Site Loader

Источник ЭДС — Википедия

Материал из Википедии — свободной энциклопедии

Рисунок 1. Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа). Вариант.

Исто́чник ЭДС (идеа́льный источник напряже́ния) — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой E{\displaystyle {\mathcal {E}}}.

Свойства

Идеальный источник напряжения

Рисунок 2. Реальный источник напряжения под нагрузкой Рисунок 3. Нагрузочная характеристика идеального (синий) и реального (красный) источников.

Напряжение на выводах идеального источника напряжения не зависит от нагрузки U=E=const{\displaystyle U={\mathcal {E}}={\text{const}}}. Ток определяется только сопротивлением внешней цепи R{\displaystyle R}:

I=UR.{\displaystyle I={\frac {U}{R}}.}

Модель идеального источника напряжения используется для представления реальных электронных компонентов в виде эквивалентных схем. Собственно, идеальный источник напряжения (источник ЭДС) является физической абстракцией, поскольку при стремлении сопротивления нагрузки к нулю R→0{\displaystyle R\rightarrow 0} отдаваемый ток и электрическая мощность неограниченно возрастают, что противоречит физической природе источника.

Реальный источник напряжения

В реальности любой источник напряжения обладает внутренним сопротивлением r{\displaystyle r}. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника. Эквивалентная схема реального источника напряжения представляет собой последовательное включение идеального источника ЭДС E{\displaystyle {\mathcal {E}}} и внутреннего сопротивления r{\displaystyle r}.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (синяя линия) и реального источника напряжения (красная линия).

E=Ur+UR,{\displaystyle {\mathcal {E}}=U_{r}+U_{R},}

где

Ur=I⋅r,{\displaystyle U_{r}=I\cdot r,} — падение напряжения на внутреннем сопротивлении;
UR=I⋅R,{\displaystyle U_{R}=I\cdot R,} — падение напряжения на нагрузке.

При коротком замыкании R=0{\displaystyle R=0} вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток короткого замыкания Is.c.{\displaystyle I_{\text{s.c.}}} будет максимален. Зная напряжение холостого хода Uxx{\displaystyle U_{\text{xx}}} и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

r=UxxIs.c..{\displaystyle r={\frac {U_{\text{xx}}}{I_{\text{s.c.}}}}.}

Применение

При помощи модели источника напряжения хорошо описываются химические источники тока, батарейки, гальванические элементы, коллекторные генераторы постоянного тока с параллельным возбуждением и бытовые электросети для маломощных потребителей.

Различают источник постоянного и переменного напряжения, а также источник напряжения, управляемые напряжением (ИНУН) и источники напряжения, управляемые током (ИНУТ).

Обозначения

Существуют различные варианты обозначений источника напряжения. Наиболее часто встречается обозначение (a) . Вариант (c) устанавливается ГОСТ[1] и IEC[2]. Стрелка в кружке указывает на положительную клемму на выходе источника. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками тока (b), который обозначен так в статье «Источник тока».

Рисунок 4. Обозначения источника напряжения на схемах

Определение полюсов

Чтобы определить, который полюс источника постоянного напряжения является положительным, а какой — отрицательным, используются специальные «полюсоискатели», действие которых основано на явлении электролиза. Полюсоискатель представляет собой стеклянную ампулу, заполненную раствором поваренной соли с добавкой фенолфталеина. В ампулу снаружи введены электроды. При подключении к электродам источника напряжения начинается электролиз: на отрицательном полюсе идёт выделение водорода и образуется щелочная среда. Из-за наличия щёлочи фенолфталеин меняет свою окраску — краснеет, по красной окраске у электрода и судят о том, что он соединён с отрицательным полюсом источника напряжения

[3].

См. также

Примечания

  1. ↑ ГОСТ 2.721-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения.
  2. ↑ IEC 617-2:1996. Graphical symbols for diagrams — Part 2: Symbol elements, qualifying symbols and other symbols having general application
  3. ↑ Элементарный учебник физики / Под ред. Г. С. Ландсберга. — 13-е изд.. — М.: ФИЗМАТЛИТ, 2003. — Т. 2. Электричество и магнетизм. — С. 151,152,465.

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.

Источник ЭДС — это… Что такое Источник ЭДС?

Рисунок 1 — Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа)

Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения

Рисунок 2
Рисунок 3 — Нагрузочная характеристика

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки, сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как . Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС —

Е (идеального источника напряжения) и внутреннего сопротивления — r.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (источника ЭДС) (синяя линия) и реального источника напряжения (красная линия).

где

 — падение напряжения на внутреннем сопротивлении;
 — падение напряжения на нагрузке.

При коротком замыкании () , то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

См. также

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3

Источник ЭДС | Электрикам

Источник эдс (или идеальный источник напряжения) — это активный элемент с двумя зажимами, напряжение на которых не зависит от тока, проходящего через источник. В таком идеальном источнике отсутствуют пассивные элементы, т.е. у источника нету сопротивления индуктивности и ёмкости.
В связи отсутствием пассивных элементов при прохождении тока через источник не создается падение напряжения. Упорядоченное перемещение от меньшего потенциала к большему возможно за счёт присущих источнику сторонних сил. Величина работы затрачиваемой на перемещение единицы положительного заряда от «-» к зажиму «+», называется электро движущей силой (ЭДС) источника и обозначается e(t).

В соответствии со сказанным выше напряжение на зажимах рассматриваемого источника равно его ЭДС. U(t) = e(t)

УГО(условно графическое обозначение)

Безымянный - копия (2)

Безымянный - копия (2)

УГО идеального источника напряжения Рис1. Здесь стрелкой или знаками «+» и «-» указанно направление ЭДС.

Величина тока в пассивной электрической цепи, подключенной к источнику напряжения, зависит от параметров этой цепи и эдс.

Если зажимы идеального источника напряжения замкнуть, то ток теориотически должен быть бесконечно велик.

формула i=e/r+R

где:

  • r — внутреннее сопротивление источника (r=0)
  • R — сопротивление внешне электрической цепи (при коротком замыкании R=0)

Поэтому этот источник рассматривают как бесконечный источник мощности (Теоретическое понятие). В действительности при замыкании реального источника его ток будет ограничен, так как в реальном источнике (батарейка, генератор…) есть внутреннее сопротивление(L, r).

Реальный источник напряжения ( или источник конечной мощности ) изображается как идеальный источник с подключенным к нему последовательно пассивным элементом характеризующим внутренние параметры источника и ограничивающие мощность отдаваемую во внешнею электрическую цепь. Обычно внутренние параметры источников незначительны по сравнению с параметрами внешней цепи. Они могут отнесены к последней или вообще не учитываться (если не требуется большая точность).

Источник ЭДС — Википедия. Что такое Источник ЭДС

Рисунок 1. Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа). Вариант.

Исто́чник ЭДС (идеа́льный источник напряже́ния) — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия. В простейшем случае ЭДС определена как константа, обычно обозначаемая буквой E{\displaystyle {\mathcal {E}}}.

Свойства

Идеальный источник напряжения

{\mathcal {E}}
Рисунок 2. Реальный источник напряжения под нагрузкой {\mathcal {E}} Рисунок 3. Нагрузочная характеристика идеального (синий) и реального (красный) источников.

Напряжение на выводах идеального источника напряжения не зависит от нагрузки U=E=const{\displaystyle U={\mathcal {E}}={\text{const}}}. Ток определяется только сопротивлением внешней цепи R{\displaystyle R}:

I=UR.{\displaystyle I={\frac {U}{R}}.}

Модель идеального источника напряжения используется для представления реальных электронных компонентов в виде эквивалентных схем. Собственно, идеальный источник напряжения (источник ЭДС) является физической абстракцией, поскольку при стремлении сопротивления нагрузки к нулю R→0{\displaystyle R\rightarrow 0} отдаваемый ток и электрическая мощность неограниченно возрастают, что противоречит физической природе источника.

Реальный источник напряжения

В реальности любой источник напряжения обладает внутренним сопротивлением r{\displaystyle r}. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника. Эквивалентная схема реального источника напряжения представляет собой последовательное включение идеального источника ЭДС E{\displaystyle {\mathcal {E}}} и внутреннего сопротивления r{\displaystyle r}.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (синяя линия) и реального источника напряжения (красная линия).

E=Ur+UR,{\displaystyle {\mathcal {E}}=U_{r}+U_{R},}

где

Ur=I⋅r,{\displaystyle U_{r}=I\cdot r,} — падение напряжения на внутреннем сопротивлении;
UR=I⋅R,{\displaystyle U_{R}=I\cdot R,} — падение напряжения на нагрузке.

При коротком замыкании R=0{\displaystyle R=0} вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток короткого замыкания Is.c.{\displaystyle I_{\text{s.c.}}} будет максимален. Зная напряжение холостого хода Uxx{\displaystyle U_{\text{xx}}} и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

r=UxxIs.c..{\displaystyle r={\frac {U_{\text{xx}}}{I_{\text{s.c.}}}}.}

Применение

При помощи модели источника напряжения хорошо описываются химические источники тока, батарейки, гальванические элементы, коллекторные генераторы постоянного тока с параллельным возбуждением и бытовые электросети для маломощных потребителей.

Различают источник постоянного и переменного напряжения, а также источник напряжения, управляемые напряжением (ИНУН) и источники напряжения, управляемые током (ИНУТ).

Обозначения

Существуют различные варианты обозначений источника напряжения. Наиболее часто встречается обозначение (a) . Вариант (c) устанавливается ГОСТ[1] и IEC[2]. Стрелка в кружке указывает на положительную клемму на выходе источника. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками тока (b), который обозначен так в статье «Источник тока».

r={\frac  {U_{{{\text{xx}}}}}{I_{{{\text{s.c.}}}}}}. Рисунок 4. Обозначения источника напряжения на схемах

Определение полюсов

Чтобы определить, который полюс источника постоянного напряжения является положительным, а какой — отрицательным, используются специальные «полюсоискатели», действие которых основано на явлении электролиза. Полюсоискатель представляет собой стеклянную ампулу, заполненную раствором поваренной соли с добавкой фенолфталеина. В ампулу снаружи введены электроды. При подключении к электродам источника напряжения начинается электролиз: на отрицательном полюсе идёт выделение водорода и образуется щелочная среда. Из-за наличия щёлочи фенолфталеин меняет свою окраску — краснеет, по красной окраске у электрода и судят о том, что он соединён с отрицательным полюсом источника напряжения[3].

См. также

Примечания

  1. ↑ ГОСТ 2.721-74 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения.
  2. ↑ IEC 617-2:1996. Graphical symbols for diagrams — Part 2: Symbol elements, qualifying symbols and other symbols having general application
  3. ↑ Элементарный учебник физики / Под ред. Г. С. Ландсберга. — 13-е изд.. — М.: ФИЗМАТЛИТ, 2003. — Т. 2. Электричество и магнетизм. — С. 151,152,465.

Литература

  • Электротехника: Учеб. для вузов/А. С. Касаткин, М. В. Немцов.— 7-е изд., стер.— М.: Высш. шк., 2003.— 542 с.: ил. ISBN 5-06-003595-6
  • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи. — М.: Гардарики, 2002. — 638 с. — ISBN 5-8297-0026-3.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *