Site Loader

Содержание

Электрический ток в газах — материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в газах.

При обычных условиях газы состоят из электрически нейтральных атомов или молекул; свободных зарядов в газах почти нет. Поэтому газы являются диэлектриками — электрический ток через них не проходит.

Мы сказали «почти нет», потому что на самом деле газах и, в частности, в воздухе всегда присутствует некоторое количество свободных заряженных частиц. Они появляются в результате ионизирующего воздействия излучений радиоактивных веществ, входящих в состав земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также космических лучей — потоков частиц высокой энергии, проникающих в атмосферу Земли из космического пространства. Впоследствии мы вернёмся к этому факту и обсудим его важность, а сейчас заметим лишь, что в обычных условиях проводимость газов, вызванная «естественным» количеством свободных зарядов, пренебрежимо мала, и её можно не принимать во внимание.

На изолирующих свойствах воздушного промежутка основано действие переключателей в электрических цепях (рис. 1). Например, небольшого воздушного зазора в выключателе света оказывается достаточно, чтобы разомкнуть электрическую цепь в вашей комнате.

Рис. 1. Ключ

Можно, однако, создать такие условия, при которых электрический ток в газовом промежутке появится. Давайте рассмотрим следующий опыт.

Зарядим пластины воздушного конденсатора и подсоединим их к чувствительному гальванометру (рис. 2, слева). При комнатной температуре и не слишком влажном воздухе гальванометр не покажет заметного тока: наш воздушный промежуток, как мы и говорили, не является проводником электричества.

Рис. 2. Возникновение тока в воздухе

Теперь внесём в зазор между пластинами конденсатора пламя горелки или свечи (рис. 2, справа). Ток появляется! Почему?

Свободные заряды в газе

Возникновение электрического тока между пластинами кондесатора означает, что в воздухе под воздействием пламени появились свободные заряды. Какие именно?

Опыт показывает, что электрический ток в газах является упорядоченным движением заряженных частиц трёх видов. Это электроны, положительные ионы и отрицательные ионы

.

Давайте разберёмся, каким образом эти заряды могут появляться в газе.

При увеличении температуры газа тепловые колебания его частиц — молекул или атомов — становятся всё интенсивнее. Удары частиц друг о друга достигают такой силы, что начинается ионизация — распад нейтральных частиц на электроны и положительные ионы (рис. 3).

Рис. 3. Ионизация

Степенью ионизации называется отношение числа распавшихся частиц газа к общему исходному числу частиц. Например, если степень ионизации равна , то это означает, что исходных частиц газа распалось на положительные ионы и электроны.

Степень ионизации газа зависит от температуры и резко возрастает с её увеличением. У водорода, например, при температуре ниже степень ионизации не превосходит , а при температуре выше степень ионизации близка к (то есть водород почти полностью ионизирован (частично или полностью ионизированный газ называется

плазмой)).

Помимо высокой температуры имеются и другие факторы, вызывающие ионизацию газа.

Мы их уже вскользь упоминали: это радиоактивные излучения, ультрафиолетовые, рентгеновские и гамма-лучи, космические частицы. Всякий такой фактор, являющийся причиной ионизации газа, называется ионизатором.

Таким образом, ионизация происходит не сама по себе, а под воздействием ионизатора.

Одновременно идёт и обратный процесс — рекомбинация, то есть воссоединение электрона и положительного иона в нейтральную частицу (рис. 4).

Рис. 4. Рекомбинация

Причина рекомбинации проста: это кулоновское притяжение противоположно заряженных электронов и ионов. Устремляясь навстречу друг другу под действием электрических сил, они встречаются и получают возможность образовать нейтральный атом (или молекулу — в зависимости от сорта газа).

При неизменной интенсивности действия ионизатора устанавливается динамическое равновесие: среднее количество частиц, распадающихся в единицу времени, равно среднему количеству рекомбинирующих частиц (иными словами, скорость ионизации равна скорости рекомбинации).Если действие ионизатора усилить (например, повысить температуру), то динамическое равновесие сместится в сторону ионизации, и концентрация заряженных частиц в газе возрастёт. Наоборот, если выключить ионизатор, то рекомбинация начнёт преобладать, и свободные заряды постепенно исчезнут полностью.

Итак, положительные ионы и электроны появляются в газе в результате ионизации. Откуда же берётся третий сорт зарядов — отрицательные ионы? Очень просто: электрон может налететь на нейтральный атом и присоединиться к нему! Этот процесс показан на рис. 5.

Рис. 5. Появление отрицательного иона

Образованные таким образом отрицательные ионы будут участвовать в создании тока наряду с положительными ионами и электронами.

Несамостоятельный разряд

Если внешнего электрического поля нет, то свободные заряды совершают хаотическое тепловое движение наряду с нейтральными частицами газа. Но при наложении электрического поля начинается упорядоченное движение заряженных частиц — электрический ток в газе.

Рис. 6. Несамостоятельный разряд

На рис. 6 мы видим три сорта заряженных частиц, возникающих в газовом промежутке под действием ионизатора: положительные ионы, отрицательные ионы и электроны. Электрический ток в газе образуется в результате встречного движения заряженных частиц: положительных ионов — к отрицательному электроду (катоду), электронов и отрицательных ионов — к положительному электроду (аноду)

.

Электроны, попадая на положительный анод, направляются по цепи к «плюсу» источника тока. Отрицательные ионы отдают аноду лишний электрон и, став нейтральными частицами, возвращаются в обратно газ; отданный же аноду электрон также устремляется к «плюсу» источника. Положительные ионы, приходя на катод, забирают оттуда электроны; возникший дефицит электронов на катоде немедленно компенсируется их доставкой туда с «минуса» источника. В результате этих процессов возникает упорядоченное движение электронов во внешней цепи. Это и есть электрический ток, регистрируемый гальванометром.

Описанный процесс, изображённый на рис. 6, называется несамостоятельным разрядом в газе. Почему несамостоятельным? Потому для его поддержания необходимо постоянное действие ионизатора. Уберём ионизатор — и ток прекратится, поскольку исчезнет механизм, обеспечивающий появление свободных зарядов в газовом промежутке. Пространство между анодом и катодом снова станет изолятором.

Вольт-амперная характеристика газового разряда

Зависимость силы тока через газовый промежуток от напряжения между анодом и катодом (так называемая вольт-амперная характеристика газового разряда) показана на рис. 7.

Рис. 7. Вольт-амперная характеристика газового разряда

При нулевом напряжении сила тока, естественно, равна нулю: заряженные частицы совершают лишь тепловое движение, упорядоченного их движения между электродами нет.

При небольшом напряжении сила тока также мала. Дело в том, что не всем заряженным частицам суждено добраться до электродов: часть положительных ионов и электронов в процессе своего движения находят друг друга и рекомбинируют.

С повышением напряжения свободные заряды развивают всё большую скорость, и тем меньше шансов у положительного иона и электрона встретиться и рекомбинировать. Поэтому всё большая часть заряженных частиц достигает электродов, и сила тока возрастает (участок ).

При определённой величине напряжения (точка ) скорость движения зарядов становится настолько большой, что рекомбинация вообще не успевает происходить. С этого момента

все заряженные частицы, образованные под действием ионизатора, достигают электродов, и ток достигает насыщения — а именно, сила тока перестаёт меняться с увеличением напряжения. Так будет происходить вплоть до некоторой точки .

Самостоятельный разряд

После прохождения точки сила тока при увеличении напряжения резко возрастает — начинается самостоятельный разряд. Сейчас мы разберёмся, что это такое.

Заряженные частицы газа движутся от столкновения к столкновению; в промежутках между столкновениями они разгоняются электрическим полем, увеличивая свою кинетическую энергию. И вот, когда напряжение становится достаточно большим (та самая точка ), электроны за время свободного пробега достигают таких энергий, что при соударении с нейтральными атомами ионизируют их! (С помощью законов сохранения импульса и энергии можно показать, что именно электроны (а не ионы), ускоряемые электрическим полем, обладают максимальной способностью ионизировать атомы.)

Начинается так называемая ионизация электронным ударом. Электроны, выбитые из ионизированных атомов, также разгоняются электрическим полем и налетают на новые атомы, ионизируя теперь уже их и порождая новые электроны. В результате возникающей электронной лавины число ионизированных атомов стремительно возрастает, вследствие чего быстро возрастает и сила тока.

Количество свободных зарядов становится таким большим, что необходимость во внешнем ионизаторе отпадает. Его можно попросту убрать. Свободные заряженные частицы теперь порождаются в результате

внутренних процессов, происходящих в газе — вот почему разряд называется самостоятельным.

Если газовый промежуток находится под высоким напряжением, то для самостоятельного разряда не нужен никакой ионизатор. Достаточно в газе оказаться лишь одному свободному электрону, и начнётся описанная выше электронная лавина. А хотя бы один свободный электрон всегда найдётся!

Вспомним ещё раз, что в газе даже при обычных условиях имеется некоторое «естественное» количество свободных зарядов, обусловленное ионизирующим радиоактивным излучением земной коры, высокочастотным излучением Солнца, космическими лучами. Мы видели, что при малых напряжениях проводимость газа, вызванная этими свободными зарядами, ничтожно мала, но теперь — при высоком напряжении — они-то и породят лавину новых частиц, дав начало самостоятельному разряду. Произойдёт, как говорят, пробой газового промежутка.

Напряжённость поля, необходимая для пробоя сухого воздуха, равна примерно кВ/см. Иными словами, чтобы между электродами, разделёнными сантиметром воздуха, проскочила искра, на них нужно подать напряжение киловольт. Вообразите же, какое напряжение необходимо для пробоя нескольких километров воздуха! А ведь именно такие пробои происходят во время грозы — это прекрасно известные вам молнии.

Как возникает электрический ток в газах. Введение

Электрический ток в газах в нормальных условиях невозможен. То есть при атмосферной влажности давлении и температуре в газе отсутствуют носители зарядов. Это свойство газа, в частности воздуха, используется в воздушных линиях передач выключателях реле для обеспечения электрической изоляции.

Но при определенных условиях в газах может наблюдутся ток. Проведем опыт. Для него нам понадобится воздушный конденсатор электрометр и соединительные провода. Для начала соединим электрометр с конденсатором. Потом сообщим заряд пластинам конденсатора. Электрометр при этом покажет наличие этого самого заряда. Воздушный конденсатор некоторое время будет хранить заряд. То есть тока между его пластинами не будет. Это говорит о том что воздух между обкладками конденсатора обладает диэлектрическими свойствами.

Рисунок 1 — Заряженный конденсатор подключенный к электрометру

Далее внесем в промежуток между пластинами пламя свечи. При этом увидим, что электрометр покажет уменьшение заряда на пластинах конденсатора. То есть в зазоре между пластинами протекает ток. Почему же это происходит.

Рисунок 2 — Внесение свечи в зазор между обкладками заряженного конденсатора

В нормальных условиях молекулы газа электрически нейтральны. И не способны обеспечивать ток. Но при повышении температуры наступает так называемая ионизация газа, и он становится проводником. В газе появляются положительные и отрицательные ионы.

Чтобы от атома газа оторвался электрон необходимо совершить работу против Кулоновских сил. Для этого необходима энергия. Эту энергию атом получает с увеличением температуры. Так как кинетическая энергия теплового движения прямо пропорционально температуре газа. То с ее увеличение молекулы и атомы получают достаточно энергии, чтобы при соударении от атомов отрывались электроны. Такой атом становится положительным ионом. Оторванный электрон может прицепиться к другому атому тогда он станет отрицательным ионом.

В итоге в зазоре между пластинами появляются положительные и отрицательные ионы, а также электроны. Все они начинают двигаться под действием поля созданного зарядами на обкладках конденсатора. Положительные ионы движутся к катоду. Отрицательные ионы и электроны стремятся к аноду. Таким образом, в воздушном зазоре обеспечивается ток.

Зависимость тока от напряжения не на всех участках подчиняется закону Ома. На первом участке это так с увеличением напряжения увеличивается количество ионов а, следовательно, и ток. Далее на втором участке наступает насыщение, то есть с увеличением напряжения ток не увеличивается. Потому что концентрация ионов максимальна и новым появляется просто неоткуда.

Рисунок3 — вольтамперная характеристика воздушного зазора

На третьем участке вновь наблюдается рост тока с увеличением напряжения. Этот участок называется самостоятельным разрядом. То есть для поддержания тока в газе уже не нужны сторонние ионизаторы. Происходит это из за того что, электроны при высоком напряжении, получают достаточную энергию для того чтобы выбивать другие электроны из атомов самостоятельно. Эти электроны в свою очередь выбивают другие и так далее. Процесс идет лавинообразно. И основную проводимость в газе обеспечивают уже электроны.

Это краткий пересказ.

Работа над полной версией продолжается


Лекция 2 1

Ток в газах

1. Общие положения

Определение: Явление прохождения электрического тока в газах называется газовым разрядом .

Поведение газов сильно зависит от его параметров, таких как температура и давление, причем эти параметры достаточно легко меняются. Поэтому, протекание электрического тока в газах является более сложным, чем в металлах или в вакууме.

Газы не подчиняются закону Ома.

2. Ионизация и рекомбинация

Газ, находящийся при нормальных условиях, состоит практически из нейтральных молекул, поэтому, крайне плохо проводит электрический ток. Однако при внешних воздействиях от атома может оторваться электрон и появляется положительно заряженный ион. Кроме того, электрон может присоединиться к нейтральному атому и образовать отрицательно заряженный ион. Таким образом, можно получить ионизованный газ, т.е. плазму.

К внешним воздействиям относятся нагрев, облучение энергичным фотонам, бомбардировка другими частицами и сильные поля, т.е. те же условия, которые необходимы для элементарной эмиссии.

Электрон в атоме находится в потенциальной яме, и чтобы вырваться оттуда, необходимо атому сообщить дополнительную энергию, которая называется энергией ионизации.

Реферат по физике

на тему:

«Электрический ток в газах».

Электрический ток в газах.

1. Электрический разряд в газах.

Все газы в естественном состоянии не проводят электрического тока. В чем можно убедиться из следующего опыта:

Возьмем электрометр с присоединенными к нему дисками плоского конденсатора и зарядим его. При комнатной температуре, если воздух достаточно сухой, конденсатор заметно не разряжается – положение стрелки электрометра не изменяется. Чтобы заметить уменьшение угла отклонения стрелки электрометра, требуется длительное время. Это показывает, что электрический ток в воздухе между дисками очень мал. Данный опыт показывает, что воздух является плохим проводником электрического тока.

Видоизменим опыт: нагреем воздух между дисками пламенем спиртовки. Тогда угол отклонения стрелки электрометра быстро уменьшается, т.е. уменьшается разность потенциалов между дисками конденсатора – конденсатор разряжается. Следовательно, нагретый воздух между дисками стал проводником, и в нем устанавливается электрический ток.

Изолирующие свойства газов объясняются тем, что в них нет свободных электрических зарядов: атомы и молекулы газов в естественном состоянии являются нейтральными.

2. Ионизация газов.

Вышеописанный опыт показывает, что в газах под влиянием высокой температуры появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.

Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей, a-, b- и g-лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Ионизация атома требует затраты определенной энергии – энергии ионизации. Для ионизации атома (или молекулы) необходимо совершить работу против сил взаимодействия между вырываемым электроном и остальными частицами атома (или молекулы). Эта работа называется работой ионизации A i . Величина работы ионизации зависит от химической природы газа и энергетического состояния вырываемого электрона в атоме или молекуле.

После прекращения действия ионизатора количество ионов в газе с течением времени уменьшается и в конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они могут воссоединиться в нейтральный атом. Точно также при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы. Этот процесс взаимной нейтрализации ионов называется рекомбинацией ионов. При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию. Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Этот процесс заключается в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны (об этом будет рассмотрено позднее).

В таблице ниже даны значения энергии ионизации некоторых атомов.

3. Механизм электропроводности газов.

Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. При отсутствии внешнего поля заряженные частицы, как и нейтральные молекулы движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.

Таким образом, электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду . Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.

На электродах происходит нейтрализация заряженных частиц, как и при прохождении электрического тока через растворы и расплавы электролитов. Однако в газах отсутствует выделение веществ на электродах, как это имеет место в растворах электролитов. Газовые ионы, подойдя к электродам, отдают им свои заряды, превращаются в нейтральные молекулы и диффундируют обратно в газ.

Еще одно различие в электропроводности ионизованных газов и растворов (расплавов) электролитов состоит в том, что отрицательный заряд при прохождении тока через газы переносится в основном не отрицательными ионами, а электронами, хотя проводимость за счет отрицательных ионов также может играть определенную роль.

Таким образом в газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов и расплавов электролитов.

4. Несамостоятельный газовый разряд.

Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа.

Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами. Цепь собрана как показано на рисунке ниже.

При некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток достигает насыщения (горизонтальный участок графика 1).

5. Самостоятельный газовый разряд.

Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом . Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).

Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.

Каковы же причины резкого увеличения силы тока при больших напряжениях? Рассмотрим какую либо пару заряженных частиц (положительный ион и электрон), образовавшуюся благодаря действию внешнего ионизатора. Появившийся таким образом свободный электрон начинает двигаться к положительному электроду – аноду, а положительный ион – к катоду. На своем пути электрон встречает ионы и нейтральные атомы. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля.

Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля. Кинетическая энергия электрона перед очередным столкновением пропорциональна напряженности поля и длине свободного пробега электрона: MV 2 /2=eEl. Если кинетическая энергия электрона превосходит работу A i , которую нужно совершить, чтобы ионизировать нейтральный атом (или молекулу), т.е. MV 2 >A i , то при столкновении электрона с атомом (или молекулой) происходит его ионизация. В результате вместо одного электрона возникают два (налетающий на атом и вырванный из атома). Они, в свою очередь, получают энергию в поле и ионизуют встречные атомы и т.д.. Вследствие этого число заряженных частиц быстро нарастает, возникает электронная лавина. Описанный процесс называют ионизацией электронным ударом.

Но одна ионизация электронным ударом не может обеспечить поддержания самостоятельного заряда. Действительно, ведь все возникающие таким образом электроны движутся по направлению к аноду и по достижении анода «выбывают из игры». Для поддержания разряда необходима эмиссия электронов с катода («эмиссия» означает «испускание»). Эмиссия электрона может быть обусловлена несколькими причинами.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Кроме того, катод может испускать электроны при нагревании до большой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используются для изготовления катодов.

При самостоятельном разряде нагрев катода может происходить за счет бомбардировки его положительными ионами. Если энергия ионов не слишком велика, то выбивания электронов с катода не происходит и электроны испускаются вследствие термоэлектронной эмиссии.

6. Различные типы самостоятельного разряда и их техническое применение.

В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда. Рассмотрим несколько из них.

A. Тлеющий разряд.

Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше. Если рассмотреть трубку с тлеющим разрядом, то можно увидеть, что основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

Основную роль в поддержании тлеющего разряда играют первые две области его катодной части. Характерной особенностью этого типа разряда является резкое падение потенциала вблизи катода, которое связано с большой концентрацией положительных ионов на границе I и II областей, обусловленной сравнительно малой скоростью движения ионов у катоду. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны из катода. В области тлеющего свечения электроны производят интенсивную ударную ионизацию молекул газа и теряют свою энергию. Здесь образуются положительные ионы, необходимые для поддержания разряда. Напряженность электрического поля в этой области мала. Тлеющее свечение в основном вызывается рекомбинацией ионов и электронов. Протяженность катодного темного пространства определяется свойствами газа и материала катода.

В области положительного столба концентрация электронов и ионов приблизительно одинакова и очень велика, что обуславливает большую электропроводность положительного столба и незначительное падение в нем потенциала. Свечение положительного столба определяется свечением возбужденных молекул газа. Вблизи анода вновь наблюдается сравнительно резкое изменение потенциала, связанное с процессом генерации положительных ионов. В ряде случаев положительный столб распадается на отдельные светящиеся участки – страты, разделенные темными промежутками.

Положительный столб не играет существенной роли в поддержании тлеющего разряда, поэтому при уменьшении расстояния между электродами трубки длина положительного столба сокращается и он может исчезнуть совсем. Иначе обстоит дело с длиной катодного темного пространства, которая при сближении электродов не изменяется. Если электроды сблизились настолько, что расстояние между ними станет меньше длины катодного темного пространства, то тлеющий разряд в газе прекратится. Опыты показывают, что при прочих равных условиях длина d катодного темного пространства обратно пропорциональна давлению газа. Следовательно, при достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные , или катодные лучи .

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков. Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами. Широко используется явление катодного распыления , т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку. Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

B. Коронный разряд.

Коронный разряд возникает при нормальном давлении в газе, находящемся в сильно неоднородном электрическом поле (например, около остриев или проводов линий высокого напряжения). При коронном разряде ионизация газа и его свечение происходят лишь вблизи коронирующих электродов. В случае коронирования катода (отрицательная корона) электроны, вызывающие ударную ионизацию молекул газа, выбиваются из катода при бомбардировке его положительными ионами. Если коронируют анод (положительная корона), то рождение электронов происходит вследствие фотоионизации газа вблизи анода. Корона – вредное явление, сопровождающееся утечкой тока и потерей электрической энергии. Для уменьшения коронирования увеличивают радиус кривизны проводников, а их поверхность делают возможно более гладкой. При достаточно высоком напряжении между электродами коронный разряд переходит в искровой.

При повышенном напряжении коронный разряд на острие приобретает вид исходящих из острия и перемежающихся во времени светлых линий. Эти линии, имеющие ряд изломов и изгибов, образуют подобие кисти, вследствие чего такой разряд называют кистевым .

Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой или во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма.

Особенно часто свидетелями этого явления становятся альпинисты. Иногда лаже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками.

С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.

C. Искровой разряд.

Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми. Исследования показали, что каналы искрового разряда начинают расти иногда от положительного электрода, иногда от отрицательного, а иногда и от какой-нибудь точки между электродами. Это объясняется тем, что ионизация ударом в случае искрового разряда происходит не по всему объему газа, а по отдельным каналам, проходящим в тех местах, в которых концентрация ионов случайно оказалась наибольшей. Искровой разряд сопровождается выделением большого количества теплоты, ярким свечением газа, треском или громом. Все эти явления вызываются электронными и ионными лавинами, которые возникают в искровых каналах и приводят к огромному увеличению давления, достигающему 10 7 ¸10 8 Па, и повышению температуры до 10000 °С.

Характерным примером искрового разряда является молния. Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.

При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией . Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла.

Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях). Если вблизи линии проходит сильный кратковременный ток, то в проводах этой линии индуцируются напряжении и токи, которые могут разрушить электрическую установку и опасны для жизни людей. Во избежание этого используются специальные предохранители, состоящие из двух изогнутых электродов, один из которых присоединен к линии, а другой заземлен. Если потенциал линии относительно земли сильно возрастает, то между электродами возникает искровой разряд, который вместе с нагретым им воздухом поднимается вверх, удлиняется и обрывается.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника , электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

D. Дуговой разряд.

Дуговой разряд был открыт В. В. Петровым в 1802 году. Этот разряд представляет собой одну из форм газового разряда, осуществляющуюся при большой плотности тока и сравнительно небольшом напряжении между электродами (порядка нескольких десятков вольт). Основной причиной дугового разряда является интенсивное испускание термоэлектронов раскаленным катодом. Эти электроны ускоряются электрическим полем и производят ударную ионизацию молекул газа, благодаря чему электрическое сопротивление газового промежутка между электродами сравнительно мало. Если уменьшить сопротивление внешней цепи, увеличить силу тока дугового разряда, то проводимость газового промежутка столь сильно возрастет, что напряжение между электродами уменьшается. Поэтому говорят, что дуговой разряд имеет падающую вольт-амперную характеристику. При атмосферном давлении температура катода достигает 3000 °C. Электроны, бомбардируя анод, создают в нем углубление (кратер) и нагревают его. Температура кратера около 4000 °С, а при больших давлениях воздуха достигает 6000-7000 °С. Температура газа в канале дугового разряда достигает 5000-6000 °С, поэтому в нем происходит интенсивная термоионизация.

В ряде случаев дуговой разряд наблюдается и при сравнительно низкой температуре катода (например, в ртутной дуговой лампе).

В 1876 году П. Н. Яблочков впервые использовал электрическую дугу как источник света. В «свече Яблочкова» угли были расположены параллельно и разделены изогнутой прослойкой, а их концы соединены проводящим «запальным мостиком». Когда ток включался, запальный мостик сгорал и между углями образовывалась электрическая дуга. По мере сгорания углей изолирующая прослойка испарялась.

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах.

Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.

В 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла. Разряд между неподвижным угольным электродом и металлом нагревает место соединения двух металлических листов (или пластин) и сваривает их. Этот же метод Бенардос применил для резания металлических пластин и получения в них отверстий. В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим.

Дуговой разряд нашел применение в ртутном выпрямителе, преобразующем переменный электрический ток в ток постоянного направления.

E. Плазма.

Плазма – это частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Таким образом, плазма в целом является электрически нейтральной системой.

Количественной характеристикой плазмы является степень ионизации. Степенью ионизации плазмы a называют отношение объемной концентрации заряженных частиц к общей объемной концентрации частиц. В зависимости от степени ионизации плазма подразделяется на слабо ионизованную (a составляет доли процентов), частично ионизованную (a порядка нескольких процентов) и полностью ионизованную (a близка к 100%). Слабо ионизованной плазмой в природных условиях являются верхние слои атмосферы – ионосфера. Солнце, горячие звезды и некоторые межзвездные облака – это полностью ионизованная плазма, которая образуется при высокой температуре.

Средние энергии различных типов частиц, составляющих плазму, могут значительно отличаться одна от другой. Поэтому плазму нельзя охарактеризовать одним значением температуры Т; различают электронную температуру Т е, ионную температуру Т i (или ионные температуры, если в плазме имеются ионы нескольких сортов) и температуру нейтральных атомов Т a (нейтральной компоненты). Подобная плазма называется неизотермической, в отличие от изотермической плазмы, в которой температуры всех компонентов одинаковы.

Плазма также разделяется на высокотемпературную (Т i »10 6 -10 8 К и более) и низкотемпературную!!! (Т i

Плазма обладает рядом специфических свойств, что позволяет рассматривать ее как особое четвертое состояние вещества.

Из-за большой подвижности заряженный частицы плазмы легко перемещаются под действием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы, вызванное скоплением частиц одного знака заряда, быстро ликвидируется. Возникающие электрические поля перемещают заряженные частицы до тех пор, пока электрическая нейтральность не восстановится и электрическое поле не станет равным нулю. В отличие от нейтрального газа, между молекулами которого существуют короткодействующие силы, между заряженными частицами плазмы действуют кулоновские силы, сравнительно медленные убывающие с расстоянием. Каждая частица взаимодействует сразу с большим количеством окружающих частиц. Благодаря этому наряду с хаотическим тепловым движением частицы плазмы могут участвовать в разнообразных упорядоченных движениях. В плазме легко возбуждаются разного рода колебания и волны.

Проводимость плазмы увеличивается по мере роста степени ионизации. При высокой температуре полностью ионизованная плазма по своей проводимости приближается к сверхпроводникам.

Низкотемпературная плазма применяется в газоразрядных источниках света – в светящихся трубках рекламных надписей, в лампах дневного света. Газоразрядную лампу используют во многих приборах, например, в газовых лазерах – квантовых источниках света.

Высокотемпературная плазма применяется в магнитогидродинамических генераторах.

Недавно был создан новый прибор – плазмотрон. В плазмотроне создаются мощные струи плотной низкотемпературной плазмы, широко применяемые в различных областях техники: для резки и сварки металлов, бурения скважин в твердых породах и т.д.

Список использованной литературы:

1) Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики/Г. Я. Мякишев, А. З. Синяков, Б. А. Слободсков. – 2-е издание – М.: Дрофа, 1998. – 480 с.

2) Курс физики (в трех томах). Т. II. Электричество и магнетизм. Учеб. пособие для втузов./Детлаф А.А., Яворский Б. М., Милковская Л. Б. Изд. 4-е, перераб. – М.: Высшая школа, 1977. – 375 с.

3) Электричество./Э. Г. Калашников. Изд. «Наука», Москва, 1977.

4) Физика./Б. Б. Буховцев, Ю. Л. Климонтович, Г. Я. Мякишев. Издание 3-е, перераб. – М.: Просвещение, 1986.

Вещество

Энергия ионизации, эВ

Атом водорода

13,59

Молекула водорода

15,43

Гелий

24,58

Атом кислорода

13,614

Молекула кислорода

12,06

Наряду с явлением ионизации наблюдается и явление рекомбинации, т.е. объединение электрона и положительного иона в нейтральный атом. Данный процесс происходит с выделением энергии, равной энергии ио низации. Эта энергия может пойти на излучение или на нагрев. Локальный нагрев газа приводит к локальному изменению давления. Что в свою очередь приводит к появлению звуковых волн. Таким образом, газовый разряд сопровождается световыми, тепловыми и шумовыми эффектами.

3. ВАХ газового разряда.

На начальных стадиях необходимо действие внешнего ионизатора.

На участке ОАВ ток существует под действием внешнего ионизатора и быстро выходит на насыщение, когда все ионизованные частицы участвуют в образовании тока. Если убрать внешний ионизатор, то ток прекращается.

Данный вид разряда называется несамостоятельным газовым разрядом. При попытке увеличить напряжение в газе появляются лавины электронов, и ток растет практически при постоянном напряжении, которое называется напряжением зажигания (ВС ).

С этого момента разряд становится самостоятельным и отпадает необходимость внешнего ионизатора. Число ионов может стать столь большим, что сопротивление межэлектродного промежутка уменьшится и соответственно упадет напряжение (СД).

Затем в межэлектродном промежутке область прохождения тока начинает сужаться, и сопротивление растет, а следовательно, растет напряжение (ДЕ).

При попытке увеличить напряжение газ становится полностью ионизованным. Сопротивление и напряжение падает до нуля, и ток вырастает во много раз. Получается дуговой разряд (Е F ).

ВАХ показывает, что газ совершенно не подчиняется закону Ома.

4. Процессы в газе

Процессы, которые могут привести к образованию лавин электронов показаны на рисунке.

Это элементы качественной теории Таунсенда .

5. Тлеющий разряд.

При низких давлениях и небольших напряжениях можно наблюдать этот разряд.

К – 1 (темное астоново пространство).

1 – 2 (светящаяся катодная пленка).

2 – 3 (темное круксово пространство).

3 – 4 (первое катодное свечение).

4 – 5 (темное фарадеево пространство)

5 – 6 (положительный анодный столб).

6 – 7 (анодное темное пространство).

7 – А (анодное свечение).

Если сделать анод подвижным, то длину положительного столба можно регулировать, практически не меняя размеры области К – 5.

В темных областях происходит разгон частиц и набор энергии, в светлых происходят процессы ионизации и рекомбинации.

Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.

Понятие электрического тока

При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.

Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.

Рис. 1. Формула силы тока

Электрический ток в газах

Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».

Самостоятельные и несамостоятельные газовые разряды

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий – самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий – если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация – обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Рис. 2. Тлеющий разряд

  • Дуговой – сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Рис. 3. Дуговой разряд

  • Искровой – можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Что мы узнали?

Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.

В природе не существует абсолютных диэлектриков. Упорядоченное движение частиц — носителей электрического заряда, — то есть ток, можно вызвать в любой среде, однако для этого необходимы особые условия. Мы рассмотрим здесь, как протекают электрические явления в газах и как газ можно из очень хорошего диэлектрика превратить в очень хороший проводник. Нас будет интересовать, при каких условиях возникает, а также какими особенностями характеризуется электрический ток в газах.

Электрические свойства газов

Диэлектрик — это вещество (среда), в котором концентрация частиц — свободных носителей электрического заряда — не достигает сколько-нибудь значимой величины, вследствие чего проводимость пренебрежимо мала. Все газы — хорошие диэлектрики. Их изолирующие свойства используются повсеместно. Например, в любом выключателе размыкание цепи происходит, когда контакты приводятся в такое положение, чтобы между ними образовался воздушный зазор. Провода в линиях электропередач также изолируются друг от друга воздушным слоем.

Структурной единицей любого газа является молекула. Она состоит из атомных ядер и электронных облаков, то есть представляет собой совокупность электрических зарядов, некоторым образом распределенных в пространстве. Молекула газа может быть вследствие особенностей своего строения либо поляризоваться под действием внешнего электрического поля. Подавляющее большинство молекул, составляющих газ, в обычных условиях электрически нейтральны, поскольку заряды в них компенсируют друг друга.

Если приложить к газу электрическое поле, молекулы примут дипольную ориентацию, занимая пространственное положение, компенсирующее воздействие поля. Присутствующие в газе заряженные частицы под действием кулоновских сил начнут движение: положительные ионы — в направлении катода, отрицательные ионы и электроны — к аноду. Однако если поле имеет недостаточный потенциал, единый направленный поток зарядов не возникает, и можно говорить скорее об отдельных токах, настолько слабых, что ими следует пренебречь. Газ ведет себя как диэлектрик.

Таким образом, для возникновения электрического тока в газах необходима большая концентрация свободных носителей заряда и присутствие поля.

Ионизация

Процесс лавинообразного увеличения числа свободных зарядов в газе называют ионизацией. Соответственно, газ, в котором присутствует значительное количество заряженных частиц, называется ионизированным. Именно в таких газах создается электрический ток.

Процесс ионизации связан с нарушением нейтральности молекул. Вследствие отрыва электрона возникают положительные ионы, присоединение электрона к молекуле приводит к образованию отрицательного иона. Кроме того, в ионизированном газе много свободных электронов. Положительные ионы и особенно электроны — главные носители заряда при электрическом токе в газах.

Ионизация происходит, когда частице сообщается некоторое количество энергии. Так, внешний электрон в составе молекулы, получив эту энергию, может покинуть молекулу. Взаимные столкновения заряженных частиц с нейтральными приводят к выбиванию новых электронов, и процесс принимает лавинообразный характер. Кинетическая энергия частиц также возрастает, что значительно способствует ионизации.

Откуда берется энергия, затрачиваемая на возбуждение в газах электрического тока? Ионизация газов имеет несколько источников энергии, соответственно которым принято именовать и ее типы.

  1. Ионизация электрическим полем. В этом случае потенциальная энергия поля преобразуется в кинетическую энергию частиц.
  2. Термоионизация. Повышение температуры также ведет к образованию большого количества свободных зарядов.
  3. Фотоионизация. Суть данного процесса в том, что энергию электронам сообщают кванты электромагнитного излучения — фотоны, если они имеют достаточно высокую частоту (ультрафиолетовые, рентгеновские, гамма-кванты).
  4. Ударная ионизация является результатом преобразования кинетической энергии сталкивающихся частиц в энергию отрыва электрона. Наряду с термоионизацией, она служит основным фактором возбуждения в газах электрического тока.

Каждый газ характеризуется определенной пороговой величиной — энергией ионизации, необходимой для того, чтобы электрон мог оторваться от молекулы, преодолев потенциальный барьер. Эта величина для первого электрона составляет от нескольких вольт до двух десятков вольт; для отрыва следующего электрона от молекулы нужно больше энергии и так далее.

Следует учитывать, что одновременно с ионизацией в газе протекает обратный процесс — рекомбинация, то есть восстановление нейтральных молекул под действием кулоновских сил притяжения.

Газовый разряд и его типы

Итак, электрический ток в газах обусловлен упорядоченным движением заряженных частиц под действием приложенного к ним электрического поля. Наличие таких зарядов, в свою очередь, возможно благодаря различным факторам ионизации.

Так, термоионизация требует значительных температур, но открытое пламя в связи с некоторыми химическими процессами способствует ионизации. Даже при сравнительно невысокой температуре в присутствии пламени фиксируется появление в газах электрического тока, и опыт с проводимостью газа позволяет легко в этом убедиться. Надо поместить пламя горелки или свечи между обкладками заряженного конденсатора. Цепь, разомкнутая прежде из-за воздушного зазора в конденсаторе, замкнется. Включенный в цепь гальванометр покажет наличие тока.

Электрический ток в газах называется газовым разрядом. Нужно иметь в виду, что для поддержания стабильности разряда действие ионизатора должно быть постоянным, так как из-за постоянной рекомбинации газ теряет электропроводящие свойства. Одни носители электрического тока в газах — ионы — нейтрализуются на электродах, другие — электроны, — попадая на анод, направляются к «плюсу» источника поля. Если ионизирующий фактор перестанет действовать, газ немедленно снова станет диэлектриком, и ток прекратится. Такой ток, зависимый от действия внешнего ионизатора, называется несамостоятельным разрядом.

Особенности прохождения электрического тока через газы описываются особой зависимостью силы тока от напряжения — вольт-амперной характеристикой.

Рассмотрим развитие газового разряда на графике вольт-амперной зависимости. При повышении напряжения до некоторого значения U 1 ток нарастает пропорционально ему, то есть выполняется закон Ома. Возрастает кинетическая энергия, а следовательно, и скорость зарядов в газе, и этот процесс опережает рекомбинацию. При значениях напряжения от U 1 до U 2 такое соотношение нарушается; при достижении U 2 все носители зарядов достигают электродов, не успевая рекомбинировать. Все свободные заряды задействованы, и дальнейшее повышение напряжения не приводит к увеличению силы тока. Такой характер движения зарядов называется током насыщения. Таким образом, можно сказать, что электрический ток в газах обусловлен также особенностями поведения ионизированного газа в электрических полях различной напряженности.

Когда разность потенциалов на электродах достигает определенного значения U 3 , напряжение становится достаточным, чтобы электрическое поле вызвало лавинообразную ионизацию газа. Кинетической энергии свободных электронов уже хватает для ударной ионизации молекул. Скорость их при этом в большинстве газов составляет около 2000 км/с и выше (она рассчитывается по приближенной формуле v=600 U i , где U i — ионизационный потенциал). В этот момент происходит пробой газа и существенное возрастание тока за счет внутреннего источника ионизации. Поэтому такой разряд называется самостоятельным.

Наличие внешнего ионизатора в данном случае уже не играет роли для поддержания в газах электрического тока. Самостоятельный разряд в разных условиях и при различных характеристиках источника электрического поля может иметь те или иные особенности. Выделяют такие типы самостоятельного разряда, как тлеющий, искровой, дуговой и коронный. Мы рассмотрим, как ведет себя электрический ток в газах, кратко для каждого из этих типов.

В достаточно разности потенциалов от 100 (и даже меньше) до 1000 вольт для возбуждения самостоятельного разряда. Поэтому тлеющий разряд, характеризующийся малым значением силы тока (от 10 -5 А до 1 А), возникает при давлениях не более нескольких миллиметров ртутного столба.

В трубке с разреженным газом и холодными электродами формирующийся тлеющий разряд выглядит как тонкий светящийся шнур между электродами. Если продолжить откачку газа из трубки, будет наблюдаться размывание шнура, а при давлениях в десятые доли миллиметров ртутного столба свечение заполняет трубку практически полностью. Свечение отсутствует вблизи катода — в так называемом темном катодном пространстве. Остальная часть называется положительным столбом. При этом главные процессы, обеспечивающие существование разряда, локализуются именно в темном катодном пространстве и в прилегающей к нему области. Здесь происходит ускорение заряженных частиц газа, выбивающих из катода электроны.

При тлеющем разряде причиной ионизации является электронная эмиссия с катода. Испущенные катодом электроны производят ударную ионизацию молекул газа, возникающие положительные ионы вызывают вторичную эмиссию с катода и так далее. Свечение положительного столба связано в основном с отдачей фотонов возбужденными молекулами газа, и для различных газов характерно свечение определенного цвета. Положительный столб принимает участие в формировании тлеющего разряда только в качестве участка электрической цепи. Если сближать электроды, можно добиться исчезновения положительного столба, но при этом разряд не прекратится. Однако с дальнейшим сокращением расстояния между электродами тлеющий разряд не сможет существовать.

Необходимо отметить, что для данного типа электрического тока в газах физика некоторых процессов еще не прояснена полностью. Например, пока остается неясной природа сил, вызывающих при увеличении тока расширение на поверхности катода области, которая принимает участие в разряде.

Искровой разряд

Искровой пробой имеет импульсный характер. Он возникает при давлениях, близких к нормальному атмосферному, в случаях, когда мощности источника электрического поля недостаточно для поддержания стационарного разряда. Напряженность поля при этом велика и может достигать 3 МВ/м. Явление характеризуется резким возрастанием разрядного электрического тока в газе, одновременно напряжение чрезвычайно быстро падает, и разряд прекращается. Далее снова возрастает разность потенциалов, и весь процесс повторяется.

При этом типе разряда формируются кратковременные искровые каналы, рост которых может начинаться с любой точки между электродами. Это связано с тем, что ударная ионизация происходит случайным образом в местах, где в данный момент концентрируется наибольшее количество ионов. Вблизи искрового канала газ быстро нагревается и испытывает тепловое расширение, вызывающее акустические волны. Поэтому искровой разряд сопровождается треском, а также выделением теплоты и ярким свечением. Процессы лавинной ионизации порождают в искровом канале высокие давления и температуры до 10 тысяч градусов и выше.

Ярчайшим примером природного искрового разряда служит молния. Диаметр главного искрового канала молнии может составлять от нескольких сантиметров до 4 м, а длина канала достигать 10 км. Величина силы тока доходит до 500 тыс. ампер, а разность потенциалов между грозовым облаком и поверхностью Земли достигает миллиарда вольт.

Наиболее длинная молния протяженностью 321 км наблюдалась в 2007 году в Оклахоме, США. Рекордсменом по продолжительности стала молния, зафиксированная в 2012 году во Французских Альпах — она длилась свыше 7,7 секунды. При ударе молнии воздух может разогреться до 30 тысяч градусов, что в 6 раз превышает температуру видимой поверхности Солнца.

В тех случаях, когда мощность источника электрического поля достаточно велика, искровой разряд развивается в дуговой.

Этот вид самостоятельного разряда характеризуется большой плотностью тока и малым (меньше, чем при тлеющем разряде) напряжением. Дистанция пробоя невелика благодаря близкому расположению электродов. Разряд инициируется испусканием электрона с поверхности катода (для атомов металлов потенциал ионизации невелик по сравнению с молекулами газов). Во время пробоя между электродами создаются условия, при которых газ проводит электрический ток, и возникает искровой разряд, замыкающий цепь. Если мощность источника напряжения достаточно велика, искровые разряды переходят в устойчивую электрическую дугу.

Ионизация при дуговом разряде достигает почти 100%, сила тока очень велика и может составлять от 10 до 100 ампер. При атмосферном давлении дуга способна нагреваться до 5-6 тысяч градусов, а катод — до 3 тысяч градусов, что приводит к интенсивной термоэлектронной эмиссии с его поверхности. Бомбардировка анода электронами приводит к частичному разрушению: на нем образуется углубление — кратер с температурой около 4000 °C. Увеличение давления влечет за собой еще больший рост температур.

При разведении электродов дуговой разряд остается устойчивым до некоторого расстояния, что позволяет бороться с ним на тех участках электрооборудования, где он вреден из-за вызываемой им коррозии и выгорания контактов. Это такие устройства, как высоковольтные и автоматические выключатели, контакторы и прочие. Одним из методов борьбы с дугой, возникающей при размыкании контактов, является использование дугогасительных камер, основанных на принципе удлинения дуги. Применяются и многие другие методы: шунтирование контактов, использование материалов с высоким потенциалом ионизации и так далее.

Развитие коронного разряда происходит при нормальном атмосферном давлении в резко неоднородных полях у электродов, обладающих большой кривизной поверхности. Это могут быть шпили, мачты, провода, различные элементы электрооборудования, имеющие сложную форму, и даже волосы человека. Такой электрод называется коронирующим. Ионизационные процессы и, соответственно, свечение газа имеют место только вблизи него.

Корона может формироваться как на катоде (отрицательная корона) при бомбардировке его ионами, так и на аноде (положительная) в результате фотоионизации. Отрицательная корона, в которой ионизационный процесс как следствие термоэмиссии направлен от электрода, характеризуется ровным свечением. В положительной короне могут наблюдаться стримеры — светящиеся линии ломаной конфигурации, могущие превратиться в искровые каналы.

Примером коронного разряда в природных условиях являются возникающие на остриях высоких мачт, верхушках деревьев и так далее. Образуются они при большой напряженности электрического поля в атмосфере, часто перед грозой или во время метели. Кроме того, их фиксировали на обшивке самолетов, попавших в облако вулканического пепла.

Коронный разряд на проводах ЛЭП ведет к значительным потерям электроэнергии. При большом напряжении коронный разряд может переходить в дуговой. Борьбу с ним ведут различными способами, например, путем увеличения радиуса кривизны проводников.

Электрический ток в газах и плазма

Полностью или частично ионизированный газ называется плазмой и считается четвертым агрегатным состоянием вещества. В целом плазма электрически нейтральна, так как суммарный заряд составляющих ее частиц равен нулю. Это отличает ее от других систем заряженных частиц, таких как, например, электронные пучки.

В природных условиях плазма образуется, как правило, при высоких температурах вследствие столкновения атомов газа на больших скоростях. Подавляющая часть барионной материи во Вселенной пребывает в состоянии плазмы. Это звезды, часть межзвездного вещества, межгалактический газ. Земная ионосфера также представляет собой разреженную слабо ионизированную плазму.

Степень ионизации является важной характеристикой плазмы — от нее зависят проводящие свойства. Степень ионизации определяется как отношение количества ионизированных атомов к общему количеству атомов в единице объема. Чем сильнее ионизирована плазма, тем выше ее электропроводность. Кроме того, ей присуща высокая подвижность.

Мы видим, таким образом, что газы, проводящие электрический ток, в пределах канала разряда являют собой не что иное, как плазму. Так, тлеющий и коронный разряды — это примеры холодной плазмы; искровой канал молнии или электрическая дуга — примеры горячей, практически полностью ионизованной плазмы.

Электрический ток в металлах, жидкостях и газах — различия и сходство

Рассмотрим особенности, которыми характеризуется газовый разряд в сравнении со свойствами тока в других средах.

В металлах ток — это направленное движение свободных электронов, не влекущее за собой химических изменений. Проводники такого типа называют проводниками первого рода; к ним относятся, кроме металлов и сплавов, уголь, некоторые соли и оксиды. Их отличает электронная проводимость.

Проводники второго рода — это электролиты, то есть жидкие водные растворы щелочей, кислот и солей. Прохождение тока сопряжено с химическим изменением электролита — электролизом. Ионы вещества, растворенного в воде, под действием разности потенциалов перемещаются в противоположные стороны: положительные катионы — к катоду, отрицательные анионы — к аноду. Процесс сопровождается выделением газа либо отложением слоя металла на катоде. Проводникам второго рода присуща ионная проводимость.

Что касается проводимости газов, то она, во-первых, временная, во-вторых, имеет признаки сходства и различия с каждым из них. Так, электрический ток и в электролитах, и в газах — это направленный к противоположным электродам дрейф разноименно заряженных частиц. Однако в то время как электролиты характеризуются чисто ионной проводимостью, в газовом разряде при сочетании электронного и ионного типов проводимости ведущая роль принадлежит электронам. Еще одно различие электрического тока в жидкостях и в газах состоит в природе ионизации. В электролите молекулы растворенного соединения диссоциируют в воде, в газе же молекулы не разрушаются, а только теряют электроны. Поэтому газовый разряд, как и ток в металлах, не связан с химическими изменениями.

Неодинакова также и тока в жидкостях и газах. Проводимость электролитов в целом подчиняется закону Ома, а при газовом разряде он не соблюдается. Вольт-амперная характеристика газов имеет гораздо более сложный характер, связанный со свойствами плазмы.

Следует упомянуть и об общих и отличительных чертах электрического тока в газах и в вакууме. Вакуум — это почти идеальный диэлектрик. «Почти» — потому что в вакууме, несмотря на отсутствие (точнее, чрезвычайно малую концентрацию) свободных носителей заряда, тоже возможен ток. Но в газе потенциальные носители уже присутствуют, их только необходимо ионизировать. В вакуум носители заряда вносятся из вещества. Как правило, это происходит в процессе электронной эмиссии, например при нагревании катода (термоэлектронная эмиссия). Но и в различных типах газовых разрядов эмиссия, как мы видели, играет важную роль.

Применение газовых разрядов в технике

О вредном воздействии тех или иных разрядов вкратце речь уже шла выше. Теперь обратим внимание на пользу, которую они приносят в промышленности и в быту.

Тлеющий разряд применяют в электротехнике (стабилизаторы напряжения), в технологии нанесения покрытий (метод катодного распыления, основанный на явлении коррозии катода). В электронике его используют для получения ионных и электронных пучков. Широко известной областью применения тлеющего разряда являются люминесцентные и так называемые экономичные лампы и декоративные неоновые и аргоновые газоразрядные трубки. Кроме того, тлеющий разряд применяют в и в спектроскопии.

Искровой разряд находит применение в предохранителях, в электроэрозионных методах точной обработки металлов (искровая резка, сверление и так далее). Но наиболее известен он благодаря использованию в свечах зажигания двигателей внутреннего сгорания и в бытовой технике (газовые плиты).

Дуговой разряд, будучи впервые использован в осветительной технике еще в 1876 году (свеча Яблочкова — «русский свет»), до сих пор служит в качестве источника света — например, в проекционных аппаратах и мощных прожекторах. В электротехнике дуга используется в ртутных выпрямителях. Кроме того, она применяется в электросварке, в резке металла, в промышленных электропечах для выплавки стали и сплавов.

Коронный разряд находит применение в электрофильтрах для ионной очистки газов, в счетчиках элементарных частиц, в молниеотводах, в системах кондиционирования воздуха. Также коронный разряд работает в копировальных аппаратах и лазерных принтерах, где посредством его производится заряд и разрядка светочувствительного барабана и перенос порошка с барабана на бумагу.{19}Кл;

E – направление поля;

l – длина свободного пробега между двумя последовательными столкновениями электрона с атомами газа.

A_{поля}=eEl\geq W – условие ионизации

W – энергия ионизации, т.е. энергия, необходимая для того, чтобы вырвать из атома электрон

 

Число электронов увеличивается в геометрической прогрессии, в результате возникает электронная лавина, а следовательно разряд в газе.

 

Электрический ток в жидкости

 

Жидкости так же, как и твердые тела могут быть диэлектриками, проводниками и полупроводниками. К числу диэлектриков относится дистиллированная вода, к проводникам – растворы электролитов: кислот, щелочей, солей и расплавы металлов. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов.

Электролитическая диссоциация

При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы. Например, CuSO_{4}\rightarrow Cu^{2+}+SO^{2-}_{4}.

Наряду с диссоциацией идет обратный процесс – рекомбинация, т.е. объединение ионов противоположных знаков в нейтральные молекулы.

Носителями электричества в растворах электролитов являются ионы. Такая проводимость называется ионной.

Электролиз

Если в ванну с раствором электролита поместить электроды и пустить ток, то отрицательные ионы будут двигаться к положительному электроду, а положительные – к отрицательному.

 

На аноде (положительном электроде) отрицательно заряженные ионы отдают лишние электроны (окислительная реакция), а на катоде (отрицательном электроде) положительные ионы получают недостающие электроны (восстановительная реакция).

Определение. Процесс выделения на электродах веществ, связанный с окислительно-восстановительными реакциями называется электролизом.

 

Законы Фарадея

 

I. Масса вещества, которая выделяется на электроде, прямо пропорциональна заряду, протекшему через электролит:

m=kq

k – электрохимический эквивалент вещества.{4}\frac{Кл}{моль}

 

Объединенный закон электролиза

 

Подставим k в выражение для m (I закон Фарадея), получаем:

m=kI\Delta t=\frac{1}{F}\frac{\mu}{n}I\Delta t

m=\frac{1}{F}\frac{\mu}{n}I\Delta t

F=N_{A}\cdot e , где N_{A} – постоянная Авогадро; e – заряд электрона

m=\frac{1}{N_{A}\cdot e}\frac{\mu}{n}I\Delta t

Физический смысл электрохимического эквивалента.

 

Электрохимический эквивалент равен отношению массы иона к его заряду:

k=\frac{m_{oi}}{q_{oi}}

Электрический ток в газах

Цели урока:

образовательные: дать понятие самостоятельного и несамостоятельного разряда в газе, познакомить с механизмом образования свободных зарядов в газе, рассмотреть типы самостоятельного разряда и их свойства формировать умения решать качественные задачи, анализировать графики и физические закономерности.

развивающие: развивать творческое мышление, развивать умение применять знания в новой нестандартной ситуации, развивать умение анализировать, делать выводы.

воспитательные: воспитывать доброжелательное отношение друг к другу, взаимопонимание и взаимопощь.

Оборудование к уроку: интерактивная доска, мультимедийный проектор, плоский конденсатор, набор спектральных трубок, “Разряд-1”, электрофорная машина

Ход урока

1. Организационный момент

Мы живем на дне воздушного океана. В атмосфере наблюдается немало интересных электрических явлений. Вот как описывает в своем стихотворении “Капитаны”

Н.С.Гумилев одно из таких явлений:

(Слайд 2). Презентация

Там волны с блесками и всплесками
Непрекращаемого танца,
И там летит скачками резкими
Корабль летучего Голландца
Ни риф, ни мель ему не встретятся,
Но, знак печали и несчастий,
Огни святого Эльма светятся,
Усеяв борт его и снасти

Целью сегодняшнего урока является изучение электрических явлений в атмосфере и газах. Выяснить условия, при которых возникает электрический ток в газах.

2. Изучение нового материала

Постановка учебной проблемы.

Учитель задает вопрос: перед вами заряженный конденсатор, соединенный с электрометром. Почему заряд конденсатора и электрометра сохраняется?

Учащиеся отвечают: Газы состоят из нейтральных молекул. Поэтому в обычных условиях газы являются хорошими изоляторами.

Учитель ставит опыт: В пространство между пластинами конденсатора вносится зажженная спиртовка. Учащиеся наблюдают уменьшение заряда электрометра.

Учитель задает вопрос: Почему разряжается электрометр? Какую роль играет пламя?

Учащиеся отвечают: В результате нагревания газа происходит его ионизация.

На экране слайд 4: Процесс протекания тока через газ называется газовым разрядом. Проводимость газа можно увеличить путем нагревания или облучением пространства между пластинами конденсатора ультрафиолетовым излучением.

На экране слайд 5: Ионизация – распад молекул на положительные ионы и электроны. Показывается механизм образования положительного иона и электрона

На экране слайд 6: Электрический ток в газах – это направленное движение положительных ионов и электронов.

Учитель задает вопрос: Почему заряд электрометра сохраняется, если действие ионизатора убрать?

Учащиеся отвечают: Если ионизатор убрать, то новых ионов и электронов не образуется. Из положительных ионов и электронов образуются нейтральные молекулы.

На экране слайд 7: Рекомбинация – это образование нейтральных молекул из электронов и положительных ионов

Существует два типа разрядов в газе: несамостоятельный и самостоятельный. На экране слайд 8.

Для исследования зависимости силы тока от напряжения собирают цепь.

Слайд 9. Рассмотрим вольт-амперную характеристику несамостоятельного разряда. Слайд 10. Вопросы для беседы: Как меняется сила тока с увеличением напряжения? (С увеличением напряжения увеличивается сила тока). Почему? (Чем больше напряжение, тем больше заряженных частиц достигает электродов, тем больше сила тока). О чем говорит горизонтальная часть графика? (Все частицы, образующиеся под действием ионизатора, достигают электродов) Если действие ионизатора, убрать, то разряд в газе прекратиться. Это несамостоятельный разряд. При дальнейшем увеличении напряжения наблюдается дальнейший рост силы тока.

Учитель задает вопрос: Что может стать причиной увеличения силы тока? Почему при увеличении напряжения количество зарядов растет лавинообразно? Найдите ответы в учебнике. Учащиеся ищут ответы на вопросы. Обсуждение ответов учащихся. Слайды 11, 12.

Для изучения типов самостоятельного разряда класс делится на 4 группы. Каждая группа получает задание по изучению определенного вида разряда: 1 группа – тлеющий разряд; вторая – электрическую дугу; третья – искровой заряд; четвертая – коронный разряд. После обсуждения заполняется таблица. Обсуждение сопровождается показом демонстраций и слайдов. (Cлайды 15 -36)

Условия Тлеющий Электрическая дуга Искровой разряд Коронный разряд
Состояние газа Разреженный газ Воздух Воздух Воздух
Положение электродов Десятки сантиметров Несколько сантиметров Произвольное Острый электрод
Напряжение Десятки, сотни вольт Десятки вольт Тысячи и миллионы вольт Тысячи и более вольт
Сила тока Несколько миллиампер Десятки, сотни ампер До сотен тысяч ампер Доли ампер

3. Закрепление. Р.№ 910.

Дано:

ni = 2,7•1022 м-3

(ni/n)% -?

Решение:

p = nkT

n =

Вычисление

n = =2,65•1025

ni/n = = 10-3

4. Рефлексия. Учитель задает вопросы:

(ni/n)% = 0,1%1. Что нового узнали на уроке?

2. Что вас особенно поразило при изучении нового материала?

3. Для чего необходимо знать условия протекания различных разрядов в газе?

4. В каких случаях необходимо учитывать эти знания на практике? Приведите примеры.

Учащиеся устно высказывают свое мнение.

5. Домашнее задание: § 124-125, Р.№ 908, 911.

Список использованной литературы

1. Мякишев Г.Я., Буховцев Б.Б, Сотский Н.Н. Физика 10 класс. — М.: Просвещение, 2010.

2. Пинский А.А., Кабардин О.Ф. Физика. Учебник для 10 класса с углубленным изучением физики. – М.: Просвещение, 2007.

3. Рымкевич А.П. Физика. Задачник 10-1 классы. — М.: Дрофа, 2005.

4. Сауров Ю.А. Физика в 10 классе. — М.: Просвещение, 2005.

Билет №19 Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Типы самостоятельного разряда и их техническое применение.

Электрическим током называется направленное движение заряженных частиц в электрическом поле .

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводниками могут быть толь­ко ионизированные газы, в которых содержатся электроны, положительные и отрицательные ионы.

Разность потенциалов, которую должен пройти электрон для приобретения энергии ионизации, называется по­тенциалом ионизации атома или молекулы.

Виды ионизаций:

— ионизация, возникающая под действием высоких темпера­тур, называется термоионизацией;

— ионизация, возникающая под действием различных излуче­ний (ультрафиолетового, рентгеновского,

радиоактивного) и кос­мических лучей, называется фотоионизацией ;

— ионизация, возникающая вследствие столк­новения частиц между собой называется ударной ионизацией.

Образовавшиеся вследствие ионизации электроны и ионы делают газ проводником электричества.

Процесс взаимной нейтрализации заряженных частиц называется ре­комбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию. Это может вызвать, напри­мер, свечение газа.

Явление прохождения электрического тока через газ называ­ется газовым разрядом. Различают несамостоятельные и само­стоятельные газовые разряды.

Газовые разряды, происходящие под действием внешнего ионизатора, называются несамостоятельными.

Если для образования свободных электронов используется нагревание катода, то говорят о явлении термоэлектронной эмиссии.

При ударной ионизации число образовавшихся электронов и ионов с течением времени возрастает в геометрической про­грессии, образуя так называемые электронную и ионную лавины. С возникновением лавин характер газового разряда меня­ется с несамостоятельного на самостоятельный, поскольку сво­бодные заряды в газе образуются самопроизвольно, без дей­ствия внешнего ионизатора.

Газовый разряд, который продолжается после прекращения действия внешнего ионизатора, называется самостоятельным разрядом.

Процесс перехода несамостоятельного газового разряда в са­мостоятельный называется электрическим пробоем, а соответст­вующее ему напряжение Un напряжением пробоя.

Характер самостоятельного разряда определяется свойства­ми и состоянием газа, величиной и распределением приложенно­го напряжения, формой и расположением электродов.

В зависимости от условий, при которых происходит образова­ние носителей заряда различают несколько типов самостоятельных разрядов: тлеющий, искровой, коронный, дуговой.

  • Тлеющим называется газовый разряд в разреженных газах, Находящихся при низких давлениях 0,1 —0,01 мм рт. ст.). Для его осуществления напряжение подается на электроды, впа­янные в торцы длинной цилиндрической трубки с газом. Заполняя трубку различными газами, можно полу­чать различную окраску свечения: так для неона характерно красное свечение, для аргона — синевато-зеленое.

Тлеющий разряд широко применяется как источник света в рекламных газосветных трубках , в газовых лазерах, а также для катодного распыления металлов при изготовлении высококачественных металлических зеркал.

  • Искровой разряд возникает при давлениях порядка атмо­сферного при увеличении напряжения между электродами в газе до напряжения пробоя. Он сопровождается ярким свечением газа при проскакивании искры, характерным звуком и выделе­нием некоторого количества теплоты. При искровом разряде из электронных лавин, возникающих под действием сильного электрического поля, образуются стри­меры — тонкие разветвленные каналы, заполненные ионизиро­ванным газом. Искровые разряды могут возникнуть вследствие электриза­ции при расчесывании сухих волос или снятии шерстяного свитера, при разрядке конденсатора через воздух. Молния во время грозы также является гигантским искровым разрядом в атмосфере. Искровой разряд применяется для воспламенения горючей смеси в двигателях внутреннего сго­рания.

  • В сильном неоднородном электрическом поле при атмо­сферном давлении возни­кает коронный разряд. В естественных условиях коронный разряд возникает под влиянием атмосферного электричества на верхушках деревьев, корабельных мачт (огни Святого Эльма), а также при больших напряжениях на проводах линий электропередач. Ко­ронный разряд применяется в электрофильтрах для очистки промышленных газов от примесей.

  • В пространстве между сильно нагретыми электродами возни­кает дуговой электрический разряд. Он характеризуется боль­шой силой тока (десятки и сотни ампер) и малым напряжением (десятки вольт). Дуговой разряд поддерживается за счет мощ­ной термоэлектронной эмиссии с поверхности катода.

Дуговой разряд широко применяется в электропечах для плавки, сварки и резания металлов, особенно тугоплавких, в ка­честве мощных источников света (прожекторы, проекционные киноаппараты).

Таким образом, для протекания всех газовых разрядов газ предварительно необходимо ионизировать.

Плазма — четвертое агрегатное состояние вещества, харак­теризующееся высокой степенью ионизации его частиц при ра­венстве концентраций положительно и отрицательно заряжен­ных частиц.

Подчеркнем, что в масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состо­ят Солнце, звезды, верхние слои атмосферы и радиационное пояса Земли.

Плазма находит широкое применение на производстве при резке и шлифовке металлов, травлении различных поверхностей, введении добавок в полупроводники, нанесении защитных и упрочняющих покрытий. Важнейшие из применений плазмы ученые связывают с новыми перспектив­ными способами производства энергии: магнитогидродинамическое (МГД) пре­образование внутренней энергии в электрическую и управляемые термоядерные реакции синтеза

Электрический ток в газах — презентация онлайн

1. Презентация на тему: “Электрический ток в газах”

Оформил:
Сабируллов
Рашид
Каргин
Константин

2. Ионизация

O Электрический ток в газах, как и ток в любой другой среде, требует
наличия свободных электрических зарядов. В нормальном состоя
нии газа таких зарядов там нет, поэтому их необходимо создать ис
кусственно. Существует два способа это сделать. Первый – это рас
щепить нейтральные атомы газа на электроны и положительные
ионы. Второй – привнести в газ эти свободные носители извне. Как
правило, применяется способ ионизации. Ионизация – процесс рас
щепления нейтральных молекул на ионы и электроны. Для протека
ния процесса ионизации необходимо каким-либо способом придать
частицам дополнительную энергию, чтобы они смогли разорвать
внутримолекулярные связи. Для этого используется либо некоторое
излучение (например световое), либо нагревание. После ионизации
газа, если приложить некоторую разность потенциалов, разноимен
но заряженные частицы начнут движение в противоположных на
правлениях, что будет означать протекание тока.
O Процесс ионизации происходит сложным образом: в результате
него образуются как положительные ионы, так и отрицательные
ионы, так и свободные электроны. Проводимость газов – ионная.
O Опыт показывает, что две разноименно заряженные пластины,
разделенные слоем воздуха, не разряжаются.
O Обычно вещество в газообразном состоянии является изолятором,
так как атомы или молекулы, из которых оно состоит, содержат
одинаковое число отрицательных, положительных электрических
зарядов и в целом нейтральны.
O Внесем в пространство между пластинами пламя спички или
спиртовки (рис. 164). При этом электрометр начнет быстро
разряжаться. Следовательно, воздух под действием пламени стал
проводником. При вынесении пламени из пространства между
пластинами разряд электрометра прекращается. Такой же результат
можно получить, облучая пластины светом электрической дуги. Эти
опыты доказывают, что газ может стать проводником
электрического тока.
O Явление прохождения электрического тока через газ,
наблюдаемое только при условии какого-либо внешнего
воздействия, называется несамостоятельным электрическим
разрядом.

4. Закономерности электрического тока в газах

O Электрические разряды в газе можно разделить на два вида: само
стоятельные и несамостоятельные. Несамостоятельные разряды –
разряды, которые происходят только при наличии внешнего иони
затора и прекращаются при его устранении. Самостоятельные раз
ряды – разряды, происходящие и при отсутствии ионизаторов. При
мером самостоятельного разряда является шаровая молния .
O Газ, в котором значительная часть атомов или молекул
ионизована, называется плазмой. Степень термической ионизации
плазмы зависит от температуры. Например, при температуре 10
000 К ионизовано меньше 10 % общего числа атомов водорода,
при температуре выше 20 000 К водород практически полностью
ионизован.
O Электроны и ионы плазмы могут перемещаться под действием
электрического поля. Таким образом, при низких температурах газ
является изолятором, при высоких температурах превращается в
плазму и становится проводником электрического тока.
OПри
увеличении напряженности электрического поля до некоторого определенного значения,
зависящего от природы газа и его давления, в газе возникает электрический ток и без
воздействия внешних ионизаторов. Явление прохождения через газ электрического тока, не
зависящего от действия внешних ионизаторов, называется самостоятельным электрическим
разрядом.
O В воздухе при атмосферном давлении самостоятельный электрический разряд возникает при
напряженности электрического поля, равной примерно
OОсновной
механизм ионизации газа при самостоятельном электрическом разряде — ионизация
атомов и молекул вследствие ударов электрона.
O Ионизация
электронным ударом. Ионизация электронным ударом становится возможной тогда,
когда электрон при свободном пробеге приобретет кинетическую энергию, превышающую
энергию связи W электрона с атомом.
O Кинетическая энергия Wк электрона, приобретаемая под действием электрического поля
напряженностью , равна работе сил электрического поля:
O
Wк = Fl = eEl,
Oгде
O
l — длина свободного пробега.
Отсюда приближенное условие начала ионизации электронным ударом имеет вид
O
OЭнергия
eEl > W .
связи электронов в атомах и молекулах обычно выражается в электронвольтах (эВ). 1
эВ равен работе, которую совершает электрическое поле при перемещении электрона (или
другой частицы, обладающей элементарным зарядом) между точками поля, напряжение между
которыми равно 1 В.
O
.
Электрический разряд в газах подчиняются Ома закону лишь при
очень малой приложенной извне разности потенциалов, поэтому их
электрические свойства описывают с помощью вольтамперной
характеристики. Когда ионизация газа происходит при непрерывном
действии внешнего ионизатора и малом значении разности
потенциалов между анодом и катодом в газе, начинается «тихий
разряд». При повышении разности потенциалов (напряжения) сила
тока тихого разряда сперва увеличивается пропорционально
напряжению (участок кривой OA на рис. 1), затем рост тока с ростом
напряжения замедляется (участок кривой AB), и когда все заряженные
частицы, возникшие под действием ионизатора в единицу времени,
уходят за то же время на катод и на анод, усиления тока с ростом
напряжения не происходит (участок ВС). При дальнейшем росте
напряжения ток снова возрастает и тихий разряд переходит в
несамостоятельный лавинный разряд (участок СЕ на рис. 1). В этом
случае сила тока определяется как интенсивностью воздействия
ионизатора, так и газовым усилением, которое зависит от давления
газа и напряжённости электрического поля в пространстве,
занимаемом разрядом.
Вольтамперная характеристика разряда: аб — несамостоятельного лавинного; бвг —
тлеющего; гд — дугового.
O Сопротивление данной среды,
зависимость от температуры. При
увеличении температуры, чаще
происходит ионизация атомов,
появляется больше свободных
носителей заряда, и уменьшается
количество атомов,
препятствующих движению
электронов и ионов. Таким
образом, сопротивление
уменьшается.

8. Характерные особенности проводимости данной среды.

O Механизм проводимости газов похож на механизм
проводимости растворов и расплавов электролитов.
Разница состоит в том, что отрицательный заряд
переносится в основном не отрицательными ионами, а
электронами. Таким образом, в газах сочетается
электронная проводимость (проводимость металлов), с
ионной проводимостью (проводимость водных растворов
или расплавов электролитов).В растворах электролитов
образование ионов происходит вследствие ослабления
внутримолекулярных связей под действием молекул
растворителя (молекул воды). В газах образование ионов
происходит либо при нагревании, либо за счёт действия
внешних ионизаторов (излучений).

9. Применение газового разряда

O Самым
распространенным применением газо
вого разряда в технике является электриче
ская дуга, которая используется для электро
сварки и освещения. Высокая температура
плазмы дугового разряда позволяет
применять его для резки и сварки
металлических конструкций, для плавки
металлов. С помощью искрового разряда
ведется обработка деталей из самых
твердых материалов.
O Также световое излучение плазмы
самостоятельного электрического разряда
широко используется в народном хозяйстве
и в быту. Это лампы дневного света и
газоразрядные лампы уличного, освещения,
электрическая дуга в кинопроекционном
аппарате и ртутно-кварцевые лампы,
применяемые в больницах и поликлиниках.

Как возникает электрический ток в газах. Электрические свойства газов. Электрический ток в газах и плазма

Реферат по физике

на тему:

«Электрический ток в газах».

Электрический ток в газах.

1. Электрический разряд в газах.

Все газы в естественном состоянии не проводят электрического тока. В чем можно убедиться из следующего опыта:

Возьмем электрометр с присоединенными к нему дисками плоского конденсатора и зарядим его. При комнатной температуре, если воздух достаточно сухой, конденсатор заметно не разряжается – положение стрелки электрометра не изменяется. Чтобы заметить уменьшение угла отклонения стрелки электрометра, требуется длительное время. Это показывает, что электрический ток в воздухе между дисками очень мал. Данный опыт показывает, что воздух является плохим проводником электрического тока.

Видоизменим опыт: нагреем воздух между дисками пламенем спиртовки. Тогда угол отклонения стрелки электрометра быстро уменьшается, т.е. уменьшается разность потенциалов между дисками конденсатора – конденсатор разряжается. Следовательно, нагретый воздух между дисками стал проводником, и в нем устанавливается электрический ток.

Изолирующие свойства газов объясняются тем, что в них нет свободных электрических зарядов: атомы и молекулы газов в естественном состоянии являются нейтральными.

2. Ионизация газов.

Вышеописанный опыт показывает, что в газах под влиянием высокой температуры появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.

Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей, a-, b- и g-лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Ионизация атома требует затраты определенной энергии – энергии ионизации. Для ионизации атома (или молекулы) необходимо совершить работу против сил взаимодействия между вырываемым электроном и остальными частицами атома (или молекулы). Эта работа называется работой ионизации A i . Величина работы ионизации зависит от химической природы газа и энергетического состояния вырываемого электрона в атоме или молекуле.

После прекращения действия ионизатора количество ионов в газе с течением времени уменьшается и в конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они могут воссоединиться в нейтральный атом. Точно также при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы. Этот процесс взаимной нейтрализации ионов называется рекомбинацией ионов. При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию. Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Этот процесс заключается в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны (об этом будет рассмотрено позднее).

В таблице ниже даны значения энергии ионизации некоторых атомов.

3. Механизм электропроводности газов.

Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. При отсутствии внешнего поля заряженные частицы, как и нейтральные молекулы движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.

Таким образом, электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду . Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.

На электродах происходит нейтрализация заряженных частиц, как и при прохождении электрического тока через растворы и расплавы электролитов. Однако в газах отсутствует выделение веществ на электродах, как это имеет место в растворах электролитов. Газовые ионы, подойдя к электродам, отдают им свои заряды, превращаются в нейтральные молекулы и диффундируют обратно в газ.

Еще одно различие в электропроводности ионизованных газов и растворов (расплавов) электролитов состоит в том, что отрицательный заряд при прохождении тока через газы переносится в основном не отрицательными ионами, а электронами, хотя проводимость за счет отрицательных ионов также может играть определенную роль.

Таким образом в газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов и расплавов электролитов.

4. Несамостоятельный газовый разряд.

Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа.

Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами. Цепь собрана как показано на рисунке ниже.

При некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток достигает насыщения (горизонтальный участок графика 1).

5. Самостоятельный газовый разряд.

Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом . Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).

Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.

Каковы же причины резкого увеличения силы тока при больших напряжениях? Рассмотрим какую либо пару заряженных частиц (положительный ион и электрон), образовавшуюся благодаря действию внешнего ионизатора. Появившийся таким образом свободный электрон начинает двигаться к положительному электроду – аноду, а положительный ион – к катоду. На своем пути электрон встречает ионы и нейтральные атомы. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля.

Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля. Кинетическая энергия электрона перед очередным столкновением пропорциональна напряженности поля и длине свободного пробега электрона: MV 2 /2=eEl. Если кинетическая энергия электрона превосходит работу A i , которую нужно совершить, чтобы ионизировать нейтральный атом (или молекулу), т.е. MV 2 >A i , то при столкновении электрона с атомом (или молекулой) происходит его ионизация. В результате вместо одного электрона возникают два (налетающий на атом и вырванный из атома). Они, в свою очередь, получают энергию в поле и ионизуют встречные атомы и т.д.. Вследствие этого число заряженных частиц быстро нарастает, возникает электронная лавина. Описанный процесс называют ионизацией электронным ударом.

Проведем следующий опыт.

картинка

Присоединим электрометр к дискам плоского конденсатора. После этого зарядим конденсатор. При обычной температуре и сухом воздухе конденсатор будет разряжаться очень медленно. Из этого можно сделать вывод, что ток в воздухе между дисками очень мал.

Следовательно, в обычных условиях газ является диэлектриком. Если теперь нагреть воздух между пластин конденсатора, то стрелка электрометра быстро приблизится к нулю, и, следовательно, конденсатор разрядится. Значит, в нагретом газе устанавливается электрический ток, и такой газ будет являться проводником.

Электрический ток в газах

Газовый разряд – процесс прохождения тока через газ. Из опыта видно, что с увеличением температуры проводимость воздуха увеличивается. Помимо нагревания, проводимость газа можно увеличить и другими способами, например, действием излучений.

В обычных условиях газы в основном состоят из нейтральных атомов и молекул, и поэтому являются диэлектриками. Когда мы воздействуем на газ излучением или нагреваем его, часть атомов начинают распадаться на положительные ионы и электроны – ионизироваться. Ионизация газа происходит вследствие того, что при нагревании скорость молекул и атомов увеличивается очень сильно, и при столкновениях друг с другом они распадаются на ионы.

Проводимость газа

Проводимость в газах осуществляется в основном электронами. В газах сочетаются два вида проводимости: электронная и ионная. В отличии от растворов электролитов, в газах образование ионов происходит либо при нагревании, либо за счет действия внешних ионизаторов – излучений, в то время, как в растворах электролитов образование ионов вызвано ослаблением межмолекулярных связей.

Если в какой-то момент ионизатор прекратит свое действие на газ, то ток тоже прекратится. При этом положительно заряженные ионы и электроны могут опять объединиться – рекомбинировать. Если отсутствует внешнее поле, то заряженные частицы будут исчезать только вследствие рекомбинации.

Если действие ионизатора не будет прерываться, то установится динамическое равновесие. В состоянии динамического равновесия, число вновь образующихся пар частиц (ионов и электронов) будет равняться числу исчезающих пар — вследствие рекомбинации.

1. Ионизация, ее сущность и виды.

Первым условием существования электрического тока является наличие свободных носителей заряда. В газах они возникают в результате ионизации. Под действием факторов ионизации от нейтральной частицы отделяется электрон. Атом становится положительным ионом. Таким образом, возникает 2 типа носителей заряда: положительный ион и свободный электрон. Если электрон присоединится к нейтральному атому, то возникает отрицательный ион, т.е. третий тип носителей заряда. Ионизированный газ называют проводником третьего рода. Здесь возможно 2 типа проводимости: электронная и ионная. Одновременно с процессами ионизации идет обратный процесс- рекомбинация. Для отделения электрона от атома надо затратить энергию. Если энергия поводится извне, то факторы способствующие ионизации, называются внешними (высокая температура, ионизирующее излучение, у/ф излучение, сильные магнитные поля). В зависимости от факторов ионизации, ее называют термоионизацией, фотоионизацией. Также ионизация может быть вызвана механическим ударом. Факторы ионизации делятся на естественные и искусственные. Естественная вызвана излучением Солнца, радиоактивным фоном Земли. Кроме внешней ионизацией есть внутренняя. Ее делят на ударную и ступенчатую.

Ударная ионизация.

При достаточно высоком напряжении, электроны разогнанные полем до больших скоростей, сами становятся источником ионизации. При ударе такого электрона о нейтральный атом происходит выбивание электрона из атома. Это происходит, когда энергия электрона, вызывающего ионизацию, превышает энергию ионизации атома. Напряжение между электродами должно быть достаточным для приобретения электроном нужной энергии. Это напряжение называется ионизационным. Для каждого имеет свое значение.

Если энергия движущегося электрона меньше, чем это необходимо, то при ударе происходит лишь возбуждение нейтрального атома. Если движущийся электрон сталкивается с предварительно возбужденным атомом, то происходит ступенчатая ионизация.

2. Несамостоятельный газовый разряд и его вольт-амперная характеристика.

Ионизация приводит к выполнению первого условия существования тока, т.е. к появлению свободных зарядов. Для возникновения тока необходимо наличие внешней силы, которая заставит заряды двигаться направленно, т.е. необходимо электрическое поле. Электрический ток в газах сопровождаются рядом явлений: световых, звуковых, образование озона, окислов азота. Совокупность явлений сопровождающих прохождением тока через газ- газовый разряд . Часто газовым разрядом называют сам процесс прохождения тока.

Разряд называется несамостоятельным, если он существует только во время действия внешнего ионизатора. В этом случае после прекращения действия внешнего ионизатора не образуются новые носители заряда, и ток прекращается. При несамостоятельном разряде токи имеют по величине небольшое значение, а свечение газа отсутствует.

Самостоятельный газовый разряд, его виды и характеристика.

Самостоятельный газовый разряд — это разряд, который может существовать после прекращения действия внешнего ионизатора, т.е. за счет ударной ионизации. В этом случае наблюдается световые и звуковые явления, сила тока может значительно увеличиваться.

Виды самостоятельного разряда:

1. тихий разряд -следует непосредственно за несамостоятельным, сила тока не превышает 1 мА, звуковых и световых явлений нет. Применяется в физиотерапии, счетчиках Гейгера — Мюллера.

2. тлеющий разряд . При увеличении напряжения тихий переходит в тлеющий. Он возникает при определенном напряжении — напряжении зажигания. Оно зависит от вида газа. У неона 60-80 В. Также зависит от давления газа. Тлеющий разряд сопровождается свечением, оно связано с рекомбинацией, идущей с выделением энергии. Цвет также зависит от вида газа. Применяется в индикаторных лампах (неоновых, у/ф бактерицидных, осветительных, люминесцентных).

3. дуговой разряд. Сила тока 10 — 100 А. Сопровождается интенсивным свечением, температура в газоразрядном промежутке достигает нескольких тысяч градусов. Ионизация достигает почти 100%. 100% ионизированный газ — холодная газовая плазма. У нее хорошая проводимость. Применяется в ртутных лампах высокого и сверхвысокого давления.

4. Искровой разряд — это разновидность дугового. Это разряд импульсно — колебательного характера. В медицине применяется воздействие высокочастотных колебаний.При большой плотности тока наблюдаются интенсивные звуковые явления.

5. коронный разряд . Это разновидность тлеющего разряда Он наблюдается в местах где происходит резкое изменение напряженности электрического поля. Здесь возникает лавина зарядов и свечение газов — корона.

Это краткий пересказ.

Работа над полной версией продолжается


Лекция 2 1

Ток в газах

1. Общие положения

Определение: Явление прохождения электрического тока в газах называется газовым разрядом .

Поведение газов сильно зависит от его параметров, таких как температура и давление, причем эти параметры достаточно легко меняются. Поэтому, протекание электрического тока в газах является более сложным, чем в металлах или в вакууме.

Газы не подчиняются закону Ома.

2. Ионизация и рекомбинация

Газ, находящийся при нормальных условиях, состоит практически из нейтральных молекул, поэтому, крайне плохо проводит электрический ток. Однако при внешних воздействиях от атома может оторваться электрон и появляется положительно заряженный ион. Кроме того, электрон может присоединиться к нейтральному атому и образовать отрицательно заряженный ион. Таким образом, можно получить ионизованный газ, т.е. плазму.

К внешним воздействиям относятся нагрев, облучение энергичным фотонам, бомбардировка другими частицами и сильные поля, т.е. те же условия, которые необходимы для элементарной эмиссии.

Электрон в атоме находится в потенциальной яме, и чтобы вырваться оттуда, необходимо атому сообщить дополнительную энергию, которая называется энергией ионизации.

Вещество

Энергия ионизации, эВ

Атом водорода

13,59

Молекула водорода

15,43

Гелий

24,58

Атом кислорода

13,614

Молекула кислорода

12,06

Наряду с явлением ионизации наблюдается и явление рекомбинации, т.е. объединение электрона и положительного иона в нейтральный атом. Данный процесс происходит с выделением энергии, равной энергии ио низации. Эта энергия может пойти на излучение или на нагрев. Локальный нагрев газа приводит к локальному изменению давления. Что в свою очередь приводит к появлению звуковых волн. Таким образом, газовый разряд сопровождается световыми, тепловыми и шумовыми эффектами.

3. ВАХ газового разряда.

На начальных стадиях необходимо действие внешнего ионизатора.

На участке ОАВ ток существует под действием внешнего ионизатора и быстро выходит на насыщение, когда все ионизованные частицы участвуют в образовании тока. Если убрать внешний ионизатор, то ток прекращается.

Данный вид разряда называется несамостоятельным газовым разрядом. При попытке увеличить напряжение в газе появляются лавины электронов, и ток растет практически при постоянном напряжении, которое называется напряжением зажигания (ВС ).

С этого момента разряд становится самостоятельным и отпадает необходимость внешнего ионизатора. Число ионов может стать столь большим, что сопротивление межэлектродного промежутка уменьшится и соответственно упадет напряжение (СД).

Затем в межэлектродном промежутке область прохождения тока начинает сужаться, и сопротивление растет, а следовательно, растет напряжение (ДЕ).

При попытке увеличить напряжение газ становится полностью ионизованным. Сопротивление и напряжение падает до нуля, и ток вырастает во много раз. Получается дуговой разряд (Е F ).

ВАХ показывает, что газ совершенно не подчиняется закону Ома.

4. Процессы в газе

Процессы, которые могут привести к образованию лавин электронов показаны на рисунке.

Это элементы качественной теории Таунсенда .

5. Тлеющий разряд.

При низких давлениях и небольших напряжениях можно наблюдать этот разряд.

К – 1 (темное астоново пространство).

1 – 2 (светящаяся катодная пленка).

2 – 3 (темное круксово пространство).

3 – 4 (первое катодное свечение).

4 – 5 (темное фарадеево пространство)

5 – 6 (положительный анодный столб).

6 – 7 (анодное темное пространство).

7 – А (анодное свечение).

Если сделать анод подвижным, то длину положительного столба можно регулировать, практически не меняя размеры области К – 5.

В темных областях происходит разгон частиц и набор энергии, в светлых происходят процессы ионизации и рекомбинации.

Образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода . К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.

При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.

Проводники второго рода называются электролитами , а явление, происходящее в электролите при прохождении через него электрического тока, — .

Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом , а другая, соединенная с отрицательным полюсом,- катодом .

Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

Частицы молекулы, обладающие электрическим зарядом, называются ионами . При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана , иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду — катоду, а отрицательные ионы — к аноду.

Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

Явление электролиза при прохождении тока через раствор медного купороса: С — сосуд с электролитом, Б — источник тока, В — выключатель

Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным — ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди Сu и образуется молекула медного купороса СuS О4 , возвращаемая обратно электролиту.

Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода — анода.

Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Zn SO4. Цинк также будет переноситься с анода на катод.

Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах переносится разноименно заряженными частицами вещества — ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.

Это явление, названное гальванопластикой , находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые , будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.

Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются , т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.

Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа — явление временное, зависящее от действия внешних причин.

Однако есть и другой , называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.

В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом «темный покой достаточно ярко освещен быть может». Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.

«Свеча Яблочкова», работа которой основана на использовании электрической дуги, совершила в те времена настоящий переворот в электротехнике.

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для . В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.

В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд .

Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

 

Электрическая дуга — Электропроводимость в газах — Ток, вызываемый, производящий и взимаемый

Газы состоят из нейтральных молекул и поэтому являются хорошими изоляторами. Однако при определенных условиях происходит нарушение изоляционных свойств, и ток может проходить через газ. С электрическим разрядом в газах связано несколько явлений; Среди них искровой, темный (таунсендский) разряд, свечение, корона и дуга.

Для того, чтобы провести электричество , необходимы два условия.Во-первых, обычно нейтральный газ должен создавать заряды или принимать их из внешних источников, или и то, и другое. Во-вторых, должно существовать электрическое поле, чтобы вызвать направленное движение зарядов. Заряженный атом или молекула , или ион, может быть положительным или отрицательным ; электроны — отрицательные заряды. В электрических устройствах электрическое поле создается между двумя электродами, называемыми анодом , и катодом, сделанным из проводящих материалов. Процесс превращения нейтрального атома или молекулы в ион называется ионизацией.Ионизированный газ называется плазмой . Проводимость газов отличается от проводимости твердых тел и жидкостей тем, что газы играют активную роль в этом процессе. Однако газ не только позволяет проходить бесплатную зарядку, но и сам по себе может производить заряды. Кумулятивная ионизация происходит, когда исходный электрон и его потомок набирают достаточно энергии , чтобы каждый мог произвести еще один электрон. Когда процесс повторяется снова и снова, результирующий процесс называется лавиной.

Для любого газа при заданном давлении и температуре существует определенное значение напряжения, называемое потенциалом пробоя , которое вызовет ионизацию. Приложение напряжения выше критического значения сначала вызовет увеличение тока из-за кумулятивной ионизации, а затем напряжение снизится. Если давление не слишком низкое, проводимость концентрируется в узком освещенном «искровом» канале. Получая энергию от тока, канал нагревается и может образовывать ударные волны.Природные явления — это молния и связанный с ней гром, которые состоят из высоких напряжений и токов, которые не могут быть достигнуты искусственно.

После искры может возникнуть дуга под высоким давлением. Это происходит, когда достигаются установившиеся условия и напряжение низкое, но достаточное для поддержания требуемого тока. При низких давлениях переходная стадия искры приводит к тлеющему разряду, и дуга может позже образоваться при дальнейшем увеличении тока.В дуге термоэлектронный эффект отвечает за образование свободных электронов, которые испускаются горячим катодом. Сильное электрическое поле на металлической поверхности снижает барьер для эмиссии электронов и обеспечивает полевую эмиссию . Однако из-за высокой температуры и большого тока некоторые механизмы возникновения дуги не могут быть легко изучены.


электричество — Почему газы проводят при низком давлении?

При высоком давлении длина свободного пробега электронов довольно мала.Электроны не успевают разогнаться. Если электроны не ускоряются надолго, они не могут получить высокую скорость или кинетическую энергию, необходимую для ионизации других атомов.

Хотя ваш аргумент о том, что , если имеется больше атомов, больше электронов может быть получено посредством ионизации , имеет смысл, вы не учитываете тот факт, что только электроны высокой энергии могут ионизировать электроны из атомов газа. Если атомов газа слишком много, электроны сталкиваются намного раньше, чем у них будет достаточно кинетической энергии для ионизации атомов.Если вы не можете заставить двигаться большое количество электронов, вы не получите достаточного тока.

Когда давление газа низкое (но не слишком низкое), электроны получают достаточно времени (или расстояния) для ускорения. К тому времени, когда они сталкиваются с атомом, они получают достаточно кинетической энергии от электрического поля, чтобы ионизировать другие атомы. Несмотря на то, что не так много атомов, из которых можно получить электроны, по сравнению с газом при высоком давлении, их более чем достаточно для создания измеримого тока.

Если давление газа становится слишком низким, в игру вступает ваш аргумент. Атомов для ионизации не хватит, и проводимость снизится.


Математические сведения:

$$ V_ {B} = \ frac {Bpd} {ln (Apd) — ln (ln (1 + \ frac {1} {\ gamma_ {se}}))} $$

где $ V_B $ — напряжение пробоя (минимальное напряжение, необходимое для наблюдения измеряемого тока), $ p $ — давление газа, $ d $ — расстояние между электродами, $ A $ — ионизация газа при насыщении. и $ \ gamma_ {se} $ — коэффициент вторичной электронной эмиссии, а $ B $ — константа, связанная с энергией ионизации.

Введение:

Когда давление слишком низкое, трудно получить значительное количество электронов для получения измеримого тока.

Для давления, которое не является ни слишком низким, ни слишком высоким, изменение проводимости можно понять следующим образом.

Если свободный электрон двигался через два электрода с разностью потенциалов $ V $ в идеальном вакууме, кинетическая энергия, полученная электроном, равна:

$$ K.E = эВ $$

Пусть расстояние между электродами равно $ L $.Если электрон проходит расстояние $ x $ (длина свободного пробега) до столкновения с атомом, кинетическая энергия, полученная электроном, равна:

$$ K.E = e (Ex) = ex \ frac {V} {L} $$

Электрон должен иметь энергию не менее $ W $ (назовем эту работу выхода) для ионизации атома.

Если должна произойти значительная ионизация, то: $$ K.E \ ge W $$

$$ ex \ frac {V} {L} \ ge W \ tag {1} $$

Длина свободного пробега электрона пропорциональна (если не равна) длине свободного пробега газа.Длина свободного пробега газа изменяется следующим образом:

$$ \ lambda = k \ frac {T} {P} \ tag {2} $$

Подставляя уравнение $ (2) $ в уравнение $ (1) $, получаем:

$$ k_1 \ frac {T} {P} \ frac {V} {L} \ ge W $$

Рассмотрим $ P $ и $ L $ как переменные и зафиксируем $ T $ (мы предполагаем, что мы проводим эксперимент при постоянной температуре)

$$ V \ ge k_2 PL $$

Минимум $ V $, необходимый для просмотра наблюдаемого тока, определяется по формуле:

$$ V_ {min} = V _ {\ text {breakdown}} = V_ {B} = k_2PL $$

16.7. Электролиз — использование электричества для химии

До сих пор мы обсуждали, как можно производить электричество в результате химических реакций в батареях. Вместо этого некоторые реакции будут использовать электричество, чтобы вызвать реакцию. В этих реакциях реагентам передается электрическая энергия, заставляя их реагировать с образованием продуктов. Эти реакции имеют множество применений. Например, электролиз — это процесс, при котором электричество пропускается через жидкость или раствор, чтобы вызвать реакцию.Реакции электролиза не начнутся, если в систему не будет подана энергия извне. В случае реакций электролиза энергия вырабатывается аккумулятором. Думайте об электролизе и электролитических ячейках как о противоположности электрохимических ячеек:

Ячейки электрохимические

Ячейки электролитические

Преобразование энергии

Химическая промышленность → Электрика

Электрический → Химический

Самопроизвольная химическая реакция?

Есть

Значение E °

Положительно

отрицательный

В электрохимической ячейке спонтанная окислительно-восстановительная реакция используется для создания электрического тока; в электролитической ячейке произойдет обратное — потребуется электрический ток, чтобы вызвать несамопроизвольную химическую реакцию.Мы рассмотрим три примера электролитического процесса, сохраняя наше обсуждение на самом базовом уровне: электролиз расплавленного хлорида натрия, электролиз воды и гальваника.

Рисунок 16.7.1: Через воду проходит электрический ток, который расщепляет воду на водород и кислород.

Если электроды, подключенные к клеммам батареи, поместить в жидкий хлорид натрия, ионы натрия будут перемещаться к отрицательному электроду и уменьшаться, в то время как ионы хлора перемещаются к положительному электроду и окисляются.-} \ rightarrow 2 \ ce {Na} + \ ce {Cl_2} \]

При соответствующей обработке аккумуляторной батареи можно добиться прочного прилипания восстанавливаемого в процессе электролиза металла к электроду. Использование электролиза для покрытия одного материала слоем металла называется гальваникой . Обычно гальваника используется для покрытия дешевого металла слоем более дорогого и привлекательного металла. Многие покупают украшения, покрытые золотом. Иногда гальваника используется для получения металла с поверхности, который лучше проводит электричество.Если вы хотите иметь поверхностные свойства золота (привлекательный, коррозионно-стойкий или хороший проводник), но не хотите, чтобы изготовление целого объекта из чистого золота обходилось слишком дорого, ответ может заключаться в использовании дешевого металла. чтобы сделать объект, а затем гальванизировать тонкий слой золота на поверхности.

Рисунок 16.7.2: Серебряное покрытие.

Для серебряной пластины такой предмет, как ложка (посуда с покрытием дешевле, чем чистое серебро), ложку помещают на место катода в установке для электролиза с раствором нитрата серебра.При включении тока ионы серебра мигрируют через раствор, касаются катода (ложки) и прилипают к нему. При наличии достаточного количества времени и осторожности всю ложку можно покрыть слоем серебра. Анодом для этой операции часто будет большой кусок серебра, из которого ионы серебра будут окисляться, и эти ионы попадут в раствор. Это способ обеспечить стабильную подачу ионов серебра для процесса нанесения покрытия.

  • Половина реакции на катоде:

\ [\ ce {Ag ^ +} + \ ce {e ^ -} \ rightarrow \ ce {Ag} \]

  • Полуреакция на аноде:

\ [\ ce {Ag} \ rightarrow \ ce {Ag ^ +} + \ ce {e ^ -} \]

Некоторый процент проданных золотых и серебряных украшений гальванизирован.Точки подключения в электрических переключателях часто покрываются золотом для улучшения электропроводности, а большинство хромированных деталей в автомобилях хромированы.

Электролиз расплавленного хлорида натрия

Если мы посмотрим на латинские корни слова «электролиз», мы узнаем, что оно означает, по сути, «разрушение» ( lysis ) с помощью электричества. В нашем первом примере электролитической ячейки будет рассмотрено, как можно использовать электрический ток для разделения ионного соединения на его элементы.Следующее уравнение представляет собой распад NaCl ( l ) :

2NaCl ( л ) → 2Na ( л ) + Cl 2 (г)

В этом процессе участвуют следующие полуреакции:

E °

редуктор 2Na + (л) + 2e → Na (с)

-2.71 В

окисление Класс (л) → Класс 2 (г) + 2 e

-1,36 В


Требуемое сетевое напряжение

— 4.07V

Обратите внимание, что при сложении полуреакций получается отрицательное напряжение (-4,07 В). Это говорит нам о том, что общая реакция НЕ будет спонтанной, и для того, чтобы эта реакция произошла, потребуется минимум 4,07 вольт.

Как мы увидим, наша установка будет во многом похожа на наши электрохимические ячейки. Нам потребуются электроды и электролит для проведения электрического тока.

В нашем примере с NaCl электроды просто пропускают ток, но в противном случае они не будут напрямую участвовать в реакции.Электролитом будет фактически расплавленный (расплавленный) NaCl. Электроды и электролит должны пропускать электрический ток. Необходимо использовать расплавленный NaCl, потому что твердые ионные соединения не несут электрический заряд.

Некоторые ключевые отличия от устройства электрохимической ячейки:

  • Две половинные реакции не разделены солевым мостиком.
  • Потребуется электрохимический элемент (или другой источник электрического тока).

Другие важные примечания:

  • Анод электролитической ячейки является местом окисления, а катод — местом восстановления, как и в электрохимической ячейке.
  • В электрохимической ячейке анод отрицательный, а катод положительный, но в электролитической ячейке все наоборот — анод положительный, а катод отрицательный.

Внимательно изучите схему нашей установки, уделяя особое внимание отслеживанию пути электронов. Пока электроны не совершат полный цикл, реакция не произойдет.

    1. Электроны «производятся» в батарее на аноде, в месте окисления.
    2. Электроны покидают электрохимическую ячейку через внешнюю цепь.
    3. Эти отрицательные электроны создают в электролитической ячейке отрицательный электрод, который притягивает положительные ионы Na + в электролите. Ионы Na + соединяются со свободными электронами и восстанавливаются (2Na + + 2e → Na).
    4. Между тем, отрицательный Cl притягивается к положительному электроду электролитической ячейки. На этом электроде хлор окисляется, высвобождая электроны (Cl → Cl 2 + 2 e ).
    5. Эти электроны проходят через внешнюю цепь, возвращаясь в электрохимическую ячейку.

Электролиз воды

Наш второй пример электролиза и электролитических ячеек связан с разложением воды. Мы обнаружим ситуацию, очень похожую на электролиз расплавленного NaCl. Следующее уравнение представляет разделение H 2 O ( l ) :

2H 2 O ( л ) → 2H 2 ( г ) + O 2 (г)

Может быть труднее предсказать вовлеченные полуреакции, но они:

E °

редуктор 2H 2 O ( л ) + 2e → H 2 + 2 OH

-0.83 В

окисление 2H 2 O ( л ) → O 2 + 4H + + 4e

-1,23 В

(см. Примечание ниже для уравнения сети)

Требуемое сетевое напряжение

— 2.06V

Настройка будет очень похожа на наш последний пример с некоторыми небольшими отличиями. Вода плохо переносит заряд, поэтому в воду добавляется электролит. Можно использовать уксус или слабую кислоту (уксусную кислоту). Для сбора образовавшихся газов водорода и кислорода часто добавляют перевернутые пробирки, как показано на схеме ниже.

Опять же, внимательно следите за траекторией электронов. Пока электроны не совершат полный цикл, реакция не произойдет.

2H 2 O ( л ) + 2e → H 2 ( г ) + 2 OH (водн.)

2H 2 O ( л ) → O 2 (г) + 4H + (водн.) + 4e

    1. Электроны «производятся» в батарее на аноде, в месте окисления.
    2. Электроны покидают электрохимическую ячейку через внешнюю цепь.
    3. Эти отрицательные электроны создают в электролитической ячейке отрицательный электрод, который вызывает уменьшение содержания воды.
      Обратите внимание, что область вокруг этого электрода станет основной по мере образования ионов OH .
    1. Тем временем вода положительного электрода будет окисляться.
    1. Электроны, образующиеся в процессе окисления, возвращаются в электрохимическую ячейку.

Примечание о сбалансированном уравнении электролиза воды:

Из полуреакций вы можете заметить, что сложение уравнений изначально не дает нам нашего чистого уравнения:

2H 2 O ( л ) → 2H 2 ( г ) + O 2 (г)

После того, как вы уравновесите количество электронов (умножьте уравнение редукции на 2), вы обнаружите, что на самом деле сумма уравнений составляет:

6H 2 O ( л ) → 2H 2 ( г ) + O 2 (г) + 4H + (водн.) + 4 OH (водн. )

Ионы водорода и гидроксида объединятся с образованием 4 моль H 2 O ( l ) .Определение чистого количества H 2 O ( l ) дает нам окончательное уравнение:

2H 2 O ( л ) → 2H 2 ( г ) + O 2 (г)

Сводка

  • Электрохимические ячейки состоят из анода и катода в двух отдельных растворах. Эти растворы соединены солевым мостиком и токопроводящим проводом.
  • Электрический ток состоит из потока заряженных частиц.
  • Электрод, на котором происходит окисление, называется анодом, а электрод, на котором происходит восстановление, называется катодом.
  • При нанесении гальванических покрытий объект, который нужно покрыть, делают катодом.

Словарь

  • Электрохимический элемент — расположение электродов и ионных растворов, в котором окислительно-восстановительная реакция используется для выработки электричества (также известного как батарея).
  • Электролиз — Химическая реакция, вызываемая электрическим током.
  • Гальваника — Процесс, в котором электролиз используется как средство покрытия объекта слоем металла.

Материалы и авторство

Эта страница была создана на основе содержимого следующими участниками и отредактирована (тематически или всесторонне) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:

  • Фонд CK-12 Шэрон Бьюик, Ричард Парсонс, Тереза ​​Форсайт, Шонна Робинсон и Жан Дюпон.

UCAR Center for Science Education

Электричество преобразовало неоновый газ в этом свете в плазму, заставив ее светиться оранжевым светом.
Кредит: Пславинский (Википедия)

Плазма — одно из четырех общих состояний материи. Плазма — это электрически заряженный газ. В плазме часть электронов оторвана от своих атомов. Поскольку частицы (электроны и ионы) в плазме обладают электрическим зарядом, на движения и поведение плазмы влияют электрические и магнитные поля.В этом главное отличие газа от плазмы.

Плазма создается, когда один или несколько электронов отрываются от атома. В ионизированном атоме может отсутствовать несколько электронов (или даже только один), или он может быть лишен электронов, полностью оставляя позади атомное ядро ​​(одного или нескольких протонов и обычно нескольких нейтронов). Атомы, у которых отсутствуют электроны, называются «ионами». Ионы имеют положительный электрический заряд, потому что у них больше положительно заряженных протонов, чем отрицательно заряженных электронов.Плазма обычно представляет собой смесь этих положительно заряженных ионов и отрицательно заряженных электронов.

Большинство плазмы создается, когда к газу добавляется дополнительная энергия, выбивая электроны из атомов. Высокие температуры часто вызывают образование плазмы. Атомы в горячем газе движутся так быстро, что, сталкиваясь друг с другом, иногда выбивают электроны. Фотоны высокой энергии от гамма-лучей, рентгеновских лучей или ультрафиолетового излучения также могут создавать плазму, отталкивая электроны от своих атомов.Электричество высокого напряжения также может создавать плазму.

Плазма иногда создается людьми. Некоторые типы электрических ламп содержат плазму. Электричество в люминесцентных лампах создает плазму. Цветные неоновые огни, часто используемые в вывесках, также используют электричество для преобразования газа в светящуюся плазму. В некоторых типах телевизоров с плоским экраном также используется плазма.

Плазма также обычна в природе. Фактически, плазма является наиболее распространенным состоянием «обычной» материи (то есть всей материи, кроме загадочной «темной материи», над которой астрономы ломали голову в последние годы) во Вселенной.В плазме находится гораздо больше вещества, чем в жидком, твердом или газообразном состоянии. Удары молнии создают плазму за счет очень сильного разряда электричества. Большая часть Солнца и других звезд находится в состоянии плазмы. Некоторые области атмосферы Земли содержат плазму, созданную в основном ультрафиолетовым излучением Солнца. В совокупности эти области называются ионосферой. Крайние верхние слои атмосферы Земли, термосфера и экзосфера (и, в меньшей степени, мезосфера), также содержат изрядное количество плазмы, смешанной с атомами и молекулами газа.Выше атмосферы Земля окружена магнитным «пузырем», называемым магнитосферой. Большинство частиц в магнитосфере — это ионизированная плазма.

Электрические и магнитные поля часто направляют поток заряженных частиц плазмы. Плазма в магнитосфере Земли иногда течет вдоль магнитного поля Земли к полярным регионам, создавая красочные световые шоу в небе, которые мы называем полярным сиянием или южным и северным сиянием. Эти прекрасные проявления возникают, когда энергичные частицы плазмы сталкиваются с газами в атмосфере, заставляя их светиться почти так же, как флуоресцентные и неоновые лампы.Выступы, гигантские петли светящейся материи, подвешенные над Солнцем, — еще один пример красивых световых шоу, созданных плазмой.

Полярные сияния: что заставляет их происходить?


Прежде чем мы сможем понять полярные сияния, нам понадобится несколько фактов о космосе вокруг нашей Земли. В этом пространстве есть много вещей, которых мы не видим.

Одно дело — это воздух, которым мы дышим, наша атмосфера. На самом деле это смесь нескольких газов, в основном азота и кислорода, со следами водорода, гелия и различных соединений.

Поле Земли
Еще одна вещь, которую мы не видим, — это магнитное поле, окружающее Землю. Если вы когда-либо играли с стержневым магнитом и железными опилками, вы видели изогнутые узоры, которые опилки образуют в магнитном поле. На следующем рисунке показано, как магнитное поле вокруг земного ядра похоже на поле стержневого магнита.

Земной «магнит» находится глубоко в ядре. Поскольку мы не видим магнитное поле, мы рисуем линии, чтобы представить его.Силовые линии входят в Землю и выходят из нее вокруг магнитных полюсов Земли. Там, где линии находятся ближе всего друг к другу, поле наиболее сильное. Там, где они находятся дальше всего друг от друга, он самый слабый. Можете ли вы сказать, где магнитное поле самое сильное? Где он самый слабый?

Заряженные частицы
Третья невидимая вещь в космосе вокруг Земли — это плазма, состоящая из множества заряженных частиц.В окружающем магнитном поле всегда есть электроны и положительные ионы. Заряженные частицы в магнитном поле движутся особым образом: они руководствуются полем. Частицы движутся вдоль силовых линий магнитного поля, как если бы они были проводами, вращаясь вокруг линий по длинной спирали. Заряженные частицы — это «боеприпасы» полярного сияния.

Дисплей на солнечных батареях
Краткий ответ на вопрос о том, как происходит полярное сияние, заключается в том, что энергичные электрически заряженные частицы (в основном электроны) ускоряются вдоль силовых линий магнитного поля в верхние слои атмосферы, где они сталкиваются с атомами газа, заставляя атомы отделяться друг от друга. выключен свет.Но почему так происходит? Чтобы найти ответ, мы должны посмотреть подальше, на Солнце. Захватывающие, «великие» полярные сияния в фильме «Как они выглядят?» питаются так называемым солнечным ветром.

У Солнца также есть атмосфера и магнитное поле, которые простираются в космос. Атмосфера Солнца состоит из водорода, который состоит из субатомных частиц: протонов и электронов. Эти частицы постоянно выкипают из Солнца и устремляются наружу с очень высокой скоростью. Вместе магнитное поле Солнца и частицы называют «солнечным ветром».«

Этот ветер всегда давит на магнитное поле Земли, изменяя его форму. Вы изменяете форму мыльного пузыря аналогичным образом, когда дуетесь о его поверхность. Мы называем это сжатое поле вокруг Земли магнитосферой. Поле Земли сжато на дневной стороне, где над ним обтекает солнечный ветер. Он также вытянут в длинный хвост, как след корабля, который называется магнитосферным хвостом, и направлен в сторону от Солнца.

Сжатие магнитного поля Земли требует энергии точно так же, как энергия требуется для сжатия воздушного шара с воздухом в нем.Весь процесс до сих пор полностью не изучен, но энергия солнечного ветра постоянно накапливается в магнитосфере, и именно эта энергия питает полярные сияния.

Большой толчок
Итак, мы имеем магнитосферу Земли с солнечным ветром, сжимающим магнитосферу и заряженные частицы повсюду в поле. Солнечные частицы всегда попадают в хвост магнитосферы от солнечного ветра и движутся к Солнцу.Время от времени, при подходящих условиях, нарастание давления от солнечного ветра создает электрическое напряжение между хвостом магнитосферы и полюсами, подобное напряжению между двумя выводами батареи. Оно может достигать 10 000 вольт!

Напряжение подталкивает электроны (которые очень легкие) к магнитным полюсам, ускоряя их до высоких скоростей, подобно электронам в кинескопе телевизора, которые ускоряются и ударяются по экрану. Они увеличивают масштаб вдоль силовых линий к земле на север и юг, пока огромное количество электронов не выталкивается в верхний слой атмосферы, называемый ионосферой.

В ионосфере летящие электроны яростно сталкиваются с атомами газа. Это дает атомам газа энергию, которая заставляет их высвобождать свет и больше электронов. Таким образом, газы ионосферы светятся и проводят электрические токи в полярную область и из нее. У текущих электронов не так много энергии, как у быстро набегающих — эта энергия ушла на создание полярного сияния!

Полярное сияние очень похоже на неоновую вывеску, за исключением того, что в полярных сияниях проводящий газ находится в ионосфере, а не в стеклянной трубке, а ток проходит по линиям магнитного поля вместо медных проводов.


© 1999-2001 Регенты Калифорнийского университета Обсерватория
/ The Exploratorium
Последнее обновление этой страницы: 19.06.01

Об электроэнергетической системе США и ее влиянии на окружающую среду

Электроэнергетическая система США

Современная электроэнергетическая система США представляет собой сложную сеть, состоящую из электростанций, линий передачи и распределения, а также конечных потребителей электроэнергии.Сегодня большинство американцев получают электроэнергию от централизованных электростанций, которые используют широкий спектр энергоресурсов для производства электроэнергии, например уголь, природный газ, ядерную энергию или возобновляемые ресурсы, такие как вода, ветер или солнечная энергия. Эту сложную систему генерации, доставки и конечных пользователей часто называют электросетью .

Используйте схему ниже, чтобы узнать больше об электросети. Щелкните каждый компонент, чтобы получить обзор со ссылками на более подробную информацию.

Посмотреть текстовую версию этой схемы ►

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Доступ к этим данным был осуществлен в декабре 2017 года.

Как и где вырабатывается электроэнергия

Электроэнергия в Соединенных Штатах вырабатывается с использованием различных ресурсов. Три наиболее распространенных — это природный газ, уголь и атомная энергия. Одними из наиболее быстрорастущих источников являются возобновляемые ресурсы, такие как ветер и солнце.Большая часть электроэнергии в США вырабатывается на централизованных электростанциях. Гораздо меньшее, но растущее количество электроэнергии вырабатывается за счет распределенной генерации — различных технологий, которые генерируют электричество там, где она будет использоваться или поблизости от нее, например, солнечные панели на месте и комбинированное производство тепла и электроэнергии. Узнайте больше о централизованной и распределенной генерации.

Подача и использование электроэнергии

Когда электричество вырабатывается на централизованной электростанции, оно проходит через серию взаимосвязанных высоковольтных линий электропередачи.Подстанции «понижают» мощность высокого напряжения до более низкого напряжения, отправляя электроэнергию более низкого напряжения потребителям через сеть распределительных линий. Подробнее о доставке электроэнергии.

На бытовых, коммерческих и промышленных потребителей приходится примерно треть потребляемой в стране электроэнергии. На транспортный сектор приходится небольшая часть потребления электроэнергии. Узнайте больше о конечных потребителях электроэнергии.

Источник: У.S. Управление энергетической информации, Обозреватель данных по электроэнергии. Доступ к этим данным был получен в декабре 2017 года.

Как сеть соответствует выработке и спросу

Количество электроэнергии, используемой в домах и на предприятиях, зависит от дня, времени и погоды. По большей части электричество должно вырабатываться во время использования. Электроэнергетические компании и операторы сетей должны работать вместе, чтобы производить необходимое количество электроэнергии для удовлетворения спроса. Когда спрос увеличивается, операторы могут отреагировать увеличением производства на уже работающих электростанциях, выработкой электроэнергии на электростанциях, которые уже работают на низком уровне или в режиме ожидания, импортом электроэнергии из удаленных источников или вызовом конечных пользователей, которые согласились потребляют меньше электроэнергии из сети.

Воздействие энергосистемы на окружающую среду

Почти все части электроэнергетической системы могут повлиять на окружающую среду, и размер этих воздействий будет зависеть от того, как и где электроэнергия вырабатывается и доставляется. В общем, воздействие на окружающую среду может включать:

  • Выбросы парниковых газов и других загрязнителей воздуха, особенно при сжигании топлива.
  • Использование водных ресурсов для производства пара, охлаждения и других функций.
  • Сбросы загрязняющих веществ в водные объекты, включая тепловое загрязнение (вода, температура которой превышает исходную температуру водоема).
  • Образование твердых отходов, которые могут включать опасные отходы.
  • Использование земель для производства топлива, выработки электроэнергии, а также линий передачи и распределения.
  • Воздействие на растения, животных и экосистемы в результате воздействия на воздух, воду, отходы и землю, указанные выше.

Некоторые из этих воздействий на окружающую среду могут также потенциально повлиять на здоровье человека, особенно если они приводят к тому, что люди подвергаются воздействию загрязнителей в воздухе, воде или почве.

Воздействие на окружающую среду используемой вами электроэнергии будет зависеть от источников генерации («структуры электроэнергии»), имеющихся в вашем районе. Чтобы узнать о выбросах, связанных с потребляемой электроэнергией, посетите Power Profiler EPA.

Вы можете уменьшить воздействие на окружающую среду от использования электроэнергии, покупая экологически чистую энергию и повышая энергоэффективность. Узнайте больше о том, как уменьшить свое влияние.

В более широком смысле, несколько решений могут помочь снизить негативное воздействие на окружающую среду, связанное с производством электроэнергии, в том числе:

  • Энергоэффективность. Конечные пользователи могут удовлетворить некоторые свои потребности, приняв энергоэффективные технологии и методы. В этом отношении энергоэффективность — это ресурс, который снижает потребность в выработке электроэнергии. Узнайте больше об энергоэффективности.
  • Чистая централизованная генерация. Новые и существующие электростанции могут снизить воздействие на окружающую среду за счет повышения эффективности производства, установки средств контроля за загрязнением и использования более чистых источников энергии. Узнайте больше о централизованной генерации.
  • Чистая распределенная генерация. Некоторая распределенная генерация, такая как распределенная возобновляемая энергия, может помочь обеспечить доставку чистой и надежной энергии потребителям и снизить потери электроэнергии на линиях передачи и распределения. Узнать больше о распределенной генерации.
  • Комбинированное производство тепла и электроэнергии (ТЭЦ). Также известная как когенерация, ТЭЦ вырабатывает электроэнергию и тепло одновременно из одного источника топлива. Благодаря использованию тепла, которое в противном случае было бы потрачено впустую, ТЭЦ представляет собой одновременно распределенную генерацию и форму энергоэффективности.Узнать больше о ТЭЦ.

Проводят ли жидкости электричество? — GeeksforGeeks

Электрический ток, проходящий через проводящий раствор, вызывает химическую реакцию. Это может привести к образованию пузырьков газа на электродах, отложению металла на электродах, изменению цвета растворов и т. Д. Известно, что в настоящее время и как производится. Все, что пропускает ток, известно как хороший проводник электричества, как медь и металл, а все, что не пропускает ток, является плохим проводником электричества, например, дерево или пластик.

Когда электроды погружаются в воду и через воду проходит ток, появляются пузырьки кислорода и водорода, что доказал Уильям Николсон , британский ученый. Он заметил, что пузырьки водорода образовывались на электроде, присоединенном к отрицательному выводу, а пузырьки кислорода образовывались на электроде, присоединенном к положительному выводу.

Вниманию читателя! Все, кто говорит, что программирование не для детей, просто еще не встретили подходящих наставников.Присоединяйтесь к демонстрационному классу для первого шага к курсу кодирования, специально разработан для учащихся 8-12 классов.

Студенты смогут больше узнать о мире программирования в этих бесплатных классах , которые определенно помогут сделать правильный выбор карьеры в будущем.

Теперь давайте изучим, как и почему жидкости проводят электричество в данной статье.



Проводят ли жидкости электричество?

Электричество не проходит через все жидкости.Тем не менее, одни жидкости являются сильными проводниками электричества, а другие — плохими проводниками. Вода, содержащая растворенные соли и минералы, хорошо проводит электричество, тогда как чистая вода плохо проводит электричество.

В заключение мы воспользуемся тестером, который мы создали для проверки проводимости материала. Сначала проверим, исправен ли наш тестер. Теперь, если наш тестер работает, мы подключим провод к двум концам тестера и включим аккумулятор, теперь мы увидим, что подключенная лампочка начинает светиться, мы можем сделать вывод, что вода может проводить электричество, и это хороший проводник электричество.Но не всегда возможно, чтобы каждая жидкость была хорошим проводником электричества, есть жидкость, которая плохо проводила бы электричество.

Испытанный материал

Электропроводность

1.

Лимонный сок

128

2906 Соединения соды

Хороший проводник



3.

Уксус

Плохой проводник

4.

Мед

Плохой проводник

4

3

3

3

3

6.

Дистиллированная вода

Плохой проводник

Что происходит, когда ток проходит через проводящий раствор?

Электрический ток, проходящий через проводящую жидкость, вызывает химические реакции.В результате на электродах могут образовываться пузырьки газа. Возможны отложения металла на электродах. Возможны изменения цвета в растворах. На отклик будут влиять раствор и используемые электроды. Когда электричество передается через воду, которая смешана с различными соединениями, ее содержимое разделяется на отрицательные и положительные ионы. Через эти ионы протекает электрический ток. Чем больше количество ионов, тем выше проводимость электричества.

Как вода проводит электричество?

Чистая вода плохо проводит электричество.Любые примеси в воде, подобные солям, имеют свойство проводить электричество. Когда соли расщепляются в воде, они разделяются на различные электрически заряженные частицы, называемые ионами. Соль или хлорид натрия (NaCl) разделяется на положительные ионы Na и отрицательные ионы Cl.


Если вы поместите батарею с отрицательным полюсом и положительным полюсом в воду, отрицательные частицы будут притягиваться к положительному полюсу, а положительные ионы будут притягиваться к отрицательному полюсу, таким образом замкнув цепь.

Если вода является проводящей, тогда лампочка будет светиться. Поскольку мы знаем, что вся вода не проводит, для проверки проводимости воды мы окунаем два конца провода в жидкость и подключаемся к батарее, если лампочка светится, то вода проводит.

Электролиз

Электролиз известен как процесс разрушения ионных смесей на их компоненты путем пропускания постоянного электрического тока через соединение в жидком состоянии. Катионы восстанавливаются на катоде, а анионы окисляются на аноде.

Например, подкисленная или солесодержащая вода может быть разложена путем пропускания электрического тока к их исходным компонентам водороду и кислороду. Жидкий хлорид натрия может разлагаться на частицы натрия и хлора.

В процессе электролиза происходит обмен ионами и атомами из-за удаления или добавления электронов из внешнего контура. По сути, при прохождении тока катионы перемещаются к катоду, забирают электроны с катода (данные от батареи источника) и выделяются в нейтральный ион.Нейтральные атомы, если они твердые, остаются на катоде, а если газ, они движутся вверх. Это процесс восстановления, и катион восстанавливается на катоде.

Одновременно анионы отдают свои дополнительные электроны аноду и окисляются до нейтральных атомов на аноде. Электроны, доставленные анионами, проходят по электрической цепи и достигают катода, завершая цепь. Электролиз включает синхронную реакцию окисления на аноде и процесс восстановления на катоде.

Электролиз

Электролиты: Электролит представляет собой смесь, в которой электроды смешаны вместе. Они разделяются при прохождении электрического тока. Электроды, электролит и батарея вместе образуют электрохимический / электролитический элемент.

Электроды: Электрод — это твердые электрические проводники, которые переносят электрический поток в неметаллические твердые тела, жидкости, газы, плазму или вакуум. Электроды обычно являются хорошими электрическими проводниками, однако они не обязательно должны быть металлами.В электрохимической ячейке на электродах протекают реакции восстановления и окисления. Электрод, на котором происходит восстановление, известен как катод. Окисление происходит на аноде.

Гальваника

Несколько раз мы видим, что новый новый велосипед имеет блестящие руль и края колес. Как бы то ни было, если они случайно поцарапаны, блестящее покрытие отвалится, обнажив не столь блестящую поверхность под ним. Возможно, вы также видели, как дамы используют украшения, все они сделаны из золота.Но при повторном использовании золотое покрытие стирается, обнажая под ним серебро или другой металл.


Мы пришли к выводу, что этот материал имеет покрывающий слой из другого материала на них. Процесс нанесения желаемого или необходимого материала на любое другое вещество с помощью электричества известен как гальваника.

Примеры проблем

Проблема 1: По какой причине стрелка компаса при погружении в соленую воду избегает большего, чем при погружении в питьевую воду?

Решение:

Морская вода содержит огромное количество солей по сравнению с питьевой водой, следовательно, морская вода является хорошим проводником электричества и создает более сильное магнитное поле в проводе и, следовательно, отклоняет компас. игла больше.

Проблема 2: Какие факторы влияют на гальванику?

Решение:

На гальваническое покрытие влияют различные компоненты. Часть этих элементов включает площадь поверхности электродов, температуру, тип используемого металла и электролита, а также силу приложенного тока.

Проблема 3. Проводит ли чистая вода электричество? Если нет, то как мы сможем справиться с его дирижированием?

Решение:

Никакая чистая вода не проводит электричество.Мы можем сделать чистую воду хорошим проводником, добавив соль в чистую воду.

Задача 4: Что вы сделаете в отношении дождевой воды, хороший или плохой проводник электричества?

Решение:

Вода — это чистая вода, которая является плохим проводником, но при этом смешивается с частицами воздуха, такими как диоксид серы и оксиды азота, и образует кислотный раствор, который является хорошим проводником электричества. Таким образом, стрелка компаса показывает отклонение.

Проблема 5: Может ли электрик выполнить ремонт электрооборудования на улице во время сильных ливней? Объяснить.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *