Магнитное поле прямого тока | 8 класс
Содержание
Магнитное поле возникает, если у нас есть движущиеся электрические заряды. Но мы не можем увидеть или почувствовать его с помощью наших органов чувств.
Физика может дать нам такую удивительную возможность — увидеть магнитное поле. Также мы сможем определить его форму, как и где оно располагается, каким-то образом охарактеризовать его.
Для этого нам будут нужны не какие-то сложные приборы, а всего лишь железные опилки. На данном уроке мы рассмотрим их применение и сделаем определенные выводы о магнитном поле прямого тока.
Использование железных опилок для обнаружения магнитного поля
Магнитное поле возникает вокруг проводников, по которым течет ток. Чтобы его обнаружить, есть множество способов. Некоторые из них мы рассматривали в прошлом уроке.
Теперь мы рассмотрим еще один способ — использование мелких железных опилок.
Почему для изучения магнитного поля можно использовать железные опилки? Ответ очень прост. Эти маленькие кусочки железа, оказавшись в магнитном поле, намагничиваются. Так они становятся маленькими магнитным стрелками.
Опыт Эрстеда уже показал нам, что магнитная стрелка отклоняется от своего первоначального положения при наличии рядом проводника, по которому течет ток. Теперь у нас будет не одна такая стрелка, а большое их множество. Мы же пронаблюдаем за тем, как ось каждой такой стрелки будет ориентироваться под действием сил магнитного поля.
{"questions":[{"content":"Железные опилки в магнитном поле ведут себя как[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["маленькие магнитные стрелки","проводники с током","инородные тела","Полупроводники"],"answer":[0]}}}]}
Определение формы магнитного поля
Как же «выглядит» магнитное поле? Давайте проведем простой опыт (рисунок 1).
У нас есть прямой проводник с током. Сделаем в листе картона отверстие и проденем через него наш проводник. На картон насыпем тонкий слой железных опилок и включим ток.
Что же мы увидим? Как расположатся железные опилки в магнитном поле прямого тока?
Рисунок 1. Расположение железных опилок в магнитном поле прямого токаПод действием магнитного поля опилки принимают интересное положение. Они теперь не беспорядочно лежат на листе картона. Теперь они располагаются вокруг проводника по концентрическим окружностям.
{"questions":[{"content":"Под действием магнитного поля, создаваемого прямым проводником с током, железные опилки располагаются[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["в форме окружностей вокруг проводника","параллельно проводнику","в хаотичном порядке"],"answer":[0]}}}]}
Линии магнитного поля
Чтобы описать магнитное поле и созданные им окружности из железных опилок, мы введем новое определение — магнитные линии.
Магнитные линии магнитного поля — это линии, вдоль которых в магнитном поле располагаются оси маленьких магнитных стрелок.
Что означает это определение? Соединим опилки, образовавшие одну из окружностей, воображаемой линией. Так мы получим окружность, в центре который находится проводник (рисунок 2).
Рисунок 2. Магнитные линии магнитного поля прямого токаОбратите внимание, что стрелки не только выстраиваются вдоль этих линий. Еще они ориентируются все в одном направлении по этой окружности. Для того, чтобы проще было это оценить, рядом с проводником можно разместить обычные магнитные стрелки, как на рисунке 2.
Они располагаются на линии магнитного поля, указывая одним своим полюсом в одну сторону. Здесь мы не говорим, что они указывают направо или налево. Они разворачиваются одним полюсом как бы в одном направлении движения по окружности.
{"questions":[{"content":"Если мы поместим магнитные стрелки в магнитное поле прямого тока, то они будут[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["располагаться вдоль магнитных линий","располагаться перпендикулярно магнитным линиям","ориентироваться в одном направлении по окружности","Менять свое направление с течением времени"],"answer":[0,2]}}}]}
Направление магнитных линий и форма магнитного поля
Получается, что использование опилок дало нам две новые характеристики магнитного поля: мы видим не только его форму с помощью магнитных линий, но и замечаем, что сами линии имеют определенное направление.
Итак, мы можем сделать следующие выводы:
Магнитные линии магнитного поля тока представляют собой замкнутые кривые (концентрические окружности в случае магнитного поля прямого тока), охватывающие проводник.
Направление, которое указывает северный полюс магнитной стрелки в каждой точке поля, принято за направление магнитной линии магнитного поля.
{"questions":[{"content":"Направление линии магнитного поля определяется направлением, куда[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["показывает северный полюс магнитной стрелки в этом поле","показывает южный полюс магнитной стрелки в этом поле","течет ток","показывает северный полюс магнитной стрелки вне этого поля"],"answer":[0]}}}]}
Связь направлений магнитных линий и направления электрического тока
Магнитные линии дают нам возможность изобразить магнитное поле графически.
На каком расстоянии от проводника мы можем нарисовать его магнитные линии? Ответ прост — для графического изображения мы можем использовать удобный для нас масштаб.
Магнитное поле существует во всех точках пространства, окружающего проводник с током. Значит, мы можем правомерно провести магнитную линию через любую точку.
Хорошо, но как определить направление магнитных линий? Опыты показывают следующее:
Направление магнитных линий магнитного поля тока связано с направлением тока в проводнике.
Так как магнитные линии лежат в плоскости, перпендикулярной проводнику с током, на чертежах принято изображать сечение проводника (проводник в разрезе). Направление тока при этом условно обозначается крестиком, если ток направлен от нас, и точкой, если ток направлен на нас (рисунок 3).
Рисунок 3. Обозначения направления токаВзгляните на рисунок 4, а. Ток течет вниз по проводнику. Магнитные стрелки устанавливаются вдоль магнитных линий. Их оси ориентируется таким образом, как показано на рисунке.
Рисунок 4. Направление магнитных линий при движении тока вниз/от насГрафическое изображение такого магнитного поля представлено на рисунке 4, б. Проводник с током расположен перпендикулярно плоскости чертежа, как будто мы смотрим на него сверху, а не сбоку. Направление тока мы обозначили крестиком на самом проводнике (от нас), и указали направление магнитных линий (куда указывают северные полюса магнитных стрелок.
Теперь сделаем так, чтобы ток шел не вниз, а вверх. Что мы увидим? Магнитные стрелки снова расположились вдоль окружности, но ориентация их осей изменилась (рисунок 5, а). Теперь они развернулись на $180 \degree$ по сравнению с первой ситуацией, где ток шел вниз по проводнику.
Рисунок 5. Направление магнитных линий при движении тока вверх/к намНа рисунке 5, б показано графическое изображение такого поля. Тот факт, что ток направлен к нам, условно обозначен точкой на проводнике. Направление магнитных линий поменялось на противоположное.
Такой простой опыт подтвердил нам тот факт, что направление магнитных линий связано с направлением тока.
{"questions":[{"content":"Направление тока в проводнике определяет[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["направление магнитных линий","время действия магнитного поля","форму магнитного поля"],"answer":[0]}}}]}
Правило буравчика и правило правой руки
Можно запомнить, как соотносятся направление тока в проводнике и направление магнитных линий, а можно воспользоваться простым способом — правилом буравчика.
Если правой рукой вкручивать буравчик (винт, штопор) острием по направлению тока, то ваш большой палец будет поворачиваться по направлению магнитных линий.
Может вам покажется более удобной для использования другая интерпретация этого мнемонического правила — правило правой руки (рисунок 6).
Рисунок 6. Правило правой руки для прямого проводника с токомЕсли обхватить правой рукой прямой проводник с током с отставленным большим пальцем так, чтобы он совпадал с направлением тока, то ваши четыре пальца покажут направление магнитных линий.
Упражнения
Упражнение №1
Каким полюсом повернется к наблюдателю магнитная стрелка, если ток в проводнике направлен от A к B (рисунок 7)? Изменится ли ответ, если стрелку поместить над проводником?
Рисунок 7. Магнитная стрелка, расположенная под проводникомПользуясь полученными знаниями, мы можем сказать, что магнитная стрелка повернется к нам южным полюсом (рисунок 8, а).
Как мы это определили? Если нарисовать чертеж (рисунок 8, б) точкой A к нам, то ток будет идти от нас. Так мы можем, используя готовые результаты опытов, приведенные в данном уроке выше, определить направление магнитных линий поля. Магнитная стрелка повернется северным полюсом по направлению этих линий, т. е. от нас.
Пользуясь правилом правой руки, мы получим тот же результат: если большой палец будет указывать направление тока, то четыре пальца укажут направление магнитных линий.
Рисунок 6. Ориентация магнитной стрелки в данном магнитном поле прямого токаЕсли же мы поместим проводник под магнитной стрелкой, то ее положение поменяется. Она повернется к нам северным полюсом, потому что в этой точке магнитные линии будут направлены так же к нам.
Упражнение №2
В стене расположен (замурован) прямой электрический провод. Как найти место нахождения провода и направление тока в нем, не вскрывая стену?
Мы можем обнаружить такой провод с помощью магнитной стрелки на подставке или обычного компаса. Передвигая компас вдоль стены (и при этом не поворачивая его), нужно следить за положением магнитной стрелки. Если она начнет отклоняться, значит, в этом месте на нее действует магнитное поле проводника с током — наш провод где-то рядом.
Чтобы определить направление тока в этом проводе, посмотрим, куда указывает северный полюс стрелки компаса. Его направление будет совпадать с направлением магнитных линий. Если он повернется вправо, то ток направлен вверх, а если влево, то ток направлен вниз.
особенности линий магнитной индукции, векторы силовых лучей и их виды
Физика
12.11.21
9 мин.
Магнитное поле образуется с помощью зарядов, которые находятся в движении. Возникнувшее поле по собственной природе не прерывается в пространстве и может проявлять силовое воздействие на иные электрические заряды, которые находятся в динамике.
Оглавление:
- Формирование областей
- Магнитные всплески
- Векторный курс
- Свойства тока Фуко
В физике силовые линии магнитного поля не имеют ни начала, ни конца, они замкнуты.
Магнитное поле
Магнитные линии из магнитного поля — представляют собой некие абстрактные лучи, которые во всех точках поля соотносятся своими касательными и сходны по вектору с магнитной индукцией. В действительных полях силовые линии отсутствуют вовсе.
Формирование областей
В XIX веке физик Ханс Эрстед из Дании и ученый Андре Ампер из Франции путем экспериментов совершили важнейшее открытие, обосновать которое представилось возможным при введении нового постоянного понятия — магнитное поле. После тех опытов проделывались многочисленные аналогичные, которые доказали наличие нового некоего пласта.
Характеристика намагниченной области:
- Появляется всегда при динамике нескольких электрический заряженных частиц.
- В пространстве обладает качеством непрерывности и может производить силовое влияние на иные электрические частицы, что пребывают в динамике.
- Намагниченная область неизменна, это также присутствует у намагниченных тел в природе.
Таким образом, причина появления поля — это беспрерывное передвижение молекулярных вихрей (токи) в массе веществ.
Исследуемая область может существовать также при воздействии электрических областей — это важное свойство у магнитных линий.
Недавние исследования ученых показали, что перелетные пернатые ориентируются на местности с помощью намагниченных полюсов нашей Земли. У таких живых организмов вблизи глаз есть крошечный некий элемент, который играет роль компаса — малое тканевое вещество с магнетитом, что способно примагничиваться при воздействии намагниченных совокупностей планеты.
Магнитные всплески
Эту специфическую область можно выявить, как силовое влияние, соотносящееся с электрическими частицами, что бывают одиночными либо в виде токов в веществах. Они совершают движение с некой заданной скоростью.
Существует физическое измерение В, именуемое магнитной индукцией, которое выявляет количественные показатели каждого силового свойства в намагниченной области. У этой величины имеется вектор, помимо абсолютного значения обладает определенным курсом.
Прямолинейный проводник, по нему проходит ток I, величина индукции — это частное от деления значения силы Ампера F, влияющей на проводник, по отношению к силе тока I и его некоторой длине L.
B=F/I*L (1).
В обозначенном очертании по отношению к площади S, при которой в намагниченных областях присутствует момент силы М,
В=М/I*S (2).
Электрическое напряжение
Намагниченные поля создаются из тока заряженных частиц, либо появляются путем преобразования во времени электрического поля, либо своими намагниченными моментами частиц, которые для упрощения можно отнести к электрическому току.
Векторный курс
Для демонстрации силового луча необходимо на листок из стекла, сквозь который проведен некий посредник с током, ровным выложить крошку железных опилок. При подаче тока эти опилки подвергаются намагничиванию, другими словами, у них появляются свойства магнитной стрелки, они перемещаются по силовым лучам области.
Так, итог воздействия намагниченной совокупности на намагниченные стрелки (опилочные) можно применять для получения направления индукции. Направлением индукции нужно считать некий курс.
Куда намагниченная стрелка обращена: от полюса юга S к полюсу севера N, надо отметить, почему вектор передвигается без каких-либо препятствий и ориентируется в исследуемой области. Многочисленные опыты доказали, в чем состоит особенность у линий магнитной индукции, так лучи напряжения постоянно замкнуты, а рисунок лучей напряжения у электрических областей обычно разомкнут
Это значительное свойство демонстрирует, что в натуральной природе отсутствуют намагниченные частицы, они были бы похожи на электрические. Намагниченная область и ее силовые линии представляют собой некое формирование, образующееся с помощью передвигающихся электрических зарядов или благодаря электрическому переменному полю.
Намагниченная область:
- особая материя, которая не видна человеческому глазу и недоступна для осязания;
- еще древние философы говорили, что если направить внимание на магнит, то вокруг него нечто есть.
Свойства тока Фуко
Токи Фуко — электрическое течение, которое замкнуто при посредствующем проводнике. Может определяться при перемене проходящего сквозь него магнитного течения. Относится к индукционным, формирующимся в проводящих телах или из-за преобразований во времени в намагниченных областях, с какими взаимодействует электричество.
А также образуется при передвижении тел в примагнитной области, что весьма способствует к переменам исследуемого течения сквозь тело либо иную его составную часть.
Ленц определил правило, где магнитные области токов Фуко направляются таким образом, что противопоставляются переменам магнитных течений.
Например, провода от напольного торшера, что пропускают ток, могут называться магнитом. Электромагнитное поле — базовая физическая величина, некоторое поле, сообщающееся с телами, которые содержат электрический заряд, в том числе с телами с мультипольными и намагниченными свойствами.
com/embed/CV1yJ7ZI-hc» allowfullscreen=»allowfullscreen»>Силовые линии магнитного поля — свойства, характеристика и направление
При изучении существования электромагнетизма в природе силы, связанные с этим явлением, обозначают с помощью силовых линий магнитного поля. Это условные изображения, не имеющие ничего общего с реальностью. Просто используя иллюстрации, удобно объяснять и моделировать свойства, наглядно указывая направление векторов и описывая плотность того или иного участка пространства.
Содержание
- Общие сведения
- Линии магнитного поля
- Опыт Эрстеда
- Виток и катушка
Общие сведения
Ещё в XIX веке было установлено, что направленное движение элементарных носителей зарядов приводит к появлению электрического тока. Заряды, взаимодействуя между собой, вызывают появление силы, которую называют электромагнитным полем. То есть вокруг любого заряженного тела возникает два явления: магнитное и электрическое.
Первое, в отличие от второго, возможно только при движении электрического заряда. Даже если оно создано постоянным магнитом, всё равно причиной его появления является движение частиц. По своей сути магнитное поле — это сила, характеризующаяся моментом. Она обладает энергией. Любое изменение электрического поля приводит к возмущению магнитного. Причём это утверждение справедливо и наоборот.
Основной характеристикой силы является вектор индукции. С его помощью определяют действие магнитного поля в точке пространства. То есть параметр показывает, с какой силой оказывается влияние на заряд q перемещающийся со скоростью V. Это векторная величина формула для расчёта, которой имеет вид: F = q *V * sin (a), где a — значение угла между вектором скорости и магнитной индукции. При этом направление силы может быть определено по правилу буравчика. Оно всегда будет направлено перпендикулярно вектору скорости. За единицу измерения в СИ принята тесла (Тл).
Для магнитного поля характерно следующее:
Магнитное поле представляет собой материю. Определяется она свойствами вещества. С точки зрения квантовой механики, это частный случай электромагнитного взаимодействия. Для его изображения используют воображаемые отрезки. Это магнитные линии магнитного поля, которые представляют как замкнутые направленные кривые.
Линии магнитного поля
Электрическое поле можно исследовать с помощью элементарных зарядов, по поведению которых удобно судить о значении и направлении материи. Аналогом такой энергии является пробная частица, которую можно представить в виде стрелки, точнее компаса. Например, если взять много устройств, указывающих на магнитные полюса Земли, и разместить их в некотором геометрическом пространстве, то можно будет визуализировать силы, характеризующие электромагнитное поле.
Но определить направление материи вокруг проводников с током различной формы или так называемый магнитный спектр можно и практически. Для этого используются различные установки. Простейшей из них является комплекс, включающий в свой состав:
- источник питания;
- диэлектрическую рамку;
- толстый медный провод способный пропустить ток порядка 20 ампер;
- железные опилки.
В рамке через просверленное отверстие продевают провод, который подключают к источнику питания. Сверху на проволоку насыпают стружки. После подачи тока можно будет наблюдать, как образуются цепочки, повторяющие форму распространения силы поля. Например, вокруг прямого провода, расположенного перпендикулярно пластинке, можно будет увидеть кольцевые силовые линии.
Проведя эксперимент, можно узнать в чём состоит особенность линий магнитной индукции. Во-первых, их распространение неравномерное. В некоторых местах они гуще. Во-вторых, эти линии никогда не пересекаются и всегда замкнутые. С точки зрения физики, можно добавить, что направление магнитного поля возможно выяснить по правилу буравчика. При этом вектор индукции касателен к каждой точке отрезка.
Следует отметить, что исследовать поле, правда, постоянное, можно с помощью обычного магнита и компаса.
Для эксперимента нужно высыпать опилки на лист бумаги, а рядом с ними положить компас. Затем снизу медленно поднести магнит, желательно через деревянную прослойку. Тогда можно будет не только увидеть рисунок поля, но и заметить, что стрелка компаса показывает в ту же сторону, куда направлены железные опилки.
Опыт Эрстеда
Довольно продолжительное время электрические и магнитные поля изучались раздельно. Их взаимосвязь была обнаружена совершенно случайно. Существует легенда, что Кристиан Эрстед показывал ученикам на своей лекции в университете влияние толщины проводника на силу тока. При этом на демонстрационном столе лежал компас, оставшийся от предыдущей лекции. Во время рассказа Эрстеда о природе нагрева проволоки, один из его студентов обратил внимание, что стрелка компаса изменила положение. Этот эффект после позволил учёному утверждать, что на магнитную стрелку, расположенную вблизи с проводником тока, действуют силы, стремящие её развернуть.
Главный интерес этого явления был в том, что, кроме изменения положения стрелки никаких, более эффектов не наблюдалось.
Проведя ряд опытов, учёный установил, что на направление указателя влияла полярность подключения источника питания. При её изменении стрелка сразу же изменяла своё направление на противоположное. Но оказалось, что влияние магнитного потока настолько мало, что обнаружить его, возможно, только с помощью чувствительных приборов.
Чтобы более точно представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током нужно рассмотреть проволоку с торца. Тогда можно будет изучить два случая:
- ток идёт от наблюдающего;
- заряды двигаются к исследователю.
Если установить множество стрелок вокруг проводника, то окажется, что после пропускания тока они выстроятся так, что образуют своеобразную окружность. При этом их полюса будут противоположны друг другу. Эти стрелки примут положение по касательной к магнитным линиям. Таким образом, можно будет увидеть, что линии, описывающие распространение поля, представляют окружность. Их же направления в первом случае будут по часовой стрелке, а во втором — против.
Это важное свойство магнитных линий и наблюдал Эрстед. Ампер же смог развить исследование дальше. Он установил, что если взять два проводника, разместить их параллельно и пустить по ним токи в одном направлении, то возникает сила притягивания. Если же в одном из них поменять подключение — проводники начинают отталкиваться. Именно благодаря Амперу удалось эмпирически доказать, как происходит взаимодействие проводника, по которому течёт ток, с полем постоянного магнита и описать зависимость зарядов от их направления.
Виток и катушка
Определить направление магнитного потока можно по правилу, которое называется буравчиком. Нужно взять проводник с током и расположить вдоль него винт. При этом добиться того, чтобы стержень перемещался вдоль направления тока. Для этого понадобится вращать буравчик в определённую сторону, которая и будет показывать, куда направлено магнитное поле.
Аналогом этого способа является правило правой руки. Заключается оно в том, что если поставить её большой палец по направлению тока, то тогда оставшиеся четыре укажут сторону распространения действия силы. Определить, как будут направлены линии в прямом проводнике, не представляет трудности.
Для провода, согнутого в виток, методика определения изменится. Изогнутый проводник можно представить как множество кусочков. Наиболее интересными из них будут два — расположенные в начале и в конце. Если воспользоваться правилом буравчика и нарисовать направление, то можно увидеть, что вокруг каждого из концов возникнут противоположные друг другу силовые линии. Они будут замкнуты и иметь радиальную форму. Но особенность их в том, что в середине проводника сила действия поля будет намного сильнее, чем при удалении от неё.
Оказывается, что если ток течёт по кольцу, то правило буравчика тоже будет работать, но с небольшим отличием.
Если при прямом токе вращение ручки, расположенной по направлению перемещения частиц, указывает сторону распространения линий, то для витка ситуация повторяется с точностью наоборот. Когда буравчик вращается по направлению тока, то стержень устройства показывает, куда направлено поле внутри витка.
Аналогичную картину можно получить, если из проволоки смотать катушку. В середине её линии будут более густо расположены, чем снаружи. Этим и пользуются для получения сильного магнитного потока. Все эти явления связаны с природой рассматриваемой силы. Линии поля всегда выходят из северного полюса и входят в южный. Вот почему направление вектора магнитной индукции совпадает с северным указателем магнитной стрелки. Следует отметить важный момент: на самом деле силовые линии двух одинаковых точечных зарядов могут пересекаться, но в этом случае поле в этой точке будет равно нулю.
Понятие природы магнитной индукции позволило использовать силу в технологическом прогрессе человечества. Например, были созданы поезда, способные развивать огромную скорость, так как они двигаются на магнитной подушке. Вагоны скользят над поверхностью, не испытывая трения.
Открытия используются и при изучении работы головного мозга. Оказалось, что при его деятельности возникает слабое магнитное поле, исследование которого помогает понять принцип работы нейронов.
Предыдущая
ФизикаРеферат на тему: «Лазерные технологии и их использование» — виды, примеры и сферы применения
Следующая
ФизикаСтроение вещества — первоначальные сведения для учащихся 7 класса
22.3 Магнитные поля и линии магнитного поля – College Physics
Глава 22 Магнетизм
Резюме
- Дайте определение магнитному полю и опишите линии магнитного поля различных магнитных полей.
Говорят, что в детстве Эйнштейн был очарован компасом, возможно, размышляя о том, как стрелка чувствует силу без прямого физического контакта. Его способность глубоко и ясно размышлять о действиях на расстоянии, особенно о гравитационных, электрических и магнитных силах, позже позволила ему создать свою революционную теорию относительности. Поскольку магнитные силы действуют на расстоянии, мы определяем
Небольшие компасы, используемые для проверки магнитного поля, не будут мешать ему. (Это аналогично тому, как мы тестировали электрические поля с небольшим пробным зарядом. В обоих случаях поля представляют собой только объект, создающий их, а не зонд, проверяющий их.) На рис. 2 показано, как выглядит магнитное поле для контура с током и длинный прямой провод, который можно было исследовать с помощью небольшого компаса. Небольшой компас, помещенный в эти поля, выровняется параллельно линии поля в том месте, где он находится, с северным полюсом, указывающим в направлении 9 градусов.0020 Б
Создание связей: концепция поля
Поле — это способ отображения сил, окружающих любой объект, которые могут воздействовать на другой объект на расстоянии без видимой физической связи. Поле представляет объект, его генерирующий. Гравитационные поля отображают гравитационные силы, электрические поля отображают электрические силы, а магнитные поля отображают магнитные силы.
Обширные исследования магнитных полей выявили ряд жестких правил. Мы используем силовые линии магнитного поля для представления поля (линии — это изобразительный инструмент, а не физическая сущность сама по себе). Свойства силовых линий магнитного поля можно обобщить следующими правилами:
- Направление магнитного поля касается силовой линии в любой точке пространства. Маленький компас укажет направление линии поля.
- Сила поля пропорциональна близости линий. Она точно пропорциональна количеству линий на единицу площади, перпендикулярной линиям (называемой поверхностной плотностью).
- Линии магнитного поля никогда не могут пересекаться, а это означает, что поле уникально в любой точке пространства.
- Линии магнитного поля непрерывны, образуя замкнутые петли без начала и конца. Они идут от северного полюса к южному полюсу.
Последнее свойство связано с тем, что северный и южный полюса нельзя разделить. Это явное отличие от силовых линий электрического поля, которые начинаются и заканчиваются на положительных и отрицательных зарядах. Если бы существовали магнитные монополи, то силовые линии магнитного поля начинались бы и заканчивались на них.
- Магнитные поля графически могут быть представлены силовыми линиями магнитного поля, свойства которых следующие:
- Поле касается линии магнитного поля.
- Сила поля пропорциональна плотности линий.
- Линии поля не могут пересекаться.
- Линии поля представляют собой непрерывные петли.
- магнитное поле
- представление магнитных сил
- Б — поле
- другой термин для обозначения магнитного поля
- линии магнитного поля
- графическое изображение силы и направления магнитного поля
- направление силовых линий магнитного поля
- направление, которое указывает северный конец стрелки компаса
Магнитные поля и силовые линии магнитного поля | Физика |
Цель обучения
К концу этого раздела вы сможете:
- Давать определение магнитному полю и описывать силовые линии различных магнитных полей.
Говорят, что в детстве Эйнштейн был очарован компасом, возможно, размышляя о том, как стрелка чувствует силу без прямого физического контакта. Его способность глубоко и ясно размышлять о действиях на расстоянии, особенно о гравитационных, электрических и магнитных силах, позже позволила ему создать свою революционную теорию относительности. Поскольку магнитные силы действуют на расстоянии, мы определяем магнитное поле для представления магнитных сил. Графическое представление линий магнитного поля очень полезно для визуализации силы и направления магнитного поля. Как показано на рисунке 1, направление линий магнитного поля определяется как направление, в котором указывает северный конец стрелки компаса. Магнитное поле традиционно называют B -полем .
Рис. 1. Линии магнитного поля имеют направление, которое указывает небольшой компас, размещенный в определенном месте. (a) Если для картографирования магнитного поля вокруг стержневого магнита используются небольшие компасы, они будут указывать в указанном направлении: от северного полюса магнита к южному полюсу магнита. (Вспомните, что северный магнитный полюс Земли на самом деле является южным полюсом с точки зрения определения полюсов стержневого магнита.) (b) Соединение стрелок дает непрерывные силовые линии магнитного поля. Сила поля пропорциональна близости (или плотности) линий. в) Если бы можно было исследовать внутреннюю часть магнита, то было бы обнаружено, что силовые линии образуют непрерывные замкнутые петли.
Небольшие компасы, используемые для проверки магнитного поля, не будут мешать ему. (Это аналогично тому, как мы тестировали электрические поля с небольшим пробным зарядом. В обоих случаях поля представляют собой только объект, создающий их, а не зонд, проверяющий их.) На рисунке 2 показано, как выглядит магнитное поле для контура с током и длинный прямой провод, который можно было исследовать с помощью небольшого компаса. Небольшой компас, помещенный в эти поля, выровняется параллельно линии поля в том месте, где он находится, с северным полюсом, указывающим в направлении 9 градусов. 0020 Б . Обратите внимание на символы, используемые для поля ввода и вывода из бумаги.
Рисунок 2. Небольшие компасы можно использовать для картирования показанных здесь полей. (а) Магнитное поле круглой петли с током подобно магнитному полю стержневого магнита. (b) Длинный и прямой провод создает поле с силовыми линиями магнитного поля, образующими круглые петли. (c) Когда проволока находится в плоскости бумаги, поле перпендикулярно бумаге. Обратите внимание, что символы, используемые для поля, указывающего внутрь (например, хвост стрелы), и поля, указывающего наружу (например, кончик стрелки).
Создание связей: концепция поляПоле — это способ отображения сил, окружающих любой объект, которые могут воздействовать на другой объект на расстоянии без видимой физической связи. Поле представляет объект, его генерирующий. Гравитационные поля отображают гравитационные силы, электрические поля отображают электрические силы, а магнитные поля отображают магнитные силы.
Обширные исследования магнитных полей выявили ряд жестких правил. Мы используем силовые линии магнитного поля для представления поля (линии — это изобразительный инструмент, а не физическая сущность сама по себе). Свойства силовых линий магнитного поля можно обобщить следующими правилами:
- Направление магнитного поля касается силовой линии в любой точке пространства. Маленький компас укажет направление линии поля.
- Сила поля пропорциональна близости линий. Она точно пропорциональна количеству линий на единицу площади, перпендикулярной линиям (называемой поверхностной плотностью).
- Линии магнитного поля никогда не могут пересекаться, а это означает, что поле уникально в любой точке пространства.
- Линии магнитного поля непрерывны, образуя замкнутые петли без начала и конца. Они идут от северного полюса к южному полюсу.
Последнее свойство связано с тем, что северный и южный полюса нельзя разделить. Это явное отличие от силовых линий электрического поля, которые начинаются и заканчиваются на положительных и отрицательных зарядах. Если бы существовали магнитные монополи, то силовые линии магнитного поля начинались бы и заканчивались на них.
Резюме раздела
- Магнитные поля могут быть графически представлены линиями магнитного поля, свойства которых следующие:
- Поле касается линии магнитного поля.
- Сила поля пропорциональна плотности линий.
- Линии поля не могут пересекаться.
- Линии поля представляют собой непрерывные петли.
Концептуальные вопросы
- Объясните, почему магнитное поле не будет уникальным (то есть не будет иметь единственного значения) в точке пространства, где линии магнитного поля могут пересекаться. (Учитывайте направление поля в такой точке.)
- Перечислите сходство линий магнитного поля и линий электрического поля. Например, направление поля касается линии в любой точке пространства. Также укажите, чем они отличаются. Например, электрическая сила параллельна силовым линиям электрического поля, тогда как магнитная сила, действующая на движущиеся заряды, перпендикулярна силовым линиям магнитного поля.
- Заметив, что силовые линии магнитного поля стержневого магнита напоминают силовые линии электрического поля пары равных и противоположных зарядов, ожидаете ли вы, что напряженность магнитного поля будет быстро уменьшаться по мере удаления от магнита? Это согласуется с вашим опытом работы с магнитами?
- Во всех ли местах магнитное поле Земли параллельно земле? Если нет, то где она параллельна поверхности? Одинакова ли его сила во всех местах? Если нет, то где он больше всего?
Глоссарий
- Магнитное поле:
- . Представление магнитных сил
- B -Field:
- Другое термин для магнитного поля
- Magnetic Lines LISE направление магнитного поля
- направление силовых линий магнитного поля:
- направление, которое указывает северный конец стрелки компаса
Лицензии и атрибуты
Лицензионный контент CC, совместно используемый ранее
- College Physics. Автор : Колледж OpenStax. Расположен по адресу : https://openstax.org/books/college-physics/pages/1-introduction-to-science-and-the-realm-of-physics-physical-quantities-and-units. Лицензия : CC BY: Attribution . Условия лицензии : Находится в лицензии
Каково направление силовых линий магнитного поля?
Спросил
Изменено 1 год, 6 месяцев назад
Просмотрено 5к раз
$\begingroup$
Итак, я изучал магнетизм. А также упомянутая книга:
Силовые линии магнитного поля направлены от южного полюса к северному полюсу , и таким образом формируется замкнутая и непрерывная кривая.
Вот картинка из книги:
Тогда диаграммы показали, что силовые линии магнитного поля направлены от северного полюса к южному полюсу.
Вот диаграммы:
Кому из них я верю? Оба изображения взяты из издательства Selina Publishers’ Physics…
Заранее спасибо за поддержку..
- магнитные поля
$\endgroup$
1
$\begingroup$
902:30Кому из них я верю?
Вы верите обоим. Они оба верны и совершенно не противоречат друг другу.
В тексте сказано, что линии идут с юга на север внутри магнита. На изображениях показаны линии, идущие с севера на юг за пределами магнита. Тот факт, что силовые линии магнитного поля образуют непрерывные замкнутые петли, означает, что с юга на север внутри магнита подразумевается с севера на юг снаружи, и наоборот.
$\endgroup$
$\begingroup$
Вне магнита линии обоих полей ${\bf B}$ и ${\bf H}$ направлены от северного полюса к южному полюсу. Цитируемый текст на вашем первом изображении относится к внутри магнита, где линии ${\bf B}$ направлены от южного полюса к северному полюсу, образуя замкнутые петли. (Математически это так, потому что ${\rm div\,}{\bf B}=0$, но если вы только изучаете предмет, это утверждение не имеет для вас большого значения). Внутренние линии ${\bf H}$ Однако они идут от северного полюса к югу, поэтому они противоположны линиям ${\bf B}$. К сожалению, и ${\bf B}$, и ${\bf H}$ в обыденной речи называются «магнитным полем».
Поле ${\bf H}$ определяется как $$ {\bf H}=\frac 1 {\mu_0} {\bf B} -{\bf M} $$ где ${\bf M}$ — намагниченность или, точнее, магнитный дипольный момент единицы объема магнитного материала. Это мера того, насколько сильно магнитный материал намагничен.
И ${\bf B}$, и ${\bf H}$ полезны, потому что они удовлетворяют простым уравнениям.
$\endgroup$
$\begingroup$
Схема так как они направлены с севера на юг
$\endgroup$
3
$\begingroup$
Направление силовых линий магнитного поля совпадает с направлением B-поля.