Электрическое сопротивление — проводник — Большая Энциклопедия Нефти и Газа, статья, страница 1
Электрическое сопротивление — проводник
Cтраница 1
Электрическое сопротивление проводника зависит от температуры. Если один из проводников электрогазоанализатора поместить в воздухе, а другой — в исследуемом газе и пропустить через них электрический ток, то они нагреются, но температура их нагрева будет зависеть от теплопроводности газа. [1]
Электрическое сопротивление проводника прямо пропорционально его длине и обратно пропорционально его сечению; в большой мере оно зависит также от материала, из которого изготовлен проводник: стальной провод обладает значительно большим сопротивлением, чем алюминиевый, а сопротивление алюминиевого провода больше, чем медного. Каждый проводниковый материал характеризуется величиной его удельного сопротивления. Чем меньше удельное сопротивление того или иного проводникового материала, тем лучшим проводником электрического тока он является.
Электрическое сопротивление проводников препятствует прохождению по ним тока. [3]
Электрическое сопротивление проводника измеряется в омах. [4]
Электрическое сопротивление проводника можно считать линейной функцией температуры-это приближение справедливо для узких температурных интервалов. [5]
Электрическое сопротивление проводника можно считать линейной функцией температуры — это приближение справедливо для узких температурных интервалов. [6]
Электрическое сопротивление проводников зависит от температуры. Расчетные сопротивления обычно в чертежах и обмоточных записках даются для температуры fp, равной 15 или 20 С. Замеренное сопротивление ( Ом) пересчитывают, чтобы сравнить его с расчетным. [8]
Электрическое сопротивление проводников, помещенных в магнитное поле, возрастает с увеличениеи магнитной индукции. Это явление носит название маенетосопротивления. При комнатной температуре увеличение сопротивления в магнитном поле сильнее всего проявляется в полупроводниках. В работе используются обравцы из антимонида. Целью работы является исследование явления магнетосопротивления. [9]
Электрическое сопротивление проводника играет ту же роль, что и сопротивление трения. Таким образом, для проведения тока через проводник источник тока затрачивает некоторую энергию, которая превращается в тепло. Переход электрической энергии в тепловую отражает закон Ленца — Джоуля или закон теплового действия тока. [10]
Электрическим сопротивлением проводника ( оно обозначается, латинской буквой г) обусловлено явление преобразования электрической энергии в тепловую при прохождении электрического тока по проводнику. [11]
Электрическим сопротивлением проводника ( оно обозначается латинской буквой г) обусловлено явление преобразования электрической энергии в тепловую при прохождении электрического тока по проводнику. [12]
Изменение электрического сопротивления проводников и полупроводников. Чувствительный элемент прибора, называемый термометром сопротивления, представляет собой проводник или полупроводник с известной зависимостью его электрического сопротивления от температуры. Таким образом, для определения температуры среды, в которой находится термометр, необходимо измерить его сопротивление. [13]
Изменение электрического сопротивления проводника, проходящего через дымовые газы, по отношению к проводнику, проходящему через воздух, определяется помощью мостика Уитстояа, и показания гальванометра служат мерой теплопроводности дымового газа, зависящей от его состава. [14]
Зависимость электрического сопротивления проводников от их геометрических размеров состоит в том, что по мере увеличения длины проводника и уменьшения площади поперечного сечения сопротивление возрастает. [15]
Страницы: 1 2 3 4
Сопротивление — металлический проводник — Большая Энциклопедия Нефти и Газа, статья, страница 1
Сопротивление — металлический проводник
Cтраница 1
Сопротивление металлических проводников и их контактов с ростом температуры возрастает. При этом необходимо учитывать, что металлические проводники и их контакты могут иметь более высокую температуру, чем электролит в электролизере, вследствие дополнительного нагрева металла за счет джоулева тепла. Перегрев металлических проводников и их контактов может быть особенно значительным, если конструкция электролизера не обеспечивает хороших условий охлаждения электролитом внутренних проводников и контактов и ( путем свободного омывания воздухом) наружных проводников и контактов. [1]
Сопротивление металлического проводника с повышением температуры растет, так как число носителей тока в металле практически не изменяется, а число соударений электронов с ионами кристаллической решетки металла возрастает. Сопротивление полупроводника с повышением температуры, наоборот, уменьшается, так как при этом резко возрастает число носителей тока. Другие факторы играют здесь меньшую роль. [2]
Сопротивление металлического проводника
Сопротивление металлических проводников увеличивается с повышением температуры и уменьшается с ее понижением. Каждому значению температуры соответствует определенное значение сопротивления проводника. [4]
Сопротивление металлических проводников при повышении температуры возрастает. [5]
Сопротивление металлических проводников обусловлено столкновением свободных электронов с ионами кристаллической решетки. Свободные электроны в проводнике совершают хаотическое движение подобно молекулам идеального газа. При включении электрического поля на хаотическое движение электронов накладывается направленное движение — так называемый дрейф электронов в направлении, противоположном вектору напряженности поля. В процессе дрейфа электроны сталкиваются с встречающимися на их пути ионами кристаллической решетки. [6]
Сопротивление металлических проводников увеличивается с повышением температуры. У полупроводников сопротивление сильно уменьшается при повышении температуры. [7]
Сопротивление металлических проводников
Сопротивление металлических проводников при повышении температуры возрастает. [10]
Сопротивление металлического проводника зависит также от температуры: с повышением температуры сопротивление г увеличивается. [11]
На сопротивление металлических проводников I класса, кроме температуры оказывают влияние также и другие факторы, в частности, ыаг-антное поле. [12]
Температурная зависимость сопротивления металлических проводников широко используется в технике для создания термометров сопротивления. Помещая в печь спираль известного сопротивления R0 и измеряя ее сопротивление Rt, можно согласно (15.10) определить температуру t печи. С другой стороны, эта температурная зависимость оказывает вредное влияние на работу точных электроизмерительных приборов, меняя сопротивление последних при изменении внешних условий. [13]
Температурная зависимость сопротивления металлических проводников широко используется в технике для создания термометров сопротивления. Rb можно согласно (15.10) определить температуру i печи. С другой стороны, эта температурная зависимость оказывает вредное влияние на работу точных электроизмерительных приборов, меняя сопротивление последних при изменении внешних условий. [14]
Явление зависимости сопротивления металлических проводников от температуры широко используется на практике. На нем основан принцип действия приборов для измерения температуры, называемых термометрами сопротивления. Одним из наиболее употребительных является платиновый термометр сопротивления, термочувствительным элементом которого является тонкая платиновая проволока, бифилярно намотанная на слюдяную пластинку. [15]
Страницы: 1 2 3 4
Электрическое сопротивление — урок. Физика, 8 класс.
Электрическое сопротивление характеризует способность электрического проводника препятствовать прохождению электрического тока.
Закон Ома
Сила тока \(I\) прямо пропорциональна напряжению \(U\). Это означает следующее: во сколько раз изменяется напряжение, во столько раз изменяется и сила тока.
Сила тока \(I\) обратно пропорциональна электрическому сопротивлению \(R\). Поэтому чем больше сопротивление, тем меньше сила тока, протекающего в проводнике.
I=UR
Удельное сопротивление
Причиной электрического сопротивления является тепловое движение образующих материал атомов или молекул. Частицы колеблются около своих мест и мешают перемещению электронов. Это можно сравнить с длинным коридором, в котором одновременно перемещается много людей. И насколько быстро можно двигаться вперед, зависит от различных причин.
Электрическое сопротивление характерно для всех веществ и зависит от:
Материала проводника тока ρ | Длины проводника \(l\) | Площади поперечного сечения проводника \(S\) |
Для каждого метериала характерно его удельное сопротивление, которое обозначают буквой ρ и которое можно найти в таблице удельных сопротивлений. | Чем длиннее проводник электричества, тем больше его электрическое сопротивление. | Чем меньше площадь поперечного сечения проводника электричества, тем больше электрическое сопротивление. |
Пример с коридором: движение вперёд зависит от того, сколько людей в нём находится, как каждый из них двигается, насколько они полные или худые. | Пример с коридором: чем длиннее коридор, тем дольше и труднее путь. | Пример с коридором: чем уже коридор, тем труднее пробираться сквозь толпу людей. |
Обрати внимание!
R=ρ⋅lS
Удельное сопротивление металлов небольшое, а изоляторов — очень большое. В цепях, в которых электрический ток должен производить большую теплоту (например, в обогревателях), используют проводники с большим удельным сопротивлением, например, нихром. Току труднее течь, увеличивается тепловое движение частиц, в результате проводник нагревается. У алюминия низкое удельное сопротивление, поэтому его можно использовать для передачи электроэнергии.
Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.
Чтобы электрическая цепь обеспечивала необходимую силу тока, в неё включают резисторы.
Резистор — прибор с постоянным сопротивлением.
Чтобы изменить силу тока в электрической цепи, используют реостаты.
Реостат — прибор с переменным сопротивлением.
В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь.
Реостат используется, например, в регуляторах громкости радиоприёмников.
Резисторы | Реостаты |
С точки зрения электронной теории Друде электрическое сопротивление металлов обусловлено соударениями электронов с ионами кристаллической решётки.
Из-за торможения со стороны кристаллической решётки электроны движутся под действием электрического поля с постоянной средней скоростью, которая пропорциональна напряжённости поля в проводнике.
Зависимость сопротивления металлического проводника от температуры
С повышением температуры сопротивление металлических проводников увеличивается.
Яркость свечения лампы, включенной последовательно со стальной спиралью, уменьшается при нагревании спирали и увеличивается при её охлаждении.
Чем выше температура, тем интенсивнее колебания ионов кристаллической решётки и тем чаще электроны сталкиваются с ними. Движение электронов в кристаллической решётке затрудняется, и сопротивление их упорядоченному движению возрастает.
– сопротивление при температуре
– сопротивление при температуре
– температурный коэффициент сопротивления
Температурные коэффициенты сопротивления чистых металлов мало отличаются друг от друга и примерно равны . Температурные коэффициенты сопротивления сплавов могут быть меньше и больше, чем у чистых металлов.
При нагревании проводника его геометрические размеры (длина и сечение) меняются, но незначительно по сравнению с изменением удельного сопротивления.
Таким образом, сопротивление проводника меняется в основном за счёт изменения удельного сопротивления.
Удельное сопротивление пропорционально частоте столкновений электронов с ионами.
Сверхпроводимость
Гейке Камерлинг-Оннес (1911г.)провёл эксперимент и обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала менялось постепенно, а затем при температуре 4,15 К резко падало до нуля.
Узнать еще:
От чего зависит сопротивление
☰
Сила тока в проводнике прямо пропорциональна напряжению на нем. Это значит, что с увеличением напряжения увеличивается и сила тока. Однако при одинаковом напряжении, но использовании разных проводников сила тока различна. Можно сказать по-другому. Если увеличивать напряжение, то хотя сила тока и будет увеличиваться, но везде по-разному, в зависимости от свойств проводника.
Зависимость силы тока от напряжения для данного конкретного проводника представляет собой сопротивление этого проводника. Оно обозначается R и находится по формуле R = U/I. То есть сопротивление определяется как отношение напряжения к силе тока. Чем больше сила тока в проводнике при данном напряжении, тем меньше его сопротивление. Чем больше напряжение при данной силе тока, тем больше сопротивление проводника.
Формулу можно переписать по отношению к силе тока: I = U/R (закон Ома). В таком случае нагляднее, что чем больше сопротивление, тем меньше сила тока.
Можно сказать, что сопротивление как бы мешает напряжению создавать большую силу тока.
Само сопротивление является характеристикой проводника. Оно не зависит от поданного на него напряжения. Если будет подано большое напряжение, то изменится сила тока, но не изменится отношение U/I, т. е. не изменится сопротивление.
От чего же зависит сопротивление проводника? Оно зависти от
- длины проводника,
- площади его поперечного сечения,
- вещества, из которого изготовлен проводник,
- температуры.
Чтобы связать вещество и его сопротивление, вводится такое понятие как удельное сопротивление вещества. Оно показывает, какое будет сопротивление в данном веществе, если проводник из него будет иметь длину 1 м и площадь поперечного сечения 1 м2. Проводники такой длины и толщины, изготовленные из разных веществ, будут иметь разные сопротивления. Это связано с тем, что у каждого металла (чаще всего именно они являются проводниками) своя кристаллическая решетка, свое количество свободных электронов.
Чем меньше удельное сопротивление вещества, тем лучшим проводником электрического тока оно является. Маленьким удельным сопротивлением обладают, например, серебро, медь, алюминий; куда большее у железа, вольфрама; очень большое у различных сплавов.
Чем длиннее проводник, тем большее сопротивление он имеет. Это становится понятно, если принять во внимание, что движению электронов в металлах мешают ионы, составляющие кристаллическую решетку. Чем их больше, т. е. чем длиннее проводник, тем больше у электрона шанс замедлить свой путь.
Однако увеличение площади поперечного сечения делает как бы дорогу шире. Электронам легче течь и не сталкиваться с узлами кристаллической решетки. Поэтому чем толще проводник, тем его сопротивление меньше.
Таким образом, сопротивление прямо пропорционально зависит от удельного сопротивления (ρ) и длины (l) проводника и обратно пропорционально зависит от площади (S) его поперечного сечения. Получаем формулу сопротивления:
R = ρl/S
В этой формуле на первый взгляд не отражается зависимость сопротивления проводника от его температуры. Однако удельное сопротивление вещества меряется при определенной температуре (обычно 20 °C). Поэтому температура учитывается. Для вычислений удельные сопротивления берут из специальных таблиц.
Для металлических проводников чем больше температура, тем сопротивление больше. Это связано с тем, что при повышении температуры ионы решетки начинают сильнее колебаться и больше мешать движению электронов. Однако в электролитах (растворах, где заряд несут ионы, а не электроны) с повышением температуры сопротивление уменьшается. Здесь это связано с тем, что чем выше температура, тем больше происходит диссоциация на ионы, и они быстрее двигаются в растворе.
От чего зависит сопротивление проводника
В природе на каждое действие имеется свое противодействие. Это в полной мере касается электрической сферы, когда противоположностью протекания электрического тока является электрическое сопротивление проводника.
Понятие электрического сопротивления проводника
Обусловлено определенной способностью веществ и материалов, из которых состоит проводник, оказывать противодействие двигающимся внутри этого проводника заряженным частицам. Во время этого процесса часть электрической энергии может быть преобразована в другие ее виды, например, в тепловую энергию. Основной единицей измерения сопротивления служит Ом.
Суть сопротивления напрямую связана со структурой веществ. В твердых веществах атомы и молекулы имеют поля, крепко связанные между собой. Основой их структуры является кристаллическая решетка. Каждый атом имеет электроны, вращающиеся по его орбитам. Те из них, которые расположены далее всего от ядра, чаще всего отрываются и попадают на рядом расположенные атомы. Они носят название свободных электронов, позволяющих проводникам осуществлять проведение электрического тока.
Электрический ток и сопротивление
В том случае, когда подключен постоянный внешний источник электропитания, создающий электрическое поле, начинает происходить упорядоченное движение свободных электронов из конца в конец внутри проводника. Если бы при этом не было препятствий, то такой проводник обладал бы нулевым сопротивлением и сверхпроводимостью. В отдельных случаях, в условиях сверхнизких температур, удается достичь подобного результата.
В нормальных условиях, при обычной температуре, в проводниках возникают определенные препятствия, затрудняющие свободный проход электронов. Из-за этого и возникает ситуация, получившая название электрическое сопротивление проводника.
Чем же вызвано электрическое сопротивление
Прежде всего, это атомы, стоящие на пути электронов, которые движутся с огромной скоростью. Происходит постоянное взаимодействие электронов и атомов, при этом, теряется внутренняя энергия электронов, превращающаяся в тепло. Поэтому, с увеличением длины проводника, его внутреннее электросопротивление возрастает. При увеличении сечения, сопротивление, наоборот, будет уменьшаться, поскольку возрастает количество проходящих электронов.
Поскольку структура кристаллической решетки у разных материалов отличается, то их сопротивление также будет различным. Оно получило название удельного сопротивления, которое точно соответствует определенному проводнику.
Расчёт сопротивления проводника
Сопротивление электрическому току. — Основы электроники
Свободные электроны в проводнике, перемещаясь по цепи, сталкиваются с атомами, которые в свою очередь препятствуют потоку электронов, тем самым уменьшая значение электрического тока. Это препятствие называется сопротивлением электрическому току, и обозначается буквой R. Любой материал имеет свое сопротивление электрическому току или электрическую проводимость (величина обратная сопротивлению).
Сопротивление подобно тому, что мы в знакомой нам схеме потока воды движущегося из бака А в бак В, заменим участок трубопровода на более тонкий, что конечно уменьшит общий поток воды приходящий в бак В.
Любой материал обладает сопротивлением, которое зависит от свойств самого материала: температуры, размера, формы и др.
Материалы, имеющие низкое сопротивление электрическому току называются проводниками. Мы с вами помним, что проводники имеют много свободных электронов, тем самым оказывают малое сопротивление току. Примером хороших проводников являются: золото, медь, серебро, алюминий, платина.
В свою очередь материалы, имеющие большое сопротивление току, называются диэлектриками или изоляторами. Диэлектрики имеют малое количество свободных электронов, чем и обусловлено их высокое сопротивление электрическому току. Здесь же примерами хороших изоляторов могут служить: пластмасса, резина, стекло, слюда.
Единица измерения сопротивления является Ом. Названа эта единица измерения в честь немецкого ученого-физика Георга Симона Ома.
Один Ом – это такое сопротивление материала, которое при приложенном напряжения в один вольт, позволяет протекать току равному один ампер. Обычно для обозначения символа Ом используют греческую букву омега
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Сопротивление проводника — Energy Education
Рис. 1. Нить накаливания загорается из-за сопротивления проводящего провода. [1]Сопротивление проводника — это свойство проводника при определенной температуре, и оно определяется как величина сопротивления протеканию электрического тока через проводящую среду. [2] Сопротивление проводника зависит от площади поперечного сечения проводника, длины проводника и его удельного сопротивления.Важно отметить, что электрическая проводимость и удельное сопротивление обратно пропорциональны, а это означает, что чем больше проводимость, тем меньше сопротивление.
Сопротивление проводника можно рассчитать при температуре 20 ° C с помощью: [3]
[математика] \ R = \ frac {\ rho L} {A} [/ математика]где:
- [math] R [/ math] — сопротивление в омах (Ом)
- [math] \ rho [/ math] — удельное сопротивление материала в омметрах (Ом · м).
- [math] L [/ math] — длина проводника в метрах (м)
- [math] A [/ math] — площадь поперечного сечения проводника в метрах в квадрате (м 2 )
Эта формула говорит нам, что сопротивление проводника прямо пропорционально [math] \ rho [ / math] и [math] L [/ math], и обратно пропорционально [math] A [/ math].Поскольку сопротивление некоторого проводника, например отрезка провода, зависит от столкновений внутри самого провода, сопротивление зависит от температуры. С повышением температуры сопротивление провода увеличивается, так как столкновения внутри провода увеличиваются и «замедляют» протекание тока. Величина изменения определяется температурным коэффициентом. [4] Положительный температурный коэффициент приводит к увеличению сопротивления с повышением температуры, тогда как отрицательный температурный коэффициент приводит к уменьшению сопротивления с повышением температуры.Поскольку проводники обычно демонстрируют повышенное удельное сопротивление с повышением температуры, они имеют положительный температурный коэффициент. Наиболее распространенные типы резисторов — это переменные резисторы и постоянные резисторы.
Используя сопротивление проводника, можно создать свет в лампе накаливания. В лампе накаливания есть проволочная нить определенной длины и ширины, обеспечивающая определенное сопротивление. Если это сопротивление правильное, ток, протекающий по проводу, замедляется ровно настолько, без остановки из-за слишком большого сопротивления, что нить накала нагревается до точки, в которой она начинает светиться. [5]
Подробнее о сопротивлении проводника см. HyperPhysics.
PhET: Сопротивление в проводе
Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Изучите моделирование, чтобы увидеть, как изменяется сопротивление проводника в зависимости от геометрии и удельного сопротивления:
Для дальнейшего чтения
Для получения дополнительной информации см. Соответствующие страницы ниже:
Список литературы
Сопротивление проводника
Хотя можно использовать провод любого размера или значения сопротивления, слово «проводник» обычно относится к материалам, которые обладают низким сопротивлением току, а слово «изолятор» описывает материалы, которые обладают высоким сопротивлением току. .Нет четкой разделительной линии между проводниками и изоляторами; при определенных условиях все типы материалов проводят ток. Материалы, обеспечивающие сопротивление току на полпути между лучшими проводниками и самыми плохими проводниками (изоляторами), иногда называют «полупроводниками» и находят наибольшее применение в области транзисторов.
Лучшие проводники — это материалы, в основном металлы, которые обладают большим количеством свободных электронов; И наоборот, изоляторы — это материалы, в которых мало свободных электронов.Лучшие проводники — серебро, медь, золото и алюминий; но некоторые неметаллы, такие как углерод и вода, могут использоваться в качестве проводников. Такие материалы, как резина, стекло, керамика и пластмассы, являются настолько плохими проводниками, что их обычно используют в качестве изоляторов. Ток в некоторых из этих материалов настолько мал, что обычно считается нулевым. Единица измерения сопротивления называется ом. Символ ома — греческая буква омега (Ω). В математических формулах заглавная буква «R» обозначает сопротивление.Сопротивление проводника и приложенное к нему напряжение определяют количество ампер тока, протекающего по проводнику. Таким образом, сопротивление 1 Ом ограничивает ток до 1 ампера в проводнике, к которому приложено напряжение 1 вольт.
Факторы, влияющие на сопротивление
- Сопротивление металлического проводника зависит от типа материала проводника. Было указано, что некоторые металлы обычно используются в качестве проводников из-за большого количества свободных электронов на их внешних орбитах.Медь обычно считается лучшим доступным материалом для проводников, поскольку медная проволока определенного диаметра обеспечивает меньшее сопротивление току, чем алюминиевая проволока того же диаметра. Однако алюминий намного легче меди, и по этой причине, а также по соображениям стоимости, алюминий часто используется, когда важен весовой коэффициент.
- Сопротивление металлического проводника прямо пропорционально его длине. Чем больше длина провода данного сечения, тем больше сопротивление.На рисунке 12-41 показаны два проводника разной длины. Если электрическое давление 1 вольт приложено к двум концам проводника длиной 1 фут, а сопротивление движению свободных электронов предполагается равным 1 Ом, ток ограничивается 1 ампер. Если провод того же размера удвоить в длину, те же электроны, приведенные в движение под действием приложенного 1 вольта, теперь обнаруживают удвоенное сопротивление; следовательно, ток уменьшается вдвое. Рисунок 12-41. Сопротивление зависит от длины проводника.
- Сопротивление металлического проводника обратно пропорционально площади поперечного сечения. Эта область может быть треугольной или даже квадратной, но обычно круглой. Если площадь поперечного сечения проводника увеличивается вдвое, сопротивление току уменьшается вдвое. Это верно из-за увеличенной площади, в которой электрон может перемещаться без столкновения или захвата атомом. Таким образом, сопротивление изменяется обратно пропорционально площади поперечного сечения проводника.
- Четвертым важным фактором, влияющим на сопротивление проводника, является температура.Хотя некоторые вещества, такие как углерод, демонстрируют снижение сопротивления при повышении температуры окружающей среды, большинство материалов, используемых в качестве проводников, увеличивают сопротивление при повышении температуры. Сопротивление некоторых сплавов, таких как константан и манганин ™, очень мало изменяется при изменении температуры. Величина увеличения сопротивления 1-омного образца проводника на один градус повышения температуры выше 0 ° по Цельсию (C), принятого стандарта, называется температурным коэффициентом сопротивления.Для каждого металла это разные значения. Например, для меди это значение составляет примерно 0,00427 Ом. Таким образом, медный провод, имеющий сопротивление 50 Ом при температуре 0 ° C, имеет увеличение сопротивления на 50 × 0,00427 или 0,214 Ом на каждый градус повышения температуры выше 0 ° C. Температурный коэффициент сопротивления необходимо учитывать там, где наблюдается заметное изменение температуры проводника во время работы. Доступны графики с указанием температурного коэффициента сопротивления для различных материалов.На Рис. 12-42 показана таблица «удельного сопротивления» некоторых распространенных электрических проводников.
Сопротивление материала определяется четырьмя свойствами: материалом, длиной, площадью и температурой. Первые три свойства связаны следующим уравнением при T = 20 ° C (комнатная температура):
Сопротивление и связь с размером провода
Круглые проводники (провода / кабели)
Поскольку известно, что Сопротивление проводника прямо пропорционально его длине, и если нам дано сопротивление единичной длины провода, мы можем легко вычислить сопротивление любой длины провода из того же материала, имеющего тот же диаметр.Кроме того, поскольку известно, что сопротивление проводника обратно пропорционально его площади поперечного сечения, и если нам дано сопротивление отрезка провода с единичной площадью поперечного сечения, мы можем вычислить сопротивление такой же длины. из проволоки из того же материала любой площади сечения. Следовательно, если мы знаем сопротивление данного проводника, мы можем рассчитать сопротивление для любого проводника из того же материала при той же температуре. Из отношения:
Это также можно записать:
Если у нас есть проводник длиной 1 метр (м) с площадью поперечного сечения 1 (миллиметр) мм 2 и сопротивлением 0 .017 Ом, каково сопротивление 50 м провода из того же материала, но с площадью поперечного сечения 0,25 мм 2 ?
В то время как единицы СИ обычно используются при анализе электрических цепей, электрические проводники в Северной Америке все еще производятся с использованием стопы в качестве единицы длины и мил (одна тысячная дюйма) в качестве единицы диаметра. Прежде чем использовать уравнение R = (ρ × l) ⁄A для расчета сопротивления проводника данного американского калибра проводов (AWG), площадь поперечного сечения в квадратных метрах должна быть определена с использованием коэффициента преобразования 1 mil = 0. .0254 мм. Самая удобная единица длины проволоки — стопа. В соответствии с этими стандартами единицей измерения является мил-фут. Таким образом, проволока имеет единичный размер, если она имеет диаметр 1 мил и длину 1 фут.
В случае использования медных проводников мы избавляемся от утомительных вычислений с помощью таблицы, показанной на Рисунке 12-43. Обратите внимание, что размеры поперечного сечения, перечисленные в таблице, таковы, что каждое уменьшение на один номер датчика равняется 25-процентному увеличению площади поперечного сечения.Из-за этого уменьшение трех калибровочных чисел означает увеличение площади поперечного сечения примерно на 2: 1. Аналогичным образом, изменение десяти калибровочных номеров проводов представляет собой изменение площади поперечного сечения 10: 1 — кроме того, при удвоении площади поперечного сечения проводника сопротивление уменьшается вдвое. Уменьшение на три сечения проводов снижает сопротивление проводника заданной длины вдвое.
Рисунок 12-43. Таблица преобразования при использовании медных жил.Прямоугольные проводники (шины)
Для вычисления площади поперечного сечения проводника в квадратных милях длина одной стороны в милах возводится в квадрат.В случае прямоугольного проводника длина одной стороны умножается на длину другой. Например, обычная прямоугольная шина (большой, специальный проводник) имеет толщину 3⁄8 дюйма и ширину 4 дюйма. Толщина 3⁄8 дюйма может быть выражена как 0,375 дюйма. Поскольку 1000 мил равняется 1 дюйму, ширину в дюймах можно преобразовать в 4000 мил. Площадь поперечного сечения прямоугольного проводника находится путем преобразования 0,375 в мил (375 мил × 4000 мил = 1 500 000 квадратных мил).
Летный механик рекомендует
Учебное пособие по физике: электрическое сопротивление
Электрон, движущийся по проводам и нагрузкам внешней цепи, встречает сопротивление. Сопротивление — это помеха прохождению заряда. Для электрона путешествие от терминала к терминалу не является прямым маршрутом. Скорее, это зигзагообразный путь, который возникает в результате бесчисленных столкновений с неподвижными атомами в проводящем материале. Электроны сталкиваются с сопротивлением — препятствием для их движения. В то время как разность электрических потенциалов, установленная между двумя выводами , способствует перемещению заряда , а — сопротивление, которое препятствует ему .Скорость, с которой заряд проходит от терминала к терминалу, является результатом совместного действия этих двух величин.
Переменные, влияющие на электрическое сопротивлениеПоток заряда по проводам часто сравнивают с потоком воды по трубам. Сопротивление потоку заряда в электрической цепи аналогично эффектам трения между водой и поверхностями трубы, а также сопротивлению, создаваемому препятствиями на ее пути.Именно это сопротивление препятствует потоку воды и снижает как скорость потока, так и скорость дрейфа . Подобно сопротивлению потоку воды, общее сопротивление потоку заряда в проводе электрической цепи зависит от некоторых четко идентифицируемых переменных.
Во-первых, общая длина проводов влияет на величину сопротивления. Чем длиннее провод, тем большее сопротивление будет. Существует прямая зависимость между величиной сопротивления, с которым сталкивается заряд, и длиной провода, который он должен пройти.В конце концов, если сопротивление возникает в результате столкновений между носителями заряда и атомами провода, то, вероятно, столкновений будет больше в более длинном проводе. Больше столкновений означает большее сопротивление.
Во-вторых, площадь поперечного сечения проводов влияет на величину сопротивления. Более широкие провода имеют большую площадь поперечного сечения. Вода будет течь по более широкой трубе с большей скоростью, чем по узкой. Это можно объяснить меньшим сопротивлением, которое присутствует в более широкой трубе.Таким же образом, чем шире провод, тем меньше будет сопротивление прохождению электрического заряда. Когда все другие переменные одинаковы, заряд будет течь с большей скоростью через более широкие провода с большей площадью поперечного сечения, чем через более тонкие провода.
Третья переменная, которая, как известно, влияет на сопротивление потоку заряда, — это материал, из которого сделан провод. Не все материалы созданы равными с точки зрения их проводящей способности. Некоторые материалы являются лучшими проводниками, чем другие, и обладают меньшим сопротивлением потоку заряда.Серебро — один из лучших проводников, но никогда не используется в проводах бытовых цепей из-за своей стоимости. Медь и алюминий являются одними из наименее дорогих материалов с подходящей проводящей способностью, позволяющей использовать их в проводах бытовых цепей. На проводящую способность материала часто указывает его удельное сопротивление . Удельное сопротивление материала зависит от электронной структуры материала и его температуры. Для большинства (но не для всех) материалов удельное сопротивление увеличивается с повышением температуры.В таблице ниже приведены значения удельного сопротивления для различных материалов при температуре 20 градусов Цельсия.
Материал | Удельное сопротивление (Ом • метр) |
Серебро | 1,59 х 10 -8 |
Медь | 1.7 х 10 -8 |
Золото | 2,2 х 10 -8 |
Алюминий | 2,8 х 10 -8 |
Вольфрам | 5,6 х 10 -8 |
Утюг | 10 х 10 -8 |
Платина | 11 х 10 -8 |
Свинец | 22 х 10 -8 |
Нихром | 150 х 10 -8 |
Углерод | 3.5 х 10 -5 |
Полистирол | 10 7 — 10 11 |
Полиэтилен | 10 8 — 10 9 |
Стекло | 10 10 — 10 14 |
Твердая резина | 10 13 |
Как видно из таблицы, существует широкий диапазон значений удельного сопротивления для различных материалов.Материалы с более низким сопротивлением обладают меньшим сопротивлением потоку заряда; они лучшие дирижеры. Материалы, показанные в последних четырех строках вышеприведенной таблицы, обладают таким высоким удельным сопротивлением, что их даже нельзя рассматривать как проводники.
Посмотри! Используйте виджет Resistivity of a Material , чтобы найти удельное сопротивление данного материала. Введите название материала и нажмите кнопку Submit , чтобы узнать его удельное сопротивление. Математическая природа сопротивленияСопротивление — это числовая величина, которую можно измерить и выразить математически. Стандартной метрической единицей измерения сопротивления является ом, представленный греческой буквой омега -. Электрическое устройство с сопротивлением 5 Ом будет представлено как R = 5 . Уравнение, представляющее зависимость сопротивления ( R ) проводника цилиндрической формы (например,, провод) от влияющих на него переменных равно
, где L представляет длину провода (в метрах), A представляет площадь поперечного сечения провода (в метрах 2 ) и представляет удельное сопротивление материала (в Ом • метр). В соответствии с вышеизложенным, это уравнение показывает, что сопротивление провода прямо пропорционально длине провода и обратно пропорционально площади поперечного сечения провода.Как показано в уравнении, знание длины, площади поперечного сечения и материала, из которого изготовлен провод (и, следовательно, его удельного сопротивления), позволяет определить сопротивление провода.
Расследовать! Резисторы — один из наиболее распространенных компонентов в электрических цепях. На большинстве резисторов нанесены цветные полосы или полосы. Цвета отображают информацию о значении сопротивления.Возможно, вы работаете в лаборатории и вам нужно знать сопротивление резистора, используемого в лаборатории. Используйте виджет ниже, чтобы определить значение сопротивления по цветным полосам.
1. В бытовых цепях часто используются провода двух разной ширины: 12-го и 14-го калибра. Проволока 12-го калибра имеет диаметр 1/12 дюйма, а проволока 14-го калибра — 1/14 дюйма.Таким образом, провод 12-го калибра имеет более широкое сечение, чем провод 14-го калибра. Цепь на 20 А, используемая для настенных розеток, должна быть подключена с использованием провода 12-го калибра, а цепь на 15 А, используемая для цепей освещения и вентиляторов, должна быть подключена с помощью провода 14-го калибра. Объясните физику, лежащую в основе такого электрического кода.
2. Основываясь на информации, указанной в предыдущем вопросе, объясните риск, связанный с использованием провода 14-го калибра в цепи, которая будет использоваться для питания 16-амперной пилы.
3. Определите сопротивление медного провода 12 калибра длиной 1 милю. Дано: 1 миля = 1609 метров и диаметр = 0,2117 см.
4. Два провода — A и B — круглого сечения, имеют одинаковую длину и изготовлены из одного материала. Тем не менее, сопротивление провода A в четыре раза больше, чем у провода B.Во сколько раз диаметр проволоки B больше диаметра проволоки A?
Удельное сопротивление и электропроводность
ЗаконОм гласит, что когда источник напряжения (В) применяется между двумя точками цепи, между ними будет течь электрический ток (I), чему способствует наличие разности потенциалов между этими двумя точками.Количество протекающего электрического тока ограничено величиной имеющегося сопротивления (R). Другими словами, напряжение побуждает ток течь (движение заряда), но сопротивление препятствует этому.
Мы всегда измеряем электрическое сопротивление в Ом, где Ом обозначается греческой буквой Омега, Ом. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т. Д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и поэтому мы можем пренебречь ими, как мы предполагаем в расчетах анализа схем, что провода имеют ноль. сопротивление.С другой стороны, изоляторы (например, пластиковые или воздушные) обычно имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем игнорировать их также для анализа цепей, поскольку их значение слишком велико.
Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводника, его площадь поперечного сечения, температура, а также от фактического материала, из которого он сделан. Например, предположим, что у нас есть кусок провода (проводник), который имеет длину L , площадь поперечного сечения A и сопротивление R , как показано.
Однопроводниковый
Электрическое сопротивление R этого простого проводника является функцией его длины L и площади проводника A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, как I = V / R. Теперь предположим, что мы соединяем два идентичных проводника в последовательную комбинацию, как показано.
Удвоение длины проводника
Здесь, соединив два проводника вместе в последовательную комбинацию, то есть встык, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше.Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, получив 2R как: 1R + 1R = 2R.
Следовательно, мы можем видеть, что сопротивление проводника пропорционально его длине, то есть: R ∝ L . Другими словами, мы ожидаем, что электрическое сопротивление проводника (или проволоки) будет тем больше, чем длиннее он.
Также обратите внимание, что, удвоив длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток, и протекать через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение, так как теперь I = (2V) / (2R).Затем предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.
Удвоение площади проводника
Здесь, соединив два проводника вместе в параллельную комбинацию, мы фактически удвоили общую площадь, получив 2А, в то время как длина проводника L осталась такой же, как у исходного одиночного проводника. Но наряду с удвоением площади, путем параллельного соединения двух проводников мы фактически вдвое уменьшили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.
Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или проволоки) будет тем меньше, чем больше площадь его поперечного сечения.
Также, удвоив площадь и, следовательно, уменьшив вдвое общее сопротивление ветви проводника (1 / 2R), для того же тока, и , чтобы течь через параллельную ветвь проводника, как и раньше, нам нужно только наполовину (уменьшить) приложенное напряжение, как теперь I = (1 / 2V) / (1 / 2R).
Итак, мы надеемся увидеть, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление составляет:
.Пропорциональность сопротивления
Но, помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он сделан, потому что разные проводящие материалы, медь, серебро, алюминий и т. Д., Имеют разные физические и электрические характеристики. характеристики.Таким образом, мы можем преобразовать знак пропорциональности (∝) приведенного выше уравнения в знак равенства, просто добавив «константу пропорциональности» в приведенное выше уравнение, получив:
Уравнение электрического сопротивления
Где: R — сопротивление в омах (Ом), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), а где пропорциональная константа ρ (греческая буква «ро» ) известен как Удельное сопротивление .
Удельное электрическое сопротивление
Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противодействует прохождению через него электрического тока.Этот коэффициент удельного сопротивления, иногда называемый «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при заданной температуре в соответствии с их физическими свойствами, независимо от их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.
Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 x 10 -8 Ом · метр (или 17.2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 x 10 14 или 150 триллионов Ом · м.
Такие материалы, как медь и алюминий, известны своим низким уровнем удельного сопротивления, что позволяет электрическому току легко проходить через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют гораздо низкие значения удельного сопротивления, но по очевидным причинам их дороже превращать в электрические провода.
Тогда факторы, влияющие на сопротивление (R) проводника в Ом, могут быть перечислены как:
- Удельное сопротивление (ρ) материала, из которого изготовлен проводник.
- Общая длина (L) проводника.
- Площадь поперечного сечения (А) проводника.
- Температура проводника.
Пример сопротивления №1
Рассчитайте общее сопротивление постоянному току 100-метрового рулона 2,5 мм. 2 медного провода, если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 Ом · метр.
Приведены данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника равна 2.5 мм 2 , что эквивалентно площади поперечного сечения: A = 2,5 x 10 -6 метров 2 .
То есть 688 миллиОм или 0,688 Ом.
Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом показывая, что удельное сопротивление ρ имеет размеры в омметр, или Ом · м, как обычно пишут. Таким образом, для конкретного материала при заданной температуре его удельное электрическое сопротивление определяется как.
Удельное электрическое сопротивление, Rho
Электропроводность
В то время как электрическое сопротивление (R) и удельное сопротивление (или удельное сопротивление) ρ являются функцией физической природы используемого материала, а также его физической формы и размера, выражаемых его длиной (L) и площадью поперечного сечения. (A), Проводимость , или удельная проводимость, относится к легкости, с которой электрический ток проходит через материал.
Электропроводность (G) — величина, обратная сопротивлению (1 / R) с единицей проводимости, являющейся сименсом (S), и обозначена перевернутым символом омов mho,.Таким образом, когда проводник имеет проводимость 1 сименс (1 Ом), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот: сименс = 1 / Ом или Ом = 1 / сименс.
В то время как сопротивление проводника дает величину сопротивления, которое оно оказывает потоку электрического тока, проводимость проводника указывает на легкость, с которой он позволяет электрическому току течь. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень высокие значения проводимости, что означает, что они являются хорошими проводниками.
Электропроводность σ (греческая буква сигма) — величина, обратная удельному сопротивлению. Это 1 / ρ и измеряется в сименсах на метр (См / м). Поскольку электрическая проводимость σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать как:
Электрическое сопротивление как функция проводимости
Тогда мы можем сказать, что проводимость — это эффективность, с которой проводник пропускает электрический ток или сигнал без резистивных потерь.Следовательно, материал или проводник с высокой проводимостью будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 сименс на метр.
Пример сопротивления №2
Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитайте проводимость кабеля.
Приведены данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2 , что дает площадь: A = 1 x 10 -6 метров 2 .
То есть 4 мега-сименса на метр длины.
Сводка по удельному сопротивлению
Мы видели в этом уроке об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого он сделан — меди, серебра, алюминия и т. Д., Но и от его физических размеров.
Сопротивление проводника прямо пропорционально его длине (L), поскольку R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, а уменьшение его длины вдвое уменьшит его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R R 1 / A. Таким образом, удвоение площади его поперечного сечения уменьшило бы его сопротивление вдвое, а уменьшение его площади поперечного сечения вдвое увеличило бы его сопротивление.
Мы также узнали, что удельное сопротивление (обозначение: ρ) проводника (или материала) зависит от физических свойств, из которых он сделан, и варьируется от материала к материалу.Например, удельное сопротивление меди обычно дается как: 1,72 x 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в Ом-метрах (Ом · м), на которое также влияет температура.
В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, проводимость которых зависит от примесей, добавленных в материал.
Удельное сопротивление также важно в системах распределения электроэнергии, поскольку эффективность системы заземления для системы электроснабжения и распределения в значительной степени зависит от удельного сопротивления земли и материала почвы в месте расположения заземления системы.
Проводимость — это название, данное движению свободных электронов в форме электрического тока. Электропроводность σ — величина, обратная удельному сопротивлению. Это 1 / ρ в единицах сименс на метр, См / м. Электропроводность колеблется от нуля (для идеального изолятора) до бесконечности (для идеального проводника).Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.
Удельное сопротивление | Физика проводников и изоляторов
Расчет сопротивления проводов
Номинальная допустимая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания.Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела. В этом случае падение напряжения из-за сопротивления проводов может вызвать технические проблемы, будучи в пределах безопасных (пожарных) пределов допустимой нагрузки:
Если нагрузка в указанной выше цепи не выдерживает напряжения ниже 220 В при напряжении источника 230 В, то лучше убедиться, что проводка не упадет более чем на 10 вольт по пути.Если считать как питающие, так и обратные проводники этой цепи, остается максимально допустимое падение в 5 вольт по длине каждого провода. Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:
Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для конкретного размера и длины провода? Для этого нам понадобится другая формула:
Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.
Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):
Удельное сопротивление при 20 градусах Цельсия
Материал | Элемент / Сплав | (Ом-смил / фут) | (мкОм-см) |
---|---|---|---|
нихром | Сплав | 675 | 112,2 |
Нихром В | Сплав | 650 | 108,1 |
Манганин | Сплав | 290 | 48.21 |
Константан | Сплав | 272,97 | 45,38 |
Сталь * | Сплав | 100 | 16,62 |
Платина | Элемент | 63,16 | 10,5 |
Утюг | Элемент | 57,81 | 9,61 |
Никель | Элемент | 41,69 | 6,93 |
цинк | Элемент | 35.49 | 5,90 |
молибден | Элемент | 32,12 | 5,34 |
Вольфрам | Элемент | 31,76 | 5,28 |
Алюминий | Элемент | 15,94 | 2,650 |
Золото | Элемент | 13,32 | 2,214 |
Медь | Элемент | 10,09 | 1.678 |
Серебро | Элемент | 9,546 | 1,587 |
* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%
Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы должны использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.
Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), с 1,66243 x 10 -9 Ом-метров на Ом-см-мил / фут (1,66243 x 10 ). -7 Ом-см на Ом-см-мил / фут). В столбце таблицы Ом-см цифры фактически масштабированы как мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.
При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь — в квадратных метрах.При использовании единицы Ω-сантиметр (Ω-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.
Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см). Однако можно предпочесть использовать Ом-см-мил / фут при работе с круглым проводом, площадь поперечного сечения которого уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлического материала, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления Ом-метр или Ом-см.
Решение
Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:
Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что проволока «двойной длины» (2/0) с длиной 133 100 см является достаточной, тогда как следующий меньший размер, «одинарная проводка» (1/0) с длиной 105 500 см слишком мал .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медного провода на открытом воздухе, достаточно было бы провода калибра 14 (что касается , а не , вызывающего пожар). Однако с точки зрения падения напряжения провод 14-го калибра был бы совершенно неприемлемым.
Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы все еще используем медь в качестве материала для проволоки (хороший выбор, если только мы не действительно богаты на и не можем позволить себе 4600 футов серебряной проволоки 14-го калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см · дюйм / фут. :
Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый участок провода в цепи имеет сопротивление 5,651 Ом:
Полное сопротивление проводов нашей схемы равно 2 умноженным на 5.651 или 11,301 Ом. К сожалению, это сопротивление намного больше, чем , чтобы обеспечить ток в 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток цепи до 20,352 ампер! Как видите, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.
Давайте рассмотрим пример проблемы сопротивления для отрезка сборной шины, изготовленной по индивидуальному заказу.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Во-первых, нам нужно определить площадь поперечного сечения стержня:
Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:
Как вы можете видеть, абсолютная толщина шины обеспечивает очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.
Процедура определения сопротивления шины принципиально не отличается от процедуры определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.
ОБЗОР:
- Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
- Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
- Удельное сопротивление материалов указывается в единицах Ом-см / фут или Ом-метр (метрическая система).Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-дюйм / фут или 1,66243 x 10 -7 Ом-см на Ом-см-дюйм / фут.
- Если падение напряжения в цепи критично, необходимо произвести точный расчет сопротивления проводов до выбора сечения проводов.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
удельное сопротивление | Определение, символ и факты
Удельное сопротивление , электрическое сопротивление проводника единичной площади поперечного сечения и единичной длины.Удельное сопротивление, характерное свойство каждого материала, полезно при сравнении различных материалов на основе их способности проводить электрические токи. Высокое сопротивление указывает на плохие проводники.
Подробнее по этой теме
Кристалл: удельное сопротивление
Немецкий физик Георг Симон Ом открыл основной закон электропроводности, который теперь называется законом Ома.Его закон связывает …
Удельное сопротивление, обычно обозначаемое греческой буквой ро, ρ , количественно равно сопротивлению R образца, такого как провод, умноженному на его площадь поперечного сечения A, и разделенному на его длину l; ρ = RA / л. Единицей измерения сопротивления является ом. В системе метр-килограмм-секунда (мкс) отношение площади в квадратных метрах к длине в метрах упрощается до простых метров. Таким образом, в системе метр-килограмм-секунда единицей удельного сопротивления является ом-метр.Если длина измеряется в сантиметрах, удельное сопротивление может быть выражено в единицах ом-сантиметр.
Удельное сопротивление очень хорошего электрического проводника, такого как жестко вытянутая медь, при 20 ° C (68 ° F) составляет 1,77 × 10 — 8 Ом-метр или 1,77 × 10 — 6 Ом-сантиметр. С другой стороны, электрические изоляторы имеют удельное сопротивление в диапазоне от 10 1 2 до 10 2 0 Ом-метров.
Значение удельного сопротивления зависит также от температуры материала; в таблицах удельных сопротивлений обычно указаны значения при 20 ° C.Сопротивление металлических проводников обычно увеличивается с повышением температуры; но удельное сопротивление полупроводников, таких как углерод и кремний, обычно уменьшается с повышением температуры.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасЭлектропроводность — это величина, обратная сопротивлению, и она также характеризует материалы на основе того, насколько хорошо в них протекает электрический ток. Единица измерения проводимости метр-килограмм-секунда — это mho на метр или ампер на вольт-метр.Хорошие электрические проводники имеют высокую проводимость и низкое удельное сопротивление. Хорошие изоляторы или диэлектрики имеют высокое удельное сопротивление и низкую проводимость. Полупроводники имеют промежуточные значения обоих показателей.
Общие источники высокоомных соединений
Спиральный нагрев, вызванный обрывом или перерезанием проводов (вверху).
Сопротивление, противодействие протеканию тока в цепи. Аномалии подключения создают проблемы с сопротивлением в цепях наших двигателей, и если их не выявить и не исправить, они могут иметь пагубные последствия.Нормальные вещи, влияющие на сопротивление цепи:
- сопротивление проводника
- длина провода
- размер проволоки в круговых мил
- температура провода (положительный температурный коэффициент меди)
Неправильно затянутый болт из-за теплового расширения сломался.
Вышеупомянутые физические свойства, которые мы практически не можем контролировать. К сожалению, большинство аномалий сопротивления в цепях наших двигателей возникают сами по себе.Это включает, но не ограничивается:
- Неправильный крутящий момент
- Аномалии подключения
- Неправильная работа
- Неправильное обслуживание
Аномалии сопротивления создают тепло, которое увеличивает сопротивление, что создает больше тепла, что создает большее сопротивление. Цикл продолжается до тех пор, пока вы не найдете проблему или она не найдет вас. Он может термически разложиться до катастрофического отказа.
Комбинируя закон Ома и закон Ватта, мы транспонируем уравнения, чтобы разрешить P = I 2 R или мощность равна квадрату протекающего в цепи тока, умноженного на сопротивление, которое она протекает, что может быть количественно выражено в ваттах.
Например: при сопротивлении 1 Ом:
5 ампер = 5 2 x 1 Ом = 25 Вт
Проблема усугубляется увеличением тока, давайте удвоим ток:
10 ампер = 10 2 x 1 Ом = 100 Вт
Удвоение тока не удвоило потерю мощности, а увеличило ее в четыре раза!
В цепях двигателей мы имеем дело с чрезвычайно низкими значениями сопротивления в диапазоне от микро до миллиом.Учитывая это, не нужно много времени, чтобы вызвать серьезную проблему сопротивления.
Сторона предохранителя с линией высокого сопротивления. Обратите внимание на тепловое повреждение соединения и проводки прилегающей фазы выше.
Учитывая, что почти все проблемы сопротивления возникают сами по себе, давайте рассмотрим некоторые из плохих методов, которые создают такие проблемы. Важно добиться правильного крутящего момента. Кто из вас пользуется динамометрическими ключами? У каждого крепежа указан крутящий момент. Почему бы не использовать динамометрический ключ. Менее 5% промышленных предприятий используют динамометрические ключи, в том числе в ряде более регулируемых отраслей.Неправильные обжимы, несколько проводников в одном наконечнике, неподходящий размер проводов по сравнению с проводником, обрыв и разрезание жилы проводов — вот некоторые из неисправностей самоиндуцированной заделки. Их можно облегчить, установив процедуры для сборки обжимов и соединений с соблюдением процедур. Местные разъединители являются печально известными источниками высокого сопротивления. Одной из наиболее распространенных проблем является искрение и последующая точечная коррозия в результате работы под нагрузкой. Разъединители предназначены для отключения оборудования во время обслуживания, а не для включения или выключения.
При правильном техническом обслуживании и процедурах аномалии подключения могут быть практически устранены. Для получения дополнительной информации о причинах проблем с сопротивлением и тестировании электродвигателя. Свяжитесь с Snell Group и запланируйте один из наших комплексных учебных курсов. Не забудьте спросить о нашей новой настенной диаграмме для анализа данных об отключенном электродвигателе. Многослойная диаграмма размером 36 x 48 дюймов, содержащая огромное количество информации. Кроме того, обратите внимание на нашу настенную диаграмму анализа данных электродвигателя под напряжением.Он должен дебютировать в начале следующего года.
.