У конденсаторов есть и другие функции. Различные типы конденсаторов имеют разное применение. Конденсатор на схеме — это просто символ.За этим стоит много техник. Этот аспект тесно связан с опытом. Невозможно быть быстрым, и его можно накопить только медленно, практикуясь.

    Биполярные конденсаторы (звук) — Марк Гаррис

    Следующий список конденсаторов, которые используются звуковыми декодерами, в которых биполярный (неполярный) конденсатор подключен последовательно с динамиком. Термины «Биполярный» и «Неполярный» относятся к тому факту, что конденсатор не имеет полярности постоянного тока. На конденсаторе нет клемм «+» или «-» или маркировки как таковой.Вы не можете подключить его задом наперед!

    Если вы посмотрите на картинку слева, то верхняя помечена «N P» для N на P в раскрашенном виде.

    На следующем изображении у нас есть еще несколько конденсаторов с маркировкой «B P» для B i- P с разводкой.

    Если вы хотите узнать больше о том, зачем нужны или используются эти конденсаторы, см. Внизу.


    Детали, выделенные жирным шрифтом, являются наиболее подходящими деталями с точки зрения физических размеров.

    935 936 916 916 935 916 916 916 935 916 916 916 936 936 916 916 916 936 936 916 916 916 936 936 916 Panasonic 5 мм x 11 мм 9 1634 916 935 1635 ECM 916 935 1635 EC 935 1635 ECM 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916M 916M 916M 916M 916M 916M 916M 916M 916M 916 935V 935F
    Значение

    Напряжение

    или

    Ток

    Рейтинг

    Производство

    Название

    Производство


    916 916 916 916 916 916 916 916

    16V Panasonic ECE-A1CN100U 5 мм x 11 мм
    10 мкФ 25V Panasonic ECE-A1EN100U ECE-A1VN100U 5 мм x 11 мм
    10 мкФ 16V Nichicon UVP1C100M 5 мм x 11 мм
    10 мкФ 35 В Nichicon UVP1V100M 5 мм x 11 мм
    10 мкФ 10 мкФ 10V 916 36 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 917
    10 мкФ 16 В Nichicon USP1C100M 6.3 мм x 7 мм
    10 мкФ 25V Nichicon USP1E100M 6,3 мм x 7 мм
    22uF 1635 EC
    22 мкФ 25 В Panasonic ECE-A1EN220X 5 мм x 11 мм
    22 мкФ 1135 10V N162035 9162 916 9162 916 9162 916 8 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 мм 916 16V Nichicon UVP1C220M 5мм x 11мм
    22uF 25V Nichicon UVP1E220M 916 935 916 916 916 935 916 916 916 935 516 916 916 935 516 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 935 Ничикон USP1A220M 9 1616 5 мм X 7 мм
    22 мкФ 16 В Nichicon USP1C220M 6.3 мм X 7 мм
    22 мкФ 25V Nichicon USP1E220M 6,3 мм X 7 мм
    33uF
    33 мкФ 10 В Nichicon UVP1A330M 5 мм x 11 мм
    33 мкФ1 16V 9163 916C 916C 9163 Nichicon USP1A330M 6.3 мм X 7 мм
    33 мкФ 16V Nichicon USP1C330M 6,316 916 936 935 916 916 936 916 916 916 936 916 916 916 916 916 916 916 916 916 916 916 916 916 936 916 ECE-A1AN470U 5 мм x 11 мм
    47 мкФ 10V Nichicon UVP1A470M 5 мм x 11 мм
    3 мм x 11 мм
    47 мкФ 10V Nichicon USP1A470M 6,3 мм X 7 мм
    47u16 916 916 917 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 916 6,3 мм X 7 мм


    Почему биполярный или неполяризованный конденсатор?

    Обычно конденсаторы НЕ имеют никакой поляризации.См .: Емкость. Однако обычный алюминиевый электролитический (AL) тип предлагает намного большую емкость на единицу объема по самой низкой цене, чем любая другая конденсаторная технология. Следствием конденсатора AL является то, что он является поляризованным конденсатором из-за физических / химических свойств, присутствующих внутри конденсатора. К счастью, в большинстве конструкций электрических цепей используется питание постоянного тока, и в этом случае поляризованная природа конденсатора AL НЕ является недостатком.

    Итак, что произойдет, если в цепи используется питание переменного тока, например, в аудиосхемах.Конкретнее при работе с динамиками?

    Оказывается, что использование конденсаторов других типов (не AL) приведет к получению больших и дорогих конденсаторов.

    Введите биполярный конденсатор AL. Это может быть сделано с помощью «трюка со схемой», заключающегося в размещении двух поляризованных AL-конденсаторов в последовательной конфигурации «BACK to BACK». Отрицательные выводы обоих конденсаторов связаны друг с другом и изолированы, оставляя только два положительных вывода свободными для подключения цепи.Оба конденсатора должны быть ТОЧНО одной марки и модели конденсатора. Так устроены эти биполярные AL-конденсаторы. Производитель просто помещает эти два конденсатора в один корпус, придавая ему вид одного конденсатора.

    Различия между поляризованным и неполяризованным конденсатором


    Конденсатор — это электронное устройство, которое накапливает электрическую энергию через электрическое поле. Конденсаторы, очень широко применяемые в электронике. В этой статье я объясню простую, но важную тему о конденсаторах.Фактически, оба типа конденсаторов выполняют одну и ту же работу. Да это же :). Тогда почему есть два типа конденсаторов? Основная причина — физические ограничения. Наиболее важными факторами, влияющими на размер конденсатора, являются напряжение и емкость. Чем выше емкость, тем больше размер.

    Наиболее распространенным неполяризованным конденсатором является керамический конденсатор. Производители не производят керамические конденсаторы большой емкости. Потому что их размер тоже будет увеличиваться. Также конденсатор будет более нестабильным. Поляризованный конденсатор обеспечивает большую емкость при меньшем размере.Чаще всего используются поляризованные конденсаторы электролитического типа.

    Таким образом, основная разница заключается в изменении производственного процесса для увеличения мощности. Это вызывает поляризованный конденсатор. Использование поляризованного конденсатора необходимо для большей емкости.

    Неполяризованный конденсатор может работать на более высоких частотах, чем поляризованный конденсатор. Ток утечки в электролитическом конденсаторе выше, чем в керамическом конденсаторе. Также ESR (эквивалентное последовательное сопротивление) в электролитическом конденсаторе выше, чем в керамическом конденсаторе.2) * R (потрясающая формула :))


    Благодаря этой формуле неполяризованный конденсатор потребляет меньше энергии. Это означает, что керамический конденсатор имеет большую емкость пульсации тока.

    Взаимозаменяемы ли типы конденсаторов?

    Поляризованные конденсаторы необходимо подключать с соблюдением полярности. В противном случае конденсаторы взорвутся. Неполяризованный конденсатор можно подключать в обоих направлениях. Поляризованный конденсатор можно использовать только на постоянном токе. Неполяризованный конденсатор используется как в переменном, так и в постоянном токе. В конце концов, вы можете заменить поляризованный конденсатор неполяризованным.Но нельзя заменить неполяризованный конденсатор на поляризованный. Также вы должны быть осторожны с возможностью пульсации тока.

    Взорванный конденсатор

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *