Site Loader

РадиоКот :: Простой аналоговый функциональный генератор (0,1 Гц

РадиоКот >Схемы >Аналоговые схемы >Генераторы >

Простой аналоговый функциональный генератор (0,1 Гц — 8 МГц)

           Лет 10-15 назад у радиолюбителей заслуженной популярностью пользовалась микросхема MAX038, на основе которой можно было собрать несложный функциональный генератор, перекрывающий полосу частот 0,1 Гц – 20 МГц. Правда цена микросхемы сильно кусалась, а в последнее время достать MAX038 стало практически невозможно. Такая вот странная политика у производителя. Появившиеся клоны MAX038 имеют по сравнению с ней весьма скромные параметры. Так, у ICL8038 максимальная рабочая частота составляет 300 кГц, а у XR2206 – 1 МГц. Встречающиеся в радиолюбительской литературе схемы простых аналоговых функциональных генераторов также имеют максимальную частоту в несколько десятков, и очень редко, сотен кГц.

            Поэтому в своё время автором для настройки разнообразных схем был разработан и изготовлен аналоговый функциональный генератор, формирующий сигналы синусоидальной, прямоугольной, треугольной формы и работающий в диапазоне частот от 0,1 Гц до 8 МГц.

Вид спереди:

 

Вид сзади:

 

 

Генератор имеет следующие параметры:

            амплитуда выходных сигналов:

              синусоидальный……………………………1,4 В;

              прямоугольный……………………………..2,0 В;

              треугольный…………………………………2,0 В;

            диапазоны частот:

               0,1…1 Гц;

               1…10 Гц;

               10…100 Гц;

               100…1000 Гц;

               1…10 кГц;

               10…100 кГц;

               100…1000 кГц;

               1…10 МГц;

           напряжение питание………………………….220 В, 50 Гц.

 

           За основу разработанной схемы функционального генератора, приведенной ниже, была взята схема из [1]:

 

 

           Генератор выполнен по классической схеме: интегратор + компаратор, только собран на высокочастотных компонентах.

           Интегратор собран на ОУ DA1 AD8038AR, имеющем полосу пропускания 350 МГц и скорость нарастания выходного напряжения 425 В/мкс. На DD1.1, DD1.2 выполнен компаратор. Прямоугольные импульсы с выхода компаратора (выв. 6 DD1.2) поступают на инвертирующий вход интегратора. На VT1 выполнен эмиттерный повторитель, с которого снимаются импульсы треугольной формы, управляющие компаратором. Переключателем SA1 выбирают требуемый диапазон частот, потенциометр R1 служит для  плавной регулировки частоты. Подстроечным резистором R15 устанавливается режим работы генератора и регулируется амплитуда треугольного напряжения. Подстроечным резистором R17 регулируется постоянная составляющая треугольного напряжения. С эмиттера VT1 напряжение треугольной формы поступает на переключатель SA2 и на   формирователь синусоидального напряжения, выполненный на VT2, VD1, VD2. Подстроечным резистором R6 выставляются минимальные искажения синусоиды, а подстроечным резистором R12 регулируется симметрия синусоидального напряжения. С целью уменьшения коэффициента гармоник верхушки треугольного сигнала ограничиваются цепями VD3, R9, C14, C16 и VD4, R10, C15, C17. С буфера DD1.4 снимаются импульсы прямоугольной формы. Сигнал, выбранный переключателем SA2, подаётся на потенциометр R19 (амплитуда), а с него — на выходной усилитель DA5, выполненный на  AD8038AR. На элементах R24, R25, SA3 выполнен выходной аттенюатор напряжения  1:1 / 1:10.

           Для питания генератора использован классический трансформаторный источник с линейными стабилизаторами, формирующими напряжения +5В, ±6В и ±3 В.

 

           Для индикации частоты генератора была использована часть схемы от уже готового частотомера, взятая из [2]:

 

           На транзисторе VT3 выполнен усилитель-формирователь прямоугольных импульсов, с выхода которого сигнал поступает на вход микроконтроллера DD2 PIC16F84A. МК тактируется от кварцевого резонатора ZQ1 на 4 МГц. Кнопкой SB1 выбирается по кольцу цена младшего разряда 10, 1 или 0.1 Гц и соответствующее время измерения 0.1, 1 и 10 сек. В качестве индикатора использован Wh2602D-TMI-CT с белыми символами на синем фоне. Правда угол обзора у этого индикатора оказался 6:00, что не соответствовало его установке в корпус с углом обзора 12:00. Но эта неприятность была устранена, как будет описано ниже. Резистор R31 задаёт ток подсветки, а резистором R28 регулируется оптимальная контрастность. Следует отметить, что программа для МК была написана автором [2] для индикаторов типа DV-16210, DV-16230, DV-16236, DV-16244, DV-16252 фирмы DataVision, у которых процедура начальной инициализации по-видимому не подходит к  индикаторам Wh2602 фирмы WinStar. В результате после сборки частотомера на индикатор ничего не выводилось. Других малогабаритных индикаторов в продаже на тот момент не было, поэтому пришлось вносить изменения в исходник программы частотомера. Попутно в ходе экспериментов была выявлена такая комбинация в процедуре инициализации, при которой двухстрочный дисплей с углом обзора 6:00 становился однострочным, причём достаточно комфортно читаемым при угле обзора 12:00. Выводимые в нижней строке надписи-подсказки о режиме работы частотомера стали не видны, но они особо и не нужны, т.к. дополнительные функции этого частотомера не использованы.

           Конструктивно функциональный генератор выполнен на печатной плате из одностороннего фольгированного стеклотекстолита размерами 110х133 мм, разработанной под стандартный пластиковый корпус Z4. Индикатор установлен на палате вертикально на двух уголках. С основной платой он соединён при помощи шлейфа с разъёмом под IDC-16. Для соединения высокочастотных цепей в схеме использован тонкий экранированный кабель. Вот фото генератора со снятой верхней крышкой корпуса:

 

           Перечень элементов и чертёж платы в Layout5 прилагаются.

           После первого включения генератора необходимо проконтролировать питающие напряжения, а также установить подстроечным резистором R29 напряжение -3В на выходе DA7 LM337L. Резистором R28 устанавливается оптимальная контрастность индикатора. Для настройки генератора необходимо подключить осциллограф к его выходу, переключатель SA3 установить в положение 1:1, SA2 —  в положение, соответствующее напряжению треугольной формы, SA1 – в положение 100…1000 Гц. Резистором R15 добиваются устойчивой генерации сигнала. Переместив движок резистора R1 в нижнее по схеме положение, подстроечным резистором R17 добиваются симметричности треугольного сигнала относительно нуля. Далее переключатель SA2 необходимо перевести в положение, соответствующее синусоидальной форме выходного сигнала, и подстроечными резисторами R12 и R6 добиться соответственно симметричности и минимальных искажений синусоиды.

           Вот что получилось в итоге:

Меандр 1 Мгц:

 

Меандр 4 Мгц:

 

Треугольник 1 Мгц:

 

Треугольник 4 Мгц:

 

Синус 8 Мгц:

 

            Следует отметить, что на частотах свыше 4 Мгц на треугольном и прямоугольном сигналах начинают наблюдаться искажения, связанные с недостаточной полосой пропускания выходного усилителя. При желании этот недостаток можно легко устранить, если перенести усилитель выходного каскада DA5 в цепь от истока VT2 к SA2, т.е. использовать его как усилитель синусоидального сигнала, а вместо выходного усилителя применить повторитель на ещё одном ОУ AD8038AR, пересчитав соответственно сопротивления делителей треугольного (R18, R36) и прямоугольного (R21, R35) сигналов  на меньший коэффициент деления.

 

    Литература:

    1) Широкодиапазонный функциональный генератор. А.Ишутинов. Радио №1/1987г.

    2) Экономичный многофункциональный частотомер. А.Шарыпов. Радио №10-2002.

Файлы:
Плата в Layout, перечень элементов, прошивка, исходник, наклейки

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Простой генератор сигналов своими руками


Здравствуйте друзья Самоделкины! Многим из вас доводилось ремонтировать вышедшие из строя радиоприемники и усилители низкой частоты.

Очередная самоделка, которую я сделал, как раз пригодится для этих целей. Это простой генератор сигналов, которым можно проверять не только тракт звуковой частоты приемника, но и радиочастотный. Его схема показана на фото.


Это обычный мультивибратор, который генерирует колебания не одной какой-то основной частоты, но и еще много кратных частот, называемых гармониками, вплоть до частот коротковолнового диапазона.

Генератор состоит из двух транзисторов. Выходное напряжение, снимаемое с резистора R4 через разделительный конденсатор С3 подается на вход проверяемого нами усилителя или приемника. Если на выходе приемника или усилителя в его громкоговорителе слышится неискаженный звук тональности, соответствующей частоте колебаний генератора, то проверяемые нами устройства –исправны. А если звук искажен или отсутствует совсем, то это говорит о неисправности в их цепях. Для создания самоделки нам потребуются следующие детали и инструменты.

Это: два транзистора КТ 315А, Резисторы МЛТ – 0,25 вт 3 ком – 2шт, 47 ком – 2шт, конденсаторы 0,01мкф -2шт, 0,05 мкф – 1шт, любая малогабаритная кнопка, батарейка на 1,5 в, один зажим «крокодил».

Инструменты: паяльник, пинцет, припой, монтажные провода, кусачки, пассатижи, маленький корпус, иголка, винты и гайки М2, латунные пластинки – для держателя батарейки, монтажная печатная плата размером 1,5 см * 7 см.

Собираем следующим образом:

Шаг -1. Проверяем все радиодетали на их работоспособность мультиметром. Спаиваем всю схему на печатной плате. Проверяем правильность сборки.



Шаг -2. В имеющемся у нас корпусе закрепляем кнопку и держатели для батарейки.


Ставим батарейку в корпус, подключаем спаянную плату. К выходу «А – В» подключаем головной телефон, и проверяем работу генератора на столе. Если схема собрана правильно, то он начинает генерировать звуковые сигналы, которые слышны в наушнике.

Шаг -3. Закрепляем плату в корпус, припаиваем выход «А» к иголке, а выход «в» — выводим наружу черным проводом с припаянным на его конце зажимом «крокодил».


Закрываем корпус крышкой.

Основная частота сигнала около 1 кгц, сигнал на выходе –около 0,5 в, потребляемый ток не более 0,5 ма. Батарейки хватит на целый год.

Вот и все, самоделка готова. А нужна ли она вам – решайте сами.

Успехов вам всем в ваших делах. До новых встреч.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Конструктор для сборки простого DDS генератора сигналов

Продолжая тему электронных конструкторов я хочу и в этот раз рассказать о одном из устройств для пополнения арсенала измерительных приборов начинающего радиолюбителя.
Правда измерительным это устройство не назовешь, но то что оно помогает при измерениях это однозначно.

Довольно часто радиолюбителю, да и не только, приходится сталкиваться с необходимостью проверки разных электронных устройств. Это бывает как на этапе отладки, так и на этапе ремонта.
Для проверки бывает необходимо проследить прохождение сигнала по разным цепям устройства, но само устройство не всегда позволяет это сделать без внешних источников сигнала.
Например при настройке/проверке многокаскадного НЧ усилителя мощности.

Для начала стоит немного объяснить о чем пойдет речь в данном обзоре.
Рассказать я хочу о конструкторе, позволяющим собрать генератор сигналов.

Генераторы бывают разные, например ниже тоже генераторы 🙂

Но собирать мы будем генератор сигналов. Я много лет пользуюсь стареньким аналоговым генератором. В плане генерации синусоидальных сигналов он очень хорош, диапазон частот 10-100000Гц, но имеет большие габариты и не умеет выдавать сигналы других форм.
В данном случае же собирать будем DDS генератор сигналов.
DDS это Direct Digital Synthesizer или на русском — схема прямого цифрового синтеза.
Данное устройство может формировать сигналы произвольной формы и частоты используя в качестве задающего внутренний генератор с одной частотой.
Преимущества данного типа генераторов в том, что можно иметь большой диапазон перестройки с очень мелким шагом и при необходимости иметь возможность формирования сигналов сложных форм.

Как всегда, для начала, немного об упаковке.
Помимо стандартной упаковки, конструктор был упакован в белый плотный конверт.
Все компоненты сами находились в антистатическом пакете с защелкой (довольно полезная в хозяйстве радиолюбителя вещь 🙂 )

Внутри упаковки компоненты были просто насыпом, и при распаковке выглядели примерно так.

Дисплей был обернут пупырчатым полиэтиленом. Примерно с год назад я уже делал обзор такого дисплея с применением, потому останавливаться на нем не буду, скажу лишь что доехал он без происшествий.
В комплекте также присутствовали два BNC разъема, но более простой конструкции чем в обзоре осциллографа.

Отдельно на небольшом кусочке вспененного полиэтилена были микросхемы и панельки для них.
В устройстве применен микроконтроллер ATmega16 фирмы Atmel.
Иногда люди путают названия, называя микроконтроллер процессором. На самом деле это разные вещи.
Процессор это по сути просто вычислитель, микроконтроллер же в своем составе содержит кроме процессора ОЗУ и ПЗУ, и также могут присутствовать различные периферийные устройства, ЦАП, АЦП, ШИМ контроллер, компараторы и т.п.

Вторая микросхема — Сдвоенный операционный усилитель LM358. Самый обычный, массовый, операционный усилитель.

Сначала разложим весь комплект и посмотрим что же нам дали.
Печатная плата
Дисплей 1602
Два BNC разъема
Два переменных резистора и один подстроечный
Кварцевый резонатор
Резисторы и конденсаторы
Микросхемы
Шесть кнопок
Разные разъемы и крепеж

Печатная плата с двухсторонней печатью, на верхней стороне нанесена маркировка элементов.
Так как принципиальная схема в комплект не входит, то на плату нанесены не позиционные обозначения элементов, а их номиналы. Т.е. все собрать можно и без схемы.

Металлизация выполнена качественно, замечаний у меня не возникло, покрытие контактных площадок отличное, паяется легко.

Переходы между сторонами печати сделаны двойными.
Почему сделано именно так, а не как обычно, я не знаю, но это только добавляет надежности.

Сначала по печатной плате я начал чертить принципиальную схему. Но уже в процессе работы я подумал, что наверняка при создании данного конструктора использовалась какая нибудь уже известная схема.
Так и оказалось, поиск в интернет вывел меня на изначальную версию данного устройства.
По ссылке можно найти, схему, печатную плату и исходники с прошивкой.
Но я все равно решил дочертить схему в именно том виде как она есть и могу сказать, что она на 100% соответствует исходному варианту. Разработчики конструктора просто разработали свой вариант печатной платы. Это означает, что если существуют альтернативные прошивки данного прибора, то они будут работать и здесь.
Есть замечание к схемотехнике, выход HS взят прямо с вывода процессора, никаких защит нет, потому есть шанс случайно сжечь этот выход 🙁

Раз уж рассказывать, то стоит описать функциональные узлы данной схемы и расписать некоторые из них более расширенно.
Я сделал цветной вариант принципиальной схемы, на котором цветом выделил основные узлы.
Мне тяжело подобрать названия цветам, потом буду описывать как смогу 🙂
Фиолетовый слева — узел первоначального сброса и принудительного при помощи кнопки.
При подаче питания конденсатор С1 разряжен, благодаря чему на выводе Сброс процессора будет низкий уровень, по мере заряда конденсатора через резистор R14 напряжение на входе Сброс поднимется и процессор начнет работу.
Зеленый — Кнопки переключения режимов работы
Светло фиолетовый? — Дисплей 1602, резистор ограничения тока подсветки и подстроечный резистор регулировки контрастности.
Красный — узел усилителя сигнала и регулировки сдвига относительно нуля (ближе к концу обзора показано что он делает)
Синий — ЦАП. Цифро Аналоговый Преобразователь. Собран ЦАП по схеме R2R матрицы, это один из самых простых вариантов ЦАП. В данном случае применен 8 бит ЦАП, так как используются все выводы одного порта микроконтроллера. Изменяя код на выводах процессора можно получить 256 уровней напряжения (8 бит). Состоит данный ЦАП из набора резисторов двух номиналов, отличающихся друг от друга в 2 раза, от этого и пошло название, состоящее из двух частей R и 2R.
Преимущества такого решения — большая скорость при копеечной стоимости, резисторы лучше применять точные. Мы с товарищем применяли такой принцип но для АЦП, выбор точных резисторов был невелик, потому мы использовали немного другой принцип, ставили все резисторы одного номинала, но там где надо 2R, применяли 2 последовательно включенных резистора.
Такой принцип Цифро аналогового преобразования был в одной из первых «звуковых карт» — Covox. Там была также R2R матрица, подключаемая к LPT порту.
Как я выше писал, в данном конструкторе ЦАП имеет разрешение 8 бит, или 256 уровней сигнала, для простого прибора этого более чем достаточно.

На странице автора кроме схемы, прошивки и т.п. обнаружилась блок-схема данного прибора.
По ней более понятная связ узлов.

С основной частью описания закончили, расширенная будет далее по тексту, а мы перейдем непосредственно к сборке.
Как и в прошлых примерах начать я решил с резисторов.
В данном конструкторе резисторов много, но номиналов всего несколько.
Основное количество резисторов имеют всего два номинала, 20к и 10к и почти все задействованы в R2R матрице.
Чтобы немного облегчить сборку, скажу что можно даже не определять их сопротивелние, просто 20к резисторов 9 штук, а 10к резисторов соответственно 8 🙂

В этот раз я применил несколько другую технологию монтажа. мне она нравится меньше, чем предыдущие, но также имеет право на жизнь. Такая технология в некоторых случаяюх ускоряет монтаж, особенно на большом количестве одинаковых элементов.
В данном случае выводы резисторов формуются также как и раньше, после этого на плату устанавливается сначала все резисторы одного номинала, потом второго, получаются две такие линейки компонентов.

С обратной стороны выводы немного загибаются, но несильно, главное чтобы элементы не выпали, и плата кладется на стол выводами вверх.

Дальше берем припой в одну руку, паяльник в другую и пропаиваем все заполненные контактные площадки.
Сильно усердствовать с количеством компонентов не стоит, так как если набить так сразу всю плату, то в этом «лесу» можно и заблудиться 🙂

В конце обкусываем торчащие выводы компонентов впритык к припою. Бокорезами можно захватывать сразу несколько выводов (4-5-6 штук за один раз).
Лично я такой способ монтажа не очень приветствую и показал его просто ради демонстрации различных вариантов сборки.
Из недостатков такого способа:
После обрезки получаются острые торчащие кончики
Если компоненты стоят не в ряд, то легко получается каша из выводов, где все начинает путаться и это только тормозит работу.

Из достоинств:
Высокая скорость монтажа однотипных компонентов установленных в один — два ряда
Так как выводы сильно не загибаются, то облегчается демонтаж компонента.

Такой способ монтажа можно часто встретить в дешевых компьютерных блоках питания, правда там выводы не обкусывают, а срезают чем то типа режущего диска.

После монтажа основного количества резисторов у нас останется несколько штук разного номинала.
С парой понятно, это два резистора 100к.
Три последних резистора это —
коричневый — красный — черный — красный — коричневый — 12к
красный — красный — черный — черный — коричневый — 220 Ом.
коричневый — черный — черный — черный — коричневый — 100 Ом.

Запаиваем последние резисторы, плата после этого должна выглядеть примерно так.

Резисторы с цветовой маркировкой вещь хорошая, но иногда возникает путаница с тем, откуда считать начало маркировки.
И если с резисторами, где маркировка состоит из четырех полосок, проблем обычно не возникает, так как последняя полоска чаще либо серебряная либо золотая, то с резисторами где маркировка из пяти полос, могут возникнуть проблемы.
Дело в том, что последняя полоса может иметь цвет как у полосок означающих номинал.

Для облегчения распознавания маркировки, последняя полоса должна отстоять от остальных, но это в идеальном случае. В реальной же жизни все бывает совсем не так как задумывалось и полоски идут в ряд на одном расстоянии друг от друга.
К сожалению в таком случае помочь может либо мультиметр, либо просто логика (в случае сборки устройства из набора), когда просто убираются все известные номиналы, а уже по оставшимся можно понять что за номинал перед нами.
Для примера пара фото вариантов маркировки резисторов в этом наборе.
1. На двух соседних резисторов попалась «зеркальная» маркировка, где не имеет значения откуда читать номинал 🙂
2. Резисторы на 100к, видно что последняя полоска стоит чуть дальше от основных (на обоих фото номинал читается слева — направо).

Ладно, с резисторами и их сложностями в маркировке закончили, перейдем к более простым вещам.
Конденсаторов в этом наборе всего четыре, при этом они парные, т.е. всего два номинала по две штуки каждого.
Также в комплекте дали кварцевый резонатор на 16 МГц.

О конденсаторах и кварцевом резонаторе я рассказывал в прошлом обзоре, потому просто покажу куда они должны устанавливаться.
Видимо изначально все конденсаторы задумывались одного типа, но конденсаторы на 22 пФ заменили небольшими дисковыми. Дело в том, что место на плате рассчитано под расстояние между выводами 5мм, а мелкие дисковые имеют всего 2.5мм, потому придется выводы им немного разогнуть. Разгибать придется около корпуса (благо выводы мягкие), так как из-за того что над ними стоит процессор, то необходимо получить минимальную высоту над платой.

В комплекте к микросхемам дали пару панелек и несколько разъемов.
На следующем этапе они нам и понадобятся, а кроме них возьмем длинный разъем (мама) и четырехконтактного «папу» (на фото не попал).

Панельки для установки микросхем дали самые обычные, хотя если сравнивать с панельками времен СССР, то шик.
На самом деле, как показывает практика, такие панельки в реальной жизни служат дольше самого прибора.
На панельках присутствует ключ, небольшой вырез на одной из коротких сторон. Собственно самой панельке все равно как вы ее поставите, просто потом по вырезу удобнее ориентироваться при установке микросхем.

При установке панелек устанавливаем их также как сделано обозначение на печатной плате.

После установки панелек плата начинает приобретать некоторый вид.

Управление прибором производится при помощи шести кнопок и двух переменных резисторов.
В оригинале прибора использовалось пять кнопок, шестую добавил разработчик конструктора, она выполняет функцию сброса. Если честно, то я не совсем понимаю пока ее смысл в реальном применении так как за все время тестов она мне ни разу не понадобилась.

Выше я писал что в комплекте дали два переменных резистора, также в комплекте еще был подстроечный резистор. Немного расскажу про эти компоненты.
Переменные резисторы предназначены для оперативного изменения сопротивления, кроме номинала имеют еще маркировку функциональной характеристики.
Функциональная характеристика это то, как будет меняться сопротивление резистора при повороте ручки.
Существует три основные характеристики:
А (в импортном варианте В) — линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) — логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) — обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип — W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать здесь подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например вот современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении. Если есть сомнения, то лучше искать дополнительную информацию на сайте.
В комплекте к конструктору дали два переменных резистора, причем маркировку имел только один 🙁

Также в комплекте был один подстроечный резистор. по своей сути это то же самое что переменный, только он не рассчитан на оперативную регулировку, а скорее — подстроил и забыл.
Такие резисторы обычно имеют шлиц под отвертку, а не ручку, и только линейную характеристику изменения сопротивления (по крайней мере другие мне не попадались).

Запаиваем резисторы и кнопки и переходим к BNC разъемам.
Если планируется использовать устройство в корпусе, то возможно стоит купить кнопки с более длинным штоком, чтобы не наращивать те, что дали в комплекте, так будет удобнее.
А вот переменные резисторы я бы вынес на проводах, так как расстояние между ними очень маленькое и пользоваться в таком виде будет неудобно.

BNC разъемы хоть и попроще, чем в обзоре осциллографа, но мне понравились больше.
Ключевое — их легче паять, что немаловажно для начинающего.
Но появилось и замечание, конструкторы так близко поставили разъемы на плате, что закрутить две гайки невозможно в принципе, всегда одна будет сверху другой.
Вообще в реальной жизни редко когда необходимы оба разъема сразу, но если бы конструкторы раздвинули их хотя бы на пару миллиметров, то было бы гораздо лучше.

Собственно пайка основной платы завершена, теперь можно установить на свое место операционный усилитель и микроконтроллер.

Перед установкой я обычно немного изгибаю выводы так, чтобы они были ближе к центру микросхемы. Делается это очень просто, берется микросхема двумя руками за короткие стороны и прижимается вертикально стороной с выводами к ровному основанию, например к столу. Изгибать выводы надо не очень много, тут скорее дело привычки, но устанавливать в панельку потом микросхему гораздо удобнее.
При установке смотрим чтобы выводы случайно не загнулись внутрь, под микросхему, так как при отгибании обратно они могут отломиться.

Микросхемы устанавливаем в соответствии ключом на панельке, которая в свою очередь установлена в соответствии с маркировкой на плате.

На этом монтаж основной платы можно считать законченным.
После всех операций плата должна выглядеть примерно так.

Закончив с платой переходим к дисплею.
В комплекте дали штыревую часть разъема, который необходимо припаять.
после установки разъема я сначала припаиваю один крайний вывод, не важно красиво он припаян или нет, главное добиться того, чтобы разъем стоял плотно и перпендикулярно плоскости платы. Если необходимо, то прогреваем место пайки и подравниваем разъем.
После выравнивания разъема пропаиваем остальные контакты.

Все, можно промывать плату. В этот раз я это решил сделать до проверки, хотя обычно советую делать промывку уже после первого включения, так как иногда приходится еще что нибудь паять.
Но как показала практика, с конструкторами все гораздо проще и после сборки паять приходится редко.

Промывать можно разными способами и средствами, кто то использует спирт, кто то спирто-бензиновую смесь, я мою платы ацетоном, по крайней мере пока могу его купить.
Уже когда промыл, то вспомнил совет из предыдущего обзора по поводу щетки, так как я пользуюсь ваткой. Ничего, придется перенести эксперимент на следующий раз.

У меня в работе вработалась привычка после промывки платы покрывать ее защитным лаком, обычно снизу, так как попадание лака на разъемы недопустимо.
В работе я использую лак Пластик 70.
Данный лак очень «легкий», т.е. он при необходимости смывается ацетоном и пропаивается паяльником. Есть еще хороший лак Уретан, но с ним все заметно сложнее, он прочнее и паяльником пропаять его гораздо труднее. ТАкой лак используется для тяжелых условий эксплуатации и тогда, когда есть уверенность в том, что плату паять больше не будем, хотя бы какое то длительное время.

После покрытия лаком плата становится более глянцевой и приятной на ощупь, возникает некоторое ощущение законченности процесса 🙂
Жалко фото не передает общую картину.
Меня иногда смешили слова людей типа — этот магнитофон/телевизор/приемник ремонтировали, вон видно следы пайки 🙂
При хорошей и правильной пайке следов ремонта нет. Только специалист сможет понять, ремонтировали устройство или нет.

Пришла очередь установки дисплея. Для этого в комплекте дали четыре винтика М3 и две монтажные стойки.
Дисплей крепится только со стороны обратной разъему, так как со стороны разъема он держится собственно за сам разъем.

Устанавливаем стойки на основную плату, затем устанавливаем дисплей, ну и в конце фиксируем всю эту конструкцию при помощи двух оставшихся винтиков.
понравилось то, что даже отверстия совпали с завидной точностью, причем без подгонки, просто вставил и вкрутил винтики :).

Ну все, можно пробовать.
Подаю 5 Вольт на соответствующие контакты разъема и…
И ничего не происходит, только включается подсветка.
Не стоит пугаться и сразу искать решение на форумах, все нормально, так и должно быть.
Вспоминаем что на плате есть подстроечный резистор и он там не зря 🙂
Данным подстроечным резистором надо отрегулировать контрастность дисплея, а так как он изначально стоял в среднем положении, то вполне закономерно, что мы ничего не увидели.
Берем отвертку и вращаем этот резистор добиваясь нормального изображения на экране.
Если сильно перекрутить, то будет переконтраст, мы увидим все знакоместа сразу, а активные сегменты будут еле просматриваться, в этом случае просто крутим резистор в обратную сторону пока неактивные элементы не сойдут почти на нет.
Можно отрегулировать так, что неактивные элементы вообще не будут видны, но я обычно оставляю их еле заметными.

Дальше мне бы перейти к тестированию, да не тут то было.
Когда я получил плату, то первым делом заметил, что помимо 5 Вольт ей надо +12 и -12, т.е. всего три напряжения. Я прям вспомнил РК86, где надо было +5, +12 и -5 Вольт, причем подавать их надо было в определенной последовательности.

Если с 5 Вольт проблем не было, да и с +12 Вольт также, то -12 Вольт стали небольшой проблемой. Пришлось сделать небольшой временный блок питания.
Ну в процессе была классика, поиск по сусекам того из чего можно его собрать, трассировка и изготовление платы.

Так как трансформатор у меня был только с одной обмоткой, а импульсник городить не хотелось, то я решил собирать БП по схеме с удвоением напряжения.
Скажу честно, это далеко не самый лучший вариант, так как такая схема имеет довольно высокий уровень пульсаций, а запаса по напряжению, чтобы стабилизаторы могли его полноценно фильтровать у меня было совсем впритык.
Сверху та схема по которой делать более правильно, снизу та, по которой делал я.
Отличие между ними в дополнительной обмотке трансформатора и двух диодах.

Трансформатор я поставил также почти без запаса. Но при этом он достаточен при нормально сетевом напряжении.
Я бы рекомендовал применить трансформатор как минимум на 2 ВА, а лучше на 3-4ВА и имеющий две обмотки по 15 Вольт.
Кстати потребление платы небольшое, по 5 Вольт вместе с подсветкой ток составляет всего 35-38мА, по 12 Вольт ток потребления еще меньше, но зависит от нагрузки.

В итоге у меня вышла небольшая платка, по размерам чуть больше спичечного коробка, в основном в высоту.

Разводка платы на первый взгляд может показаться несколько странной, так как можно было повернуть трансформатор на 180 градусов и получить более аккуратную разводку, я так сначала и сделал.
Но в таком варианте выходило, что дорожки с сетевым напряжением оказывались в опасной близости от основной платы прибора и я решил немного изменить разводку. не скажу что стало отлично, но по крайней мере так хоть немного безопаснее.
Можно убрать место под предохранитель, так как с примененным трансформатором в нем нет особой нужды, тогда будет еще лучше.

Так выглядит полный комплект прибора. для соединения БП с платой прибора я спаял небольшой жесткий соединитель 4х4 контакта.

Плата БП подключается при помощи соединителя к основной плате и теперь можно переходить к описанию работы прибора и тестированию. Сборка на этом этапе окончена.
Можно было конечно поставить все это в корпус, но для меня такой прибор скорее вспомогательный, так как я уже смотрю в сторону более сложных DDS генераторов, но и стоимость их не всегда подойдет новичку, потому я решил оставить как есть.

Перед началом тестирования опишу органы управления и возможности устройства.
На плате есть 5 кнопок управления и кнопка сброса.
Но по поводу кнопки сброса думаю все понятно и так, а остальные я опишу более подробно.
Стоит отметить небольшой «дребезг» при переключении правой/левой кнопки, возможно программный «антидребезг» имеет слишком маленькое время, проявляется в основном только в режиме выбора частоты выхода в режиме HS и шага перестройки частоты, в остальных режимах проблем не замечено.
Кнопки вверх и вниз переключают режимы работы прибора.
1. Синусоидальный
2. Прямоугольный
3. Пилообразный
4. Обратный пилообразный

1. Треугольный
2. Высокочастотный выход (отдельный разъем HS, остальные формы приведены для выхода DDS)
3. Шумоподобный (генерируется случайным перебором комбинаций на выходе ЦАП)
4. Эмуляция сигнала кардиограммы (как пример того, что генерировать можно любые формы сигналов)

1-2. Изменять частоту на выходе DDS можно в диапазоне 1-65535ГЦ с шагом 1Гц
3-4. Отдельно есть пункт, позволяющий выбрать шаг перестройки, по умолчанию включается шаг 100Гц.
Изменять частоту работы и режимы можно только в режиме, когда генерация выключена., изменение происходит при помощи кнопок влево/вправо.
Включается генерация кнопкой START.

Также на плате расположены два переменных резистора.
Один из них регулирует амплитуду сигнала, второй — смещение.
На осциллограммах я попытался показать как это выглядит.
Верхние две — изменение уровня выходного сигнала, нижние — регулировка смещения.

Дальше пойдут результаты тестов.
Все сигналы (кроме шумоподобного и ВЧ) проверялись на четырех частотах:
1. 1000Гц
2. 5000Гц
3. 10000Гц
4. 20000Гц.
На частотах выше был большой завал потому эти осциллограммы приводить не имеет особого смысла.
Для начала синусоидальный сигнал.

Пилообразный

Обратный пилообразный

Треугольный

Прямоугольный с выхода DDS

Кардиограмма

Прямоугольный с ВЧ выхода
Здесь предоставляется выбор только из четырех частот, их я и проверил
1. 1МГц
2. 2МГц
3. 4МГц
4. 8МГц

Шумоподобный в двух режимах развертки осциллографа, чтобы было более понятно что он из себя представляет.

Как показало тестирование, сигналы имеют довольно искаженную форму начиная примерно с 10КГц. Сначала я грешил на упрощенный ЦАП, да и на саму простоту реализации синтеза, но захотелось проверить более тщательно.
Для проверки я подключился осциллографом прямо на выход ЦАП и установил максимально возможную частоту синтезатора, 65535Гц.
Здесь картина получше, особенно с учетом того, что генератор работал на максимальной частоте. Подозреваю что виной простая схема усиления, так как до ОУ сигнал заметно «красивее».

Ну и групповое фото небольшого «стенда» начинающего радиолюбителя 🙂

Резюме.
Плюсы
Качественное изготовление платы.
Все компоненты были в наличии
Никаких сложностей при сборке не возникло.
Большие функциональные возможности

Минусы
BNC разъемы стоят слишком близко друг к другу
Нет защиты по выходу HS.

Мое мнение. Можно конечно сказать что характеристики прибора совсем плохие, но стоит учитывать то, что это DDS генератор самого начального уровня и не совсем правильно было бы ожидать от него чего то большего. Порадовала качественная плата, собирать было одно удовольствие, не было ни одного места, которое пришлось «допиливать». В виду того, что прибор собран по довольно известной схеме, есть надежда на альтернативные прошивки, которые могут увеличить функционал. С учетом всех плюсов и минусов я вполне могу рекомендовать этот набор как стартовый для начинающих радиолюбителей.

Фух, вроде все, если накосячил где то, пишите, исправлю/дополню 🙂

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Схемы простых генераторов низкой частоты

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Схемы генераторов низкой частоты

Рис. 11.1

 

Схемы генераторов низкой частоты

Рис. 11.2

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Схемы генераторов низкой частоты

Рис. 11.3

 

Схемы генераторов низкой частоты

Рис. 11.4

 

Схемы генераторов низкой частоты

Рис. 11.5

 

Схемы генераторов низкой частоты

Рис. 11.6

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Схемы генераторов низкой частоты

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

Схемы генераторов низкой частоты

Рис. 11.7

 

Схемы генераторов низкой частоты

Рис. 11.8

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

Схемы генераторов низкой частоты

Рис. 11.9

 

Схемы генераторов низкой частоты

Рис. 11.10

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45…60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Схемы генераторов низкой частоты

Рис. 11.11

 

Схемы генераторов низкой частоты

Рис. 11.12

 

Схемы генераторов низкой частоты

Рис. 11.13

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Схемы генераторов низкой частоты

Рис. 11.14

 

Схемы генераторов низкой частоты

Рис. 11.15

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1…15 В (потребляемый ток 2…60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1…15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1…15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3…11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Схемы генераторов низкой частоты

Рис. 11.16

 

Схемы генераторов низкой частоты

Рис. 11.17

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Схемы генераторов низкой частоты

Рис. 11.18

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Самодельный ВЧ генератор с одной шкалой

Схема простого ВЧ генератора 0,4 — 30 MHz

Представленная ниже, схема компактного ВЧ генератора покрывает весь диапазон частот от 0,4 до 30 MHz в одну шкалу.

Выход 50 Ом, напряжение 300mV по всему диапазону частот.

Большинство генераторов сигналов используют несколько диапазонов для того, чтобы покрыть весь спектр частот. Схема этого генератора немного отличается, он настраивает весь ВЧ диапазон от 400 кГц до более 30 МГц в одном диапазоне. Он был сконструирован для того, чтобы испытать входные части приемника и фильтры HF, должен быть компактен.

Уровень выхода генератора около 300mV 50 Ом также позволяет ему быть использованным как временный генератор для испытания смесительного диода.

Описание схемы генератора

Невозможно сразу покрыть весь ВЧ диапазон в одном ряде с традиционным  LC генератором. Однако, смешивая генератор, работающий на более высокой частоте с генератором с более низкой частотой, можно достичь требуемого диапазона.

Это показано на схеме, ниже:

 

Генератор, контролируемый напряжением тока (VCO) работает от 48 MHz до 85 MHz. Выход VCO (100-150mVpp 50 Ом) смешан с выходом кварцевого генератора 48 MHz в смесителе диода для того, чтобы дать необходимый выход частоты.

С помощью варикапа (varicap) происходит перестройка частоты по всему диапазон. Устройство, которое я использовал взято из старого тюнера видеомагнитофона. Другие варикапы широкого диапазона, такие как Motorola MV104 или Philips BB911, также будут хорошо работать.

48 МГц кварцевый генератор является типичным, его можно найти в старом принтере, видеокарте и т.п. Они генерируют сигнал прямоугольных TTL-уровня (5 В). Я нашел два пластиковых осциллятора 48 МГц в старом принтере Epson.

Выход кварцевого генератора, который я использовал, не мог напрямую управлять диодным смесителем, но комбинация серии C5 и R3, керамический конденсатор 1000pF и резистор 100 Ом, работала хорошо. Выход прямоугольной волны также идеален для смесителей диода.

Использование генератора 48 МГц, в результате чего ГУН диапазона, во многом зависит от наличия соответствующей части. Если Вы хотите заменить детали и изменить конструкцию в соответствии с требованиями, частота выхода должна быть достаточно высокой, чтобы обеспечить требуемый диапазон 30 МГц в пределах одного диапазона. Маловероятно, что какой-либо более низкий частотный диапазон будет успешным.

Кроме того, кварцевый генератор, который устанавливает нижнюю частотную границу диапазона должен быть достаточно далеко от верхней выходной частоты 30 МГц, чтобы простой 3-х полюсный фильтр нижних частот мог фильтровать любой остаточный сигнал генератора 48 МГц, а также суммарный компонент выхода смесителя. Данная схема генератора выдает до 35 МГц с выходом около 3 дБ.

SRA-1 двойной сбалансированный микшер (дБм) M1. Здесь отлично будут работать различные варианты диодного типа, в том числе из диодов 1N4148 и пары ферритовых колец.

Желаемый (разностный) выход фильтруется с помощью 3-полюсного эллиптического фильтра.

Отфильтрованный выходной сигнал усиливается на 20 дБ ERA-5 — монолитный интегральный  усилитель, чтобы дать выходе уровень сигнала 300 – 400 мВ на 50 Ом. Я использовал версию усилителя ERA-5 для поверхностного монтажа.

Питание схемы 12В 100mA.

Вид внутри

Детали припаяны навесным монтажом.

Корпус спаян из жестяной банки, используемой для формирования стенок коробки.

Настройка генератора

Ручная настройка в широком диапазоне спектра частот требует многовиткового прецизионного переменного проволочного резистора.

Чтобы добавить ручку управления, я использовал части потенциометра регулировки громкости AM/FM-радио. Большинство из этих потенциометров громкости, похожи, имеют тонкую ручку с регулировкой по краю, которая навинчивается крошечным винтом на латунный стержень.

Монтаж

Собирается схема непосредственно на небольшом куске фольгированного текстолита всего за несколько часов. Генератор 48 MHz (от Epson SG-615) был установлен на плате вверх ногами. Ферритовые кольца используются в качестве высокочастотных дросселей для питания на каждом этапе схемы.

Многовитковый триммер приклеивается к печатной плате немного выше, чтобы можно было одеть ручку настройки и она свободно вращалась.

Коробка была изготовлена из оловянной пластины, разрезана на полосу шириной 18 мм и припаяна по краю печатной платы. Макет передней панели был разработан в CorelDraw, распечатан и покрыт контактным пластиком, чтобы сделать его более прочным.

Моточные данные катушек

L1 — 8 витков провода 24SWG намотанной на 5 мм каркасе с ферритовым стержнем для подсторйки..
L2 — 8 витков провода 28SWG намотанном на тороиде T25-10
L3 — 7 витков провода 28SWG намотанном на тороиде T25-10
T1 — 10 витков в два провода 28SWG намотанном на тороиде T25-10

Заключение

Генератор не сложен и быстр для построения. Схема использует не большое количество доступных деталей. Многие компоненты могут быть заменены. Чтобы проверить это, я построил другую версию, используя LM375 IC в качестве VCO (это устаревший чип, похожий на MC1648 Motorola). Самодельный смеситель, сделанный с диодами 1N4148 и дискретный широкополосный усилитель 20 dB. Всё это дало аналогичные результаты.

Стабильность схемы не эквивалентна кварцевому или синтезированному осциллятору, а настройка в определенных диапазонах получилась сжатая, но она подходит для большинства  измерений. Если Вы хотите, можно добавить дополнительный элемент управления «тонкая настройка».

Автор: ZL2PD — Single Span HF Test Oscillator



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Человека защитит от электротока УЗО
  • Человека защитит УЗО

    Не зная об опасности, исходящей от лежащего на земле оборванного, но находящегося под напряжением провода, люди иногда подходят к нему и даже пытаются взять в руку. В этот момент человек может мгновенно погибнуть от шагового напряжения или от напряжения прикосновения. Чтобы предотвратить подобные несчастные случаи, ученые разработали оригинальные схемы устройств, позволяющих отключить ВЛ в момент обрыва провода, то есть еще до его падения на землю. Подробнее…

  • Ремонт модуля S20609 в инверторных сварках
  • В некоторых моделях сварочных инверторов, например Helper Prestige, ProfHelper, BestWeld и др., принадлежащих к условному семейству TECNICA устанавливают залитый эпоксидным компаундом субмодуль блока управления S20609.

    О его ремонте и пойдёт речь в статье, ниже…

    Подробнее…

  • Цифровая шкала — частотомер
  • При работе на любительской радиостанции перед радиолюбителем часто встает необходимость точно знать частоту, на которую настроен его трансивер или приемник для того, чтобы не уйти за пределы диапазона или для точной настройки на заранее оговоренную частоту. Механические шкалы не дают такой возможности поэтому приходится конструировать электронные шкалы. Подробнее…


Популярность: 1 152 просм.

Генератор высокой частоты. Схемы генератора ВЧ своими руками

Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются кварцевыми резонаторами.

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Генератор высокой частоты

Главные составляющие элементы прибора: выпрямитель, емкость, транзистор. Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Генератор высокой частоты

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генератор высокой частоты

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на биполярных транзисторах из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генератор высокой частоты

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на полевиках. Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

Генератор высокой частоты

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый генератор ВЧ

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

Генератор высокой частоты

Усилитель мощности на лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. Цепь накала с питанием низкого напряжения.
  2. Цепь возбуждения и питания сетки управления.
  3. Цепь питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Генератор высокой частоты

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Генератор со сканированием по частоте

Генератор со сканированием по частоте
Данный прибор разрабатывался в рамках проекта проверки утверждений о возможности очистки труб, обработанной свехслабым электромагнитным сигналом звукового диапазона. Утверждалось, что использование сканирующего сигнала уменьшает т.н. эффект памяти воды в замкнутых системах обогрева. Испытание в фирмах, профессионально занимающихся очисткой, ремонтом и восстановлением водопроводных систем таких чудес не показало.

Здесь описание устройства дано тем, кто в идею верит, но платить за устройство из пары микросхем 500…20000 у.е. не готов.
Схема не виновата в чьих-то заблуждениях и суете на этом бизнеса из серой зоны. То что от неё требовалось, она делает хорошо. Её можно с успехом использовать в иных целях, как целиком, так и частями.

Схема

Генератор со сканированием по частоте
Работа
В данном устройстве используется свиппирование, т.е. изменение выходной частоты по линейному закону. На интегральном таймере D1 собран генератор низкочастотного импульсного сигнала, задающий период прокачивания частоты от минимума до максимума и обратно. Из него на интегрирующем элементе — конденсаторе С3 получается пилообразный сигнал, который подаётся на модулирующий вход генератора (D2), управляемого по частоте.

Генератор импульсов на интегральном таймере собран по рекомендуемой производителем типовой схеме. Положительному сигналу на выходе D1 (конт. 3) соответствует время заряда конденсатора С1 от напряжения 1/3Uпит до 2/3Uпит через последовательно включённые резисторы R2 и R1. Отрицательный сигнал длится пока С1 разряжается внутренним ключом (конт. 7) через резистор R1 до уровня 1/3Uпит.

Собственно пилообразный сигнал образуется на конденсаторе С3 последовательностью его зарядов-разрядов по цепи: выход таймера D1 (конт. 3), резистор R4, общий провод. Втекание и вытекание тока через один и тот же контакт 3 таймера объясняется его конструкцией из двух транзисторов, подключающих к выходу либо питающее напряжение, либо общий провод.

Свипп-генератор собран на микросхеме D2. Её основное назначение — построение петли фазовой автоподстройки (ФАП), и в ней есть несколько устройств для этого. Из них здесь использован только управляемый напряжением по частоте генератор (ГУН). Линейность отклика частоты на напряжение, подаваемое на вход управления (FC) высокая — около 1%.

Значение частоты генерации ГУН при отсутствии управления определяется конденсатором, подключаемым к конт. 6, 7 и резистором R7. Постоянный сдвиг полученной частоты задаётся величиной сопротивления резистора R8. Использование здесь составного задающего конденсатора С5+С6 не принцип, а просто результат конкретных настроечных работ по введению параметров генерации в требуемые границы.

Пилообразное напряжение, получаемое на С3, поступает на вход FC (конт. 9) управления частотой генератора и изменяет её от 300 до 6000 Гц. Собственно из-за необходимости такого изменения частоты и был выбран именно этот тип микросхемы.

Выход генератора (конт. 4) стандартный для КМОП схем, т.е. слабый. Для непосредственного управления достаточно мощной нагрузкой использован ключ на специально разработанном для таких целей транзисторе VT1 КТ972Б со сверхбольшим усилением по току (супер-бета). Для разгрузки стабилизатора D3 питание VT1 идёт от нестабилизированного напряжения. Резистор нагрузки ключа R12 поставлен повышенной ваттности, исключающей его перегорание при случайном замыкания выходов «А1» и «B» при эксплуатации (защита от дурака).

Возможна работа парами вибраторов 1-3 или 2-3. В первом случае вибраторы имеют между собой гальваническую развязку. Введение двух вариантов подключения вибраторов в данной конструкции носит экспериментальный характер.

Питание микросхем D1 и D2 идёт от интегрального стабилизатора D3 типа 78L08 напряжением 8V. Умягчитель ставится в местах с повышенной температурой и влажностью и требуется радикальная защита блока сетевого питания от аварийных перегрузок при нарушения герметичности корпуса и лаковых покрытий платы. Это работа для предохранителя F1, который имеет ножки и впаивается в плату, поскольку его сгорание означает плохое состояние конструкции и необходимость её тщательной ревизии в подходящих условиях.

Обратите внимание на интересный светодиодный индикатор работы. HD1 светится только при наличии импульсов в выходной цепи. Кроме того, его яркость пропорциональна частоте выходного сигнала и в процессе свиппирования он то разгорается, то притухает. Таков эффект от питания СИДа через дифференцирующую цепочку C8, R11, постоянная времени которой меньше минимального периода выходного сигнала. Получаемые с неё разнополярные импульсы выпрямляются диодным мостиком D3 и питают светодиод.

Замены
D1 таймер
Можно заменять на биполярные или КМОП версии прибора NE555 из обширного семейства аналоговых таймеров 555. При работе с КМОП аналогами (NE7555, КР1441ВИ1 и т.д.) из-за большего на ~1V размаха напряжения выходного сигнала соответственно увеличится и управляющее напряжение на С3, что приведёт к увеличению диапазона прокачки частоты.
D2 микросхема ФАП
Из отечественных элементов в дешевом пластмассовом корпусе есть КР1564ГГ1. Из мировой номенклатуры годятся любые аналоги CD4060A или CD4060B во всех видах исполнения. Если есть выбор, предпочтительнее клоны усовершенствованной КМОП CD4060B, к которой относится и КР1564ГГ1. Здесь существенно их повышенная, по сравнению с предшественниками, нагрузочная способность, упрощающая сопряжение с выходным каскадом.
D3 интегральный стабилизатор
Есть отечественный аналоги 1157ЕН801х, 1157ЕН802х.
D4 диодный мостик
Заменяем на КЦ422(А…Г), КД906(А…В) или подобное. Возможна схема из 4-х отдельных диодов на ток от 50 mA, например, 1N4148, КД521х, КД522х, КД510х.
HD1 светодиод
Генератор со сканированием по частотеПрименение ярких СИДов здесь имеет особенности. Логарифмическая характеристика зрения приводит делает объективно десятикратное изменения яркости воспринимаемым как 3…5 кратное. Увеличение яркости свечения СИДа помещает зону стимулирования на более пологий участок кривой и диапазон субъективного восприятия сужается. Значит, имеет смысл работать с умеренными яркостями. Для умягчителя, чьё место в подсобках с искусственным освещением или вообще без оного, это нормально.

1. Хороши СИДы из светорассеивающей пластмассы, большего диаметра, и углом излучения от 30°. Прозрачная линза СИДа работает лупой для наблюдения светоизлучающего кристалла, который отчетливо виден внутри корпуса, а компактный источник воспринимается ярче.

2. Уменьшайте ёмкость С8. Это радикальное решение.

3. Переходим на однополярное питание без мостика D4. Параллельно HD1 ставим диод VD1, чтобы избежать постоянного заряда С8 и его блокирования.

Варианты

Генератор со сканированием по частоте
Макет умягчителя, выполненный в стандартном корпусе промэлектроники И-501 из ряда «Логика». Справа видны четыре оранжевых диода, которых нет на схеме. При отработке устройства сунуть в XS1 штекер блока питания с иной полярностью очень просто. Вот диодный мостик и спасает от ошибок.
Генератор со сканированием по частоте
Схемотехника отличий макета от рабочего образца.

Наладка
Настройка частоты генератора на D2 обычно необходима, поскольку экземпляры данной микросхем имеют разброс до 10%.

Ставим

Генератор со сканированием по частоте
Сетевой блок питания. Потенциальная опасность для помещения и здания. Это строго покупное изделие. С паспортом, в котором однозначно разрешена круглосуточная работа. Обычно эта норма блоков к связной технике. Дешевкам разрешают работать 20…23 и даже 23,5 часа в сутки и тем понуждают к присмотру.

Не заменяйте штекер, не меняйте его полярности, укорачивайте или удлиняйте провод. Пока всё родное, за любые эксцессы с участием блока отвечает производитель, иначе — вы.

Генератор со сканированием по частоте
Установка умягчителя. Во влажном или горячем помещении находится только умягчитель и низковольтный провод питания. Блок питания строго в нормальных условиях.

Вибраторы выполнены из изолированного многожильного провода, намотанного по 20…30 витков на водяную трубу. Концы проводов изолированны. Длина катушки 30…40 см. Намотка витков по часовай стрелке или против, значения не имеет. Расстояние от устройства до вибраторов не более 50 см.

Кому работа электронного умягчения и идея сверхмалого электромагнитного воздействия на воду покажется слабой, то его можно использовать с куда большим толком в других областях.

Физиотерапевтический виброакустический прибор

Если спросить в аптеке, что есть получше из техники, то ВИТАФОНы вспомнят почти сразу. Из их первых моделей забавно торчат уши радиотехнического стиля мышления. Присущая населению в массе механистическая модель организма порождает аналогичное решение его проблем. Если штуковина не работает, то её надо сначала потрясти. Естественно тем, что рядом. Здесь это телефонная гарнитура без оголовья и капсюли без крышек. От звукового генератора вибрируют мембраны капсюлей и ими обрабатывают проблемное место.

Да и особенности схемотехники на программируемой логике, конструкции в целом, указывают на узкую специализацию разработчика.

Таких вынужденных открытий в каждой профессии совершается во множестве. Встречался автору, например, авиамеханик, отработавший на себе, личном составе, их семьях и командированных испытательного центра, находившегося на берегу Крыма, потрясающе эффективное лечение солнечных ожогов, сложных кожных болезней, таких как грибки, псориаз, сыпи техническим солидолом и пульсирующей от прерывателя струёй сжатого азота. А отдыхавшая от забот на пляже медслужба призывала из под тента не верить глазам и телу своему.

Экстрасенсы хором прокляли УЗ диагностику за то, что она буквально рвёт на части тонкоматериальные оболочки человека. При виброакустической физиотерапии, носящей толчковый, импульсный характер, характеризующийся мощным уровнем составляющих, уже вторые и третьи гармоники ультразвук. Да и население полагает, что дарового лекарства много не бывает, а инструкции нужны, когда прибор скиснет.
Интересно узнать, что запросто видящие ауру думают о виброакустических процедурах.

Охраняя свою монополию производители ВИТАФОНа любителей не трогают, а зря, в зоне хобби идею дискредитируют. Правильно воспроизводить простой по структуре сигнал прототипа эти беспризорники научились, а вот вибратором назначают пьезоэлектрические звонки с мизерной деформацией кристалла.

Строго говоря, и электромагнитный капсюль телефона не шедевр для излучения внутрь тела, но его доступность и малая мощность, необходимая для процедуры, оправдывает решение не заморачиваться на улучшении КПД, а работая от сети поднять подводимую к нему мощность.

Экономия энергии удел автономных приборов. То, что это возможно, видно по простым конструкциям электробритв с вибрирующей сеткой (около 300 Hz) на одном аккумуляторе типоразмера АА (1,2V).

Стоимость ВИТАФОНа 40…60 у.е. и делать любительские копии нет смысла. Оправдывает активность только познавательный зуд к ЗОЖ или медицинской акустике. Есть такое научное направление.

Генератор со сканированием по частоте
Электромагнитный капсюль в разрезе. По виду больше всего похож на ТА-4. Есть ещё ТК-67-УТ, ТА-56М, КЭД-2 и др. Основной производитель завод «Октава» (Тула).

Любитель из толп homo vulgaris выделяется исключительно аномальным интересом к процессу. Если, для разнообразия, ему захочется и результата, то пусть забудут про паяльник. Любые звуки от леденящих душу криков болотной выпи до стонов счастья ему родит компьютер. Для первых результатов достаточно пописать полчаса на любом языке, хоть на Бейсике. Сигнал берём с разъёма системного динамика, или звуковой карты. Умощняем на чём угодно и лечим.

Для преобразования умягчителя воды в физиотерапевтический прибор с приличным акустическим воздействием достаточно к выводам «А2», «В» подключить электромагнитные телефонные капсюли сопротивлением 50…80 Ω без крышек. Их функция акустического трансформатора здесь не нужна. К телу прикладывается непосредственно металлическая мембрана, которую закрепите к корпусу, чтобы не съезжала при работе. Можно для начала скотчем.

Допустимо ставить капсюли, с учётом указанной на них полярности, вместо резистора R12, но тут будут искажения в излучаемом сигнале от подмагничивания постоянной составляющей импульсного тока. Насколько это существенно, не знаю.
Мощности выходного каскада умягчителя хватит на подключение пары-тройки капсюлей, как последовательно, так и параллельно.

В данном случае сигнал воздействия волею судеб оказался оригинальным. Однако идея физиовоздействия традиционна. В отличие от последовательности сеансов прототипа с фиксированными частотами у нас есть непрерывное прокачивание частоты в том же диапазоне. Плавные изменения естественней. Во всяком случае, ничего не упустим, даже то, о чём и не подозреваем.

У аналога всё длится около минуты. С указанными на схеме умягчителя номиналами свиппирование «вверх-вниз» идёт около 20 секунд. Постоянная времени заряда-разряда конденсатора С3, на котором получаем управляющее напряжение, около 2 минут. Значениями R1, R2, C1 можем варьировать в этом пределе время цикла. Соотношение величин R1 и R1+R2 определяет различие в скоростях движения «вверх» и «вниз» по диапазону, что интересно для обогащения характера воздействия на организм.

Смещением частотного диапазона заведует R7. Для нижней границы в единицы Hz его значение около 1 МΩ.

В одной из модификаций ВИТАФОНа вместо одной виброголовки модуль с красными светодиодами, излучающими с частотой вибраций. Это интересно, так как красный свет глубоко проникает в мышечную ткань человека. Например, в темноте хорошо видно, что светодиод средней эффективности насквозь просвечивает пальцы, ладонь, шёку.

Выход умягчителя выдержит добавление цепочки из 5…7 последовательно включенных ИК и красных светодиодов с общим токозадающим резистором. При определении конкретного состава группы, учитывайте, что напряжение на излучающих переходах у красных СИД около 1V, а у ИК около 2V.

Активатор травления печатных плат

Известно, что активация раствора, например, пузырьками воздуха от аэратора аквариумов существенно ускоряет процесс даже со сработанным реактивом. Аналогично и даже более эффективно действует правильно организованное акустическое возбуждение реактива в кювете. Если поместить излучатель внутрь и дать на него тональный сигнал, то ускорение процесса будет слабым. Дело в стоячих волнах, устанавливающихся в кювете. Динамику волновой картине и придаёт изменение частоты активации по какому либо закону. Качание частоты с параметрами, заложенными в умягчителе, здесь вполне подходит.

В звуковом диапазоне активатором (вибратором) могут быть пьезоэлементы или электромагнитные головки.
Минус в адреналиновой атаке от звука сирены. Для спокойствия сдвиньте настройками D2 диапазон выходных сигналов по частоте вверх. Для ультразвука хороши только пьезоэлементы. Страдать в процессе травления теперь будут только домашние животные. Повезёт, если молча и пассивно.

Генератор со сканированием по частоте
Травление с активатором. Плата подвешена к штанге и висит в реактиве вертикально, что ускоряет процесс и его качество. Кювета прозрачная, пластмассовая, когда-то была в кухонном наборе для сыпучих пищевых продуктов.

Для работы в реактиве вибратор (пьезоэлемет) помещен в узкий, длинный пакет из тонкого полиэтилена. Верхняя, открытая, часть пакета свешивается наружу через борт кюветы. Обжатый давлением раствора излучатель отдаёт всю энергию в жидкость, оставаясь сухим.

Евг. Свищeв

Генератор со сканированием по частоте Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *