Site Loader

Содержание

Как узнать мощность и ток трансформатора по его внешнему виду

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее.

Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения.

Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения


Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

  • Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода
  • а с другой катушки два красных провода
  • Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого
  • Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 .

Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 .

Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется

гальванически развязаны.

Формула трансформатора

  1. Главная формула трансформатора выглядит так.
  2. где
  3. U2  – напряжение на вторичной обмотке
  4. U1 – напряжение на первичной обмотке
  5. N1 – количество витков первичной обмотки
  6. N2 – количество витков вторичной обмотки
  7. k – коэффициент трансформации
  8. В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

  • На схемах однофазный трансформатор обозначается так:
  • Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов.

Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

  1. На схемах трехфазные трансформаторы обозначаются вот так:
  2. Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.
  3. Здесь мы видим три типа соединения обмоток (слева-направо)
  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1

.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке.

Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР.

У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

  • Итак, имеем простой однофазный понижающий трансформатор.
  • Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

  1. Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток


Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка.

Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком.

В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток


При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

  • Таким же образом проверяем и вторичную обмотку.
  • Отсюда делаем вывод, что наш трансформатор жив и здоров.

Как прозвонить трансформатор или как определить обмотки трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru.

На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки.

А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка.

На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки.

Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора.

Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений.

Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами.

Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5.

Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е.

пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт.

Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть.

Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией.

Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно.

В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в х к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Как определить мощность трансформатора по сечению сердечника

g84jsm9tB4S

Если на трансформаторе имеется маркировка, то вопрос определения его параметров исчерпывается сам собой, достаточно лишь вбить эти данные в поисковик и мгновенно получить ссылку на документацию для нашего трансформатора. Однако, маркировки может и не быть, тогда нам потребуется самостоятельно эти параметры вычислить.

Для определения номинальных тока и мощности неизвестного трансформатора по его внешнему виду, необходимо в первую очередь понимать, какие физические параметры устройства являются в данном контексте определяющими. А такими параметрами прежде всего выступают: эффективная площадь сечения магнитопровода (сердечника) и площадь сечения проводов первичной и вторичной обмоток.

Речь будем вести об однофазных трансформаторах, магнитопроводы которых изготовлены из трансформаторной стали, и спроектированы специально для работы от сети 220 вольт 50 Гц. Итак, допустим что с материалом сердечника трансформатора нам все ясно. Движемся дальше.

Сердечники бывают трех основных форм: броневой, стержневой, тороидальный. У броневого сердечника эффективной площадью сечения магнитопровода является площадь сечения центрального керна. У стержневого — площадь сечения стержня, ведь именно на нем и расположены обмотки. У тороидального — площадь сечения тела тороида (именно его обвивает каждый из витков).

Для определения эффективной площади сечения, измерьте размеры a и b в сантиметрах, затем перемножьте их — так вы получите значение площади Sс в квадратных сантиметрах.

Суть в том, что от эффективной площади сечения сердечника зависит величина амплитуды магнитного потока, создаваемого обмотками. Магнитный поток Ф включает в себя одним из сомножителей магнитную индукцию В, а вот магнитная индукция как раз и связана с ЭДС в витках. Именно поэтому площадь рабочего сечения сердечника так важна для нахождения мощности.

Далее необходимо найти площадь окна сердечника — того места, где располагаются провода обмоток. В зависимости от площади окна, от того насколько плотно оно заполнено проводниками обмоток, от плотности тока в обмотках — также будет зависеть мощность трансформатора.

Если бы, к примеру, окно было полностью заполнено только проводами обмоток (это невероятный гипотетический пример), то приняв произвольной среднюю плотность тока, умножив ее потом на площадь окна, мы получили бы общий ток в окне магнитопровода, и если бы затем разделили его на 2, а после — умножили на напряжение первичной обмотки — можно было бы сказать, что это и есть мощность трансформатора. Но такой пример невероятен, поэтому нам необходимо оперировать реальными значениями.

Итак, давайте найдем площадь сечения окна.

Наиболее простой способ определить теперь приблизительную мощность трансформатора по магнитопроводу — перемножить площадь эффективного сечения сердечника и площадь его окна (все в кв.см), а затем подставить их в приведенную выше формулу, после чего выразить габаритную мощность Pтр.

В этой формуле: j — плотность тока в А/кв.мм, f — частота тока в обмотках, n – КПД, Вm – амплитуда магнитной индукции в сердечнике, Кс — коэффициент заполнения сердечника сталью, Км — коэффициент заполнения окна магнитопровода медью.

Но мы поступим проще: примем сразу частоту равной 50 Гц, плотность тока j= 3А/кв.мм, КПД = 0,90, максимальную индукцию в сердечнике — ни много ни мало 1,2 Тл, Км = 0,95, Кс=0,35. Тогда формула значительно упростится и примет следующий вид:

  Как подключить свечи накала через реле схема

Если же есть потребность узнать оптимальный ток обмоток трансформатора, то задавшись плотностью тока j, скажем теми же 3 А на кв.мм, можно умножить площадь сечения провода обмотки в квадратных миллиметрах на эту плотность тока. Так вы получите оптимальный ток. Или через диаметр провода d обмотки:

Узнав по сечению проводников обмоток оптимальный ток каждой из обмоток, разделите полученную по габаритам мощность трансформатора на каждый из этих токов — так вы узнаете соответствующие найденным параметрам напряжения обмоток.

Одно из этих напряжений окажется близким к 220 вольтам — это с высокой степенью вероятности и будет первичная обмотка. Далее вольтметр вам в помощь. Трансформатор может быть повышающим либо понижающим, поэтому будьте предельно внимательны и аккуратны если решите включить его в сеть.

Кроме того, перед вами может оказаться выходной трансформатор от акустического усилителя. Данные трансформаторы рассчитываются немного иначе чем сетевые, но это уже совсем другая и более глубокая история.

Габаритную мощность трансформатора можно приблизительно узнать по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов.

Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность. Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

  • Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.
  • P – мощность в Ваттах, B – индукция в Тесла, S – сечение в см²,
  • 1,69 – постоянный коэффициент.

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

  1. P = 1,5 * 6,25² / 1,69 = 35 Ватт
  2. Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:
  3. Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.
  4. S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции

Тип магнитопроводаМагнитная индукция мах (Тл) при мощности трансформатора (Вт)
5-1010-5050-150150-300300-1000
Броневой штампованный1,21,31,351,351,3
Броневой витой1,551,651,651,651,6
Кольцевой витой1,71,71,71,651,6

  Как выделить зону коридора

Видео: Как определить мощность трансформатора, несколько способов

  • Описание нескольких способов определения мощности 50 Гц трансформаторов.
  • Классический теоретический расчет трансформатора достаточно сложен Для его выполнения необходимо знать такие характеристики, как магнитная проницаемость используемых для сердечника пластин трансформаторной стали, длина магнитных силовых линий в сердечнике, средняя длина витка обмотки и другие параметры Профессиональному разработчику НИИ все эти параметры известны, так как он обладает сертификатами применяемых в трансформаторе материалов Радиолюбитель же вынужден использовать для трансформатора совершенно случайно попавший к нему сердечник, характеристики которого ему неизвестны
  • По указанной причине для расчета трансформатора предлагается эмпирический метод, многократно проверенный радиолюбителями и основанный на практическом опыте Расчет элементарно прост и требует лишь знания простейших основ арифметикиПринцип действия трансформатора

  1. Рис 61 Трансформатор: а – общий вид б – условное обозначение
  2. Трансформатор был изобретен П Н Яблочковым в 1876 году Устройство трансформатора показано на рис 61а, а его схематическое обозначение – на рис 616
  3. Трансформатор состоит из стального сердечника и обмоток, намотанных изолированным обмоточным проводом
  4. Сердечник собирается из тонких пластин специальной электротехнической стали для снижения потерь энергии
  5. Обмотка, предназначенная для подключения к сети переменного тока, называется первичной Нагрузка подключается к вторичной обмотке, которых в трансформаторе может быть несколько Номера обмоток обычно проставляются римскими цифрами Часто обмоткам присваивают номера их выводов
  6. Работа трансформатора основана на магнитном свойстве электрического тока При подключении концов первичной обмотки к электросети по этой обмотке протекает переменный ток, который создает вокруг ее витков и в сердечнике трансформатора переменное магнитное поле Пронизывая витки вторичной обмотки, переменное магнитное поле индуцирует в них ЭДС Соотношение количества витков первичной и вторичной обмоток определяет получаемое напряжение на выходе трансформатора Если количество витков вторичной обмотки больше, чем первичной, выходное напряжение трансформатора будет больше напряжения сети Такая обмотка называется повышающей Если же вторичная обмотка содержит меньше витков, чем первичная, выходное напряжение окажется меньше сетевого (понижающая обмотка)
  7. Трансформатор – это пассивный преобразователь энергии Его коэффициент полезного действия (КПД) всегда меньше единицы Это означает, что мощность, потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети
  8. Параметры и характеристики трансформатора
  9. Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток Но если нагрузка первого трансформатора потребляет большой ток, а второго – маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника Поэтому габариты трансформатора зависят от его мощности И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора

  Как почистить турку внутри

  • Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах Но это напряжение зависит также и от количества витков первичной обмотки При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки к количеству витков первичной Это отношение и называется коэффициентом трансформации
  • Если напряжение на вторичной обмотке зависит от коэффициента трансформации, можно ли выбирать количество витков одной из обмоток, например первичной, произвольно Оказывается, нельзя Дело в том, что чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя Эта характеристика называется количеством витков на один вольт
  • Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети
  • КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95 Более высокие значения имеют трансформаторы большей мощности
  • Электрический расчет трансформатора
  • Прежде чем начать электрический расчет силового трансформатора, необходимо сформулировать требования, которым он должен удовлетворять Они и будут являться исходными данными для расчета Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они и являются техническими требованиями к трансформатору
  • Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой вторичной обмотки, и сложить их, учитывая также КПД трансформатора Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:
  1. где Р – мощность, потребляемая от обмотки, Вт
  2. U – эффективное значение напряжения, снимаемого с этой обмотки, В
  3. I – эффективное значение силы тока, протекающего в этой же обмотке, А
  4. Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

  • Для определения габаритной мощности трансформатора полученное значение суммарной мощности Ps нужно разделить на КПД трансформатора:
  • где Рг – габаритная мощность трансформатора
  • η – КПД трансформатора
  • Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали) И те и другие параметры становятся известны только после расчета трансформатора Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из табл 61

формула для нахождения сечения магнитопровода, как рассчитать обмотки

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

  • Автотрансформатор имеет один магнитопровод, на котором собран индуктор. Часть витков выполняет функции первичной обмотки, а остальные витки действуют как вторичные катушки.
  • Преобразователи напряжения работают в измерительных приборах и в цепях релейной защиты.
  • Преобразователи тока предназначены для гальванической развязки в сетях сигнализации и управления.
  • Импульсные трансформаторы применяются в вычислительной технике, автоматике, системах связи.
  • Силовые устройства работают с напряжением до 750 киловольт.

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Трансформатор | Устройство, виды, принцип работы

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения


Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

а с другой катушки два красных провода

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

 

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток


Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток


При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

Таким же образом проверяем и вторичную обмотку.

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Лабораторный автотрансформатор (ЛАТР)

Программа для расчета трансформатора

Как получить постоянное напряжение из переменного

Вторичная обмотка трансформатора, что стоит знать, как рассчитать, сделать под нужное напряжение, ток.

Напомню, что трансформатор – это электротехническое устройство, способное преобразовывать электрическую энергию через промежуточную среду в виде электромагнитного поля. Устройство трансформатора достаточно простое. Он состоит из магнитного сердечника (может иметь различные формы) на который наматываются витки изолированного провода. Классический вариант трансформатора содержит две обмотки: первичная (она же входная) и вторичная (она же выходная). В зависимости от материала магнитного сердечника, общей мощности трансформатора, нужных параметров (входное и выходное напряжение и сила тока) данное устройство содержит определённое количество витков и сечение обмоточного провода.

Первичные обмотки трансформаторов в большинстве своем рассчитаны на стандартное сетевое напряжение величиной 220 вольт (реже на 380 вольт, это трансформаторы используют в промышленной сфере). Одной из главных характеристик трансформатора является его мощность. Зная мощность данного устройства и имея первичную обмотку, рассчитанную на 220 вольт можно легко переделать любой трансформатор под свои нужды (если этой мощности вам будет хватать) намотав вторичную обмотку под нужное выходное напряжение и силу тока.

А как можно определить эту самую мощность трансформатора? По его сердечнику! Электрическая мощность трансформатора (в ваттах) равна квадрату площади (в сантиметрах) поперечного сечения той части магнитопровода, на которую наматывается провод.

Напомню, что электрическая мощность равна произведению напряжения на силу тока. То есть, если мы узнали мощность трансформатора, с которой он может работать мы можем вычислить номинальную силу тока, что может выдавать вторичная обмотка (зная величину напряжения).

К примеру, вы решили сделать себе блок питания относительно небольшой мощности. Берём от старой, ненужной электротехники (если таковая у вас имеется в доме, гараже) понижающий силовой трансформатор (с железным магнитопроводом) или его покупаем. Допустим, по сердечнику вы определили, что трансформатор имеет мощность около 120 ватт. Это значит, что при напряжении в 12 вольт (на вторичной обмотке) он может обеспечивать силу тока величиной до 10 ампер (мощность разделили на напряжение и получили силу тока). В действительности же нужно учитывать, что у малогабаритных трансформаторов КПД равен около 80%, значит и максимальный выходной ток будет чуть меньше, чем 10 ампер (исходя из данного примера).

Трансформатор, который вы нашли, приобрели, оказался рассчитанный (его вторичная, выходная обмотка) на другое напряжение, не то, которое нужно именно вам. Не беда! Мы его аккуратно разбираем, разматываем старую вторичную обмотку и наматываем новую. Если диаметр провода может обеспечить вам нужный ток, то просто перематываем старую вторичную обмотку под нужное напряжение. От количества витков зависит напряжение (чем больше витков, тем выше напряжение на выходе). От сечения провода обмотки зависит сила тока (чем больше сечение, тем больший ток провод может пропустить через себя, не перегреваясь).

У различной мощности трансформаторов количество витков на 1 вольт будет также различное. Чем больше мощность, тем меньше нужно наматывать провода для получения 1 вольта (а в целом нужной величины напряжения). Сечение провода в значительной степени зависит от той плотности тока, которую вы можете допустить. Если площадь намотки велика, то и охлаждаться она будет лучше, следовательно, и плотность тока можно выбрать больше. Когда же обмотка намотана кучно, то лучше плотность тока брать меньше. В среднем плотность тока равна 2 А/мм2. При этой плотности диаметр провода (без учета изоляции) можно рассчитать по формуле:

Количество витков вторичной обмотки проще будет определить практическим путём. Для этого, на скорую руку, на трансформатор мотаем, допустим, 20 витков. Подаем на первичную обмотку питание. Далее измеряем напряжение на вторичной обмотке (этих самых 20 витках), после чего эти 20 витков делим на измеренное напряжение, и получаем количество витков, которые будут выдавать нам 1 вольт. Ну, а потом, чтобы узнать общее количество витков вторичной обмотки, мы напряжение вторичной обмотки умножаем на количество витков на один вольт. К примеру, 1 вольт мы получим при намотке 10 витков, следовательно, мы 10 умножаем на 12 вольт (которые мы хотим получить на выходе трансформатора). В итоге наша вторичная обмотка должна содержать 120 витков.

P.S. Чтобы не морочить голову с перемотками трансформаторных обмоток, пожалуй, лучше просто на рынке или в магазине приобрести трансформатор с подходящей мощностью, с нужным выходным напряжением и силой тока. Но учитывайте, что дешевые трансформаторы могут в некоторой степени не соответствовать своим характеристикам (обычно на магнитопровод ставят провод меньшего диаметра, чем нужно). Так, что лучше заплатить больше и приобрести качественный трансформатор.

Как измерить силу тока в цепи постоянного и переменного тока

Любая электротехническая система не обходится без расчета силы тока в цепях, проводниках и приборах. Например, при монтаже электрической проводки в однофазной сети или в трехфазной сети для расчета толщины проводников и автоматических защитных выключателей необходимо знать силу тока, который будет протекать в данных линиях. Правильное измерение – залог безопасной и надежной эксплуатации любого электрического устройства.

Измерения силы тока проводят не только для расчета цепей, но и для диагностики электрического оборудования (например, измерения на трехфазном двигателе) и бытовых электроприборов (в нагревателе, лампочках, блоках питания, зарядных устройствах USB и пр.). Автомобильные электрики, для выявления неисправности в электрических системах автомобиля (например, в прикуривателе) проводят измерения силы тока на аккумуляторе или на генераторе автомобиля. В этой статье мы подробно расскажем, как правильно измерять ток в различных ситуациях.

Как измерить ток

Для того, чтобы уметь правильно измерить силу тока, не обязательно быть профессиональным электриком, но необходимо иметь некоторые познания в электротехнике.

Что же такое сила тока? Сила тока – физическая величина, которая равна отношению количества заряда, который проходит через определенную поверхность за некоторое время, к величине этого промежутка времени. Данная величина измеряется в Амперах и обозначается буквой «А». Хоть определение силы тока и звучит достаточно мудрено, но в этой физической величине нет ничего сложного.

Но как измерить амперы? Чтобы провести измерения силы тока необходимо иметь определенный инструмент или оборудование для этого. Обычно измерения в цепи постоянного напряжения проводят мультиметром или тестером, а в сетях переменного напряжения токоизмерительными клещами или амперметром.

Постоянный ток

Как уже было сказано выше, измерения силы тока в цепях постоянного напряжения удобнее всего проводить мультиметром. Для того, чтобы осуществить измерение необходимо взять мультиметр и настроить его для работы с силой тока.

Для этого переключатель режимов перемещается в положение DCA (измерение постоянного тока), а красный и черный штекеры щупов мультиметра подключаются к гнездам с обозначением «10А» и «COM», а другие концы подключаются в разрыв цепи (то есть красный подключается к положительной полярности, а черный к отрицательной).

На современных китайских мультиметрах есть два гнезда для измерения силы тока. Одно из них подписано mA. Оно защищено предохранителем и предназначено для измерения малых токов, зачастую не более 200 мА. А второе гнездо подписывается либо просто «А», либо «10А». Оно не защищено предохранителем и предназначено для измерения тока большой величины. При этом время измерения обычно ограничивается периодом в 10-20 секунд.

Измерения производят с максимального значения, постепенно уменьшая для получения на экране необходимой размерности значения. Важно понимать примерную мощность электрической сети, в которой проводятся измерения, и выбирать прибор в соответствии с этим. Если прибор не рассчитан на такую величину, то он может выйти из строя или произойдет короткое замыкание.

В быту измерения силы тока постоянного напряжения проводят, например, у светодиода на светодиодной ленте или на плате телевизора (или другой техники) при его ремонте, а также в других случаях.

Многие думают, что для измерений силы тока нужно покупать дорогой мультиметр. Но тут надо понимать, для каких целей и задач будет использоваться прибор. Если работу выполняет профессиональный электрик, то приобретается более точный и дорогой инструмент, а домашние измерения можно производить и китайским мультиметром.

Подробно о том, как пользоваться мультиметром, мы рассказали в статье: https://samelectrik.ru/kak-pravilno-ispolzovat-multimetr-prostaya-instrukciya-s-kartinkami.html.

Переменный ток

Измерение силы тока в цепи переменного тока сложнее, чем для постоянного. Для этого применяют такие приборы, как амперметр или токоизмерительные клещи. Использование токоизмерительных клещей – самый удобный и безопасный способ, но он подходит только при открытой прокладке проводки или кабеля. Такой способ позволяет измерить ток без разрыва цепи, что существенно безопаснее и быстрее.

Измерение производится путем помещения проводника под напряжением в разъёмный магнитопровод со вторичной обмоткой (конструкция почти аналогична трансформатору тока). Благодаря явлению электромагнитной индукции можно измерить вторичный ток в обмотке, а после этого прибор рассчитывает первичный в измеряемой цепи. При измерении токоизмерительными клещами проводник заводится в раствор клещей и на дисплее прибора отображается сила тока в цепи переменного напряжения.

Чтобы применять амперметр для измерений силы тока нужно обладать определенными навыками и знать, как следует включить в цепь амперметр чтобы измерить силу тока.

Амперметр, как и мультиметр включается в разрыв цепи. При этом важно понимать, что переменный ток наиболее опасен, поэтому требует серьезного отношения к электробезопасности. При включении амперметра в цепь, подачи напряжения и подключения нагрузки на дисплее или табло амперметра будет указана сила тока в цепи.

Примеры измерения тока

Для понимания принципов измерения силы тока в различных электроприборах и цепях ниже приведены варианты устройств и способы измерения силы тока.

Электродвигатель

Измерения силы тока в обмотках электродвигателя производят для проверки наличия коротких замыканий, неисправностей и для настройки правильного алгоритма управления электродвигателем. Так как ток в трехфазном асинхронном двигателе в каждой фазе одинаковый, то достаточно подключить один амперметр к одной фазе для проверки его потребления.

Для диагностики каждой из обмоток замеряют ток в каждой фазе, и если в каждой из фаз он отличается, то в какой-то из обмоток возможно межвитковое замыкание, а если в одной из фаз вообще нет тока — то либо обрыв на линии либо обрыв в обмотке. Если в одной из фаз ток есть но он меньше чем в двух других – возможен плохой контакт в брно или в коммутационных приборах.

У однофазного электромотора все проще: ток измеряется на единственной фазе. Но нужно иметь в виду, что максимальная сила тока амперметра ограничена и обычно составляет не более 5А, поэтому при для больших токов используют токовые клещи или другие схемы с трансформаторами тока и амперметром.

Сварочный аппарат

Для того, чтобы понимать какие электроды использовать и в каком режиме производить сварочные работы можно измерить силу тока на проводе выхода у сварочного аппарата под нагрузкой. Измерение производят аналогично другим приборам, включая в цепь на сварочном инверторе амперметр с трансформатором (бывают и старые модели амперметров с возможностью измерения до 200 А) или используя токоизмерительные клещи.

Батарейки и аккумуляторы

В быту часто бывает необходимо измерить ток электроприбора на батарейках (в качестве батареек могут быть кроны, пальчиковые батарейки и прочие аккумуляторы). Важно понимать, что просто подключить мультиметр или амперметр к источнику нельзя, потому что силу тока измеряют только под нагрузкой.

В качестве нагрузки можно остановится на лампе накаливания или на резисторе или включится в цепь самого прибора. Для замера нужно выбрать на мультиметре необходимый режим (для измерения постоянного тока), правильно подключить клеммы к прибору и на участке цепи. При этом на экране мы получим искомое значение для той нагрузки, которая подключена к аккумулятору.

Заключение

Как можно убедится, существует всего два способа измерения силы тока:

  1. С помощью амперметра или мультиметра — в этом способе важно чтобы прибор выдерживал и его предел измерения был рассчитан на измеряемую силу тока. Недостаток у этого способа состоит в том, что необходимо разрывать цепь. Тогда при измерениях на плате придется перерезать дорожку, а при измерении потребления приборов – разделывать их кабель и выделять одну из жил, или отключать от прибора один провод и включать в его цепь измерительный прибор.
  2. С помощью токоизмерительных клещей. Зачастую этот способ используются для измерения переменного тока, но современной промышленностью выпускают токоизмерительные клещи для постоянного тока, принцип действия которых основан на эффекте Холла (только такие клещи дороговаты — стоят от 50$). Удобен способ тем, что не нужно разрывать цепь – нужно лишь ОДНУ жилу вложить в клещи и на экране высветится сила тока в цепи (или стрелка подскочит, если прибор стрелочный).

Существуют и комбинированные способы, когда измерительный прибор не рассчитан на измеряемую величину – можно использовать трансформатор тока. Например, электросчетчики прямого включения не всегда могут измерять большие токи для учета электроэнергии. Тогда их подключают не напрямую, а через трансформатор тока.

Теперь вы знаете, как измерить силу тока в цепи постоянного и переменного тока. Надеемся, наша инструкция и примеры помогли вам разобраться в вопросе. Если что-либо осталось непонятным, задавайте вопросы в комментариях под статьей!

Материалы по теме:

Как определить силу тока мультиметром

Одним из основных параметров в электротехнике является сила тока, представляющая собой электрический ток в определенном количестве, проходящий через проводник определенного сечения. Данная величина имеет большое значение для нормальной работы электрических систем, поэтому нередко актуальным становится вопрос, как измерить силу тока мультиметром. Данная процедура необходима для того, чтобы точно знать о том или ином уровне тока, установленном для конкретной цепи. Мультиметр является основным прибором, с помощью которого выполняются измерения.

Как измерить силу тока в розетке мультиметром

Перед началом проведения замеров к прибору в первую очередь подключаются измерительные щупы. Каждый из них имеет собственный цвет – черный и красный. Щуп черного цвета обычно общий, нулевой или минусовой, поэтому его подключение осуществляется к нижнему разъему, обозначенному символами СОМ. Другой щуп красного цвета при выполнении измерений подключается к среднему разъему. Существует разъем, расположенный в верхней части мультиметра, в который подключается красный щуп когда измеряется переменный ток величиной до 10 ампер.

После подключения щупов выбирается нужный режим работы путем поворота круглого переключателя и установки его в нужное положение. Если величина измеряемого параметра известна заранее, то выставляемый предел измерений должен немного превышать его. Такая мера позволяет уберечь мультиметр от перегорания. В том случае когда сведения о возможных показаниях прибора отсутствуют, выставляется максимально возможный предел измерений.

При измерении напряжения прибор включается в цепь параллельно, а для замеров силы тока – последовательно. Измерение полупроводников или параметров сопротивления выполняется при отключенном питании в данной схеме. Напряжение в электрической розетке 220В также можно измерить с помощью мультиметра. Для этого переключатель необходимо перевести в положение ACV на отметку 750 вольт, после чего провести замер. Точно так же выполняется измерение в сети с напряжением 380В. Сила тока в розетке измеряется путем выставления прибора в режим замеров переменного тока.

Как измерить силу тока трансформатора мультиметром

Течение электрического тока в трансформаторе осуществляется исключительно в замкнутом контуре. Для того чтобы произвести измерения тока, нужно вначале подключить какую-нибудь нагрузку, а затем последовательно с ней в цепь включается мультиметр. В данном случае переключатель также выставляется в режим измерений переменного тока. Провод красного цвета подключается к отдельному выходу.

На подготовительном этапе нужно сделать следующее:

  • Щуп с проводом черного цвета устанавливается в соответствующее черное гнездо, а щуп с красным проводом – в красное гнездо, где имеется обозначение «А», то есть, ампер.
  • Тумблер переключается в нужное положение: для измерений переменного тока – АС, постоянного тока – DC.
  • Предел измерений устанавливается таким образом, чтобы он был выше предполагаемого уровня силы тока в цепи. Это поможет уберечь прибор от перегорания.

После подготовки можно переходить к непосредственным измерениям. С этой целью мультиметр нужно последовательно включить в разрыв электрической цепи между трансформатором и нагрузкой. Величина тока, проходящего через прибор, отобразится на дисплее мультиметра. При отсутствии нагрузки в цепочку можно включить ограничительное сопротивление – обычную лампочку или резистор.

Если на дисплее не отображается значение силы тока, значит предел измерений выбран неверно и его необходимо уменьшить на одну позицию. При отсутствии результата процедуру нужно повторить и продолжать делать это до того момента, пока на дисплее не появится какое-либо значение.

Как измерить силу тока батарейки мультиметром

Несмотря на внешнее сходство, все батарейки обладают различными параметрами и техническими характеристиками. В связи с этим довольно часто возникает необходимость в проверке работоспособности этих элементов, в частности – в замерах силы тока.

Основной способ проверки касается новых батареек, позволяя определить их работоспособность во время покупки. Для проведения измерений мультиметр выставляется в положение, соответствующее постоянному току. Далее порядок действий будет следующий:

  • Мультиметр должен быть установлен на максимальном пределе измерений.
  • Щупы мультиметра прикладываются к контактам батарейки.
  • После того как возрастание тока на экране прекратится, примерно через 1-2 секунды щупы убираются.

Нормальная величина силы тока в новой батарейке обычно составляет от 4 до 6 ампер. Если показатели составляют от 3 до 3,9А – это указывает на снижение эксплуатационного ресурса батареи. Следовательно ее можно использовать только в устройствах с пониженной мощностью. При более низких показателях, батарейки допускается применять лишь в очень слабых приборах или не использовать вообще.

Как измерить силу постоянного тока мультиметром

Измерение постоянного тока выполняется по такой же методике, как и при замерах батареек. Просто в данном случае мультиметр используется еще и для проверок более мощных устройств. В первую очередь это аккумуляторные батареи или выпрямители, применяемые в промышленности и в быту.

Для замеров с помощью мультиметра выбираются две любые точки, между которыми последовательно подключается измерительный прибор. Подключение должно быть выполнено с обязательным соблюдением полярности. Если мультиметр подключен неправильно, то на дисплее высветится значение со знаком «минус».

В том случае когда значение предполагаемой силы тока больше самого верхнего предела измерений, необходимо выставить переключатель в положение «10А». Одновременно из гнезда «V ΩmA» измерительный щуп перемещается в гнездо «10А».

Как измерить силу переменного тока мультиметром

Перед началом замеров необходимо точно определить, какой ток будет измеряться – переменный или постоянный. После этого переключатель мультиметра устанавливается в нужное положение. Далее нужно установить ориентировочную силу в данной цепи, для того чтобы подключить измерительный щуп в соответствующий разъем. Если сила тока предполагается до 200мА, щуп включается в гнездо «V ΩmA», а при силе тока более 200мА – в разъем «10А».

Иногда случается так, что информация о силе тока отсутствует вообще. Поэтому измерения следует начинать с максимальной величины. Если на дисплее появляется ток меньшего значения, значит штекер требуется переставить в другой разъем. В случае когда ток вновь меньше требуемого, штекер снова переставляется. При необходимости ручку регулятора следует выставить на более низкую отметку силы тока. Перед началом измерений нужно внимательно изучить все обозначения, нанесенные на мультиметр и в дальнейшем выбирать только нужную символику. Все замеры должны проводиться от максимальных значений к минимальным, это является обязательным требованием при работе с мультиметром.

Сила тока наряду с напряжением и сопротивлением является очень важным понятием в электричестве. Она измеряется в амперах и определяется количеством электрической энергии, проходящей через проводник за определенную единицу времени. Определяют ее величину с помощью измерительных приборов, в домашних условиях это проще всего сделать при помощи мультиметра, или тестера, имеющегося в распоряжении многих хозяев современных квартир. Контроль силы тока очень важен для работы механизмов, зависящих от электропитания, поскольку превышение ею максимально допустимого значения приводит к поломке приборов и возникновению аварийных ситуаций. Тема этой статьи – как измерить силу тока мультиметром.

Виды мультиметров

На современном рынке электроприборов представлено две разновидности тестеров:

Основными элементами аналоговых приборов являются шкала с нанесенными на ней делениями, по которой определяются показатели электрических величин, и стрелка-указатель. Такие мультиметры пользуются высоким спросом у новичков благодаря своей низкой стоимости и простоте в использовании.

Но, наряду с этими положительными сторонами, аналоговые тестеры имеют и ряд недостатков, основным из которых является высокая погрешность измерений. Ее можно несколько уменьшить за счет настроечного резистора, конструктивно входящего в состав прибора. Тем не менее, при необходимости замерить электрические параметры с высокой точностью, лучше воспользоваться цифровым прибором.

Цифровые мультиметры

Единственным внешним отличием цифрового аппарата от аналогового является экран, на котором в виде цифр отражаются измеряемые параметры. Старые модели оборудованы светодиодным дисплеем, приборы нового типа – жидкокристаллическим.

Они отличаются высокой точностью измерений и простотой в эксплуатации, поскольку не нуждаются в подгонке градуировки.

Недостатком этих устройств можно назвать цену, которая в разы превосходит стоимость аналоговых тестеров.

Особенности конструкции

Независимо от количества гнезд в мультиметре, любой из этих приборов имеет два типа выходов, которые обозначаются разными цветами. Общий выход (масса) окрашен в черный цвет и имеет обозначение либо «com», либо «–». Выход, предназначенный для измерений (потенциальный), имеет красный цвет. Для любого из измеряемых параметров электроцепи может быть свое гнездо.

Не стоит опасаться перепутать его с другими, поскольку каждое из этих гнезд обозначено соответствующей единицей.

Еще одним внешним элементом прибора является рукоятка для установки предела измерений, которая может вращаться по кругу. На цифровых мультиметрах этих пределов больше, чем на аналоговых, кроме того, в них могут быть включены дополнительные опции, например, звуковой сигнал и другие. Поскольку мы говорим о том, как с помощью тестера произвести измерение силы тока, речь пойдет о шкале с амперами.

Каждый мультиметр имеет свой максимальный предел по току, и при выборе электросети для тестирования, проверяемую силу тока в ней следует сопоставить с пределом, на который рассчитан прибор. Так, если сила тока, проходящего внутри электроцепи составляет 180 А, не рекомендуется проводить измерения при помощи мультиметра, рассчитанного на 20 А, поскольку единственным полученным результатом будет сгорание прибора сразу же после начала тестирования. Максимальный предел всегда указывается в паспорте мультиметра или на корпусе устройства.

Порядок подготовки прибора к измерениям

Переключатель мультиметра нужно перевести в сектор A (DA для постоянного тока или CA для переменного), который соответствует измерению тока, выбрав при этом нужный предел. Некоторые современные тестеры для электроцепей постоянного тока имеют одну позицию, а для переменного – другую. Чтобы не ошибиться, нужно ориентироваться по литерам, имеющимся на лицевой панели.

Они одинаковы в любом приборе, надо просто понимать, какую величину каждый из них обозначает.

Все мультиметры комплектуются двумя кабелями, на конце каждого из которых имеется щуп и разъем. Вторые концы проводов вставляются в гнезда прибора, которые соответствуют текущему измерению, в нашем случае – силы тока.

Порядок измерений

Мультиметр для измерения величины силы тока включается в разрыв электроцепи. В этом состоит основное отличие от процедуры измерения напряжения, при которой тестер подключается к цепочке параллельно. Показатель величины тока, который проходит через прибор, отображается стрелкой на шкале (если речь идет об аналоговом аппарате) или высвечивается на жидкокристаллическом (светодиодном) дисплее.

Разорвать тестируемую цепь для включения в нее прибора можно по-разному. Например, отсоединив один из выводов радиоэлемента при помощи паяльника.

Иногда приходится перекусывать провод кусачками или пассатижами.

При определении величины тока батарейки или аккумулятора такой проблемы не существует, поскольку просто собирается цепь, одним из элементов которой является мультиметр.

Что необходимо учитывать при измерении

Важным условием при определении силы тока является включение в цепочку ограничительного сопротивления – резистора или обычной электролампочки. Этот элемент защитит прибор от поломки (сгорания) под воздействием потока электронов.

Если сила тока на индикаторе не отображается, это говорит о неверно выбранном пределе, который нужно снизить на одну позицию. Если результата нет снова – еще на одну, продолжая до тех пор, пока на экране или шкале не отобразится какое-то значение.

Производить замер нужно быстро – щуп не должен контактировать с кабелем более одной-двух секунд. Особенно это касается элементов питания малой мощности. Если, измеряя силу тока батареек, держать щуп на проводе длительное время, итогом станет их разряд – частичный или полный.

Техника безопасности

Как видим, процедура измерения силы тока при помощи мультиметра никакой сложности не представляет. Важно только следовать инструкции и не забывать о строгом соблюдении мер безопасности:

  • Перед проведением замеров обесточьте электросеть.
  • Проверьте изоляцию кабелей – при продолжительной эксплуатации ее целостность иногда нарушается, и вероятность поражения электротоком значительно возрастает.
  • Работайте исключительно в резиновых перчатках.

  • Не проводите измерения при высокой влажности воздуха. Дело в том, что влага обладает высокой электрической проводимостью и риск поражения также возрастает.
  • Человек, пострадавший от удара током, нуждается в медицинской помощи. Если есть возможность, любые работы с электричеством, в том числе и измерения, лучше проводить вдвоем. В нештатной ситуации присутствие напарника может оказаться настоящим спасением.

Закончив измерения, разрезанные кабели нужно вновь соединить, предварительно снова обесточив цепь.

Подробно и наглядно про измерения проводимые с помощью мультиметра на видео:

Заключение

В этой статье мы разобрались, как проверить силу тока с помощью мультиметра. Прочитав изложенный материал, любой взрослый человек сможет справиться с этой задачей, благо мультиметр – прибор совсем несложный, но в то же время очень нужный для решения не только профессиональных, но и бытовых задач, связанных с электричеством.

Как измерить силу тока мультиметром

Запомните одно правило при измерениях: при измерении силы тока, щупы соединяются последовательно с нагрузкой, а при измерении других величин – параллельно.

На рисунке ниже показано, как надо правильно соединять щупы и нагрузку для того, чтобы замерить силу тока:

Черный щуп, который воткнут в гнездо СОМ – его не трогаем, а красный переносим в гнездо, где написано mA или хA, где вместо х – максимальное значение силы тока, которую может замерить прибор. В моем случае это 20 Ампер, так как рядом с гнездом написано 20 А. В зависимости от того, какое значение силы тока вы собираетесь замерять, туда и втыкаем красный щуп. Если вы не знаете, какая примерно сила тока будет протекать в цепи, то ставим в гнездо хА:

Давайте проверим, как все это работает в деле. В нашем случае нагрузкой является вентилятор от компьютера. Наш блок питания имеет встроенную индикацию для показа силы тока, а как вы знаете с курса физики, сила тока измеряется в Амперах. Выставляем 12 Вольт, на мультиметре ручку крутим на измерение постоянного тока. Мы выставили предел измерения на мультике до 20 Ампер. Собираем как по схеме выше и смотрим показания на мультике. Оно в точности совпало со встроенным амперметром на блоке питания.

Для того, чтобы измерить силу тока переменного напряжения мы ставим крутилку мультиметра на значок измерения силы тока переменного напряжения – “А

” и точно также по такой же схеме делаем замеры.

Как измерить постоянное напряжение мультиметром

Возьмем вот такую вот батарейку

Как мы видим, на ней написан ток 550 мАh , который она может выдавать в нагрузку в течение часа, то есть миллиампер в час, а также напряжение, которым обладает наша батарейка – 1,2 Вольта. Напряжение – это понятно, а вот что такое “ток в течение часа”? Допустим, наша нагрузка -лампочка кушает ток 550 мА. Значит лампочка будет светить один час. Или возьмем лампочку, которая светит послабее, и пусть она у нас кушает 55 мА, значит она сможет проработать 10 часов.

Значение 550 мА, которое у нас написано на батарейке, делим на значение, которое написано на нагрузке и получаем время, в течение которого все это будет работать, пока не сядет батарейка. Короче говоря, кто дружен с математикой, тому не составит труда понять сие чудо 🙂

Давайте замеряем напряжение на батарейке, один щуп мультиметра ставим на плюс, а другой на минус, то есть подсоединяем параллельно, и вуаля!

В данном случае напряжение на батарейке 1,28 Вольт. Значение на новой батарейке всегда должно превышать то, которое написано на этикетке.

Давайте замеряем напряжение на блоке питания. Выставляем 10 Вольт и замеряем.

Красный – это плюс, черный – минус. Все сходится, напряжение 10,09 Вольт. 0,09 Вольт спишем на погрешность.

Если же мы спутаем щупы мультиметра или щупы блока, то ничего страшного не произойдет. Мультиметр покажет нам такое же значение, но со знаком “минус”.

Имейте ввиду, на таких мультиметрах это не прокатывает

Для того, чтобы точно определить полярность не имея мультиметра, можно прибегнуть к нескольким советам, которые описаны в этой статье.

Как измерить переменное напряжение мультиметром

Ставим на мультике предел измерения переменного напряжения и замеряем напряжение в розетке. Без разницы, как совать щупы. У переменного напряжения нет плюса и минуса. Там есть фаза и ноль. Грубо говоря, один провод в розетке не представляет опасности – это ноль, а другой может здорово попортить ваше самочувствие или даже здоровье – это фаза.

По идее в розетке должно быть 220 Вольт. Но у меня показывает 215. Ничего страшного в этом нет. Напряжение в розетке “играет”. Ровно 220 Вольт вам вряд ли придется увидеть при измерениях напряжения в розетках вашего дома 🙂

Как найти силу тока вторичной обмотки трансформатора.

Визначити вихідну напругу двокаскадного підсилювача, що працює від джерела напруги Ег=50мВ, з внутрішнім опорОм 200 Ом, вхідний опір пристрою 200 Ом, … якщо коефіцієнт підсилення першого каскаду 20 раз, а другого 10 раз:

На медное тело массой 3 кг погруженное в машинное масло действует выталкивающая сила чему она равна?

на медное тело массой 3 кг погруженное в машинное масло действует выталкивающая сила чему она равна?

Автомобиль массой 2т развивая мощность до 60 кВт , движется по горизонтальной дороге равномерно прямолинейно со скоростью 54км/ч. Вычислите коэффициен … т трения колес о дорогу g=10м/с²​

В якому випадку коефіцієнт пульсацій найменший

38. Уравнение движения материальной точки имеет вид х = 4 + 31. Укажите момент времени, когда материальная точка будет иметь координату 31 м: а) 27 с; … в) 11,7 с; б) 9 с; г) 6с. ​

На nервинну обмотку трансформатора подали напругу 100 В. На вторинній отримали 50 В. Яка кількість витків вторинної обмотки даного трансформатора, якщ … о в первиній обмотці 500 витків

Уравнение движения материальной точки имеет вид х= 2 + 5t. Определите начальную координату материальной точки и координату в момент времени 12 с: а) … 2 м; 5 м; в) 5 м; 2 м; б) 2 м; 62 м; г) 5 м; 62 м​

Помогите,физика сириус1.) Определите эквивалентное сопротивление проволочной сетки, изображённой на рисунке, если (вне зависимости от длины) сопротивл … ение каждого проводника между соседними выделенными точками, к которым он подключён, r=240 Ом. Ответ выразите в омах, округлите до целого числа.2.) В условиях предыдущей задачи найдите, какое будет напряжение между точками A и B, если к выводам участка цепи подсоединить идеальную батарейку с напряжением 9 В. Ответ выразите в вольтах, округлите до целого числа.​

Найдите с помощью графиков зависимости координаты от времени момент времени и место соударения частиц, движущихся по одной прямой. Скорость первой час … тицы v, скорость второй v/2. Первая частица в момент времени t = 0 имела координату x = 0, вторая в момент времени t1 – координату x = a.

Основы трансформатора тока

и трансформатор тока

Трансформатор тока ( C.T. ) — это тип «измерительного трансформатора», который предназначен для выработки переменного тока во вторичной обмотке, который пропорционален току, измеряемому в первичной обмотке. Трансформаторы тока снижают токи высокого напряжения до гораздо меньшего значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии передачи переменного тока, с помощью стандартного амперметра.Принцип работы основного трансформатора тока немного отличается от принципа действия обычного трансформатора напряжения.

Типовой трансформатор тока

В отличие от трансформатора напряжения или мощности, рассмотренного ранее, трансформатор тока состоит только из одного или нескольких витков в качестве первичной обмотки. Эта первичная обмотка может быть либо с одним плоским витком, либо с катушкой из сверхпрочного провода, намотанной вокруг сердечника, либо просто проводником или шиной, проходящей через центральное отверстие, как показано.

Из-за этого типа устройства трансформатор тока часто называют «последовательным трансформатором», поскольку первичная обмотка, у которой никогда не бывает более нескольких витков, соединена последовательно с токонесущим проводником, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с низкими потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока низкая при использовании провода с гораздо меньшей площадью поперечного сечения, в зависимости от того, насколько ток должен быть понижен, когда он пытается вывести постоянный ток, независимо от подключенного нагрузка.

Вторичная обмотка будет подавать ток либо на короткое замыкание в виде амперметра, либо на резистивную нагрузку до тех пор, пока напряжение, индуцированное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а управляется внешней нагрузкой. Вторичный ток обычно составляет 1 ампер или 5 ампер для больших номинальных значений первичного тока.

Существует три основных типа трансформаторов тока: обмотка , тороидальный и бар .

  • Трансформатор тока с обмоткой — первичная обмотка трансформатора физически соединена последовательно с проводником, по которому проходит измеряемый ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента трансформации трансформатора.
  • Тороидальный трансформатор тока — не содержат первичной обмотки.Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разъемный сердечник», который позволяет его открывать, устанавливать и закрывать без отключения цепи, к которой они подключены.
  • Трансформатор тока стержневого типа
  • — этот тип трансформатора тока использует фактический кабель или шину главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно прикрепляются болтами к токоведущему устройству.

Трансформаторы тока могут снижать или «понижать» уровни тока с тысяч ампер до стандартного выходного сигнала с известным коэффициентом до 5 или 1 ампер для нормальной работы. Таким образом, с трансформаторами тока можно использовать небольшие и точные приборы и устройства управления, поскольку они изолированы от любых высоковольтных линий электропередач. Существует множество измерительных приложений и применений для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, ватт-часы, защитные реле или в качестве катушек отключения в магнитных выключателях или автоматических выключателях.

Трансформатор тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, что обеспечивает максимальный вторичный ток, соответствующий полному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное обратное соотношение витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка ТТ обычно выполняется для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартный номинальный ток вторичной обмотки 5 ампер, при этом первичный и вторичный токи выражаются в виде отношения, например 100/5. Это означает, что первичный ток в 20 раз больше, чем вторичный ток, поэтому, когда по первичному проводнику протекает 100 ампер, во вторичной обмотке протекает ток 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 ампер во вторичной обмотке и 500 ампер в первичном проводе, что в 100 раз больше.

Увеличивая количество вторичных обмоток, Ns, вторичный ток может быть намного меньше, чем ток в измеряемой первичной цепи, потому что по мере увеличения Ns Is уменьшается на пропорциональную величину.Другими словами, количество витков и ток в первичной и вторичной обмотках связаны обратной пропорцией.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и из нашего руководства по трансформаторам напряжения с двойной обмоткой мы знаем, что это отношение витков равно:

откуда получаем:

Коэффициент тока устанавливает коэффициент витков, и поскольку первичная обмотка обычно состоит из одного или двух витков, в то время как вторичная обмотка может иметь несколько сотен витков, соотношение между первичной и вторичной обмотками может быть довольно большим.Например, предположим, что номинальный ток первичной обмотки составляет 100 А. Вторичная обмотка имеет стандартный номинал 5А. Тогда соотношение между первичным и вторичным токами будет 100A-5A, или 20: 1. Другими словами, первичный ток в 20 раз больше вторичного.

Следует отметить, однако, что трансформатор тока номиналом 100/5 не то же самое, что трансформатор тока номиналом 20/1 или делениями 100/5. Это связано с тем, что соотношение 100/5 выражает «номинальный входной / выходной ток», а не фактическое соотношение первичного и вторичного токов.Также обратите внимание, что количество витков и ток в первичной и вторичной обмотках связаны обратной пропорцией.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения витков первичной обмотки через окно ТТ, где один виток первичной обмотки равен одному проходу, а более одного прохода через окно приводят к изменению электрического коэффициента.

Так, например, трансформатор тока с отношением, скажем, 300 / 5A, может быть преобразован в другой, равный 150 / 5A или даже 100 / 5A, путем пропуска основного первичного проводника через его внутреннее окно два или три раза, как показано.Это позволяет трансформатору тока с более высоким значением обеспечивать максимальный выходной ток для амперметра при использовании в линиях первичного тока меньшей мощности.

Коэффициент трансформации первичной обмотки трансформатора тока

Трансформатор тока Пример №1

Стержневой трансформатор тока, имеющий 1 виток на первичной обмотке и 160 витков на вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр должен обеспечивать отклонение на полную шкалу, когда первичный ток составляет 800 ампер.Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

Напряжение на амперметре:

Выше видно, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру, который имеет очень маленькое сопротивление, падение напряжения на вторичной обмотке составляет всего 1,0 вольт при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически размыкается, и, таким образом, трансформатор действует как повышающий трансформатор.Частично это происходит из-за очень большого увеличения намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление утечки вторичной обмотки влияет на вторичное индуцированное напряжение, поскольку во вторичной обмотке отсутствует противодействующий ток, предотвращающий это.

В результате во вторичной обмотке индуцируется очень высокое напряжение, равное отношению: Vp (Ns / Np), развиваемое во вторичной обмотке. Так, например, предположим, что наш трансформатор тока, показанный выше, используется на трехфазной линии электропередачи на 480 В на землю.Следовательно:

Это высокое напряжение связано с тем, что соотношение вольт на виток почти постоянно в первичной и вторичной обмотках, и, поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не должен оставаться разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, так же как трансформатор напряжения никогда не должен работать в режиме короткого замыкания. Если необходимо снять амперметр (или нагрузку), сначала следует замкнуть клеммы вторичной обмотки, чтобы исключить риск поражения электрическим током.

Это высокое напряжение возникает из-за того, что, когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения, и ничто не может его остановить, он производит аномально высокое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8кВ !. Это высокое вторичное напряжение может повредить изоляцию или вызвать поражение электрическим током при случайном прикосновении к клеммам трансформатора тока.

Переносные трансформаторы тока

Сейчас доступно множество специализированных типов трансформаторов тока.Популярный и портативный тип, который можно использовать для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Токоизмерительные клещи открываются и закрываются вокруг токоведущего проводника и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое измерение, обычно на цифровом дисплее, без отключения или размыкания цепи.

Помимо ручных зажимов CT, доступны трансформаторы тока с разъемным сердечником, у которых один конец съемный, так что провод нагрузки или сборную шину не нужно отсоединять для их установки.Они доступны для измерения токов от 100 до 5000 ампер с размером квадратного окна от 1 дюйма до более 12 дюймов (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (CT) — это тип измерительного трансформатора, используемый для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка затем обеспечивает значительно пониженный ток, который можно использовать для обнаружения условий перегрузки по току, минимального тока, пикового или среднего тока.

Первичная обмотка трансформатора тока

A всегда соединена последовательно с главным проводником, поэтому она также называется последовательным трансформатором.Номинальный вторичный ток составляет 1 А или 5 А для простоты измерения. Конструкция может состоять из одного первичного витка, как в тороидальных, кольцевых или стержневых типах, или нескольких витков первичной обмотки, обычно для низких отношений тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального регулирования тока. Следовательно, вторичная обмотка трансформатора тока никогда не должна работать в разомкнутой цепи, так же как трансформатор напряжения никогда не должен работать в режиме короткого замыкания.

Очень высокое напряжение будет результатом разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть закорочены, если амперметр должен быть удален или когда ТТ не используется, перед включением системы.

В следующем уроке о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора по схеме звезды или треугольника, чтобы получить более мощный силовой трансформатор, называемый трехфазным трансформатором , который используется для питания трехфазных источников питания.

Руководство по номинальным характеристикам трансформатора, кВА

Пусковой фактор и особенности применения

В приведенном выше примере мы разделили на 0.8, чтобы немного увеличить кВА трансформатора. Почему мы это сделали?

Для запуска устройства обычно требуется больше тока, чем для запуска. Чтобы учесть это дополнительное текущее требование, часто бывает полезно включить начальный фактор в свои расчеты. Хорошее практическое правило — умножить напряжение на силу тока, а затем умножить на дополнительный пусковой коэффициент 125%. Деление на 0,8, конечно, то же самое, что умножение на 1,25.

Однако, если вы часто запускаете трансформатор — скажем, чаще, чем один раз в час — вам может потребоваться кВА даже больше, чем рассчитанный вами размер.А если вы работаете со специализированными нагрузками, например, с двигателями или медицинским оборудованием, ваши требования кВА могут существенно отличаться. Для специализированных приложений вам, вероятно, захочется проконсультироваться с профессиональной компанией по производству трансформаторов, чтобы узнать, какая кВА вам нужна.

Уравнение для трехфазных трансформаторов, которое мы обсудим более подробно ниже, также немного отличается. Когда вы выполняете расчеты с трехфазными трансформаторами, вам нужно включить константу, чтобы убедиться, что ваша работа работает правильно.

Стандартные размеры трансформатора

Легко говорить о расчетах размеров трансформатора абстрактно и придумать массив чисел. Но каковы стандартные размеры трансформаторов, которые вы могли бы купить?

Наиболее распространенными размерами трансформаторов, особенно для коммерческих зданий, являются:

  • 3 кВА
  • 6 кВА
  • 9 кВА
  • 15 кВА
  • 30 кВА
  • 37,5 кВА
  • 45 кВА
  • 75 кВА
  • 112.5 кВА
  • 150 кВА
  • 225 кВА
  • 300 кВА
  • 500 кВА
  • 750 кВА
  • 1000 кВА

Как определить напряжение нагрузки

Прежде чем вы сможете рассчитать необходимую кВА для вашего трансформатора, вам нужно вычислить напряжение нагрузки, которое является напряжением, необходимым для работы электрической нагрузки. Чтобы определить напряжение нагрузки, вы можете взглянуть на свою электрическую схему.

В качестве альтернативы, у вас может быть кВА вашего трансформатора и вы хотите рассчитать необходимое напряжение.В этом случае вы можете скорректировать уравнение, которое мы использовали выше. Поскольку вы знаете, что кВА = V * 1/1000, мы можем решить для V, чтобы получить V = kVA * 1000 / л.

Итак, вы умножите свою номинальную мощность в кВА на 1000, а затем разделите на силу тока. Если ваш трансформатор имеет номинальную мощность 75 кВА, а ваша сила тока 312,5, вы подставите эти числа в уравнение — 75 * 1000 / 312,5 = 240 вольт.

Как определить вторичное напряжение

Первичная и вторичная цепи наматываются вокруг магнитной части трансформатора.Пара различных факторов определяет вторичное напряжение — количество витков в катушках, а также напряжение и ток первичной цепи.

Вы можете рассчитать напряжение вторичной цепи, используя соотношение падений напряжения в первичной и вторичной цепях, а также количество витков цепи вокруг магнитной части трансформатора. Мы будем использовать уравнение t 1 / t 2 = V 1 / V 2 , где t 1 — количество витков в катушке первичной цепи, t 2 — количество витков витков в катушке вторичной цепи, V 1 — падение напряжения в катушке первичной цепи, а V 2 — падение напряжения в катушке вторичной цепи.

Допустим, у вас есть трансформатор с 300 витками первичной обмотки и 150 витками вторичной обмотки. Вы также знаете, что падение напряжения на первой катушке составляет 10 вольт. Подставляя эти числа в приведенное выше уравнение, получаем 300/150 = 10 / t 2 , так что вы знаете, что t 2 , падение напряжения на вторичной катушке, составляет 5 вольт.

Как определить первичное напряжение

Помните, что у каждого трансформатора есть первичная и вторичная стороны. Во многих случаях вам нужно рассчитать первичное напряжение, то есть напряжение, которое трансформатор получает от источника питания.

Вы можете определить это первичное напряжение, используя соотношение тока и напряжения на первичной и вторичной обмотках трансформатора. Возможно, вы знаете, что ваш трансформатор имеет ток 4 ампера и падение напряжения на вторичной обмотке 10 вольт. Вы также знаете, что ваш трансформатор пропускает через первичную обмотку ток 6 ампер. Каким должно быть падение напряжения на первичной обмотке?

Пусть i 1 и i 2 равны токам через две катушки.Вы можете использовать формулу i 1 / i 2 = V 2 / V 1 . В этом случае i 1 равно 6, i 2 равно 4, а V 2 равно 10, и если вы подставите эти числа в формулу, вы получите 6/4 = 10 / V 1 . Решение для V 1 дает V 1 = 10 * 4/6, поэтому падение напряжения в первичной цепи должно составлять 6,667 вольт.

Как рассчитать / найти номинал трансформатора в кВА

Рассчитать и найти рейтинг однофазных и трехфазных трансформаторов в кВА

Мы знаем, что трансформатор всегда рассчитывается в кВА.Ниже приведены две простые формулы для определения номинала однофазного и трехфазного трансформаторов .

Найдите номинал однофазного трансформатора

Номинал однофазного трансформатора:

P = V x I.

Номинал однофазного трансформатора в кВА

кВА = (V x I) / 1000

Рейтинг трехфазного трансформатора

Рейтинг трехфазного трансформатора:

P = √3. V x I

Мощность трехфазного трансформатора в кВА

кВА = (√3.V x I) / 1000

Но подождите, здесь возникает вопрос … Посмотрите на общие паспортные данные трансформатора 100 кВА.

Вы что-то заметили ???? В любом случае, мне все равно, каков ваш ответ;), но позвольте мне попытаться объяснить.

Вот рейтинг трансформатора — 100 кВА .

Но первичное или высокое напряжение (ВН) составляет 11000 В = 11 кВ.

И первичный ток на стороне высокого напряжения составляет 5,25 ампер.

Также вторичные напряжения или низкие напряжения (L.В) составляет 415 Вольт

А вторичный ток (ток на стороне низкого напряжения) составляет 139,1 Ампера.

Проще говоря,

Мощность трансформатора в кВА = 100 кВА

Первичное напряжение = 11000 = 11 кВ

Первичный ток = 5,25 А

Вторичное напряжение = 415 В

Вторичный ток = 139,1 Ампера.

Теперь рассчитайте номинал трансформатора согласно

P = V x I (первичное напряжение x первичный ток)

P = 11000V x 5.25 A = 57 750 ВА = 57,75 кВА

Или P = V x I (вторичное напряжение x вторичный ток)

P = 415 В x 139,1 A = 57 726 ВА = 57,72 кВА

Еще раз мы заметили, что номинальное значение трансформатора (на паспортной табличке) составляет 100 кВА , но согласно расчету… это около 57 кВА

Разница возникает из-за незнания того, что мы использовали однофазную формулу вместо трехфазной.

Теперь попробуйте по этой формуле

P = √3 x V x I

P = √3 Vx I (первичное напряжение x первичный ток)

P = √3 x 11000V x 5.25 A = 1,732 x 11000 В x 5,25 A = 100 025 ВА = 100 кВА

Или P = √3 x V x I (вторичные напряжения x вторичный ток)

P = √3 x 415 В x 139,1 A = 1,732 x 415 В x 139,1 A = 99,985 ВА = 99,98 кВА

Рассмотрим в следующем (следующем) примере.

Напряжение (от линии к линии) = 208 В .

Ток (линейный ток) = 139 A

Текущие характеристики трехфазного трансформатора

P = √3 x V x I

P = √3 x 208 x 139A = 1.732 x 208 x 139

P = 50077 VA = 50kVA

Примечание: этот пост был сделан по запросу нашего поклонника страницы Анила Виджая.

Объяснение 6 электрических испытаний трансформаторов тока

Очень важно регулярно проверять и тестировать трансформаторы тока и подключенные к ним приборы. Фото: ABB

Трансформаторы тока играют важную роль в мониторинге и защите электроэнергетических систем. ТТ — это измерительные трансформаторы, используемые для преобразования первичного тока в пониженный вторичный ток для использования с счетчиками, реле, контрольным оборудованием и другими приборами.

Важность испытаний измерительных трансформаторов часто недооценивается. Трансформаторы тока для измерительных целей должны иметь высокую степень точности, чтобы гарантировать точное выставление счетов, в то время как трансформаторы, используемые для защиты, должны быстро и правильно реагировать в случае неисправности.

Риски, такие как запутывание измерительных трансформаторов для измерения и защиты или перепутывание соединений, можно значительно снизить путем тестирования перед первым использованием. В то же время электрические изменения в трансформаторе тока, вызванные, например, старением изоляции, можно определить на ранней стадии.

По этим и другим причинам важно регулярно проверять и калибровать трансформаторы тока и подключенные к ним приборы. Для обеспечения точности и оптимальной надежности обслуживания необходимо провести 6 электрических испытаний трансформаторов тока:


1. Тест соотношения

Коэффициент

CT описывается как отношение входного первичного тока к выходному вторичному току при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 будет производить 5 ампер вторичного тока, когда через первичную обмотку протекает 300 ампер .

Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если 150 ампер протекает через первичную обмотку 300 ампер , вторичный выходной ток будет 2,5 ампера .

(300: 5 = 60: 1) (150: 300 = 2,5: 5)

В отличие от трансформатора напряжения или мощности, трансформатор тока состоит только из одного или нескольких витков в качестве первичной обмотки. Эта первичная обмотка может быть либо с одним плоским витком, либо с катушкой из сверхпрочного провода, намотанной вокруг сердечника, либо просто проводником или шиной, проходящей через центральное отверстие.

Проверка коэффициента трансформации трансформатора тока может выполняться путем подачи первичного тока и измерения токового выхода или путем подачи вторичного напряжения и измерения наведенного первичного напряжения. Фото: TestGuy.

Тест соотношения проводится для подтверждения того, что соотношение ТТ соответствует указанному, и для проверки правильности передаточного отношения на разных ответвлениях многоотводного ТТ. Коэффициент передачи эквивалентен коэффициенту напряжения трансформаторов напряжения и может быть выражен следующим образом:

N2 / N1 = V2 / V1

  • N2 и N1 — это витков вторичной и первичной обмоток
  • V2 и V1 — вторичная и первичная стороны показания напряжения

Испытания коэффициента трансформации выполняются путем подачи подходящего напряжения (ниже насыщения) на вторичную обмотку тестируемого ТТ, в то время как напряжение первичной стороны измеряется для вычисления коэффициента трансформации по приведенному выше выражению.

ОПАСНО: Соблюдайте осторожность при проведении проверки коэффициента трансформации трансформатора тока, и НЕ подавайте достаточно высокое напряжение, которое может вызвать насыщение трансформатора. Применение напряжения насыщения приведет к неточным показаниям.


2. Проверка полярности

Полярность ТТ определяется направлением намотки катушек вокруг сердечника трансформатора (по часовой стрелке или против часовой стрелки) и тем, как выводы выводятся из корпуса ТТ.Все трансформаторы тока имеют вычитающую полярность и должны иметь следующие обозначения для визуальной идентификации направления тока:

  • h2 — первичный ток, линия обращена в сторону
  • h3 первичный ток, нагрузка лицевое направление
  • X1 вторичный ток

Предполагается, что испытуемый ТТ имеет правильную полярность, если направления мгновенного тока для первичного и вторичного тока противоположны друг другу.Фото: TestGuy.

Знаки полярности на ТТ обозначают относительные мгновенные направления токов. Проверка полярности доказывает, что прогнозируемое направление вторичного тока ТТ (уходящий) является правильным для данного направления первичного тока (входящего).

При установке и подключении трансформатора тока к реле измерения мощности и защитных реле важно соблюдать полярность. В тот же момент, когда первичный ток поступает на первичный вывод, соответствующий вторичный ток должен покидать вторичный вывод, помеченный аналогичным образом.

Предполагается, что испытуемый ТТ имеет правильную полярность, если направления мгновенного тока для первичного и вторичного тока противоположны друг другу. Полярность ТТ критична, когда ТТ используются вместе в однофазных или трехфазных приложениях.

Самое современное испытательное оборудование ТТ может автоматически выполнять проверку соотношения с использованием упрощенной настройки измерительных проводов и отображать полярность как правильную или неправильную. Полярность трансформатора тока проверяется вручную с помощью батареи 9 В и аналогового вольтметра с помощью следующей процедуры проверки:

Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях с батареей 9 В. Фото: TestGuy.

Процедура проверки полярности CT

  1. Отключите все питание перед проверкой и подключите аналоговый вольтметр к вторичной клемме проверяемого ТТ. Положительная клемма измерителя подключена к клемме X1 трансформатора тока, а отрицательная клемма — к X2.
  2. Пропустите кусок провода через верхнюю сторону окна трансформатора тока и на короткое время установите контакт с положительным концом 9-вольтовой батареи на стороне h2 (иногда отмеченной точкой) и отрицательным концом на стороне h3.Важно избегать постоянного контакта, который может привести к короткому замыканию аккумулятора.
  3. Если полярность правильная, мгновенный контакт вызывает небольшое отклонение аналогового измерителя в положительном направлении. Если отклонение отрицательное, полярность трансформатора тока меняется на обратную. Клеммы X1 и X2 необходимо поменять местами, и можно проводить тест.

Примечание: Полярность не важна при подключении к амперметрам и вольтметрам.Полярность важна только при подключении к ваттметрам, ваттметрам, варметрам и реле индукционного типа. Для сохранения полярности сторона h2 трансформатора тока должна быть обращена к источнику питания; тогда вторичная клемма X1 соответствует полярности.


3. Испытание на возбуждение (насыщение)

Когда ТТ «насыщен», магнитный путь внутри ТТ работает как короткое замыкание в линии передачи. Почти вся энергия, подаваемая первичной обмоткой, отводится от вторичной обмотки и используется для создания магнитного поля внутри трансформатора тока.

Испытание на насыщение трансформатора тока определяет номинальную точку перегиба в соответствии со стандартами IEEE или IEC, точку, при которой трансформатор больше не может выводить ток пропорционально своему заданному коэффициенту.

Испытания возбуждения выполняются путем подачи переменного напряжения на вторичную обмотку ТТ и постепенного увеличения напряжения до тех пор, пока ТТ не перейдет в режим насыщения. Точка «колена» определяется по небольшому увеличению напряжения, вызывающему большое увеличение тока.

Испытательное напряжение медленно снижается до нуля для размагничивания ТТ. Результаты испытаний наносятся на логарифмический (логарифмический) график и оцениваются на основе периода перехода между нормальным режимом работы и насыщением.

Испытания возбуждения выполняются путем подачи переменного напряжения на вторичную обмотку ТТ и постепенного увеличения напряжения до тех пор, пока ТТ не перейдет в режим насыщения. Фото: TestGuy.

Кривая возбуждения вокруг точек скачка тока при небольшом увеличении напряжения; очень важно для сравнения кривых с опубликованными кривыми или аналогичными кривыми КТ.Результаты испытаний на возбуждение следует сравнить с опубликованными данными производителя или предыдущими записями, чтобы определить любые отклонения от ранее полученных кривых.

IEEE определяет насыщение как «точку, где касательная находится под 45 градусами к вторичным возбуждающим амперам». Также известна как «точка колена». Этот тест подтверждает, что ТТ имеет правильный рейтинг точности, не имеет коротких замыканий в ТТ и нет коротких замыканий в первичной или вторичной обмотке тестируемого ТТ.


4. Испытание сопротивления изоляции

Изоляцию между обмотками трансформатора тока и обмотками относительно земли следует проверять на электрическую прочность при выполнении комплексного испытания трансформатора тока. Для определения состояния изоляции испытываемого ТТ выполняются три испытания:

  1. Первичный — вторичный : Проверяет состояние изоляции между высоким и низким.
  2. Первичная обмотка на землю : Проверяет состояние изоляции между высотой и землей.
  3. Вторичная обмотка на землю : Проверяет состояние изоляции между низшей точкой и массой.

Показания сопротивления изоляции должны оставаться постоянными в течение определенного периода времени. Резкое падение значений сопротивления изоляции указывает на ее ухудшение, и для диагностики проблемы требуются дальнейшие исследования.

Испытания изоляции трансформаторов тока на 600 В или менее обычно выполняются при 1000 В постоянного тока. Перед испытанием закоротите первичную обмотку проверяемого ТТ, соединив h2 и h3, затем закоротите вторичную обмотку проверяемого ТТ, соединив X1 и X2-X5.

Удалите заземление нейтрали и изолируйте ТТ от любой связанной нагрузки. После короткого замыкания обмоток ТТ представляет собой образец с тремя выводами.

Выполняются три испытания сопротивления изоляции для определения состояния изоляции испытываемого ТТ. Фото: TestGuy.

Значения испытания сопротивления изоляции для трансформаторов тока следует сравнить с аналогичными показаниями, полученными при предыдущих испытаниях. Любое значительное отклонение в исторических интерпретациях требует дальнейшего исследования.

Таблица 100.5 ANSI / NETA MTS-2019 Указывает минимальное сопротивление изоляции 500 МОм при 1000 В постоянного тока для катушек трансформатора с номинальным напряжением 600 В или меньше. Обратитесь к разделу 7.10.1 для получения дополнительной информации.

Минимальное общепринятое сопротивление изоляции составляет 1 МОм. Любое значение в мегоммах считается хорошей изоляцией, однако истинное состояние изоляции трансформатора тока определяется тенденцией результатов испытаний изоляции.

На показания изоляции сильно влияет температура образца.Если показания сравниваются с ранее полученными показаниями, необходимо применить соответствующие поправочные коэффициенты, если они получены при различных температурных условиях, прежде чем делать какие-либо выводы.


5. Испытание сопротивления обмотки

Измерение сопротивления обмотки постоянного тока является важным измерением для определения истинного состояния, состояния и точности ТТ. Сопротивление обмотки в ТТ будет меняться с течением времени в зависимости от возраста образца, использования, внешних условий и воздействия нагрузки.

Рекомендуется периодически измерять сопротивление обмотки постоянного тока на одно- или многоотводном ТТ и изменять значения. Для получения такого малого сопротивления обмотки требуется высокоточная измерительная схема с низким сопротивлением.

Сопротивление обмотки трансформатора тока определяется делением падения напряжения на обмотке (измеренного милливольтметром постоянного тока) на приложенный к обмотке постоянный ток. После завершения испытания сопротивления обмотки трансформатор тока следует размагнитить.

Измерьте сопротивление обмотки ТТ, пропустив через обмотку постоянный ток, и измерьте падение напряжения. Разделите измеренное напряжение на измеренный ток. Фото: TestGuy.

Совет: Выполните тест насыщения , чтобы размагнитить ТТ по завершении всех тестов сопротивления обмоток .


6. Испытание на нагрузку

Нагрузку трансформатора тока можно определить как полное сопротивление в Ом на вторичных выходных клеммах.Общая нагрузка представляет собой комбинацию импеданса катушек ватт-часов, катушек реле тока, сопротивления контактов, клеммных колодок, сопротивления проводов и тестовых переключателей, используемых во вторичном контуре.

Каждый трансформатор тока имеет вторичную нагрузку при подключении к реле или измерительной цепи. Ожидается, что трансформаторы тока обеспечат вторичный выходной ток в зависимости от их класса точности.

Если трансформатор тока не правильно подобран с учетом нагрузки вторичного контура, это может привести к уменьшению вторичного тока ТТ.Нагрузочные испытания важны для проверки того, что ТТ подает ток в цепь, не превышающую его номинальную нагрузку.

Испытание на нагрузку также полезно для проверки того, что трансформаторы тока:

  • Обесточен при установленных короткозамыкателях (если используется для измерения или защиты)
  • Не остается с обрывом цепи, когда не используется
  • Подключено к одной точке заземления
  • Все соединения герметичны

Измерьте нагрузку, подав номинальный вторичный ток ТТ от его клемм к стороне нагрузки, изолировав вторичную обмотку ТТ со всей подключенной нагрузкой, и наблюдайте за падением напряжения в точках ввода — и в каждой точке цепи на землю.

Этот метод требует много времени, но требует только источника напряжения, сопротивления и вольтметра. Измерение падения напряжения на источнике в сочетании с законом Ома даст нам импеданс нагрузки. Анализ структуры падения напряжения по всей цепи подтверждает правильность подключения.

Нагрузка трансформатора тока обычно выражается в ВА. Испытание нагрузки выполняется для проверки того, что ТТ способен подавать известный ток в известную нагрузку, сохраняя при этом заявленную точность.Испытание на нагрузку обычно выполняется при полном номинальном значении вторичного тока (например, 5A или 1A).


Как рассчитать нагрузку CT

В зависимости от класса точности трансформаторы тока делятся на две группы: измерительные и защитные (реле). CT может иметь рейтинги нагрузки для обеих групп.

Измерительные трансформаторы тока обычно указываются как 0,2 B 0,5

Последнее число указывает нагрузку в омах. Для ТТ с вторичным током 5 А номинальную нагрузочную способность ВА можно рассчитать как:

ВА = Напряжение * Ток = (Ток) 2 * Нагрузка = (5) 2 * 0.5 = 12,5 ВА

Релейный ТТ обычно указывается как 10 C 400

Последнее число указывает макс. Вторичное напряжение, в 20 раз превышающее номинальный вторичный ток, без превышения погрешности соотношения 10%. Для трансформатора тока с номинальным вторичным током 5 А, вторичный ток, в 20 раз превышающий номинальный, даст нагрузку в 4 Ом.

Нагрузка = 400 / (20 * 5) = 4 Ом

Нагрузка в ВА может быть указана как:

ВА = Напряжение * Ток = (Ток) 2 * Нагрузка = (5) 2 * 4 = 100 ВА


Список литературы

Комментарии

Всего комментариев 3

Оставить комментарий Войдите или зарегистрируйтесь, чтобы оставить комментарий.Калькулятор трансформатора

— Хорошие калькуляторы

Этот калькулятор трансформатора поможет вам быстро и легко рассчитать первичные и вторичные токи полной нагрузки трансформатора. Он также определяет коэффициент трансформации и тип трансформатора.

Инструкции пользователя:

  1. Выберите количество фаз в раскрывающемся меню.
  2. Введите номинал трансформатора и выберите соответствующую единицу измерения.
  3. Введите первичное и вторичное напряжения трансформатора.
  4. Нажмите кнопку «Рассчитать» для получения результатов.

Формулы трансформатора

В калькуляторе трансформатора используются следующие формулы:

Ток полной нагрузки однофазного трансформатора (А) = кВА × 1000 / В

Ток полной нагрузки трехфазного трансформатора (А) = кВА × 1000 / (1,732 × В)

Где:

кВА = мощность трансформатора (киловольт-амперы),

В = напряжение (вольт).

Передаточное число = N 1 / N 2 = V 1 / V 2 = I 2 / I 1

Где:

Где:

906 = количество витков на первичной обмотке,

N 2 = количество витков на вторичной обмотке,

В 1 = первичное напряжение,

В = вторичное напряжение,

I 1 = первичный ток,

I 2 = вторичный ток.

Пример: Однофазный трансформатор мощностью 50 кВА имеет первичную обмотку 4000 В и вторичную 400 В. Предполагая идеальный трансформатор, определите (а) первичный и вторичный токи полной нагрузки, (б) коэффициент трансформации трансформатора.

a) В 1 = 4000 В, В 2 = 400 В,

Номинал трансформатора = 50 кВА = В 1 × I 1 = В 2 × I 2

Первичный ток полной нагрузки, I 1 = (50 × 1000/4000) = 12.5 A

Вторичный ток полной нагрузки, I 2 = (50 × 1000/400) = 125 A

b) Передаточное число = N 1 / N 2 = V 1 / V 2 = (4000/400) = 10

Вас также может заинтересовать наш Калькулятор делителя напряжения или Калькулятор FLA двигателя

Диэлектрическая прочность изоляционных материалов

Диэлектрическая прочность изоляционных материалов

Размещено в h в изоляторах по

Диэлектрическая прочность изоляционных материалов

Электрические изоляторы используются в цепях передачи и распределения для отделения напряжения от земли.Материалы, используемые при разработке и производстве электрических изоляторов, обладают уникальными характеристиками. Эти материалы предотвращают свободное протекание внутренних электрических зарядов в материале, что делает практически невозможным проведение электрического тока.

Однако не все изоляционные материалы одинаковы. Некоторые выполняют задачу изоляции электрического тока лучше, чем другие. Фактически, способ понять способность материала предотвращать электрическую проводимость — это посмотреть на его диэлектрическую прочность.

Диэлектрическая прочность — это просто максимальное электрическое поле, которое может выдержать материал без нарушения его изоляционных свойств. Измеряется в мегавольтах на метр (МВ / м). Чем выше диэлектрическая прочность, тем лучше материал для предотвращения электропроводности.

Итак, какой материал имеет самую высокую диэлектрическую прочность? Вы можете удивиться, узнав, что идеальный вакуум на самом деле является лучшим электрическим изолятором. Идеальный вакуум имеет наивысшую диэлектрическую прочность, равную 1 × 10 12 МВ / м.Идеальный вакуум не содержит материала, способного разрушиться, и поэтому является идеальным электрическим изолятором. На самом деле идеального вакуума достичь практически невозможно, но высокий вакуум также является отличным изолятором, рассчитанным на 30 МВ / м. Высокий вакуум используется в качестве метода изоляции в таком оборудовании, как вакуумные выключатели.

Итак, каково положение других изоляционных материалов? Ниже приведен частичный список диэлектрической прочности различных материалов, включая те, которые используются в системах передачи и распределения:

Диэлектрическая прочность материала
Идеальный вакуум 1 × 10 12 МВ / м
Слюда 118 МВ / м
Тефлон 60 МВ / м
Высокий вакуум 30 МВ / м
Трансформаторное масло 24 МВ / м
Изолятор HDPE 20 МВ / м
Кремниевый изолятор 20 МВ / м
Стеклянный изолятор 14 МВ / м
Нейлон 14 МВ / м
Резина 12 МВ / м
Фарфоровый изолятор 12 МВ / м
Воздух 3 МВ / м

ПЭВП, кремний, стекло и фарфор очень близки по диэлектрической прочности.Каждый из этих материалов широко используется в изоляторах передачи и распределения.

Диэлектрическая прочность — критическая характеристика материалов, используемых при разработке изоляторов. Предотвращение электропроводности и поддержание разрыва между напряжением и землей — важная функция всех изоляторов. Правильный выбор материала гарантирует, что ваш изолятор будет работать на высшем уровне.

Сообщение, написанное Джоном Ренни

Сопутствующие товары

Как электричество подается в ваш дом

Задумывались ли вы когда-нибудь о том, насколько удобно щелкнуть выключателем или нажать кнопку и получить мгновенные удобства?
Это кажется таким простым; вам становится немного холодно или жарко, вы толкаете термостат вверх или вниз; ваша семья проголодалась, вы берете еду из холодильника и разогреваете ее в микроволновой печи или готовите еду на плоской плите; напряженный рабочий день, вы прыгаете в горячую ванну с водой; Чтобы узнать, что происходит в мире, вы берете пульт и включаете телевизор.Но как электричество попадает в ваш дом? Это сложный процесс, состоящий из множества шагов, посмотрите видео «Путь электричества» или вы можете подробнее узнать о каждом шаге ниже.

Распределительная система Вернуться к началу

Подстанция

CAEC покупает энергию у нашего кооператива по производству и передаче PowerSouth, который генерирует или покупает электроэнергию и передает ее на большие расстояния по линиям электропередачи распределительным компаниям, таким как CAEC.Наши подстанции — это точка, в которой электросетевая инфраструктура становится распределительной. Распределительные подстанции понижают напряжение, поступающее от линий электропередачи, чтобы начать процесс подачи энергии в ваш дом. Много работы уходит на планирование новых подстанций или даже модернизацию подстанций. CAEC использует долгосрочное прогнозирование для планирования новых подстанций, что напрямую влияет на надежность. Когда вы подписываетесь на услугу, независимо от ваших намерений в отношении этого счетчика, мы должны учитывать ваши текущие и будущие потребности в электроэнергии в этих прогнозах.Размещение и строительство подстанции — непростой процесс; Фактически, от этапа планирования до реализации требуется от двух до трех лет, чтобы завершить только один проект стоимостью примерно 1,5 миллиона долларов.

Силовой трансформатор

Напряжение, поступающее на подстанцию, 115 000 или 46 000 вольт, слишком велико для непосредственного попадания в ваши районы. Силовые трансформаторы используются для понижения напряжения до приемлемого уровня, чтобы подать его в ваши окрестности.

Распределительный трансформатор

Мы еще не готовы подключить ваш дом к электросети; напряжение, поступающее от силового трансформатора, 25 000 или 13 200 вольт, все еще слишком велико, чтобы подавать его прямо в ваш дом.Оттуда мощность распределяется по милям (в зависимости от того, как далеко ваш дом от подстанции) линий электропередачи, чтобы достичь распределительного трансформатора, который снова снижает мощность до уровня напряжения, необходимого для вашего дома, который составляет 120/240 вольт. . За последние пять лет стоимость трансформаторов выросла на 50 процентов, отчасти из-за роста материальных затрат, а также из-за федеральных нормативных требований, требующих повышения эффективности.

Сервисный сброс и счетчик

От распределительного трансформатора к вашему дому подключается служебный провод, который называется служебным отводом.Если у вас накладные расходы, CAEC подключает служебный провод к метеостанции, которая является точкой соединения между объектами CAEC и домовладельцем. Если ваш служебный провод находится под землей, CAEC подключает служебный провод к вашей подземной измерительной коробке. Стяжка, сделанная на стороне источника счетчика, является точкой соединения между CAEC и элементом. Коробка счетчика в обоих случаях позволяет CAEC измерять количество потребляемой энергии.

Электроэнергия для вашего дома

От коробки счетчика провод обычно подключается к домашней коробке выключателя, которая функционирует как механизм безопасности для вашего дома.На этом этапе в игру вступает ваша домашняя проводка, которая позволяет отправлять энергию в розетки и выключатели одним нажатием кнопки или щелчком переключателя.

Это касается только нескольких основных единиц оборудования, которые мы используем, чтобы поддерживать вашу мощность включенной более 99,9% времени. Некоторое другое жизненно важное оборудование, которое мы используем, включает выключатели верхнего и нижнего уровня, регуляторы напряжения и молниеотводы. Этот процесс также не включает в себя техническое обслуживание, которое мы должны выполнить, и персонал, необходимый для обеспечения того, чтобы инфраструктура, которую мы создали, находится в отличном состоянии.Это включает в себя нашу программу управления растительностью, проверки линий и подстанций и другие важные программы.

Система трансмиссии Вернуться к началу

Как мы узнали выше, детально изучив систему распределения, для того, чтобы система передачи стала возможной, требуется совместная работа многих частей. Именно эта сеть, принадлежащая и обслуживаемая поставщиком электроэнергии и передачи CAEC, PowerSouth, а также линии электропередачи, принадлежащие Southern Company, делают возможной доставку электроэнергии нашим членам.А начинается все с завода по производству электроэнергии:

Поколение

Производство электроэнергии начинается на электростанции, где источники топлива, такие как уголь, природный газ или гидроэнергетика, используются для преобразования воды в пар в процессе нагрева. Например, на большинстве угольных электростанций куски угля измельчаются в мелкий порошок и загружаются в установку для сжигания, где они сжигаются. Тепло от горящего угля используется для производства пара, который разводится по всей установке.

Турбины / Генераторы

Поскольку пар представляет собой воду под высоким давлением, он направляется в турбину, где давление заставляет лопасти турбины вращаться с высокой скоростью. Вал соединен между турбиной и генератором. Внутри генератора находится магнитное поле, которое производит напряжение или электричество примерно 15 000 вольт (В). Для удовлетворения потребностей в электроэнергии членов CAEC и потребителей других распределительных кооперативов PowerSouth требуется около 10-12 лет и от 700 до 3 миллиардов долларов, чтобы построить только одну электростанцию.

Передающая подстанция

Мощность высокого напряжения, вырабатываемая генератором, поступает на передающую подстанцию ​​электростанции. Внутри подстанции большие трансформаторы преобразуют напряжение генератора до чрезвычайно высокого напряжения (диапазон 115 000–500 000 В), чтобы он более эффективно передавался по линиям электропередачи на подстанции электропередачи и понижающие подстанции электропередачи.

Линии передачи и полюса

После повышения до соответствующего напряжения мощность затем передается в систему передачи, которая состоит из линий и полюсов, полностью или совместно принадлежащих PowerSouth.PowerSouth обслуживает более 2200 миль линий электропередачи и более 300 подстанций в Алабаме и Флориде. Планирование и установка нового передающего оборудования может быть долгим и утомительным процессом. Это часто связано с рядом сложных и критических экологических, экономических, социальных и технических вопросов, касающихся окружающей среды, надежности, которые необходимо изучить до принятия решений и выдачи необходимых разрешений (например, воздействия на окружающую среду, права проезда). Изучение и исследование каждой из этих ключевых областей, а также действия по планированию и прогнозированию потребности и размещения передающего оборудования могут занимать 10-20 лет, а на фактическое выполнение может потребоваться еще два-пять лет.

Коммутационная станция

Когда мощность достигает точки подачи, она проходит процесс понижения (или снижения напряжения) на коммутационных станциях. Здесь 115 000–500 000 В снижается до примерно 115 000–46 000 В перед отправкой в ​​первый компонент распределительной системы — подстанцию ​​- и, в конечном итоге, в ваш дом.

Планирование такой большой системы может занять годы или десятилетия и может стоить миллионы долларов. Например, одна миля линии 115 000 В в сети электропередачи может стоить приблизительно 400 000 долларов — от планирования и разработки до реализации.Когда вы думаете о времени и усилиях, которые требуются, а также об инвестициях, чтобы построить и поддерживать тысячи миль линий для подачи электроэнергии в наши дома, ценность электричества становится гораздо более очевидной.

Энергетика: уголь Вернуться к началу

Знаете ли вы, сколько угля используется в вашем доме каждый день? Ежегодно средняя семья из четырех человек использует 3375 фунтов угля для водонагревателя; 560 фунтов — плита / плита; 256 фунтов — телевизор; и 37 фунтов — пылесос. Почти половина электроэнергии, используемой в Соединенных Штатах, вырабатывается из угля, а с учетом огромных ресурсов США.У С. этот вид топлива — известно, что запаса его хватит почти на 300 лет — даже используется с той же скоростью, что и сегодня.

Затраты, связанные с использованием угля, включают добычу, транспортировку, производство электроэнергии и контроль выбросов, однако электроэнергия, работающая на угле, остается одним из самых дешевых источников энергии для потребителей. Так как уголь питает ваш дом? Начнем с шахт.

Горный уголь

Есть два основных способа добычи угля: открытая и подземная.Шахтеры добывают уголь из залежей на уровне земли или вблизи нее, используя метод открытой добычи. Наземные бригады удаляют землю, покрывающую уголь, и постепенно извлекают это ископаемое топливо. Затем по закону горняки должны вернуть землю в ее первоначальное или улучшенное состояние, известное как рекультивация. В районах, где залежи угля находятся глубоко под землей, горняки роют туннели в земле и используют один из трех методов: обычную, непрерывную или длинную разработку.

При обычном методе горняк использует длинную электрическую цепную пилу, чтобы разрезать полосу под угольными месторождениями, и это место взрывается.После того, как взрыв разрыхляет уголь, шахтеры используют погрузочную машину и конвейерную ленту для переноса угля на поверхность земли для дальнейшей обработки. Напротив, при непрерывной разработке и разработке длинных забоев не используются буровые или взрывные работы. С помощью этих процессов уголь соответственно дробится или режется, а затем отправляется на обогатительную фабрику. На обогатительной фабрике рабочие работают с оборудованием для удаления камней и мусора перед промывкой, сортировкой и смешиванием угля перед отправкой.

Шахтеры обладают высокой квалификацией и хорошо обучены использованию сложного современного оборудования.В среднем угольщики работают 40 часов в неделю в холодных, шумных, сырых и темных условиях, а их средняя почасовая оплата составляет 21,57 доллара. В угольной промышленности занято более 300 000 человек.

Транспортировка угля

Уголь в основном транспортируется в США по железной дороге и баржами. Альтернативные способы доставки включают грузовик, конвейер и судно. На железнодорожный транспорт приходится 70 процентов поставок угля на электростанции, что может привести к злоупотреблению рыночной властью (т.е. рост тарифов, низкое качество и ненадежный сервис), вызванные отсутствием конкуренции. С 2004 года ряд кооперативов по производству и передаче электроэнергии сообщили, что их железнодорожные перевозчики требуют 100-процентного повышения ставок по истечении срока их существующих контрактов.

Электростанция Чарльза Р. Лоумена

PowerSouth (наш поставщик электроэнергии), расположенная недалеко от Лероя, штат Алабама, принимает уголь размером с мяч для гольфа на баржах на реке Томбигби и по железной дороге. По мере того, как уголь выгружается на конвейер, уголь перемещается в большую складскую штабель, достаточно большую, чтобы обеспечить двухмесячный спрос.

Завод Lowman может хранить до 250 000 тонн угля. Учитывая высокий спрос, установка может сжигать до 5000 тонн в день, когда потребители потребляют много электроэнергии. Следующим шагом в этом процессе является преобразование угля в электричество.

Преобразование угля в электроэнергию

Производство электроэнергии на угле — это процесс производства электроэнергии из энергии (углерода), хранящейся в угле. Процесс преобразования угля в электричество состоит из нескольких этапов:

1.Машина, называемая пульверизатором (показанная ниже), измельчает уголь в мелкий порошок.

2. Угольный порошок смешивается с горячим воздухом, что помогает ему гореть более эффективно. Вентиляторы первичного воздуха продувают смесь по угольным трубам в топку.

3. Горящий уголь нагревает воду в котле, образуя пар.

4. Пар из котла вращает лопасти турбины, преобразуя тепловую энергию горящего угля в механическую энергию, которая вращает турбину.

5.Вращающаяся турбина используется для питания генератора, машины, которая превращает механическую энергию в электрическую. Это происходит, когда магниты вращаются внутри медной катушки в генераторе.

6. Конденсатор охлаждает пар после его выхода из турбины. Когда пар конденсируется, он снова превращается в воду.

7. Вода перекачивается обратно в бойлер, и цикл начинается снова.

Произведенная электроэнергия затем начинает свой путь к вашему дому через систему передачи, как описано выше.Хотя основной процесс преобразования угля в электричество не изменился за 60 лет, достижения в технологии удаления выбросов привели к созданию более чистого угля.

Технология «Чистый уголь»

Чистые угольные технологии делятся на четыре основные категории: промывка угля, контроль загрязнения существующих электростанций, эффективные технологии сжигания и экспериментальный улавливание и хранение углерода. Исследования и разработки за последние два десятилетия привели к созданию более 20 новых, более дешевых и экологически чистых угольных технологий.Фактически, PowerSouth инвестировала около 400 миллионов долларов в модернизацию оборудования на заводе Lowman для снижения выбросов диоксида серы, оксида азота и ртути. Три угольных энергоблока Лоумена могут производить 556 мегаватт (этого достаточно для питания 300 000 домов и предприятий) за счет сжигания примерно 1,5 миллиона тонн угля в год. За счет интеграции усовершенствованных скрубберов выбросы диоксида серы были сокращены примерно на 92,5 процента (200 000 тонн в сумме), а выбросы оксида азота уменьшены примерно на 80 процентов (18 000 тонн), при этом был достигнут побочный эффект снижения содержания ртути при использовании в сочетании со скрубберами .

Хотя другие страны не контролируют свои выбросы от угля, более чистые угольные технологии помогают снизить выбросы загрязняющих веществ здесь, в США

Производство электроэнергии: природный газ Вернуться к началу

Когда вы думаете об электричестве, вы можете не думать о природном газе, но этот ресурс играет жизненно важную роль в производстве вашей энергии. Природный газ — это топливо, которое требует минимальной обработки, чтобы его можно было использовать в промышленных целях. Он имеет высокую теплотворную способность или содержание Btu и содержит мало примесей по сравнению с некоторыми другими ископаемыми видами топлива.В электроэнергетике исторически природный газ использовался для электростанций промежуточного и пикового режима или станций, которые включались в «пиковые» периоды использования, например, холодным зимним утром или жарким летним днем, когда большая часть населения потребляет больше электроэнергии. . В последние годы природный газ все больше и больше используется для выработки электроэнергии при базовой нагрузке.

От разведки и открытия до производства электроэнергии, прежде чем природный газ можно будет преобразовать в электричество, необходимо пройти несколько этапов — от определения местоположения ресурса до его полного использования, вы поймете роль природного газа в обеспечении электроэнергией вашего дома.

Разведка

Природный газ находится под землей в месторождениях. Требуются геологи и геофизики, а также использование технологий, чтобы делать обоснованные предположения о местонахождении этих месторождений. Этот процесс может занять от двух до 10 лет. Геологи обычно начинают с геологических изысканий на поверхности земли, ища характеристики, указывающие на залежи природного газа.

После определения вероятных областей геологи используют такое оборудование, как сейсмографы (аналогичные тем, которые используются для регистрации колебаний землетрясений), магнитометры (для регистрации магнитных свойств) и гравиметры (для измерения гравитационных полей), чтобы исследовать состав земли внизу и определять если окружающая среда благоприятна для залежей природного газа.Если эти тесты положительны, затем выкапываются разведочные скважины, что позволяет геологам воочию увидеть характеристики подземных вод и подтвердить наличие отложений.

Добыча

После подтверждения высокой вероятности залежей газа в этом районе бурильщики начинают трехнедельный 24-часовой процесс раскопок (в некоторых случаях на глубине более 20 000 футов ниже поверхности земли) этих участков — где все еще нет 100-процентной уверенности в том, что месторождения природного газа существуют.

Бурильщики используют два метода: ударное бурение, которое заключается в поднятии и опускании тяжелого металлического долота в землю с образованием ямы; или роторное бурение, при котором для копания используется острое вращающееся долото (очень похожее на ручную дрель). Роторный метод — это, по большей части, наиболее распространенная форма бурения на сегодняшний день. Если находится природный газ, строится скважина; если природный газ не обнаружен, участок или «сухая скважина» очищается, и процесс поиска природного газа начинается снова.Например, с 1995 по 2005 год 60 процентов скважин, пробуренных на природный газ, считались сухими.

При обнаружении отложений открывается канал на поверхность, и, поскольку природный газ легче воздуха, сжатый газ поднимается на поверхность практически без помех. В некоторых случаях электрический заряд посылается в колодец, разрушая скалу вокруг него. После того, как заряды установлены, жидкость для гидроразрыва под высоким давлением, состоящая на 99,51% из воды и песка, направляется в скважину, которая дополнительно разрушает породы, выделяя природный газ.Поскольку газ легче раствора, он поднимается к верху скважины для улавливания. После извлечения из скважины газ проходит по сети трубопроводов для обработки и обработки.

Обработка

Природный газ, используемый в домах, сильно отличается от необработанного природного газа, который поступает из земли. Газ направляется на перерабатывающие предприятия, где извлекаются избыточная вода, жидкости, сера, диоксид углерода и углеводороды, в результате чего получается чистый природный газ.

Прибытие на электростанцию ​​

Обработанный газ поступает на электростанцию ​​по магистральному газопроводу. Эта труба соединяется с газовым двором электростанции, где фильтры дополнительно удаляют примеси, а вся избыточная влага (например, вода или жидкие углеводороды) собирается и удаляется. Газовые станции также кондиционируют газ для оборудования, используемого в производстве электроэнергии, путем регулирования давления в соответствии с проектными требованиями турбины внутреннего сгорания (см. Параграф ниже). Природный газ должен оставаться в «газообразном состоянии», а не конденсироваться в капли жидкости.Если природный газ конденсируется в виде углеводородов в более концентрированной форме, это может вызвать повреждение внутреннего оборудования. Один из методов, используемых для поддержания требуемого газообразного состояния, — это газовые нагреватели, которые помогают поддерживать температуру природного газа выше точки росы.

Турбины внутреннего сгорания / Генератор

Достигнув необходимого давления и температуры, газ попадает в турбину внутреннего сгорания, которая очень похожа на реактивный двигатель. В сочетании со сжатым воздухом, генерируемым в передней части двигателя (также известной как камера сгорания), сжигание природного газа заставляет лопасти турбины вращаться.Турбина соединена с генератором через вал. Этот вал заставляет генератор вращаться и преобразует механическую энергию в электрическую, используя магниты и медную проволоку для создания электрического заряда. Затем эта мощность передается на повышающий трансформатор и распределительную станцию ​​электростанции перед подачей в систему передачи.

Система комбинированного цикла природного газа

После того, как турбина сжигает природный газ, можно производить больше энергии за счет использования системы комбинированного цикла.Эта система забирает тепло выхлопных газов турбины (от 900 до 1150 ° F) и отправляет его в парогенератор-утилизатор (HRSG).
HRSG забирает отработанные горячие газы и использует их для преобразования воды в пар. Затем этот пар направляется в паровую турбину, которая, как и турбина внутреннего сгорания, подключена к генератору для выработки электроэнергии. Пар направляется в конденсатор, который охлаждает пар, превращая его обратно в воду, где он повторно используется в HRSG, и процесс вода / пар повторяется.

Производство электроэнергии: гидроэнергетика Вернуться к началу

В раннем возрасте нас учили, что вода и электричество несовместимы. Как бы то ни было, знаете ли вы, что вода используется для выработки электроэнергии? Звучит странно, но одним из старейших источников, используемых для производства энергии, который существует уже сотни лет, является гидроэнергетика — вода используется для питания машин или производства электроэнергии.

Соединенные Штаты являются четвертым по величине производителем гидроэлектроэнергии в мире после Китая, Канады и Бразилии.Гидроэнергетика — крупнейший возобновляемый источник энергии для производства электроэнергии в Соединенных Штатах. В 2013 году на гидроэнергетику приходилось примерно шесть процентов от общего объема производства электроэнергии в США и 52 процента от всех возобновляемых источников энергии. Общая мощность гидроэлектроэнергии в США составляет около 100000 мегаватт (МВт), обеспечивая электроэнергией более 28 миллионов американских домов. Кроме того, в США гидроэнергия производится в среднем по 7 центов за киловатт-час (кВт-ч) по сравнению с другими средними показателями возобновляемой энергии, такими как ветер — 18 центов за кВт-ч, солнечная энергия — 13 центов за кВт-ч и биомасса — 10 центов за кВт-ч. .

Гидроэнергетика стала широко использоваться в начале 1880-х годов, когда была разработана технология передачи электроэнергии на большие расстояния.

  • Плотина — Большинство гидроэлектростанций опираются на плотину, которая задерживает воду, создавая большой резервуар.
  • Водозаборник — Затворы на плотине открываются, и сила тяжести тянет воду через напорный шток, трубопровод, который ведет к турбине. Вода создает давление, когда течет по этой трубе.
  • Турбина — Вода ударяется и вращает большие лопасти турбины, которая прикреплена к генератору над ней посредством вала.Современные гидротурбины могут преобразовывать до 90 процентов доступной энергии в электричество.
  • Генераторы — Когда лопасти турбины поворачиваются, на вращающейся части генератора вращается серия электромагнитов. Гигантские магниты вращаются мимо медных катушек, создавая электричество. После того, как генераторы вырабатывают электричество, оно передается на электрическую подстанцию, а затем передается в ваш дом.
  • Отток — Отработанная вода сбрасывается из турбины и иногда проходит по трубопроводам (отводам) и снова попадает в реку вниз по течению.

Вода в резервуаре считается запасенной энергией. Уровень резервуара над турбиной называется «напором» и определяет величину давления и объема, доступного для выработки электроэнергии. Чем больше напор, тем больше доступной энергии для производства электроэнергии. Когда ворота открыты, вода, протекающая через затвор, становится кинетической энергией, потому что находится в движении. Вращающаяся турбина, в свою очередь, приводит в движение генератор.

Энергетика: атомная промышленность Наверх

По мере того, как Америка ищет экологически чистые решения в области энергетики, существует одна форма эффективного производства чистой энергии, которую наша страна не исследовала последние 57 лет — ядерная.По сравнению с другими странами, использующими ядерную энергию с большей готовностью, в США в настоящее время имеется только 62 действующих в коммерческих целях атомных электростанций со 100 ядерными реакторами в 31 государстве. На каждой атомной электростанции обычно работает от 400 до 700 человек.

Несмотря на то, что ядерная энергия эффективна, требуется много шагов, чтобы превратить ее в пригодную для использования форму энергии для вашего дома. Ниже мы рассмотрим, что нужно для использования топлива, такого как уран, и его преобразования в энергию для вашего дома.

Горное дело

Производство атомной энергии начинается в шахтах, где горняки ищут урановую руду, которая служит топливом для производства ядерной энергии.Для получения этого химического элемента уранодобывающие компании используют несколько методов: открытая (открытый), подземная добыча и добыча методом подземного выщелачивания. Подземная добыча урана требует тех же основных шагов, что и для любого другого типа добычи, например угля.

Фрезерный

После того, как урановая руда удалена из грунта d, она должна быть обработана «измельчением», которое включает в себя последовательность этапов физической и химической обработки. Конечный продукт помола образует желтый кек (названный из-за его порошкообразной текстуры и желтоватого цвета).

Преобразование и обогащение

Бочки с желтым кеком должны пройти еще один процесс, чтобы превратиться в топливо, которое можно использовать на электростанциях. Природный уран состоит из двух типов: U-235 и U-238. Только U-235 может использоваться для производства энергии, но он составляет менее 1 процента природного урана. Таким образом, для использования урана в качестве топлива на атомной электростанции диапазон U-235 должен быть повышен или «обогащен» до газообразного состояния.

Чтобы понять, как работает обогащение, представьте молекулы газа в виде частиц песка, взвешенных в воздухе. Все молекулы одна за другой проходят через тысячи фильтров или сит. Поскольку более легкие частицы U-235 движутся быстрее, чем более тяжелые частицы U-238, большее их количество проникает через каждое сито. По мере прохождения большего количества сит концентрация U-235 увеличивается. Процесс продолжается до тех пор, пока концентрация U-235 не будет повышена или обогащена до 3-5 процентов.

Производство топлива

Однако, прежде чем его можно будет превратить в ядерное топливо, обогащенный фторид урана в газообразном состоянии превращается в диоксид урана — твердое вещество.Затем его прессуют в керамические шарики размером с кончик мизинца человека. Топливные таблетки вставляются и складываются встык в тонкие, жаропрочные металлические трубки или топливные стержни, размер которых может варьироваться от 12 до 17 футов в высоту. Топливные стержни объединяются в пучки твэлов, и в среднем в каждую активную зону реактора загружается 157 пучков твэлов (каждый весом примерно 1450 фунтов). По мере того, как U-235 истощается, процесс деления или расщепления атомов замедляется, поэтому требуется замена топливных пучков каждые 18-24 месяца.

Производство электроэнергии

Когда пучки твэлов помещаются в реактор, происходит процесс расщепления атомов урана, когда они бомбардируются свободными нейтронами — также известный как деление, — который создает энергию, которая выделяется в виде тепла. Однако управляющие стержни, изготовленные из химического элемента бора, помещаются в пучки твэлов, чтобы замедлить или полностью остановить деление атомов урана, давая электростанции возможность точно контролировать количество выделяемого тепла.

Тепло, выделяемое при делении, направляется в реактор с водой под давлением (PWR), где он нагревает воду до 500 ° F, но не дает ей закипеть, как в скороварке. Затем парогенераторы забирают речную воду и направляют ее в трубы, содержащие воду, нагретую PWR, для преобразования речной воды в пар. Затем пар направляется в турбины, чтобы начать процесс производства электроэнергии. Затем пар выпускается через градирни.

Выбытие

В год типичная атомная электростанция производит 20 метрических тонн отработанного ядерного топлива.Атомная промышленность производит в общей сложности около 2000 метрических тонн отработанного топлива в год. За последние четыре десятилетия вся отрасль произвела около 60 000 метрических тонн отработанного ядерного топлива. Если бы использованные тепловыделяющие сборки были сложены встык и бок о бок, это покрыло бы футбольное поле глубиной около семи ярдов. Большинство американских атомных электростанций хранят отходы либо в сухом хранилище, либо в бассейне для отработавшего топлива. Поскольку вода является естественным радиационным барьером, отработавшее топливо загружается в герметичные стальные или железобетонные контейнеры, известные как контейнеры, а затем осторожно доставляется в облицованный сталью бетонный бассейн с водой для хранения.

Сухое хранение на месте осуществляется аналогичным образом: отработанное топливо помещается в бетонные и стальные контейнеры, которые устанавливаются на специальной площадке. Каждая бочка может весить 300 000 фунтов и достаточно прочна, чтобы выдержать удар быстро движущегося грузовика или даже поезда без каких-либо повреждений.

Другие страны, такие как Япония, Россия и страны Европы, перерабатывают отработавшее ядерное топливо путем отделения урана и плутония от отходов топливных стержней, а затем повторно обогащают восстановленный уран для повторного использования в качестве топлива.

Безопасность прежде всего

АЭС США хорошо спроектированы, обслуживаются обученным персоналом, защищены от нападения и подготовлены в случае возникновения чрезвычайной ситуации. В дополнение к резервным системам, которые контролируют и регулируют то, что происходит внутри реактора, атомные электростанции США также используют ряд физических барьеров для предотвращения утечки радиоактивного материала. Все, от топливных таблеток до топливных стержней, заключено в материалы, ограничивающие радиационное воздействие. Все эти предметы содержатся в массивной железобетонной конструкции, называемой защитной оболочкой, со стенами толщиной четыре фута.Отсутствие защитной конструкции — вот что привело к выходу из строя Чернобыльской АЭС в России, чего не может произойти в Соединенных Штатах, поскольку все станции должны иметь защитные конструкции и другие средства безопасности.

Для выработки электроэнергии, произведенной с помощью ядерной энергии, требуется много шагов. Однако ядерная энергетика позволяет нам иметь чистый альтернативный источник энергии. Если принять во внимание процесс планирования, который включает в себя метеорологические, сейсмические исследования и исследования населения, то на строительство атомной станции, от планирования до эксплуатации, может уйти до 10-15 лет.Но при этом эффективный источник энергии может доставить электроэнергию в ваш дом.

Энергетика: возобновляемые источники энергии Наверх

Благодаря современным технологиям каждый день используются новые источники энергии. Возобновляемая энергия также называется «чистой» или «зеленой» энергией, потому что она практически не имеет выбросов и может быть восполнена за короткий период времени. Чаще всего используются четыре возобновляемых источника: ветер, солнечная фотоэлектрическая энергия, геотермальная энергия и биомасса. Гидроэнергетика также является возобновляемым ресурсом, о чем говорилось выше.

Развитие возобновляемых источников энергии для коммерческого использования в зоне обслуживания CAEC, в том числе ветровой, солнечной, геотермальной энергии и биомассы, считается экономически нецелесообразным по сравнению с более традиционными вариантами. Тем не менее, давайте посмотрим на процесс генерации этих природных топливных ресурсов.

Ветер

Ветряные машины (также называемые ветряными турбинами) используют лопасти для сбора кинетической энергии ветра. Когда дует ветер, он обтекает лопасти, создавая подъемную силу, как на крыльях самолета, заставляя их вращаться.Лопасти соединены с приводным валом, который вращает электрогенератор.

Стоимость коммерческих ветряных турбин варьируется от 1 до 2 миллионов долларов за мегаватт (МВт) установленной мощности. На разработку проектов может уйти более семи лет, из которых 2,5 года находятся на стадии планирования. Одна турбина мощностью 1 МВт, работающая с производительностью 45 процентов, будет вырабатывать около 3,9 миллиона киловатт (кВт) электроэнергии в год, удовлетворяя потребности примерно 500 домашних хозяйств в год. Однако средний оборот ветряной турбины составляет примерно 25 процентов.В США в ветроэнергетике занято около 85 000 человек.

Основная проблема использования ветра в качестве источника энергии заключается в том, что ветер непостоянен и не всегда дует, когда требуется электричество. Энергия ветра не может быть сохранена, и не все ветры можно использовать для удовлетворения потребностей в электроэнергии. Жизнеспособность ветряного проекта в нашем районе еще больше затрудняется из-за более высоких затрат на строительство морских установок и риска разрушения ветровой электростанции из-за ураганных ветров, которые иногда встречаются на наших южных побережьях.

Многие потенциальные ветряные электростанции, на которых ветровая энергия может производиться в больших масштабах, должны располагаться в местах, удаленных от населенных пунктов, где необходима энергия. Это ставит ветроэнергетику в невыгодное положение с точки зрения затрат на новые подстанции и линии электропередачи.

Солнечная

Солнечная энергия преобразуется в электричество с помощью фотоэлектрических (PV) устройств или «солнечных батарей». Солнечная энергия (тепло) кипятит воду; пар приводит в движение турбину; турбина вращает обычный генератор, который затем вырабатывает электроэнергию.Строительство солнечной электростанции мощностью 10 гигаватт (ГВт) обойдется примерно в 100 миллиардов долларов, а для электростанции мощностью 500 мегаватт (МВт), которая может обеспечить электроэнергией 100000 домашних хозяйств, потребуется 4000 акров, тогда как для электростанции, работающей на природном газе мощностью 500 МВт, потребуется 40 акров и угольная фабрика 300 соток. В нашем районе солнечная энергия будет обеспечивать около 15 процентов необходимой энергии за 24 часа, а в оставшееся время потребуется еще один источник топлива.

Геотермальная

Электростанции производят геотермальную энергию, используя сухой пар земли или горячую воду, получаемую при рытье колодцев.Либо сухой пар, либо горячая вода выводится на поверхность по трубам и перерабатывается в электроэнергию на электростанции. Поскольку геотермальные электростанции используют меньшие участки земли, стоимость земли обычно ниже, чем у других электростанций.

Geothermal — это ресурс базовой нагрузки, доступный 24 часа в сутки, каждый день в году. Он не зависит от погодных условий и не требует затрат на топливо. Однако бурение геотермальных резервуаров и их поиск может быть дорогостоящей задачей. Первоначальная стоимость месторождения и электростанции составляет около 2500 долларов за установленный кВт в США.S., и даже от 3000 до 5000 долларов за небольшую электростанцию ​​мощностью менее 1 МВт. Бурение каждой наблюдательной скважины может сильно различаться в зависимости от геологических и других условий. Геотермальная энергия очень специфична для конкретной местности, и наряду с теплом, исходящим от земли, в процессе также могут рассеиваться токсичные химические вещества.

Соединенные Штаты вырабатывают в среднем 15 миллиардов киловатт-часов (кВтч) геотермальной энергии в год, а электростанции сосредоточены в основном в западной части страны.

Биомасса

Энергия биомассы включает свалочный метан, древесные отходы, побочные продукты сельского хозяйства и этанол. Сегодня большая часть электроэнергии из биомассы вырабатывается с использованием парового цикла. В этом процессе биомасса сжигается в котле для получения пара. Затем пар вращает турбину, которая подключена к генератору, вырабатывающему электричество.

Из этих ресурсов свалочный метановый газ имеет наибольший потенциал для производства электроэнергии из возобновляемых источников на юго-востоке страны.Для высвобождения метана из разлагающихся отходов собирают газ с помощью ряда скважин, стратегически расположенных по всей территории полигона. Скважины соединены серией труб, ведущих к более крупным трубам, по которым газ доставляется на завод, вырабатывающий электричество из возобновляемых видов топлива. Вся система трубопроводов находится под вакуумом, создаваемым воздуходувками на объекте, в результате чего свалочный газ выходит из скважин. Как только нагнетатели подают газ на завод, двигатели внутреннего сгорания используют газ в качестве топлива и вращают генераторы для производства электроэнергии.

Преобразование свалочного газа (свалочный газ) в электричество снижает выбросы метана, парникового газа в 23 раза более сильного, чем углекислый газ. По состоянию на июль этого года в США действовало около 636 энергетических проектов по производству свалочного газа (80 из которых связаны с электрическими кооперативами), в результате чего в 2013 году было произведено почти 16 миллиардов киловатт-часов электроэнергии. В Алабаме существует пять действующих проектов: Болдуин, Джексон, Монтгомери, Морган и Сент-Клер.

CAEC в настоящее время предлагает своим членам возможность использовать эту возобновляемую альтернативу с программой Green Power Choice, партнерством между PowerSouth (наш кооператив по производству и передаче электроэнергии) и Waste Management.В рамках этого проекта электричество вырабатывается из метана, производимого на региональной полигоне Спрингхилл в Кэмпбеллтоне, штат Флорида. Покупка двух блоков зеленой энергии в месяц в течение года равносильна переработке 480 фунтов алюминия (15 322 банки) или переработке 1766 фунтов алюминия. газета. Блоки состоят из 100 киловатт-часов (кВтч) электроэнергии и могут быть включены в счет за электроэнергию по цене 2 доллара за блок.

Новое энергетическое будущее будет опираться на несколько источников энергии. И хотя возобновляемые источники энергии будут играть ключевую роль в нашем энергетическом будущем, они не могут удовлетворить растущий спрос на электроэнергию в одиночку.Безопасное и надежное энергетическое будущее должно включать сочетание передовых экологически чистых источников угля, ядерной энергии, природного газа и возобновляемых источников энергии.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *