Site Loader

Содержание

Законы Кирхгофа для расчёта электрических цепей

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим её работы.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвью электрической цепи называется такой её участок, который состоит только из последовательно включённых источников ЭДС и сопротивлений, вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трёх и более ветвей. При обходе по соединённым в узлах ветвям можно получить замкнутый контур

электрической цепи. Каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза [1].

Первый закон Кирхгофа

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

$$ \sum{i} = 0, $$

или в комплексной форме

$$ \sum{\underline{I}} = 0. $$

Второй закон Кирхгофа

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме ЭДС:

$$ \sum{\underline{Z} \cdot \underline{I}} = \sum{\underline{E}}. $$

Количество уравнений, составляемых для электрической цепи по первому закону Кирхгофа, равно $ N_\textrm{у}-1 $, где $ N_\textrm{у} $ – число узлов. Количество уравнений, составляемой для электрической цепи по второму закону Кирхгофа, равно $ N_\textrm{в}-N_\textrm{у}+1 $, где $ N_\textrm{в} $ – число ветвей. Количество составляемых уравнений по второму закону Кирхгофа легко определить по виду схемы: для этого достаточно посчитать число «окошек» схемы, но с одним уточнением: следует помнить, что контур с источником тока не рассматривается.

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим её на примере электрической цепи, представленной на рис. 1.


Рис. 1. Рассматриваемая электрическая цепь

Для начала необходимо задать произвольно направления токов в ветвях и задать направления обхода контуров (рис. 2).


Рис. 2. Задание направления токов и направления обхода контуров для электрической цепи

Количество уравнений, составляемых по первому закону Кирхгофа, в данном случае равно 5 – 1 = 4. Количество уравнений, составляемых по второму закону Кирхгофа, равно 3, хотя «окошек» в данном случае 4. Но напомним, что «окошко», содержащее источник тока $ \underline{J}_{1} $, не рассматривается.

Составим уравнения по первому закону Кирхгофа. Для этого «втекающие» в узел токи будем брать со знаком «+», а «вытекающие» — со знаком «-». Отсюда для узла «1 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ \underline{I}_{1}- \underline{I}_{2}- \underline{I}_{3} = 0; $$

для узла «2 у.» уравнение по первому закону Кирхгофа будет выглядеть следующим образом:

$$ -\underline{I}_{1}- \underline{I}_{4} + \underline{I}_{6} = 0; $$

для узла «3 у.»:

$$ \underline{I}_{2}+ \underline{I}_{4} + \underline{I}_{5}- \underline{I}_{7} = 0; $$

для узла «4 у.»:

$$ \underline{I}_{3}- \underline{I}_{5}- \underline{J}_{1} = 0. $$

Уравнение для узла «5 у.» можно не составлять.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях положительные значения для токов и ЭДС выбираются в том случае, если они совпадают с направлением обхода контура. Для контура «1 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ \underline{Z}_{C1} \cdot \underline{I}_{1} + R_{2} \cdot \underline{I}_{2}- \underline{Z}_{L1} \cdot \underline{I}_{4} = \underline{E}_{1}; $$

для контура «2 к.» уравнение по второму закону Кирхгофа будет выглядеть следующим образом:

$$ -R_{2} \cdot \underline{I}_{2} + R_{4} \cdot \underline{I}_{3} + \underline{Z}_{C2} \cdot \underline{I}_{5} = \underline{E}_{2}; $$

для контура «3 к.»:

$$ \underline{Z}_{L1} \cdot \underline{I}_{4} + (\underline{Z}_{L2} + R_{1}) \cdot \underline{I}_{6} + R_{3} \cdot \underline{I}_{7} = \underline{E}_{3}; $$

где $ \underline{Z}_{C} = -\frac{1}{\omega C} $, $ \underline{Z}_{L} = \omega L $.

Таким образом, для того, чтобы найти искомые токи, необходимо решить следующую систему уравнений:

$$ \begin{cases} \underline{I}_{1}- \underline{I}_{2}- \underline{I}_{3} = 0 \\ -\underline{I}_{1}- \underline{I}_{4} + \underline{I}_{6} = 0 \\ \underline{I}_{2}+ \underline{I}_{4} + \underline{I}_{5}- \underline{I}_{7} = 0 \\ \underline{I}_{3}- \underline{I}_{5}- \underline{J}_{1} = 0 \\ \underline{Z}_{C1} \cdot \underline{I}_{1} + R_{2} \cdot \underline{I}_{2}- \underline{Z}_{L1} \cdot \underline{I}_{4} = \underline{E}_{1} \\ -R_{2} \cdot \underline{I}_{2} + R_{4} \cdot \underline{I}_{3} + \underline{Z}_{C2} \cdot \underline{I}_{5} = \underline{E}_{2} \\ \underline{Z}_{L1} \cdot \underline{I}_{4} + (\underline{Z}_{L2} + R_{1}) \cdot \underline{I}_{6} + R_{3} \cdot \underline{I}_{7} = \underline{E}_{3} \end{cases} $$

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения данной системы уравнений удобно пользоваться Matlab. Для этого представим эту систему уравнений в матричной форме:

$$ \begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ \underline{Z}_{C1} & R_{2} & 0 & -\underline{Z}_{L1} & 0 & 0 & 0 \\ 0 & -R_{2} & R_{4} & 0 & \underline{Z}_{C2} & 0 & 0 \\ 0 & 0 & 0 & \underline{Z}_{L1} & 0 & R_{1}+\underline{Z}_{L2} & R_{3} \\ \end{bmatrix} \cdot \begin{bmatrix} \underline{I}_{1} \\ \underline{I}_{2} \\ \underline{I}_{3} \\ \underline{I}_{4} \\ \underline{I}_{5} \\ \underline{I}_{6} \\ \underline{I}_{7} \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \underline{J}_{1} \\ \underline{E}_{1} \\ \underline{E}_{2} \\ \underline{E}_{3} \\ \end{bmatrix} $$

Для решения данной системы уравнений воспользуемся следующим скриптом Matlab:

>> syms R1 R2 R3 R4 Zc1 Zc2 Zl1 Zl2 J1 E1 E2 E3;
>> A = [1  -1 -1    0   0        0  0;
       -1   0  0   -1   0        1  0;
        0   1  0    1   1        0 -1;
        0   0  1    0  -1        0  0;
      Zc1  R2  0 -Zl1   0        0  0;
        0 -R2 R4    0 Zc2        0  0;
        0   0  0  Zl1   0 (R1+Zl2) R3];
>> b = [0;
        0;
        0;
       J1;
       E1;
       E2;
       E3];
>> I = A\b

В результате получим вектор-столбец $ \underline{\bold{I}} $ токов из семи элементов, состоящий из искомых токов, записанный в общем виде. Видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

Пример составления уравнений по законам Кирхгофа для разветвленной цепи

Рассмотрим пример составления уравнений по законам Кирхгофа для разветвленной электрической цепи постоянного тока. Для данной электрической цепи необходимо рассчитать токи в каждой ветви. Для расчета токов будет пользоваться законами Кирхгофа.

Составляем уравнения по первому закону кирхгофа. Согласно алгоритма задаемся направлением токов в ветвях электрической схемы.

 

Количество уравнений равно количеству узлов минус один. У нас в схеме два узла. Значит будет одно уравнение. Т.к. все токи втекают в узел, то берем их с одним знаком, например плюс. В результате уравнение по первому закону будет таким.

Составим уравнения по второму правилу Кирхгофа. По алгоритму необходимо задаться обходом независимых контуров.

В электрической цепи три контура. Контура обозначены стрелочками.

 

Из них только любые два являются независимыми контурами.

 

Для каждого независимого контура составляем уравнение по второму закону Кирхгофа.

В первом уравнении перед током I1 поставлен минус, т.к. направление обхода первого (слева) контура не совпадает с направление протекающего тока I1.

Перед током I2 в первом уравнении поставлен плюс, т.к. направление обхода первого контура совпадает с направление протекающего тока I2. 

Перед ЭДС 1 поставлен минус, т.к. направление действия ЭДС 1 не совпадает с направление обхода первого контура.

Во втором уравнении перед током I2 поставлен минус, т.к. направление обхода второго контура не совпадает с направление протекающего тока I2.

Перед током I3 во втором уравнении поставлен плюс, т.к. направление обхода второго контура совпадает с направление протекающего тока I3. 

Перед ЭДС 2 поставлен минус, т.к. направление действия ЭДС 2 не совпадает с направление обхода второго контура. 

Выполняем объединение уравнений в систему. Решаем систему уравнений с тремя неизвестными I1, I2, I3 любым известным способом.

1) Составить уравнения по законам Кирхгофа.

Некоммерческое акционерное общество

«АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ»

Кафедра теоретических основ электротехники

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №1

По дисциплине «Основы теории цепей»

На тему «Расчет линейных электрических цепей постоянного тока с зависимыми источниками»

Специальность «Информационные системы»

Выполнил Ануарбеков Шыңғыс Группа ИС-16-2

Принял доцент каф. ТОЭ Айтжанов Н.М.

_________ «____»____________2017г.

Алматы 2017

Содержание

Введение……………………………………………………………………………………………………3

Задание………………………………………………………………………………………………………4

Расчетная часть………………………………………………………………………………………….6

Уравнения по законам Кирхгофа………………………………………………………..6

Метод контурных токов……………………………………………………………………..7

Метод узловых потенциалов………………………………………………………………9

Сравнение результатов МКТ и МУП…………………………………………………10

Метод эквивалентного генератора……………………………………………………..11

Напряжение на зажимах источника тока……………………………………………13

Баланс мощностей…………………………………………………………………………….13

Заключение………………………………………………………………………………………………14

Список литературы…………………………………………………………………………………..15

Введение

Цель работы: умение составлять систему уравнений по законам Кир-хгофа; применение закона Ома; получение навыков расчётов электрических цепей постоянного тока с зависимыми источниками методами контурных токов, методом узловых потенциалов, эквивалентного генератора.

В цепи действуют независимые источники напряжения с ЭДС Е1, Е2, Е3, источник тока J и зависимый источник напряжения Еи , управляемый током. Номер схемы определяется по таблице 1.1, числовые значения параметров цепи приведены в таблицах 1.2 и 1.3.

Таблица 1.1

Год поступления

Первая буква фамилии

Четный

А БЯ

ГЭЕ

ЖЗЩ

КЛ

МН

ОПР

СТУ

ФЧЦ

ХШИ

ДЮВ

№ схемы

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

МЭГ

I1

I3

I4

I2

I1

I4

I3

I3

I1

I2

Таблица 1.2

Год поступления

Последняя цифра номера студенческого билета

Четный

0

9

8

7

6

5

4

3

2

1

E1, В

25

20

30

40

20

25

15

35

40

15

E2, В

10

15

25

20

30

20

15

10

20

25

E3, В

25

30

35

20

30

20

25

15

30

10

J, А

3

5

2

6

4

10

8

5

3

5

r, Ом

10

20

15

16

25

30

35

40

15

20

Таблица 1.3

Год поступления

Предпоследняя цифра номера студенческого билета

Четный

1

2

3

4

5

6

7

8

9

0

R1, Ом

25

20

15

20

10

30

20

10

30

15

R2, Ом

15

30

20

12

20

10

20

25

40

20

R3, Ом

20

16

25

35

30

20

30

16

10

30

R4, Ом

30

20

30

40

15

40

15

25

20

30

R, Ом

6

10

8

10

10

15

20

15

5

8

Рисунок 1.1

Задание:

1) Составить уравнения по законам Кирхгофа.

2) Рассчитать токи во всех ветвях методом контурных токов.

3) Рассчитать токи во всех ветвях методом узловых потенциалов. 4) Сравнить результаты, полученные в пунктах 2, 3 и свести их в

одну таблицу.

5) Рассчитать ток в одной ветви методом эквивалентного генератора (см. таблицу 1.1).

6) Определить напряжение на зажимах источника тока.

7) Проверить выполнение баланса мощности.

Расчетная часть

Первый закон Кирхгофа: алгебраическая сумма токов в узле электрической цепи равна нулю: . Со знаком «+» записываются токи, направленные к узлу, со знаком «-» записываются токи, направленные от узла (или наоборот). Число уравнений, составляемых по первому закону Кирхгофа, равно , где — число узлов в цепи. В цепи (рис 1.1) имеются 4 узла, исходя из этого У = 4-1 = 3 (количество уравнений по I закону Кирхгофа). Следовательно, достаточно записать уравнения для узлов 1, 2 и 3.

Второй закон Кирхгофа: в любом замкнутом контуре электрической цепи алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур равна алгебраической сумме ЭДС: . Напряжения записываются со знаком «+», если положительное направление тока совпадает с направлением обхода контура, со знаком «-», если направление тока противоположно направлению обхода контура; ЭДС , направления, которых совпадают с направлением обхода контура, записываются со знаком «+», а ЭДС , направленные против обхода контура – со знаком «-». Число уравнений, составляемых по второму закону Кирхгофа, равно: , где — число ветвей, — число источников тока. Исходя из этого, в цепи (рис 1.1) 6 ветвей, 1 источник тока и как было выше сказано – 4 узла. Следовательно, для второго закона Кирхгофа понадобится К = 6-1-3=2 уравнения. Выбираем два независимых контура, не имеющих источника тока, затем произвольно выбираем обход контура (рис 1.1). И для каждого контура (внешний контур и контур 1241) запишем уравнение по II закону Кирхгофа:

Общая система уравнений по законам Кирхгофа будет выглядеть следующим образом

2) Рассчитать токи во всех ветвях методом контурных токов.

Составим систему уравнений по методу контурных токов для цепи постоянного тока (рис 1.2):

Рисунок 1.2.

, где

= (

Решение:

= = =

= =

= = =

, тогда

=7,73 – 7,53 = 0,2А

= 7,53А

= 7,73А

= 10 – 7,53 = 2,47А

= 010– 7,73 = 2,27А

3) Рассчитать токи во всех ветвях методом узловых потенциалов.

Метод узловых потенциалов позволяет уменьшить число уравнений системы до числа . Суть метода узловых потенциалов заключается в определении потенциалов узлов электрической цепи, токи рассчитываются по закону Ома. При составлении уравнений по методу узловых потенциалов, потенциал одного из узлов принимают равным нулю, для определения потенциалов оставшихся узлов составляются уравнения.

Возьмем узел 3 за базовый и будем считать, что он равен нулю. Автоматически значение потенциала в узле 4 становится равным .

().

Составим систему уравнений по методу узловых потенциалов для цепи постоянного тока (рис 1.3), так как значения потенциалов в узлах 3 и 4 известны, то нам необходимо составить систему из 2 уравнений для узлов 1 и 2:

Рисунок 1.3

найдем, применив I закон Кирхгофа

Решение:

, тогда

=0,99*68,2694 = 67,586706В

= 0,115 А

= 7,47А

= 2,46А

= 2,25А

7,35А

1.5. Задача анализа цепи. Законы Кирхгофа

1.5. Задача анализа цепи. Законы Кирхгофа.

Задача анализа электрической цепи формулируется следующим образом: заданы схемы электрической цепи со значениями всех ее элементов, а также напряжения и токи источников, действующих в цепи, требуется найти токи в ветвях и напряжения на элементах цепи. Для определения искомых токов и напряжений необходимо составить уравнения цепи, которые определяются только геометрической конфигурацией и способами соединения элементов цепи. Эти уравнения составляются на основе двух законов Кирхгофа, которые связывают токи ветвей, сходящихся в узлах, и напряжения элементов, входящих в контуры.

Первый закон Кирхгофа, выражающий закон сохранения заряда, формулируется так: в любой момент алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю.

(1.12)

Знак тока ,при записи первого закона Кирхгофа, определяется выбором положительных направлений токов ветвей: например, токам, входящим в узел, приписывают условно знак плюс, а токам, выходящим из узла — знак минус. Так, для узла изображенного на рис. 1.10.

Второй закон Кирхгофа, выражающий закон сохранения энергии, формулируется следующим образом: в любой момент алгебраическая сумма напряжений в ветвях контура равна нулю.

(1.13)

          Рис  1.10                Суммирование напряжений производится с учетом их положительных направлений и выбранного направления обхода контура. Если положительное направление напряжения ветви совпадает с напряжением обхода контура, то оно входит в (1.13) со знаком плюс, в противном случае – со знаком минус.

Часто используется другая формулировка второго закона Кирхгофа: алгебраическая сумма э.д.с. источников, действующих в контуре, равна алгебраической сумме напряжений на элементах контура.

Рекомендуемые файлы

(1.14)

При этом напряжения на элементах контура и э.д.с. источников входят  в уравнение (1.14) со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в обратном случае слагаемые в (1.14) берутся со знаком минус. Например, для схемы (рис 1.11) при обходе по часовой стрелке уравнение второго закона Кирхгофа запишется следующим образом:

Для разветвленной цепи, содержащей q узлов и k ветвей, при определении неизвестных токов следует составить k уравнений по первому и второму законам Кирхгофа, т.к. число неизвестных токов

            Рис  1.11               равно числу ветвей цепи. Причем число уравнений, составленных по первому закону Кирхгофа, равно (q-1), а число уравнений, составленных по второму закону Кирхгофа, — (k-(q-1)).

Уравнение второго закона Кирхгофа может быть записано для участка цепи между точками «а» и «b» (см. рис. 1.12). При этом контур замыкается по стрелке, указывающей положительное направление напряжения между точками «a» и «b»

 (1.15)   

Таким образом можно всегда определить напряжение между двумя любыми точками электрической цепи.

Пример 1.1. Записать уравнения по законам

        Рис  1.12                Кирхгофа для расчета токов цепи, представленной на                            рис. 1.13.

Информация в лекции «13. Организация взаимодействия и полномочия» поможет Вам.

Решение.

Цепь содержит 3 ветви и два узла: «a» и «b», следовательно, по первому закону Кирхгофа составим одно уравнение, а остальные два – по  второму закону Кирхгофа. Выбрав положительные направления токов I1, I2, I3 такими, как показано на рисунке 1.13, и обходя контур I и II по часовой стрелке, получим                                                                                        Рис  1.13                              

После решения и подстановки числовых значений полученные результаты могут быть либо положительными, либо отрицательными. В случае отрицательного значения действительное направление тока будет противоположным указанному на рисунке.

Второй закон кирхгофа для контура

Законы Кирхгофа являются одной из форм закона сохранения энергии и потому относятся к фундаментальным законам природы.

Первый закон Кирхгофа является следствием принципа непрерывности электрического тока, в соответствии с которым суммарный поток зарядов через любую замкнутую поверхность равен нулю, т.е. количество зарядов выходящих через эту поверхность должно быть равно количеству входящих зарядов. Основание этого принципа очевидно, т.к. при нарушении его электрические заряды внутри поверхности должны были бы либо исчезать, либо возникать без видимых причин.

Если заряды перемещаются внутри проводников, то они образуют в них электрический ток. Величина электрического тока может измениться только в узле цепи, т.к. связи считаются идеальными проводниками. Поэтому, если окружить узел произвольной поверхностью s (рис. 1), то потоки зарядов через эту поверхность будут тождественны токам в проводниках образующих узел и
суммарный ток в узле должен быть равным нулю.

Для математической записи этого закона нужно принять систему обозначений направлений токов по отношению к рассматриваемому узлу. Можно считать токи направленные к узлу положительными, а от узла отрицательными. Тогда для узла рис. 1 уравнение Кирхгофа будет иметь вид I 3 + I 4 — I 1 — I 2 = 0 или I 3 + I 4 = I 1 + I 2 .

Обобщая сказанное на произвольное число ветвей сходящихся в узле, можно сформулировать первый закон Кирхгофа следующим образом:

  • алгебраическая сумма токов в любом узле электрической цепи равна нулю
  • в любом узле сумма токов направленных к узлу равна сумме токов направленных от узла

, где p + q = n .

Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным. Существенным является только соглашение о знаках токов для данной цепи, т.е. в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов .

При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно . При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании их в направлении противоположном принятому.

Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.

Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.

Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.

Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:

  • алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю

Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;

  • алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре

, где p + q = n

Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — N J .

Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов N у минус один.
Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

N 1 = N у -1 ;

N 2 = N — N 1 = N в — N J — N 1.

Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :

  1. определить число узлов и ветвей цепи N у и N в ;
  2. определить число уравнений по первому и второму законам N 1 и N 2 . ;
  3. для всех ветвей (кроме ветвей с источниками тока) произвольно задать
    направления протекания токов;
  4. для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
  5. произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
  6. произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.

Рассмотрим этот алгоритм на примере рис 2.

Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.

Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

b ) I R 3 + I E 2 = I R 1 + I R 2 Ы I R 3 + I E 2 — I R 1 — I R 2 = 0

По второму закону Кирхгофа нужно составить два уравнения. Выберем два контура I и II так, чтобы все ветви, кроме ветви с источником тока попали по крайней мере в один из них, и зададим произвольно направление обхода как показано стрелками. Тогда

II) E 2 = I R 2 R 2

При выборе контуров и составлении уравнений все ветви с источниками тока должны быть исключены, т.е. контуры обхода не должны включать ветви с источниками тока. Это не означает что для контуров с источниками тока нарушается второй закон Кирхгофа. Просто при необходимости определения падения напряжения на источнике тока или на других элементах ветви с источником тока это можно сделать после решения системы уравнений. Например, на рис. 2 можно создать замкнутый контур из элементов R 3 , R 4 , J и E 2 , и для него будет справедливым уравнение

I R 3 R 3 + E 2 + JR 4 + U J = 0 ,

где U J — падение напряжения на источнике тока J.

Из сказанного выше очевидно, что законы Кирхгофа необязательно использовать в виде систем уравнений. Они справедливы всегда для любого узла и для любого замкнутого контура любой электрической цепи.

Современные средства математического анализа позволяют легко получить результат решения составленной выше системы уравнений, если она записана в матричной форме A ґ X = B . Это можно сделать, например, для токов в качестве неизвестных.

Каждая строка матрицы A должна соответствовать одному из уравнений (7)-(10). Поэтому в строки матрицы A нужно включить все коэффициенты при токах соответствующего уравнения, в той последовательности, в какой эти токи включены в координаты вектора неизвестных величин . Если какой-либо ток отсутствует в уравнении, то в качестве элемента матрицы нужно указать нуль. Для включения в матрицу уравнения по первому закону Кирхгофа удобнее записывать в форме (1) с нулевой правой частью, однако, для уравнения (7) нужно перенести ток источника J в правую часть, т.к. он не входит в число неизвестных.

Вектор неизвестных токов X представляет собой столбец, в который включены неизвестные токи в произвольной последовательности.

Вектор B представляет собой столбец, координатами которого являются источники электрической энергии, действующие в цепи (правая часть уравнений (7)-(10)). Порядок включения их в столбец должен соответствовать порядку записи уравнений в строки матрицы A .

Составим матричное уравнение для схемы рис. 2 , используя полученные ранее уравнения (7)-(8) и (9)-(10) .

Здесь для упрощения восприятия строки записи помечены указателями на тот узел или контур, которому они соответствуют.

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.
Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а — I1R1 , ? b = ? к + Е1, ?с = ? b — I2R2 , ? d = ?c — Е2, ? a = ?d + I3R3 = 0

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I1— ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Расчет электрической цепи по закону Кирхгофа – образцы и примеры

Содержание:

  1. Законы Кирхгофа
  2. Порядок составления уравнений но законам Кирхгофа
  3. Пример задачи с решением 3.2.

Законы Кирхгофа

Уравнения, описывающие поведение электрической цепи, составляют на основе законов Кирхгофа. Они определяют связь между токами и напряжениями элементов, образующих цепь. Уравнения, составленные согласно этим законам, называют уравнениями Кирхгофа.

Первый закон Кирхгофа определяет баланс токов в узлах электрической цепи.

Он формулируется следующим образом:

Алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

В уравнении (3.1) токи, направленные от узла, записывают с положительным знаком. Токи, направленные к узлу, записывают со знаком минус.

Система уравнений по первому закону Кирхгофа, записанная для всех узлов цепи, линейно зависима. В этом легко убедиться, сложив все уравнения. Поскольку ток каждой ветви входит в два уравнения с разными знаками, сумма тождественно равна нулю. Поэтому число независимых уравнений по первому закону Кирхгофа равно , где — число узлов цепи.

Второй закон Кирхгофа устанавливает баланс напряжений в контуре цепи:

Алгебраическая сумма напряжений ветвей в контуре равна нулю:

Если напряжение ветви совпадает с направлением обхода контура, то напряжению приписывают знак плюс, если же нет — знак минус. Перенесем напряжения источников напряжения, равные ЭДС этих источников, в правую часть. Уравнение (3.2) примет вид

В соответствии с последним равенством алгебраическая сумма напряжений ветвей в контуре электрической цепи равна алгебраической сумме ЭДС источников.

Число независимых уравнений, записанных по второму закону Кирхгофа, равно числу независимых контуров. Число таких контуров определяется формулой , где — число ветвей.

Возможно вам будут полезны данные страницы:

Порядок составления уравнений но законам Кирхгофа

1. Необходимо сначала выбрать положительные направления токов и напряжений ветвей. Положительное направление тока показывают стрелкой на выводе элемента. Положительное направление напряжения показывают стрелкой, расположенной рядом с элементом. Полярности напряжений резисторов выбирают согласованными с направлениями токов. Направления токов источников напряжения выбирают совпадающими с направлениями ЭДС.

2. Записываем уравнения по первому закону Кирхгофа для узлов.

3. Выбираем направления обхода контуров и записываем уравнения по законам Кирхгофа. Сопротивление проводника, соединяющего элементы, очень мало по сравнению с сопротивлением резистора и игнорируется. Ячейки внутренней цепи удобно выбирать в качестве независимых цепей. Можно воспользоваться и другим способом: выбрать по порядку контуры, так, чтобы каждый следующий контур содержал, по меньшей мере, одну ветвь, не входящую в предыдущие контуры.

4. Решаем полученную систему уравнений и определяем токи и напряжения цепи.

5. После определения токов и напряжений необходимо выполнить проверку. Для этого вычисленные значения переменных подставляют в одно из уравнений, составленных по законам Кирхгофа.

При составлении уравнений в качестве неизвестных рассматривают либо токи, либо напряжения резистивных элементов.

В первом случае уравнения цепи составляют относительно неизвестных токов резистивных элементов и напряжений на источниках тока. Напряжения на резистивных элементах, входящие в уравнения по второму закону Кирхгофа, выражают через токи по закону Ома. Такой способ составления уравнений называют токов ветвей.

Число совместно решаемых уравнений в методе токов ветвей можно сократить, если контуры выбирать так, чтобы они не включали источники тока. В этом случае неизвестными будут только токи резистивных элементов, и по второму закону Кирхгофа достаточно составить уравнений, где — количество источников тока.

Во втором случае уравнения цепи составляются относительно напряжений резистивных элементов и токов источников напряжения. Токи резисторов представляют произведением проводимости на напряжение на резисторе. Этот способ составления уравнений называют методом напряжений ветвей.

В дальнейшем для решения задач мы будем использовать в основном метод токов ветвей.

Пример 3.1. Записать уравнения Кирхгофа для цепи, показанной на рис. 3.1.

Решение. Сначала выберем направления токов резистивных элементов и пронумеруем узлы. Неизвестными являются токи резистивных элементов . Поэтому необходимо составить пять уравнений. Цепь содержит четыре узла; это означает, что по первому закону Кирхгофа можно составить три уравнения. Число уравнений по второму закону Кирхгофа равно двум.

Запишем уравнения по первому закону Кирхгофа для узлов 1, 2, 3. Контуры I и II выберем так, чтобы они не включали источник тока, иначе в системе уравнений появится дополнительная переменная — напряжение источника тока. Направления обхода контуров выберем совпадающими с направлением движения часовой стрелки. В результате получим систему из пяти уравнений с пятью неизвестными токами:

Узел 1: ;

Узел 2: ;

Узел З: ;

Контур I:

Контур II:

Для решения системы уравнений целесообразно использовать математические пакеты, например MathCAD или Matlab.

Напряжение на зажимах источника тока можно затем найти, записав уравнения для контуров, включающих или

Пример задачи с решением 3.2.

Рассчитать токи в цепи, изображенной на рис. 3.2. Номиналы элементов: ,

Решение. Сначала выберем направления токов резистивных элементов и пронумеруем узлы. В рассматриваемой схеме шесть неизвестных токов , следовательно, необходимо составить шесть независимых уравнений. Цепь содержит четыре узла; это означает, что по первому закону Кирхгофа можно составить три уравнения. Еще три уравнения составим по второму закону Кирхгофа. Наличие источника тока учитывалось при определении числа уравнений по второму закону Кирхгофа.

Составим уравнения по первому закону Кирхгофа для узлов 1, 2 и 3. Уравнения по второму закону Кирхгофа запишем для контуров I, II, III. Направление обхода контуров выбираем по часовой стрелке.

В результате получим систему из шести уравнений с шестью неизвестными токами:

В матричной форме записи:

Решением системы уравнений являются следующие значения токов:

Знак минус в численных значениях токов означает, что направление токов при заданных условиях выбрано навстречу истинному.

Первый закон Кирхгофа в операторной форме

Законы Кирхгофа — формулы и примеры использования

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.
Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а — I1R1 , ? b = ? к + Е1, ?с = ? b — I2R2 , ? d = ?c — Е2, ? a = ?d + I3R3 = 0

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

Закон Ома — первый кит электротехники

А когда Георг Симон Ом, изучая гальванические, как тогда называли, цепи, вывел своё простейшее соотношение, этого понять не мог никто, кроме немногих посвящённых. Просто потому, что обыденный мозг тогда сразу упирался в нечто невообразимое, а значит, непреодолимое: что это за течение такое, ток частиц, которых не то что пощупать, но и представить нельзя ввиду абсолютно исчезающей малости. Да ещё «текущих» в металле, твёрдом предмете. Уж не то, что попытаться составлять какие-либо точные формулы.

Теперь это соотношение кажется простым и ясным, как удар молнии. Видимо, он сумел почувствовать это явление — электрическое напряжение. Если цепь разомкнута, то тока ещё никакого нет, ничего не нагревается и не пузырится (как вода под током), а напряжение вот оно — попробуй, тронь! Видимо, как-то сумел гений потрогать и попробовать.

Собственно, вся любая электрическая цепь и описана законом Ома. Источник, дающий напряжение и нагрузка, подставляющая напряжению своё тело, отчего получается электрический ток. Соотношение простейшее — чем больше напряжение, тем больше ток. А конкретно каким он получится, определяет пропускная способность нагрузки, G, или проводимость.

I=U*G

Удобнее и нагляднее оказалось вместо проводимости пользоваться понятием сопротивления, R, величиной обратной проводимости (R=1/G).

И обозначения на первой электросхеме самые простейшие: прямоугольничек — нагрузка, две линии поперёк тока — батарейка.

Самая первая электрическая схема

Видимо, и подключали поначалу что-то одно к чему-то одному. Но вот и эта схема «под напором реальности» усложняется. Во-первых, сама батарейка имеет сопротивление.

Как это изобразить, вот так?

Некрасиво.

Лучше располагать рядом так:

Есть искушение поставить этот прямоугольничек на другую сторону, рядом с нагрузкой, а нельзя, всё-таки батарейка и её внутреннее сопротивление — одно нераздельное физическое устройство.

Чтобы видеть действие тока, лучше в качестве нагрузки использовать лампочку. Понятно, с выключателем.

Мы получили последовательную цепочку.

Ток во всех её частях обязан быть одним и тем же, то есть одинаковый везде.

Это логично, и если включить выключатель, лампочка сразу загорится.

При этом никто и не задумывается, что если у нас через лампочку течёт ток всего в один ампер, то это значит, что каждую секунду через неё пробегает:

6 квинтиллионов 241 квадриллион 509 триллионов 125 миллиардов 493 миллиона 690 тысяч с небольшим электронов.

И все они вышли из небольшой батареечки и в неё же и вернутся с другой стороны.

Если поставить вместо одной лампочки две одинаковых, то они загорятся вполнакала, то есть ток I, протекающей последовательно из батарейки через выключатель сначала в лампочку Л1, потом в лампочку Л2 и снова в батарейку, станет меньше, чем был, когда стояла одна лампочка.

Это значит, что сопротивление стало больше: было R у одной лампочки, стало R+R, то есть 2R.

Токи и напряжения в сети

Точную величину тока можно подсчитать, если применить закон Ома ко всей нашей цепи, общее сопротивление которой есть сумма сопротивлений всех её нагрузок.

(1) А если оставить в формуле сопротивление только одной лампочки, то, зная, что ток у нас везде один и тот же, можно вычислить напряжение Uл конкретно для этого потребителя, лампочки.

Это напряжение, которое падает именно на нашу лампочку, так и называется «падение напряжения». Оно примерно вдвое меньше нашего напряжения питания U. Примерно — потому что в формуле (1) среди сопротивлений есть ещё небольшой довесок в виде r, внутреннего сопротивления нашей батареи. Что делать, она не идеальна, и вместе со всеми остальными потребляет энергию (свою же собственную) и даже греется от этого. Хотя сопротивление её достаточно малое.

А теперь взглянем на нашу цепь как на единый контур, который можно обходить по часовой или против часовой стрелки. Ток наш идёт, как нарисовано, против часовой стрелки. Двинемся по этому направлению с любого места и пройдём всё, складываем падения напряжения на всех попадающихся по дороге приборах.

Для токов — узлы, для напряжений — контуры

Получится:

Последним напряжением добавлено то, которое вырабатывается батареей, только со знаком минус, так как оно работает не на потребление, а наоборот, вырабатывается и поставляется в сеть нашей героической батареей. И что у нас получилось?

Правило Кирхгофа для напряжений (2й закон)

А получилось ровно 0. Потому что вся энергия от батареи потребляется лампочками + внутреннее сопротивление батареи. И понятно, это есть высшая справедливость природы. То есть второй закон Кирхгофа в действии.

И вдруг у нас случился… прорыв.

Правило Кирхгофа для токов (1й закон)

К нам в двух точках — А и B — подключились неизвестные, скорее всего, инопланетяне.

И начали качать от нас энергию. И теперь мы знаем, что ток I3 и ток I4 — не наши, они инопланетянские. И наша схема может быть безнадёжно испорчена.

Но!

А обойдём ка мы контур снова. Может быть, не всё ещё потеряно. И вот:

Ur=I1*r

Uл1=I2*R=Uл2

И, наконец:

U=Uг+Uл1+Uл2.

Потому что I1=I2+I3. И I1=I2+I4.

То есть сколько току вытекло в качестве тока I3 в точке А, столько его и вернулось к нам в точке B в виде тока I4. Высшая справедливость всё-таки восторжествовала. А помогло нам при этом здравое рассуждение, о том, что в любой точке цепи, где электрическая сеть разветвляется, общее количество тока, вытекающего из узла, то есть этой точки, равно количеству тока, втекающего в этот узел. Поэтому смело рисуем схему, зная, что нам помог уже первый, а не второй закон Кирхгофа:

Почему-то оказалось, что токи I3 и I4 оказались точно равными -I1, и значит… наши лампочки загорелись полным накалом.

Ох уж эти выдумки инопланетянские! С нашей стороны осталось только в схеме поставить стрелочки токов (и ЭДС у источника ЭДС Eин) в противоположное направление. Потому что мы сначала подумали, что инопланетяне плохие, а они оказались хорошими.

Расчёт цепи по законам Кирхгофа интуитивно понятен — правила позволяют рассчитывать электрические цепи, то есть определять все неизвестные параметры — токи, напряжения — любой, сколь угодно замысловатой цепи.

Законы Кирхгофа простыми словами ⋆ diodov.net

Два закона Кирхгофа вместе с законом Ома составляют тройку законов, с помощью которых можно определить параметры электрической цепи любой сложности.

Законы Кирхгофа мы будем проверять на примерах простейших электрических схем, собрать которые не составит никакого труда.

Для этого понадобится несколько резисторов, пара источников питания, в качестве которых подойдут гальванические элементы (батарейки) и мультиметр.

Первый закон Кирхгофа

Первый закон Кирхгофа говорит, что сумма токов в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.

Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.

Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

I1 — I2 — I3 = 0.

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В. Формулой это описывается так:

И последний отличительный вариант, который мы рассмотрим в данной статье, предполагает последовательное встречное соединение гальванических элементов. При таком соединении источников питания из большей ЭДС отнимается значение меньшей ЭДС. Следовательно к резисторам R1…R3 будет приложена разница E1 – E2, то есть 4,5 – 1,5 = 3 В, — по одному вольту на каждый резистор.

Второй закон Кирхгофа работает не зависимо от количества источников питания и нагрузок, а также независимо от места их расположения в контуре схемы. Полезно будет собрать рассмотренные схемы и выполнить соответствующие измерения с помощью мультиметра.

Законы Кирхгофа действуют как для постоянного, так и для переменного тока.

Источник: https://diodov.net/zakony-kirhgofa-prostymi-slovami/

Расчет электрических цепей по законам Кирхгофа

При расчетах электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие полностью определить режим его работы.

Прежде чем перейти к самим законам Кирхгофа, дадим определение ветвей и узлов электрической цепи.

Ветвь электрической цепи — это такой ее участок, который состоит только из последовательно соединенных источников ЭДС и сопротивлений, по которым протекает один и тот же ток.Узел электрической схемы — это место (точка) соединения трех и более ответвлений. При обходе ответвлений, соединенных в узлы, можно получить замкнутую цепь электрической цепи. Каждая схема представляет собой замкнутый путь, проходящий через несколько ветвей, причем каждый узел в рассматриваемой схеме встречается не более одного раза [1].

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна нулю:

∑i = 0,

или в сложной форме

∑I = 0.

Второй закон Кирхгофа применяется к цепям электрической цепи и формулируется следующим образом: в любой замкнутой цепи алгебраическая сумма напряжений на сопротивлениях, включенных в эту цепь, равна алгебраической сумме ЭДС:

∑Z I = E .

Количество уравнений, составленных для электрической цепи согласно первому закону Кирхгофа, равно N n — 1, где N n — количество узлов.Количество уравнений, составленных для электрической цепи по второму закону Кирхгофа, составляет N b N n + 1, где N b — количество ветвей. Количество уравнений, которые необходимо составить по второму закону Кирхгофа, легко определить по типу схемы: для этого достаточно подсчитать количество «окон» схемы, но с одним уточнением: следует помнить, что цепь с источником тока не считается .

Опишем методику составления уравнений по законам Кирхгофа. Рассмотрим это на примере электрической схемы, представленной на рис. 1.


Рис. 1. Рассмотрим электрическую схему

Для начала необходимо указать произвольные направления токов в ответвлениях и указать направления цепей (рис. 2).


Рис. 2. Установка направления токов и направления обхода цепи для электрической цепи

Количество уравнений, составленных по первому закону Кирхгофа, в данном случае 5 — 1 = 4.Количество уравнений, составленных по второму закону Кирхгофа, равно 3, хотя «окон» в данном случае равно 4. Но напомним, что «окно», содержащее ток источника J 1 , не рассматривается.

Составьте уравнения согласно первому закону Кирхгофа. Для этого возьмем токи, «текущие» в узел со знаком «+», и «вытекающие» со знаком «-». Следовательно, для узла «1 н.» Уравнение по первому закону Кирхгофа будет выглядеть так:

I 1 I 2 I 3 = 0;

за узел «2 н.”Уравнение по первому закону Кирхгофа будет иметь следующий вид:

I 1 I 4 + I 6 = 0;

для узла «3 н.»:

I 2 + I 4 + I 5 I 7 = 0;

за узел «4 п.”

I 3 I 5 J 1 = 0

Уравнение для узла «5 н.» вы не можете сделать.

Составим уравнения по второму закону Кирхгофа. В этих уравнениях выбираются положительные значения для токов и ЭДС, если они совпадают с направлением цепи. Для «1 с.» схемы уравнение по второму закону Кирхгофа будет выглядеть так:

Z C 1 I 1 + R 2 I 2 Z L 1 I 4 = E 1 ;

для «2 c.”Уравнение по второму закону Кирхгофа будет иметь следующий вид:

-R 2 I 2 + R 4 I 3 + Z C 2 Я 5 = E 2 ;

за «3 с.» цепь:

Z L 1 I 4 + ( Z L 2 + R 1 ) ∙ I 6 + R 3 I 7 = E 3 ,

, где Z C = — 1 / (ωC), Z L = ω L .

Таким образом, чтобы найти требуемые токи, необходимо решить следующую систему уравнений:

В данном случае это система из 7 уравнений с 7 неизвестными. Для решения этой системы уравнений удобно использовать Matlab. Для этого представьте эту систему уравнений в матричной форме:

Для решения этой системы уравнений мы используем следующий скрипт:

 >> syms R1 R2 R3 R4 Zc1 Zc2 Zl1 Zl2 J1 E1 E2 E3;
>> А = [1-1-1 0 0 0 0;
       -1 0 0 -1 0 1 0;
        0 1 0 1 1 0 -1;
        0 0 1 0 -1 0 0;
      Zc1 R2 0 -Zl1 0 0 0;
        0 -R2 R4 0 Zc2 0 0;
        0 0 0 Zl1 0 (R1 + Zl2) R3];
>> b = [0;
        0;
        0;
       J1;
       E1;
       E2;
       E3];
>> I = A \ b 

В результате получаем вектор-столбец I токов из семи элементов, состоящий из искомых токов, записанных в общем виде.Мы видим, что программный комплекс Matlab позволяет существенно упростить решение сложных систем уравнений, составленных по законам Кирхгофа.

Список литературы
  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Эд. 4-й, исправленный. М., «Энергия», 1975.

Применение закона Кирхгофа для анализа схем: основы схем

Основными законами теории электрических цепей являются законы Кирхгофа — закон токов, уравновешенных в узлах цепи (первый закон Кирхгофа), и напряжений, уравновешенных в контуре (второй закон Кирхгофа).

Первый закон Кирхгофа или текущий закон Кирхгофа (KCL) утверждает, что текущая алгебраическая сумма в узле равна нулю.

∑i = 0

Эта сумма работает для токов, сходящихся в рассматриваемом узле. Знаки токов соответствуют рассматриваемому положительному направлению токов. Например, все токи, текущие к узлу, имеют положительный знак, все токи, текущие из узла, имеют отрицательный знак, или наоборот.

Во-первых, закон Кирхгофа гласит, что узлы не накапливают электрический заряд.Это означает, что сумма зарядов, поступающих в узел, равна сумме зарядов, выходящих из этого узла.

Второй закон Кирхгофа или закон напряжения Кирхгофа (KVL) гласит, что алгебраическая сумма ЭДС в любом контуре в цепи равна напряжению каждого элемента этого контура.

∑e = ∑u

Обход контура обычно выполняется в любом выбранном направлении. ЭДС и напряжения, совпадающие с направлением байпаса, идут с одним знаком. Верно утверждение, что сумма напряжений ветви равна нулю в любом замкнутом контуре.

Применение законов Кирхгофа для анализа цепей .

Методы, которые будут обсуждаться в Законе Кирхгофа, действительны как для цепей переменного, так и для постоянного тока, а также для синтеза материала, который предоставляется в сложной форме.

Вообще говоря, все переменные в цепи можно найти, разрешив первый и второй законы Кирхгофа (для напряжения и тока).

Учтите, что в цепи имеется p ветвей и q узлов, ЭДС (источники напряжения) известны, напряжения в узлах являются переменными, которые необходимо найти.

Согласно первому закону Кирхгофа сумма токов в узле равна 0, и будет q — 1 независимых уравнений. Согласно второму закону Кирхгофа, сумма ЭДС в узле равна 0, в системе будет p — q + 1 независимых уравнений. Это означает, что для разрешения схемы в соответствии с первым и вторым законами Кирхгофа необходимо разрешить (q — 1 ) + (p — q + 1) уравнений, т.е. p .

Закон Кирхгофа — сеточный метод

10.4: Правила Кирхгофа — Physics LibreTexts

Мы только что видели, что некоторые схемы можно анализировать, сводя схему к одному источнику напряжения и эквивалентному сопротивлению. Многие сложные схемы не могут быть проанализированы с помощью последовательно-параллельных методов, разработанных в предыдущих разделах. В этом разделе мы подробно рассмотрим использование правил Кирхгофа для анализа более сложных схем. Например, схема на рисунке \ (\ PageIndex {1} \) известна как многоконтурная схема , которая состоит из переходов.Соединение, также известное как узел, представляет собой соединение трех или более проводов. В этой схеме нельзя использовать предыдущие методы, потому что не все резисторы имеют четкую последовательную или параллельную конфигурацию, которую можно уменьшить. Попробуйте. Резисторы \ (R_1 \) и \ (R_2 \) включены последовательно и могут быть уменьшены до эквивалентного сопротивления. То же самое и с резисторами \ (R_4 \) и \ (R_5 \). Но что же тогда делать?

Несмотря на то, что эта схема не может быть проанализирована с использованием уже изученных методов, два правила анализа схемы могут использоваться для анализа любой схемы, простой или сложной.Правила известны как Правила Кирхгофа , в честь их изобретателя Густава Кирхгофа (1824–1887).

Теперь мы даем объяснения этих двух правил, за которыми следуют советы по решению проблем по их применению и рабочий пример, в котором они используются.

Первое правило Кирхгофа

Первое правило Кирхгофа (правило соединения ) применяется к заряду, входящему в соединение и выходящему из него (рисунок \ (\ PageIndex {2} \)). Как указывалось ранее, соединение или узел — это соединение трех или более проводов.Ток — это поток заряда, и заряд сохраняется; таким образом, любой заряд, попадающий в переход, должен вытекать.

Рисунок \ (\ PageIndex {2} \): Заряд должен сохраняться, поэтому сумма токов в переходе должна быть равна сумме токов на выходе.

Хотя это чрезмерное упрощение, можно провести аналогию с водопроводными трубами, соединенными в водопроводной разводке. Если провода на рисунке \ (\ PageIndex {2} \) были заменены водопроводными трубами и вода считалась несжимаемой, объем воды, текущей в соединение, должен быть равен объему воды, вытекающей из соединения.

Второе правило Кирхгофа

Второе правило Кирхгофа (правило петли ) применяется к разности потенциалов. Правило цикла сформулировано в терминах потенциала В , а не потенциальной энергии, но они связаны между собой, поскольку \ (U = qV \). В замкнутом контуре, какая бы энергия ни поступала от источника напряжения, энергия должна быть передана в другие формы устройствами в контуре, поскольку нет других способов передачи энергии в цепь или из нее.Правило петли Кирхгофа гласит, что алгебраическая сумма разностей потенциалов, включая напряжение, подаваемое источниками напряжения и резистивными элементами, в любой петле должна быть равна нулю. Например, рассмотрим простой цикл без стыков, как на рисунке \ (\ PageIndex {3} \).

Рисунок \ (\ PageIndex {3} \): простой цикл без соединений. Правило петли Кирхгофа гласит, что алгебраическая сумма разностей напряжений равна нулю.

Схема состоит из источника напряжения и трех внешних нагрузочных резисторов.Ярлыки a , b , c и d служат в качестве ссылок и не имеют другого значения. Скоро станет очевидна полезность этих этикеток. Цепь обозначается как Loop abcda , и метки помогают отслеживать разницу напряжений при перемещении по цепи. Начните с точки a и двигайтесь к точке b . Напряжение источника напряжения добавляется к уравнению и вычитается падение потенциала резистора \ (R_1 \).От точки b до c падение потенциала на \ (R_2 \) вычитается. Из c до d вычитается падение потенциала на \ (R_3 \). От точек d до a ничего не делается, потому что нет компонентов.

На рисунке \ (\ PageIndex {4} \) показан график напряжения при перемещении по контуру. Напряжение увеличивается при прохождении через батарею, тогда как напряжение уменьшается при прохождении через резистор. Падение потенциала , или изменение электрического потенциала, равно току через резистор, умноженному на сопротивление резистора.Поскольку провода имеют незначительное сопротивление, напряжение остается постоянным, когда мы пересекаем провода, соединяющие компоненты.

Рисунок \ (\ PageIndex {4} \): график напряжения при движении по цепи. Напряжение увеличивается, когда мы пересекаем батарею, и уменьшается, когда мы пересекаем каждый резистор. Поскольку сопротивление провода довольно мало, мы предполагаем, что напряжение остается постоянным, когда мы пересекаем провода, соединяющие компоненты.

Тогда правило петли Кирхгофа утверждает

\ [V — IR_1 — IR_2 — IR_3 = 0.\]

Уравнение контура можно использовать для определения тока в контуре:

\ [I = \ frac {V} {R_1 + R_2 + R_3} = \ frac {12.00 \, V} {1.00 \, \ Omega + 2.00 \, \ Omega + 3.00 \, \ Omega} = 2.00 \, A . \]

Этот цикл можно было бы проанализировать с помощью предыдущих методов, но мы продемонстрируем мощь метода Кирхгофа в следующем разделе.

Применение правил Кирхгофа

Применяя правила Кирхгофа, мы генерируем набор линейных уравнений, которые позволяют нам находить неизвестные значения в схемах.Это могут быть токи, напряжения или сопротивления. Каждый раз, когда применяется правило, оно создает уравнение. Если независимых уравнений столько же, сколько неизвестных, то проблема может быть решена.

Использование метода анализа Кирхгофа требует нескольких шагов, перечисленных в следующей процедуре.

Стратегия решения проблем: правила Кирхгофа

  1. Обозначьте точки на принципиальной схеме строчными буквами a , b , c ,….Эти метки просто помогают сориентироваться.
  2. Найдите соединения в цепи. Соединения — это точки, в которых соединяются три или более проводов. Обозначьте каждое соединение токами и направлениями в него и из него. Убедитесь, что по крайней мере один ток направлен на соединение, а по крайней мере один ток выходит из соединения.
  3. Выбрать петли в схеме. Каждый компонент должен содержаться хотя бы в одном цикле, но компонент может содержаться более чем в одном цикле.
  4. Примените правило соединения. Опять же, некоторые стыки не следует включать в анализ. Вам нужно использовать достаточно узлов только для включения каждого тока.
  5. Примените правило цикла. Используйте карту на рисунке \ (\ PageIndex {5} \).
Рисунок \ (\ PageIndex {5} \): Каждый из этих резисторов и источников напряжения проходит от до до до . (a) При перемещении через резистор в том же направлении, что и ток, вычтите падение потенциала. (b) При перемещении через резистор в направлении, противоположном току, добавьте падение потенциала.(c) При перемещении источника напряжения от отрицательной клеммы к положительной, добавьте падение потенциала. (d) При перемещении через источник напряжения от положительной клеммы к отрицательной вычтите падение потенциала.

Давайте подробнее рассмотрим некоторые этапы этой процедуры. При размещении переходов в цепи не обращайте внимания на направление токов. Если направление потока тока неочевидно, выбора любого направления достаточно, если хотя бы один ток направлен в соединение и хотя бы один ток выходит из соединения.Если стрелка находится в направлении, противоположном обычному потоку тока, результат для рассматриваемого тока будет отрицательным, но ответ все равно будет правильным.

Количество узлов зависит от схемы. Каждый ток должен быть включен в узел и, таким образом, включен по крайней мере в одно уравнение соединения. Не включайте узлы, которые не являются линейно независимыми, то есть узлы, содержащие одинаковую информацию.

Рассмотрим рисунок \ (\ PageIndex {6} \). В этой цепи два перехода: переход b и переход e .Точки a , c , d и f не являются перекрестками, поскольку стык должен иметь три или более соединений. Уравнение для соединения b : \ (I_1 = I_2 + I_3 \), а уравнение для соединения e — это \ (I_2 + I_3 = I_1 \). Это эквивалентные уравнения, поэтому необходимо оставить только одно из них.

Рисунок \ (\ PageIndex {6} \): На первый взгляд, эта схема содержит два соединения, соединение b и соединение e , но следует рассматривать только один, поскольку их уравнения соединения эквивалентны.

При выборе петель в схеме вам необходимо достаточное количество петель, чтобы каждый компонент был покрыт один раз, без повторения петель. На рисунке \ (\ PageIndex {7} \) показаны четыре варианта циклов для решения примерной схемы; варианты (a), (b) и (c) имеют достаточное количество циклов для полного решения схемы. Вариант (d) отражает больше петель, чем необходимо для решения схемы.

Рисунок \ (\ PageIndex {7} \): Панели (a) — (c) достаточно для анализа схемы. В каждом случае два показанных контура содержат все элементы схемы, необходимые для полного решения схемы.На панели (d) показаны три использованных контура, что больше, чем необходимо. Любые две петли в системе будут содержать всю информацию, необходимую для решения схемы. Добавление третьего цикла дает избыточную информацию.

Рассмотрим схему на рисунке \ (\ PageIndex {8a} \). Давайте проанализируем эту схему, чтобы найти ток через каждый резистор. Сначала промаркируйте схему, как показано в части (b).

Рисунок \ (\ PageIndex {8} \): (a) Многоконтурная схема. (b) Пометьте цепь, чтобы облегчить ориентацию.

Далее определяем перекрестки.В этой схеме точки b и e имеют по три соединенных провода, что делает их соединениями. Начните применять правило соединения Кирхгофа \ (\ left (\ sum I_ {in} = \ sum I_ {out} \ right) \), рисуя стрелки, представляющие токи, и маркируя каждую стрелку, как показано на рисунке \ (\ PageIndex {9 } \). Соединение b показывает, что \ (I_1 = I_2 + I_3 \), а соединение e показывает, что \ (I_2 + I_3 = I_1 \). Поскольку соединение e дает ту же информацию, что и соединение b , ее можно не принимать во внимание.Эта схема имеет три неизвестных, поэтому для ее анализа нам понадобятся три линейно независимых уравнения.

Рисунок \ (\ PageIndex {9} \): (a) Эта схема имеет два соединения, помеченных b и e, но в анализе используется только узел b. (b) Обозначенные стрелки представляют токи в переходах и на выходе из них.

Далее нам нужно выбрать петли. На рисунке \ (\ PageIndex {10} \) контур abefa включает источник напряжения \ (V_1 \) и резисторы \ (R_1 \) и \ (R_2 \). Цикл начинается в точке a , затем проходит через точки b , e и f , а затем возвращается к точке a .Второй контур, Loop ebcde , начинается в точке e и включает резисторы \ (R_2 \) и \ (R_3 \), а также источник напряжения \ (V_2 \).

Рисунок \ (\ PageIndex {10} \): Выберите петли в схеме.

Теперь мы можем применить правило цикла Кирхгофа, используя карту на рисунке \ (\ PageIndex {5} \). Начиная с точки a и двигаясь к точке b , резистор \ (R_1 \) пересекается в том же направлении, что и ток \ (I_1 \), поэтому падение потенциала \ (I_1R_1 \) вычитается.Двигаясь от точки b к точке e , резистор \ (R_2 \) пересекается в том же направлении, что и ток \ (I_2 \), поэтому падение потенциала \ (I_2R_2 \) вычитается. При перемещении от точки e к точке f источник напряжения \ (V_1 \) пересекается от отрицательной клеммы к положительной клемме, поэтому добавляется \ (V_1 \). Между точками f и a нет компонентов. Сумма разностей напряжений должна равняться нулю:

\ [Петля \, abefa: \, -I_1R_1 — I_2R_2 + V_1 = 0 \ или \, V_1 = I_1R_1 + I_2R_2.\]

Наконец, проверяем цикл ebcde . Мы начинаем с точки e и переходим к точке b , пересекая \ (R_2 \) в направлении, противоположном текущему потоку \ (I_2 \). Потенциальное падение \ (I_2R_2 \) добавлено. Затем мы пересекаем \ (R_3 \) и \ (R_4 \) в том же направлении, что и текущий поток \ (I_3 \), и вычитаем потенциальные падения \ (I_3R_3 \) и \ (I_3R_4 \). Обратите внимание, что ток через резисторы \ (R_3 \) и \ (R_4 \) одинаков, потому что они соединены последовательно. Наконец, источник напряжения пересекается с положительной клеммы на отрицательную, а источник напряжения \ (V_2 \) вычитается.Сумма этих разностей напряжений равна нулю и дает уравнение контура

\ [Петля \, ebcde: \, I_2R_2 — I_3 (R_3 + R_4) — V_2 = 0. \]

Теперь у нас есть три уравнения, которые мы можем решить относительно трех неизвестных.

\ [\ text {Перекресток b:} \, I_1 — I_2 — I_3 = 0. \ label {eq1} \]

\ [\ text {Петля abefa:} \, I_1R_1 + I_2R_2 = V_1. \ label {eq2} \]

\ [\ text {Loop ebcde:} \, I_2R_2 — I_3 (R_3 + R_4) = V_2. \ label {eq3} \]

Чтобы решить три уравнения для трех неизвестных токов, начните с исключения тока \ (I_2 \).Сначала добавьте уравнение \ ref {eq1} times \ (R_2 \) к уравнению \ ref {eq2}. Результатом будет уравнение \ ref {eq4}:

.

\ [(R_1 + R_2) I_1 — R_2I_3 = V_1. \]

\ [6 \, \ Omega I_1 — 3 \ Omega I_3 = 24 \, V. \ label {eq4} \]

Затем вычтите уравнение \ ref {eq3} из уравнения \ ref {eq2}. Результатом будет уравнение \ ref {eq5}:

.

\ [I_1R_1 + I_3 (R_3 + R_4) = V_1 — V_2. \]

\ [3 \ Omega I_1 + 7 \ Omega I_3 = -5 \, V. \ label {eq5} \]

Мы можем решить уравнения \ ref {eq4} и \ ref {eq5} для тока \ (I_1 \).Если сложить семикратное уравнение \ ref {eq4} и трехкратное уравнение \ ref {eq5}, получится \ (51 \, \ Omega I_1 = 153 \, V \) или \ (I_1 = 3.00 \, A \). Использование уравнения \ ref {eq4} приводит к \ (I_3 = -2,00 \, A \). Наконец, уравнение \ ref {eq1} дает \ (I_2 = I_1 — I_3 = 5,00 \, A \). Один из способов проверить соответствие решений — проверить мощность, подаваемую источниками напряжения, и мощность, рассеиваемую резисторами:

\ [P_ {in} = I_1V_1 + I_3V_2 = 130 \, W, \ nonumber \]

\ [P_ {out} = I_1 ^ 2R_1 + I_2 ^ 2R_2 + I_3 ^ 2R_3 + I_3 ^ 2R_4 = 130 \, W.\ nonumber \]

Обратите внимание, что решение для текущего \ (I_3 \) отрицательно. Это правильный ответ, но он предполагает, что стрелка, первоначально нарисованная при анализе соединений, имеет направление, противоположное направлению обычного тока. Мощность, отдаваемая вторым источником напряжения, составляет 58 Вт, а не −58 Вт.

Пример \ (\ PageIndex {1} \): расчет тока с использованием правил Кирхгофа

Найдите токи, протекающие в цепи, показанной на рисунке \ (\ PageIndex {11} \).

Рисунок \ (\ PageIndex {11} \): Эта схема представляет собой комбинацию последовательной и параллельной конфигураций резисторов и источников напряжения.Эта схема не может быть проанализирована с использованием методов, обсуждаемых в «Электродвижущей силе», но может быть проанализирована с использованием правил Кирхгофа.

Стратегия

Эта схема достаточно сложна, поэтому токи нельзя найти с помощью закона Ома и последовательно-параллельных методов — необходимо использовать правила Кирхгофа. На рисунке токи обозначены \ (I_1, \, I_2 \) и \ (I_3 \), и были сделаны предположения об их направлениях. Места на схеме обозначены буквами от до до h .В решении мы применяем правила соединения и петли, ища три независимых уравнения, которые позволят нам решить три неизвестных тока.

Решение

Применение правил соединения и петли дает следующие три уравнения. У нас есть три неизвестных, поэтому требуется три уравнения.

\ [Перекресток \, c: \, I_1 + I_2 = I_3. \]

\ [Петля \, abcdefa: \, I_1 (R_1 + R_4) — I_2 (R_2 + R_5 + R_6) = V_1 — V_3. \]

\ [Петля \, cdefc: \, I_2 (R_2 + R_5 + R_6) + I_3R_3 = V_2 + V_3.\]

Упростите уравнения, поместив неизвестные в одну сторону уравнений.

\ [Перекресток \, c: \, I_1 + I_2 — I_3 = 0. \]

\ [Петля \, abcdefa: \, I_1 (3 \ Omega) — I_2 (8 \ Omega) = 0,5 \, V — 2,30 \, V. \]

\ [Цикл \, cdefc: \, I_2 (8 \ Omega) + I_3 (1 \ Omega) = 0,6 \, V + 2. 2R_1 = 0.2R_1 = 0,18 \, W. \]

\ [P_ {disipated} = 1.09 \, W. \]

\ [P_ {источник} = I_1V_1 + I_2V_3 + I_3V_2 = 0,10 \, + 0,69 \, W + 0,30 \, W = 1,09 \, W. \]

Подаваемая мощность равна мощности, рассеиваемой резисторами.

Упражнение \ (\ PageIndex {1} \)

При рассмотрении следующей схемы и мощности, подаваемой и потребляемой схемой, всегда ли источник напряжения обеспечивает питание схемы или может ли источник напряжения потреблять энергию?

Ответ

Схема может быть проанализирована с использованием правила петли Кирхгофа.2R_2 = 7,2 \, мВт. \)

Пример \ (\ PageIndex {2} \): расчет тока с использованием правил Кирхгофа

Найдите ток, протекающий в цепи, показанной на рисунке \ (\ PageIndex {12} \).

Рисунок \ (\ PageIndex {12} \): Эта схема состоит из трех резисторов и двух последовательно соединенных батарей. Обратите внимание, что батареи подключены с противоположной полярностью.

Стратегия

Эту схему можно проанализировать с помощью правил Кирхгофа. Есть только один цикл и нет узлов.Выберите направление тока. В этом примере мы будем использовать направление по часовой стрелке от точки a до точки b . Рассмотрим цикл abcda и воспользуемся рисунком \ (\ PageIndex {5} \), чтобы написать уравнение цикла. Обратите внимание, что согласно рисунку \ (\ PageIndex {5} \), батарея \ (V_1 \) будет добавлена, а батарея \ (V_2 \) вычтена.

Решение

Применение правила соединения дает следующие три уравнения. У нас есть одно неизвестное, поэтому требуется одно уравнение:

\ [Цикл \, abcda: \, -IR_1 -V_1 -IR_2 + V_2 -IR_3 = 0.\]

Упростите уравнения, поместив неизвестные в одну сторону уравнений. Используйте значения, указанные на рисунке.

\ [I (R_1 + R_2 + R_3) = V_2 — V_1. \]

\ [I = \ frac {V_2 — V_1} {R_1 + R_2 + R_3} = \ frac {24 \, V — 12 \, V} {10.0 \, \ Omega + 30.0 \, \ Omega + 10.0 \, \ Омега} = 0,20 \, А. \]

Значение

Мощность, рассеиваемая или потребляемая схемой, равна мощности, подаваемой в схему, но обратите внимание, что ток в батарее \ (V_1 \) течет через батарею от положительной клеммы к отрицательной клемме и потребляет энергию.2R_3 = 0,80 \, Вт \]

\ [P_ {V_1} = IV_1 = 2,40 \, W \]

\ [P_ {рассеивается} = 4.80 \, Вт \]

\ [P_ {источник} = IV_2 = 4.80 \, W \]

Подаваемая мощность равна мощности, рассеиваемой резисторами и потребляемой батареей \ (V_1 \).

Упражнение \ (\ PageIndex {2} \)

При использовании законов Кирхгофа вам необходимо решить, какие петли использовать, и направление тока, протекающего через каждую петлю. При анализе схемы в примере \ (\ PageIndex {2} \) было выбрано направление тока по часовой стрелке от точки a до точки b .Как бы изменились результаты, если бы направление тока было выбрано против часовой стрелки, от точки b до точки a ?

Ответ

Расчетный ток будет равен \ (I = -0.20 \, A \) вместо \ (I = 0.20 \, A \). Сумма рассеиваемой мощности и потребляемой мощности все равно будет равна подаваемой мощности.

Несколько источников напряжения

Для многих устройств требуется более одной батареи.Несколько источников напряжения, таких как батареи, могут быть подключены в последовательной конфигурации, параллельной конфигурации или их комбинации.

Последовательно положительная клемма одной батареи соединена с отрицательной клеммой другой батареи. Любое количество источников напряжения, в том числе аккумуляторы, можно подключать последовательно. Две последовательно соединенные батареи показаны на рисунке \ (\ PageIndex {13} \). Использование правила петли Кирхгофа для схемы в части (b) дает результат

\ [\ epsilon_1 — Ir_1 + \ epsilon_2 — Ir_2 — IR = 0, \]

\ [[(\ epsilon_1 + \ epsilon_2) — I (r_1 + r_2)] — IR = 0.\]

Рисунок \ (\ PageIndex {13} \): (a) Две батареи, соединенные последовательно с нагрузочным резистором. (b) Принципиальная схема двух батарей и нагрузочного резистора, каждая из которых моделируется как идеализированный источник ЭДС и внутреннее сопротивление.

Когда источники напряжения включены последовательно, их внутренние сопротивления можно складывать, а их ЭДС можно складывать вместе, чтобы получить общие значения. Последовательное соединение источников напряжения является обычным явлением, например, в фонариках, игрушках и других приборах.Обычно ячейки включены последовательно, чтобы обеспечить большую суммарную ЭДС. На рисунке \ (\ PageIndex {13} \) напряжение на клеммах равно

.

\ [V_ {терминал} = (\ epsilon_1 — Ir_1) + (\ epsilon_2 — Ir_2) = [(\ epsilon_1 + \ epsilon_2) — I (r_1 + r_2) — I (r_1 + r_2)] = (\ epsilon_1 + \ epsilon_2) + Ir_ {eq}. \]

Обратите внимание, что одинаковый ток I присутствует в каждой батарее, потому что они соединены последовательно. Недостаток последовательного соединения ячеек в том, что их внутренние сопротивления складываются.

Батареи соединены последовательно для увеличения напряжения, подаваемого в цепь. Например, светодиодный фонарик может иметь две батареи типа AAA, каждая с напряжением на клеммах 1,5 В, чтобы обеспечить 3,0 В для фонарика.

Любое количество батарей можно подключить последовательно. Для последовательно включенных батарей N напряжение на зажимах равно

Примечание

\ [V_ {терминал} = (\ epsilon_1 + \ epsilon_2 +… + \ Epsilon_ {N-1} + \ epsilon_N) — I (r_1 + r_2 +.№ р_и \]

Когда нагрузка подключается к источникам напряжения последовательно, как показано на рисунке \ (\ PageIndex {14} \), мы можем найти ток:

\ [(\ epsilon_1 — Ir_1) + (\ epsilon_2 — Ir_2) = IR, \]

\ [Ir_1 + Ir_2 + IR = \ epsilon_1 + \ epsilon_2, \]

\ [I = \ frac {\ epsilon_1 + \ epsilon_2} {r_1 + r_2 + R}. \]

Как и ожидалось, внутренние сопротивления увеличивают эквивалентное сопротивление.

Рисунок \ (\ PageIndex {14} \): Две батареи последовательно подключаются к светодиодной лампе, как в фонарике.

Источники напряжения, такие как батареи, также можно подключать параллельно. На рисунке \ (\ PageIndex {15} \) показаны две батареи с одинаковыми ЭДС, подключенные параллельно и подключенные к сопротивлению нагрузки. Когда батареи подключаются параллельно, положительные клеммы соединяются вместе, а отрицательные клеммы соединяются вместе, а сопротивление нагрузки подключается к положительной и отрицательной клеммам. Обычно источники напряжения, включенные параллельно, имеют идентичные ЭДС. В этом простом случае, поскольку источники напряжения подключены параллельно, общая ЭДС равна индивидуальной ЭДС каждой батареи.

Рисунок \ (\ PageIndex {15} \): (a) Две батареи подключаются параллельно к нагрузочному резистору. (b) На принципиальной схеме показана батарея как источник ЭДС и внутренний резистор. Два источника ЭДС имеют идентичные ЭДС (каждый помечен как \ (\ epsilon \)), соединенные параллельно, которые производят одинаковую ЭДС.

Рассмотрим анализ Кирхгофа схемы на рисунке \ (\ PageIndex {15b} \). {- 1} \]

Например, в некоторых грузовиках с дизельным двигателем параллельно используются две батареи на 12 В; они производят полную ЭДС 12 В, но могут обеспечивать больший ток, необходимый для запуска дизельного двигателя.

Таким образом, напряжение на клеммах последовательно соединенных батарей равно сумме индивидуальных ЭДС минус сумма внутренних сопротивлений, умноженная на ток. Когда батареи соединены параллельно, они обычно имеют равные ЭДС, а напряжение на клеммах равно ЭДС минус эквивалентное внутреннее сопротивление, умноженное на ток, где эквивалентное внутреннее сопротивление меньше, чем отдельные внутренние сопротивления. Аккумуляторы подключаются последовательно для увеличения напряжения на клеммах нагрузки.Аккумуляторы подключаются параллельно для увеличения тока нагрузки.

Законы Кирхгофа

  • Действующий закон Кирхгофа (KCL)

  • Закон напряжения Кирхгофа (KVL)

Действующий закон Кирхгофа (KCL) :

Алгебраическая сумма всех токов, входящих в узел, всегда должна быть равна нулю

, где i n — это n -й ток .N — количество ветвей.

Обычное задание:

  1. , если ток входит в узел, присвойте отрицательный знак «-» и
  2. , если ток покидает узел, присвойте положительный знак «+».

Для следующего рисунка

Уравнение узла можно записать как

Чтобы использовать KCL для анализа схемы,

  1. Запишите уравнения KCL для токов

  2. Используйте закон Ома, чтобы записать токи через напряжения Боде (одно уравнение для каждого резистора)

  3. Решить, чтобы найти значения напряжения и тока узла


Пример: Найдите ток через сопротивление 20 Ом и ток через сопротивление 40 Ом


Закон Кирхгофа о напряжении (KVL):

Алгебраическая сумма всех напряжений в замкнутом контуре всегда должна быть равна нулю.

, где v n — напряжение n -го . N — количество элементов в контуре

Обычное задание:

  1. если положительная (+) сторона напряжения встречается первой, присвойте положительный знак «+» напряжению на элементе.
  2. Если сначала встречается отрицательная (-) сторона напряжения, присвойте отрицательный знак «-» напряжению на элементе.

Для следующего рисунка

Чтобы использовать KVL для анализа схемы,

  1. Запишите уравнения КВЛ для напряжений

  2. Используйте закон Ома, чтобы записать напряжения через сопротивления и токи.

  3. Решите, чтобы найти значения токов, а затем напряжений.


Примеры:

Пример 2 : Найдите ток i и напряжение v на каждом резисторе.


Пример 3: Найдите v1 и v2 в следующей схеме
(примечание: стрелки указывают положительное положение прямоугольника, а отрицательное — в конце поля)


Пример 4 : Найдите V1, V2 и V3.
(примечание: стрелки указывают положительное положение поля, а отрицательное — в конце поля)


Пример 5: Найдите V1, V2, V3 и V4
(примечание: стрелки указывают положительное положение поля, а отрицательное — в конце поля)


Практические задачи :

(Щелкните изображение, чтобы просмотреть решение)

Задача 1: Найдите V1 в следующей цепи.

Просмотреть решение


Задача 2: Найдите V0 в следующей схеме.

Просмотреть решение


Задача 3: Найдите V1, V2 и V3 в следующей схеме.

Просмотреть решение


Задача 4 : Найдите I 1 , I 2 , I 3 в следующей схеме

Просмотреть решение


Проблема 5 : Найдите значение резистора R в следующей цепи.

Просмотреть решение


Операции:
  1. В 1 = 8 В, В 2 = -4 В, В 4 = 14 В. Найдите V 3 и V 5 в следующей схеме

  2. Найдите V x и V y в следующей схеме
  3. Найдите V x , V y и V z в следующей схеме
  4. Найдите уравнения узлов KCL в узлах A, B, C и D

  5. Если I 1 = 4A, I 2 = 5A и I 3 = 3A, то с помощью KCL найдите I 4 и, I 5 в следующей схеме
    Ответы:
    1. В 3 = 12 В и В 5 = -2 В
    2. В x = 12 В и В y = 9 В
    3. В x = 35 В, В y = 5 В и V z = 15 В
    4. На узле A:

      На узле B:

      На узле C:

      На узле D:

    5. I 4 = 2A и I 5 = 1A

законов Кирхгофа

законов Кирхгофа

Кирхгофа законы

Большинство проблем со схемой мы сталкиваемся, может быть решена путем многократного применения правил добавления резисторы, включенные последовательно или параллельно, пока проблема не будет уменьшена до одна из батареи, подключенной к единственному резистору.

Но для решения более сложных схемных проблем, например, с большим количеством чем одна батарея, иногда необходимо вместо этого писать уравнения основанный на законах Кирхгофа, которые являются формальными математическими утверждениями двух физических фактов, которые вы уже знаете:

  • Закон Кирхгофа № 1 гласит, что напряжение изменяется вокруг замкнутого пути в цепи сложить до нуля, где изменение напряжения D V = ЭДС в проходящем аккумуляторная батарея от — клеммы до + считается быть позитивным, и изменение напряжения D V = I R в проходящем резистор в предполагаемом направлении тока I считается отрицательным.,
  • Закон Кирхгофа № 2 гласит, что сумма токов, входящих в любой узел (т. е. любое соединение провода) равняется сумме токов, выходящих из этого узла.
  • Первый закон просто повторяет то, что вы уже знаете об электрическом потенциале: каждая точка в цепь имеет уникальное значение потенциала, поэтому, путешествуя по цепь по любому пути должна вернуть вас к тому потенциалу, который вы началось с.Используя аналогию на возвышенность, если вы идете пешком с любой начальной точки в горах и бродить по любому пути, но финишировать на исходном старте точка, сумма изменения высоты вдоль вашего пути в сумме будут равны нулю.

    Второй закон просто подтверждает тот факт, что электрический заряд сохраняется: электроны или протоны не создаются и не разрушаются в узле (или, если они есть, античастицы с противоположным зарядом) создаются или уничтожаются вместе с ними), поэтому в любой момент времени Интервал, входящий заряд равен заряду листьев.Предполагается, что узел имеет пренебрежимо малую емкость, поэтому заряд не может просто создавай там. Например, в точке, где подключены три провода, как в диаграмме ниже, сохранение заряда требует, чтобы i 1 = i 2 + i 3 .


    Примеры Законы Кирхгофа индекс Список лекций

электрический ток — Есть ли простое доказательство того, что законы Кирхгофа всегда дают точно полный набор уравнений?

Этот ответ адаптирован из задачи 1.4 в Používáme lineární algebru, книге решенных задач линейной алгебры (свободно доступной в Интернете, но, к сожалению, только на чешском языке, AFAIK). Я покажу это при следующих предположениях:

  • Мы имеем дело с цепью постоянного или (низкочастотного) переменного тока, единственными элементами которой являются резисторы и идеальные источники напряжения,
  • Каждый край цепи имеет ненулевое (положительное) сопротивление,

Законы Кирхгофа для цепей дают уникальное решение для тока и напряжения на каждом элементе цепи.

Сначала несколько комментариев. Уникальность легко понять по физическим причинам. Линейность законов Кирхгофа подразумевает, что может быть только более одного решения, если одна и та же схема с удаленными источниками (то есть их напряжение, установленное на ноль без изменения топологии схемы) может поддерживать нетривиальные токи. Предположение о положительном сопротивлении каждого края цепи делает это физически невозможным из-за сохранения энергии. По той же причине я считаю, что то же самое утверждение справедливо для цепей переменного тока с элементами, отличными от резисторов, до тех пор, пока импеданс каждого края имеет положительную действительную часть.Однако мне не сразу очевидно, как приведенный ниже аргумент обобщается на этот случай. Также легко увидеть, что отказ от предположения о положительном сопротивлении может привести как к двусмысленности в решении, так и к патологиям: см. Ответы Райана Хейзелтона и Альфреда Центавра. Наконец, тот же аргумент должен применяться к схемам с идеальными источниками тока из-за двойственности между двумя типами источников; предположение об идеальном напряжении источников сделано только для простоты обозначений.

Теперь к делу. Я буду считать WLOG, что схема представлена ​​связным графом; в противном случае просто рассматриваются все компоненты связности один за другим. Аргумент по существу следует методу узлового напряжения. На первом этапе мы понимаем, что второй закон Кирхгофа (напряжение) эквивалентен существованию потенциала на графике. Предположим, что схема имеет $ N $ вершин (узлов). Мы можем выбрать потенциал одного из них произвольно, скажем, $ u_1 = 0 $. Для данного решения законов Кирхгофа мы можем затем получить потенциал $ u_i $ $ i $ -й вершины, сложив падение напряжения на резисторах и напряжения, подаваемые источниками по любому пути, соединяющему $ i $ -ю вершину с $ u_1 $.Второй закон Кирхгофа гарантирует, что результат для $ u_i $ не зависит от выбора пути и, следовательно, хорошо определен.

На втором этапе мы имеем дело с системой уравнений для неизвестных потенциалов $ u_2, \ dotsc, u_N $, вытекающих из первого (текущего) закона Кирхгофа. Мы рассматриваем только вершины $ 2, \ dotsc, N $, что дает $ N-1 $ уравнений для $ N-1 $ неизвестных потенциалов. Уравнение для $ i $ -й вершины символически читается $$ \ sum_j \ frac1 {R_ {ij}} (u_i-u_j + U_ {ij}) = 0, $$ где сумма ведется по всем вершинам $ j $, соединенным с $ i $ ребром, $ R_ {ij} $ обозначает сопротивление на ребре $ ij $, а $ U_ {ij} $ — напряжение, передаваемое источниками в нем.T $ и $ \ vec U $ содержат исходные данные. Диагональные элементы матрицы $ M $ равны $$ M_ {ii} = \ sum_j \ frac1 {R_ {ij}}, $$ тогда как недиагональные элементы $$ M_ {ij} = \ begin {case} -1 / R_ {ij} \ text {если $ i $ и $ j $ связаны и $ j \ neq1 $,} \\ 0 \ text {иначе.} \ end {case} $$ Положительность всех сопротивлений означает, что $$ \ sum_ {j \ neq i} | M_ {ij} | \ leq | M_ {ii} | $$ для всех $ i = 2, \ dotsc, N $. Более того, существуют такие $ i $ (соединенные ребром с $ u_1 $), для которых выполняется строгое неравенство.Отсюда следует, что матрица $ M $ диагонально доминирующая и, следовательно, обратимая. Это гарантирует, что система уравнений для потенциалов $ u_2, \ dotsc, u_N $ имеет единственное решение.

Как только все потенциалы известны, токи через все края цепи легко восстанавливаются. Ток через край $ ij $ символически равен $$ I_ {ij} = \ frac1 {R_ {ij}} (u_i-u_j + U_ {ij}). $$ Это завершает аргумент и математически показывает, почему предположение о положительных сопротивлениях является достаточным условием для установления существования единственного решения.В более общем смысле, единственное решение существует, когда определенная выше матрица $ M_ {ij} $, которая зависит от топологии схемы и сопротивлений, но не от источников, является невырожденной. Если $ M_ {ij} $ является сингулярным, может быть более одного решения или не может быть решений вообще, как известно из линейной алгебры.

Примеры и формулы закона Кирхгофа | Закон Кирхгофа по току и напряжению — стенограмма видео и урока

Закон Кирхгофа по току и напряжению

Итак, что такое закон Кирхгофа? На самом деле существует два варианта этих законов.Они известны как текущий закон Кирхгофа

  • : ток, входящий в соединение, должен быть равен току, выходящему из соединения.
  • Закон Кирхгофа по напряжению: изменение потенциала вокруг замкнутого контура должно быть нулевым.

Эти законы были разработаны путем применения сохранения электрического заряда и сохранения энергии в замкнутых цепях. Они позволяют анализировать сложные схемы, чтобы определить ток в каждой ветви схемы.

Текущий закон Кирхгофа

Текущий закон Кирхгофа , или правило соединения, гласит, что в любой точке соединения или узле сумма всего тока, входящего в соединение, должна равняться сумме всех токов, покидающих соединение или узел.Формула закона Кирхгофа для тока:

{eq} \ sum I_ {in} = \ sum I_ {out} {/ eq}

Это следствие сохранения электрического заряда. Общий электрический заряд в замкнутой системе никогда не меняется. Итак, ток, который идет в узел, должен быть равен выходному току. На рис. 2 мы видим пример узла, который представляет собой соединение четырех токоведущих маршрутов с тремя токами, входящими в узел, и одним выходящим.

Рис. 2: Иллюстрация узла с тремя входящими токами и одним выходящим.

Согласно действующему закону Кирхгофа, следующее относительно рис. 2 должно выполняться.

{eq} I_1 + I_2 + I_4 = I_3 {/ eq}

Закон напряжения Кирхгофа

Закон напряжения Кирхгофа , или правило петли, основан на сохранении энергии. В нем говорится, что сумма изменений потенциала вокруг любого контура цепи должна быть равна нулю. Математически это можно записать как

{eq} \ sum_ {n} V_n = 0 {/ eq}

Для схемы с {eq} n {/ eq} элементами.

На рис. 3 показан пример схемы с источником напряжения, {eq} V_S {/ eq} и тремя элементами, вызывающими падение напряжения, {eq} V_1 {/ eq}, {eq} V_2 {/ eq} и {eq} V_3 {/ eq}. Важно отметить направление напряжения вокруг контура. Напряжения от отрицательного к положительному складываются, а напряжения от положительного к отрицательному вычитаются.

Рис. 3: Схема с источником напряжения и тремя падениями напряжения.

Таким образом, согласно закону Кирхгофа общее напряжение в системе следующее:

{eq} \ sum V_n = 0 {/ eq}

В цепи четыре напряжения, три из них — напряжение падает, поэтому они отрицательны по сравнению с напряжением источника.Следовательно, сумма напряжений равна

{eq} V_S — V_1 — V_2 — V_3 = 0 {/ eq}

, что дает

{eq} V_S = V_1 + V_2 + V_3 {/ eq}

Закон Кирхгофа. Примеры

При решении проблем с использованием законов Кирхгофа может быть полезно разбить проблему на следующие шаги:

  1. Обозначьте ток в каждой ветви цепи и обозначьте направление.
  2. Определите количество неизвестных, это укажет количество необходимых уравнений.
  3. Применить действующий закон Кирхгофа на одном или нескольких перекрестках.
  4. Примените закон напряжения Кирхгофа для одного или нескольких контуров.
  5. Решите уравнения.

Рис. 4: Пример схемы с источниками напряжения и резисторами.

Рассмотрим пример схемы, показанной на рис. 4. Эта схема содержит два источника напряжения, 2 В и 6,5 В, и два резистора, 150 {eq} \ Omega {/ eq} и 400 {eq} \ Omega {/ eq}.Законы Кирхгофа можно использовать для определения тока через резисторы и полного тока в цепи. Первый шаг — это маркировка тока и направления в цепи. На диаграмме есть три неизвестных: полный ток, {eq} I_T {/ eq}, ток через резистор 150 {eq} \ Omega {/ eq}, {eq} I_1 {/ eq} и ток через резистор 400 {eq} \ Omega {/ eq}, {eq} I_2 {/ eq}. Поскольку существует три неизвестных, для решения этой задачи требуются три уравнения. Следующим шагом является применение действующего закона Кирхгофа.

Рис. 5: Пример схемы, показывающей направление тока.

Применение закона Кирхгофа на первом переходе дает

{eq} I_T = I_1 + I_2 {/ eq}

Поскольку ток, идущий в переход, {eq} I_T {/ eq}, должен быть равен току выходит, {eq} I_1 {/ eq} и {eq} I_2 {/ eq}. Следующим шагом является применение закона Кирхгофа к двум петлям по часовой стрелке, как показано на рис.6.

Рис. 6: Пример схемы, показывающей две петли для закона напряжения.

Для левого контура это дает

{eq} \ sum V_n = 0 \\ \\ 2V — V_R = 0 {/ eq}

Где {eq} V_R {/ eq} — напряжение через Резистор 150 {eq} \ Omega {/ eq}. Используя закон Ома, уравнение принимает вид

{eq} 2V — 150 \ Omega \ times I_1 = 0 {/ eq}

Теперь мы можем решить эту проблему для тока.

{eq} — 150 \ Omega \ times I_1 = -2V \\ I_1 = 0,013A {/ eq}

Следовательно, ток через резистор 150 {eq} \ Omega {/ eq} равен {eq} I_1 = 0,013 А {/ экв}. В правом контуре напряжение через два резистора снова можно определить по закону Ома. Уравнение для правого контура:

{eq} \ sum V_n = 0 \\ \\ 150 \ Omega \ times (I_1 — I_2) — 6.5 V — 400 \ Omega \ times I_2 = 0 \\ 150 \ Omega \ times I_1 — 150 \ Omega \ times I_2 — 6.5V — 400 \ Omega \ times I_2 = 0 {/ eq}

Обратите внимание, что значение для {eq} I_2 {/ eq} вычитается из {eq} I_1 {/ eq} потому что они текут в противоположных направлениях через резистор 150 {eq} \ Omega {/ eq}.Затем мы подставляем значение, вычисленное для {eq} I_1 {/ eq} в приведенное выше уравнение.

{eq} 150 \ Omega \ times 0,013A — 150 \ Omega \ times I_2 — 6.5V — 400 \ Omega \ times I_2 = 0 \\ \\ 1.95V — 150 \ Omega \ times I_2 — 6.5V — 400 \ Omega \ times I_2 = 0 \\ -550 \ Omega \ times I_2 = 4.55V \\ I_2 = -0.008A {/ eq}

Таким образом, мы обнаружили, что ток через 400 {eq} \ Omega { / eq} резистор равен {eq} I_2 = -0,008 A {/ eq}. Эти значения затем можно подставить в уравнение, полученное из текущего закона Кирхгофа, которое дает

{eq} I_T = 0.013 A — 0,008 A {/ eq}

Следовательно, общий ток в цепи составляет {eq} I_T = 0,005 A {/ eq}.

Ограничения законов Кирхгофа для цепей

Законы Кирхгофа — мощный инструмент для анализа цепей в цепях постоянного тока и цепях переменного тока ниже определенного предела низких частот. Однако в цепях переменного тока на более высоких частотах они теряют силу. Это потому, что оба закона зависят от предположений, которые не выполняются при увеличении частоты.

Текущий закон предполагает, что чистый заряд в цепи постоянный.Закон напряжения основан на предположении, что магнитные поля не изменяются в замкнутой цепи или что любое изменение магнитного поля ограничивается отдельными компонентами. Однако в высокочастотных цепях переменного тока это не всегда так. Когда присутствует флуктуирующее магнитное поле, которое не ограничено отдельными компонентами, электрические поля могут индуцироваться в других компонентах, что нарушает законы Кирхгофа. В результате они обеспечивают лишь грубое приближение для высокочастотных цепей переменного тока.

Краткое содержание урока

Законы Кирхгофа для схем можно использовать для анализа сложных схем.Есть два варианта этих законов, которые возникают в результате сохранения электрического заряда и сохранения энергии в замкнутых цепях. Закон Кирхгофа по току гласит, что ток, входящий в переход, должен быть равен току, выходящему из перехода, поскольку электрический заряд сохраняется.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *