Site Loader

Простые схемы питания светодиодов

Светодиод — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.

После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.

В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.

Автор статьи, которую Вы сейчас читаете, на авторство схем тоже не претендует, это просто небольшая подборка схем на «светодиодную» тему.

Зачем нужны преобразователи

Все дело в том, что прямое падение напряжения на светодиоде, как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой DC-DC преобразователь.

Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать заряд гальванического элемента: многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.

Простейшая схема для питания светодиода

Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.

В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной энергосберегающей люминесцентной лампы. Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.

Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.

Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве транзистора можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.

Если под рукой не окажется транзистора структуры n-p-n, то можно применить транзистор проводимости p-n-p, например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.

Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.

Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.

Преобразователь с выпрямителем

Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.

Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521.

Преобразователи с дросселем

Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1, содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.

При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.

Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.

При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.

Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.

Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.

Схемы с обратной связью по току

А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.

В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.

При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.

Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.

Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.

При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на электролитическом конденсаторе (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.

Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.

Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.

Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.

Интегральные стабилизаторы тока

В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.

На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.

Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.

Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.

Микросхема ZXSC300

Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.

В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.

При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.

Ранее ЭлектроВести писали, что Украина через три года будет вынуждена покрывать дефицит электроэнергии за счет ее импорта в случае дальнейшего невыполнения Национального плана сокращения выбросов от больших сжигательных установок (НПСВ) на ТЭС.

По материалам: electrik.info.

Основные характеристики светодиодной ленты



Каталог

(цены, наличие, тех. инфо.)




Новости

июнь, 2021

Бренд ARLIGHT INTELLIGENT – участник программы DALI Alliance

Поздравляем нашего генерального партнера и поставщика Arlight с очередным профессиональным достижением!
Подробнее

июнь, 2021

Arlight — в Ассоциации Производителей Светодиодов!

Рады сообщить, что наш генеральный партнёр и поставщик, компания-производитель Arlight вступила в АПСС.
Подробнее

май, 2021

ARPV-LV-LINEAR — монтаж в профиль

Представляем вашему вниманию еще одну серию источников напряжения ARPV-LV-LINEAR компактных габаритов.

Подробнее


Основные характеристики светодиодной ленты

Для того чтобы лучше ориентироваться в большом разнообразии современных светодиодных лент необходимо разбираться в её основных характеристиках. Рассмотрим некоторые из них.

Напряжение питания. Для подключения светодиодной ленты потребуется специальный блок питания, который преобразует переменное напряжение 220В, полученное из электросети, в необходимое для питания ленты постоянное стабилизированное напряжение. Наиболее часто используются светодиодные ленты 12 вольт и с напряжением питания  24В. При выборе ленты следует иметь ввиду, что чем выше напряжение питания ленты, тем меньше потери напряжения на подводящих проводах и дорожках ленты и, соответственно, свечение ленты более равномерно.

Особенно важно это учитывать при использовании ленты большой мощности. Для уменьшения подобных потерь, в настоящее время выпускаются ленты с напряжением питания 36В.

Потребляемая мощность – один из параметров светодиодной ленты, определяющих яркость её свечения. Знать мощность ленты также необходимо при выборе блока питания. Измеряется мощность в ваттах на погонный метр или ваттах на катушку и на сегодняшний день находиться в диапазоне от 2.4 до 44 Вт/м. 

Плотность светодиодов – параметр, характеризующий равномерность засветки от светодиодной ленты. Измеряется в количестве светодиодов на метр или на катушку. Самая низкая плотность – 30 светодиодов на метр. Самая высокая, на сегодняшний день, – 350 светодиодов на метр.

Цвет свечения. Светодиодная лента может быть монохромной (одноцветной) или мультицветной, т.е. способной менять цвет свечения. 

Один из наиболее популярных классов светодиодных лент — ленты белого свечения. Белый цвет свечения получают путем нанесения белого люминофора на синий светодиод.

Белые светодиодные ленты делятся на несколько подгрупп, которые характеризуются так называемой цветовой температурой. Выпускаемые белые ленты условно разбиты на 5 диапазонов – теплая белая (2800-3500К), дневная белая (4000-5000K), белая (5500-6500K), холодная белая (7000-10000К), супер холодная белая (>10000К). Светодиодная лента с теплым белым свечением имеет цвет, наиболее близкий к цвету свечения привычных ламп накаливания. Белая светодиодная лента не имеет цветового оттенка. Для света холодной белой ленты характерен голубоватый оттенок.

Цветные монохромные ленты могут иметь практически любой цвет, находящийся в спектре видимых цветов — от красного до фиолетового. Цвет свечения характеризуется длинной волны излучения, измеряемой в нанометрах (нМ). Часто используемые цвета монохромных светодиодных лент это — красный (625нМ), оранжевый (610нМ), желтый (585-590нМ), зелёный (520-530нМ), синий (470нМ). 

Также выпускаются ленты для специального применения, работающие в невидимых для человеческого глаза диапазонах – инфракрасном (около 880 нМ) и ультрафиолетовом (390-400 нМ). Примером использования инфракрасных (ИК) светодиодных лент может стать подсветка для работы камер систем видеонаблюдения, которая невидна человеческому глазу, но прекрасно регистрируется телевизионными камерами. Ультрафиолетовые (УФ) светодиодные ленты используется как бактерицидное средство в медицине, для отверждения некоторых композитных материалов, для подсветки люминесцирующих красок в специальных световых эффектах. Следует иметь ввиду, что прямое ультрафиолетовое излучение опасно для человека, особенно для глаз.

Особого внимания заслуживает так называемая светодиодная ленты RGB (Red, Green, Blue). Светодиоды, установленные на этих лентах, имеют три кристалла разного цвета свечения — красный, синий и зеленый. Используя RGB контроллер, можно управлять свечением этих светодиодов и, путем смешивания трех основных цветов в разных пропорциях, получать практически любой цвет свечения. Количество получаемых от такой ленты цветов зависит от используемого RGB контроллера.

Отдельный класс мультицветных лент – светодиодная лента RGB+W. На лентах этого типа помимо трехцветных RGB светодиодов установлены и белые светодиоды. Стоит отметить, что белый цвет можно получить и от RGB ленты, но на ней он формируется путем одновременного включения всех трех цветов. При этом получается цвет, близкий к холодному белому. Получить же равномерный теплый цвет свечения от RGB ленты практически невозможно. Поэтому, если помимо различных цветов, Вы хотите иметь возможность включить чистый равномерный белый свет – единственный правильный вариант это использовать ленту RGB+W.

Ещё один интересный класс мультицветных лент – светодиодная лента MIX. На этих лентах установлены светодиоды с белым холодным и белым теплым цветом свечения. Меняя яркость свечения тех или иных светодиодов при помощи MIX контроллера, можно изменять результирующую цветовую температуру излучения от холодного до теплого белого света.


Возврат к списку



©2002-2012 «НЕОНКОЛОР»
Тел.

: 8 (800) 333-37-66
8 (495) 118-20-25

[email protected]

Торгово-выставочный комплекс «Стройдвор на Водном»
г. Москва, Кронштадтский бульвар, д.9, стр.3, павильон Л-2
Часы работы с 10.00 до 20.00. Ежедневно
Схема проезда

Сайт разработан при поддержке Arlight — светодиодное освещение и подсветка: www.arlight.ru

2004-2018 ООО «НЕОНКОЛОР»

Понимание светодиодных драйверов от LEDSupply

Драйверы светодиодов могут быть запутанной частью светодиодной технологии. Существует так много разных типов и вариаций, что иногда это может показаться немного ошеломляющим. Вот почему я хотел написать краткий пост с объяснением разновидностей, их различий и вещей, на которые следует обращать внимание при выборе драйвера (драйверов) светодиодов для освещения.

Что такое светодиодный драйвер, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть схемы светодиодов, и работа без нее приведет к сбою системы.

Использование одного из них очень важно для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое требуется светоизлучающему диоду, чтобы проводить электричество и загораться. По мере повышения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока не сгорит, это также известно как тепловой разгон. Драйвер светодиода представляет собой автономный источник питания с выходами, соответствующими электрическим характеристикам светодиода(ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода с постоянным током компенсирует изменения прямого напряжения, подавая на светодиод постоянный ток.

На что обратить внимание перед выбором драйвера светодиодов

  • Какие типы светодиодов используются и сколько?
    • Узнайте прямое напряжение, рекомендуемый управляющий ток и т. д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравним постоянный ток и постоянное напряжение.
  • Какой тип питания будет использоваться? (постоянный ток, переменный ток, батареи и т. д.)
    • Работа от сети переменного тока? Посмотрите, какую пользу вам принесет драйвер переменного тока!
  • Каковы ограничения по размеру?
    • Работаете в ограниченном пространстве? Не так много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. д.
  • Требуются какие-либо специальные функции?
    • Диммирование, пульсация, микропроцессорное управление и т. д.

Во-первых, вы должны знать…

Существует два основных типа драйверов: те, которые используют входную мощность постоянного тока низкого напряжения (обычно 5-36 В постоянного тока), и те, которые используют входную мощность переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, использующие питание переменного тока высокого напряжения, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиодов с низким напряжением постоянного тока. Даже если ваш вход представляет собой высоковольтный переменный ток, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуется использовать низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов диммирования и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилых или коммерческих помещений, вы должны увидеть, как драйверы переменного тока могут быть лучше для этого типа работы.

Второе, что вы должны знать

Во-вторых, вам нужно знать управляющий ток, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для работы света. Важно знать характеристики вашего светодиода, чтобы вы знали рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным теплом. Наконец, полезно знать, что вы ищете в своем приложении для освещения. Например, если вы хотите диммировать, вам нужно выбрать драйвер с возможностью диммирования.

Немного о диммировании

Диммирование светодиодов зависит от того, какую мощность вы используете; поэтому я рассмотрю варианты затемнения как постоянного, так и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.

Диммирование постоянным током

Низковольтные драйверы постоянного тока можно легко диммировать двумя различными способами. Самым простым решением для диммирования для них является использование потенциометра. Это дает полный диапазон диммирования от 0 до 100%.

Потенциометр на 20 кОм

Обычно рекомендуется, когда в вашей цепи есть только один драйвер, но если есть несколько драйверов, регулируемых одним потенциометром, значение потенциометра можно найти из – кОм/Н – где К – значение ваш потенциометр, а N — количество драйверов, которые вы используете. У нас есть проводные BuckPucks, которые поставляются с потенциометром поворотной ручки 5K для затемнения, но у нас также есть этот потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock. Просто подключите заземляющий провод диммирования к центральному контакту, а диммирующий провод — к одной или другой стороне (выбор стороны просто определяет, в какую сторону вы повернете ручку, чтобы сделать ее тусклой).

Второй вариант диммирования — использовать настенный диммер 0–10 В, например, A019 Low Voltage Dimming Control. Это лучший способ диммирования, если у вас несколько устройств, так как диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммирующие провода прямо к входу драйвера, и все готово.

Затемнение по переменному току

Для драйверов переменного тока с высоким напряжением имеется несколько вариантов затемнения, в зависимости от вашего драйвера. Многие драйверы переменного тока работают с диммированием 0-10 В, как мы рассмотрели выше. Мы также предлагаем драйверы светодиодов Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими диммерами с передним и задним фронтом. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами диммирования в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которое можно подключить к одному драйверу, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверам требуется 2 вольта для питания внутренней схемы. Например, при использовании драйвера BuckPuck Wired 1000 мА с входным напряжением 24 вольта максимальное выходное напряжение составит 22 вольта.

Что мне нужно для Силы?

Это приводит нас к тому, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы примем во внимание служебное напряжение схемы драйвера. Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы будем использовать проводной BuckPuck 1000 мА, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

В или + (В f x LED n ) = В в

Где:

В или В o 9010x o 9010x 9010x драйверы = напряжение постоянного тока для драйверов или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать 3

в = Входное напряжение драйвера

Спецификации продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводной BuckPuck, указанный выше, то V в должен быть основан как минимум на 20 В постоянного тока. по следующему расчету.

2 + (3,0 x 6) = 20

Это определяет минимальное входное напряжение, которое необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания 20 В постоянного тока, вы, вероятно, будете использовать блоки питания 24 В постоянного тока для работы этих светодиодов.

Теперь это поможет нам убедиться, что напряжение работает, но чтобы найти правильный источник питания, нам также нужно найти мощность всей светодиодной цепи. Расчет мощности светодиодов:

В f x Ток привода (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем найти наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность схемы = 6 x 3 = 18 Вт

При расчете подходящей мощности источника питания для вашего проекта важно учитывать 20% «подушку» к вашему расчету мощности. Добавление этой 20-процентной подушки предотвратит перегрузку источника питания. Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному выходу из строя блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего приведенного выше примера нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт с выходным напряжением 24 В.

Что делать, если у меня недостаточно напряжения?

Использование повышающего драйвера светодиодов (FlexBlock)

Драйверы светодиодов FlexBlock являются повышающими драйверами, что означает, что они могут выдавать более высокое напряжение, чем то, которое на них подается. Это позволяет подключать больше светодиодов с помощью одного драйвера светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно увеличить мощность светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которые вы можете подключить с помощью одного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и различаться по входному напряжению. В режиме Buck-Boost (стандартный) FlexBlock может работать со светодиодными нагрузками, которые выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме находится по формуле:

48 В постоянного тока – В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы можем работать с 700 мА FlexBlock? Ваше максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы увидим, что этот драйвер может питать 12 светодиодов. В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока всего от 10 В постоянного тока. Таким образом, если бы вы были в режиме Boost-Only, вы могли бы включить до 16 светодиодов (48/2,9). Здесь мы подробно рассмотрим использование повышающего драйвера FlexBlock для питания ваших светодиодов.

Проверка мощности драйверов с входом переменного тока высокой мощности

Теперь драйверы с входом переменного тока выделяют определенное количество ватт для работы, поэтому вам нужно найти мощность ваших светодиодов. Вы можете сделать это, используя следующую формулу:

[Vf x ток (в амперах)] x LEDn = мощность

Таким образом, если мы попытаемся запитать те же 6 светодиодов Cree XPG2 при 700 мА, ваша мощность будет…

[2,9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, например, наш светодиодный драйвер Phihong мощностью 15 Вт.

ПРИМЕЧАНИЕ. При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), вам потребуется соединить не менее 6 таких светодиодов последовательно для работы с этим конкретным драйвером.

Инструменты для понимания и поиска правильного светодиодного драйвера

Итак, теперь вы должны иметь довольно хорошее представление о том, что такое светодиодный драйвер и на что вам нужно обратить внимание при выборе драйвера с источником питания, достаточным для вашей приложение. Я знаю, что еще будут вопросы, и для этого вы можете связаться с нами по телефону (802) 728-6031 или по электронной почте [email protected].

У нас также есть этот инструмент выбора драйвера, который помогает рассчитать, какой драйвер будет лучше всего, введя характеристики вашей схемы.

Если для вашего приложения требуется нестандартный размер и мощность, свяжитесь с LEDdynamics. Их подразделение LUXdrive быстро спроектирует и изготовит индивидуальные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем тем, кто интересуется, что такое светодиодные драйверы.

Как избежать падения напряжения при использовании светодиодного освещения

По своему определению для светодиодного освещения с постоянным напряжением требуется определенное напряжение питания, которое остается постоянным.

Обычно для светодиодных светильников постоянного напряжения требуется источник питания 12 В постоянного тока или 24 В постоянного тока. Драйверы светодиодов с постоянным напряжением гарантируют, что напряжение питания остается постоянным, несмотря на любые колебания сетевого напряжения.

MEAN WELL Светодиодный драйвер постоянного напряжения

 

Тем не менее, установщики светодиодного освещения должны знать, что прокладка кабеля постоянного тока большой длины от светодиодного драйвера к светодиодному светильнику может привести к падению напряжения, так что к тому времени, когда напряжение светодиодный светильник ниже, чем требуется для правильного освещения светодиодами.

В идеальном мире вы всегда хотите делать длинные прогоны на стороне переменного тока, располагая драйвер светодиодов как можно ближе к светодиодам.

Естественно, в некоторых приложениях это просто невозможно и требуются более длинные кабели постоянного тока.

Если вы оказались в такой ситуации, есть несколько шагов, которые вы можете предпринять, чтобы избежать неприятностей.

Прежде всего вам необходимо рассчитать возможное падение напряжения. Есть несколько полезных онлайн-калькуляторов, которые делают эту работу довольно быстрой и простой. Вам нужно будет знать сечение кабеля постоянного тока, который вы будете использовать, чтобы произвести расчеты.

Следующая ссылка приведет вас к онлайн-калькулятору напряжения:

http://www.calculator.net/voltage-drop-calculator.html

Как только вы узнаете фактическое падение напряжения, вы можете принять необходимые меры по исправлению положения. Есть несколько вариантов, открытых для вас.

Вероятно, наиболее экономичным и простым решением является выбор драйвера светодиодов с регулируемым выходным напряжением. Таким образом, вы можете отрегулировать напряжение, чтобы компенсировать падение напряжения.

ADM предлагает две серии светодиодных драйверов MEAN WELL, которые доступны с возможностью регулировки:

Драйверы светодиодов MEAN WELL серии ELGДрайверы светодиодов MEAN WELL серии HLG

 

При заказе убедитесь, что запрашиваемый номер детали имеет суффикс «A» или «AB», который означает, что драйвер светодиода является регулируемым.

Вы можете нажать на следующую ссылку, чтобы просмотреть наш интернет-магазин, чтобы увидеть, какие модели доступны. Клиенты торгового счета ADM могут запросить логин, который позволит им увидеть свои оптовые цены и доступные запасы.

Драйверы для светодиодов в наличии

Основное различие между серией ELG и серией HLG заключается в цене и гарантийных сроках.

Серия ELG является более экономичной из двух моделей, но имеет более короткий гарантийный срок – 5 лет. Гарантия на светодиодные драйверы MEAN WELL серии HLG составляет 7 лет.

Если вы обнаружите, что диапазон регулировки, предлагаемый для вышеуказанных драйверов светодиодов, недостаточно широк, чтобы обеспечить требуемое напряжение, вы можете использовать преобразователь постоянного тока MEAN WELL для резервного увеличения напряжения.

Преобразователь постоянного тока в постоянный MEAN WELL

 

 

Компания ADM предлагает ряд преобразователей постоянного тока MEAN WELL мощностью от 15 Вт до 1000 Вт.

Существуют обстоятельства, при которых падение напряжения может повлиять на работу светильника постоянного тока. Напряжение может упасть ниже диапазона, необходимого для включения светодиодов. Другими словами, подаваемый ток может быть правильным, но мощности недостаточно для питания светодиода.

Если вы столкнулись с этой проблемой, существует недорогое решение для ее устранения.

Вы можете использовать повышающий преобразователь постоянного тока в постоянный от MEAN WELL.

Повышающий драйвер светодиодов постоянного тока

 

Драйверы постоянного тока для светодиодов серии MEAN WELL LDH-45 доступны со следующими вариантами выхода:

  • 350 мА
  • 500 мА
  • 700 мА
  • 1050 мА

Они повысят входное напряжение до требуемого уровня, но сохранят требуемый постоянный ток на выходе для питания светодиодов.

Если у вас есть какие-либо вопросы по устранению проблем с падением напряжения в установках светодиодного освещения, обращайтесь в компанию ADM.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *