Site Loader

Содержание

Блоки питания 220 на 12 вольт постоянного тока

AC/DC диммируемые источники напряжения (4)

AC/DC источники напряжения 12 V (175)

AC/DC источники напряжения 12V (0)

AC/DC источники напряжения 24 V (0)

AC/DC источники напряжения 24V (0)

AC/DC источники напряжения 36 V (0)

AC/DC источники напряжения 48 V (0)

AC/DC источники напряжения 48V (0)

AC/DC источники напряжения 5 V (0)

AC/DC источники напряжения 5V (0)

Диммируемые источники тока (0)

Для лент (373)

Для светильников (10)

Источники тока [для мощных светодиодов] (0)

Понижающие трансформаторы на 220/110, и 220/12 Вольт

Сложная электрическая и электронная техника, произведенная в разных странах по различным стандартам, работает от тока с напряжением 220 или 110 вольт. Чтобы обеспечить сохранность устройств и их стабильную работу, можно купить понижающие или повышающие трансформаторы напряжения, преобразующие вольтаж вдвое – на понижение или повышение. Существуют и универсальные модели, переключающие схему работы трансформатора одной кнопкой.

Прибор представляет собой мобильное устройство в кожухе, включаемое вилкой в стационарную сеть и имеющее розетку на выходе, откуда мы получаем уже измененный электрический ток. Поскольку процесс трансформации может сопровождаться выделением тепловой энергии, следует размещать блок в хорошо проветриваемом месте. Как правило, размеры этих приборов достаточно малы, что позволяет использовать их в любых условиях.

Трансформаторы напряжения работают за счет прохождения тока через катушки с обмоткой медной проволокой и благодаря возникновению в них магнитного поля. Меняя направление движения и количество витков в обмотке одной из катушек, удается достичь требуемого вольтажа в 220/110 или наоборот 110/220 вольт. Также распространены трансформаторы с 220 на 12 вольт.

Преимущества трансформаторов 220/110, 220/12 В:

  • малый вес и размеры,
  • универсальность, использовании для любых устройств,
  • высокие значения КПД,
  • отсутствие шума и перегрева,
  • защита от короткого замыкания,
  • доступная цена.

При выборе прибора важно учитывает его рабочую мощность. Определяется суммарная мощность всех подключаемых электроустройств, которые трансформатор будет снабжать измененной энергией, к этому значению следует прибавить еще 20%.

Трансформаторы повсеместно используются для подключения как простейших устройств бытового назначения, так и дорогой электроники. Часто необходимо трансформация напряжения для медицинской техники, в том числе мобильной, работающей в автомобилях «скорой помощи» и реанимации.

Купить автотрансформаторы вы можете прямо на сайте компании «Гарант Сервис» или сделав заказ по телефону. Специалисты помогут подобрать подходящий трансформатор.


Малогабаритные блоки питания «МОЛЛЮСК» | Каталог продукции компании БАСТИОН

Филиал №11 ДЕАН
(861) 372-88-46
www.dean.ru

Филиал ЭТМ
(86137) 6-36-20, 6-36-21

www.etm.ru

Филиал ЭТМ
(8512) 48-14-00 (многоканальный)
www.etm.ru

Системы видеонаблюдения, филиал
(3854) 25-59-30
www.sv22.ru

Филиал ЭТМ
(8162) 67-35-10, 67-35-15
www.etm.ru

Филиал ЭТМ
(4922) 54-04-99, 54-04-98
www.etm.ru

Филиал ЭТМ
(8172) 28-51-08,
28-51-06, 27-09-39
www.etm.ru

Филиал ЭТМ
(3412) 90-88-93,
90-88-94,
90-88-95
www.etm.ru

Филиал ЭТМ
(4842) 51-79-78,
51-79-72,
51-79-37,
52-81-39
www.etm.ru

Протэк
(996) 334-59-64
www.pro-tek.pro

Системы видеонаблюдения, филиал
(3842) 780-755
www.sv22.ru

Филиал ЭТМ
(3842) 31-58-78, 31-60-18, 31-66-06
www.etm.ru

Филиал ЭТМ
(4942) 49-40-92, 49-40-93
www.etm.ru

Техника безопасности ОП на Стасова
(861) 235-45-30, 233-98-66, 8-918-322-17-14
www.t-save.ru

Техника безопасности ОП на Промышленной
(861) 254-72-00, 8-918-016-72-31, 8-989-270-02-12
www.t-save.ru

ДЕАН ЮГ ОП На Достоевского
(861) 200-15-44, 200-15-48, 200-15-49
www.dean.ru

ДЕАН ЮГ ОП На Рашпилевской
(861) 201-52-52
www.dean.ru

ДЕАН ЮГ ОП На Леваневского
(861) 262-33-66, 262-28-00
www.dean.ru

ДЕАН ЮГ ОП На Мандариновой
(861) 201-52-53
www.dean.ru

Филиал ЛУИС+
(861) 273-99-03
www.luis-don.ru

Филиал ЭТМ
(861) 274-28-88 (многоканальный),
200-11-55
www.etm.ru

Филиал ЭТМ
(3843) 993-600, 993-041, 993-042
www.etm.ru

Арсенал Безопасности ГК
(3812) 466-901 , 466-902, 466-903, 466-904, 466-905
www.arsec.ru

ДЕАН СИБИРЬ
(3812) 91-37-96, 91-37-97
www.dean.ru

СТБ
(3812) 51-40-04, 53-40-40
www.stb-omsk.ru

Филиал Ганимед СБ

(3812) 79-01-77
+7-913-673-99-01
www.ganimedsb.ru

Филиал ЭТМ
(3812) 60-30-81
www.etm.ru

КомплектСтройСервис
(4912) 24-92-14
(4912) 24-92-15
www.kssr.ru

Филиал ЭТМ
(4912) 30-78-53,
30-78-54,
30-78-55,
29-31-70
www.etm.ru

Филиал Бастион
(8692) 54-07-74
+7-978-749-02-41
www.bastion24.com

Филиал Грумант Корпорация
(8692) 540-060, МТС Россия: +7 978 744 3859
www.grumant.ru

Бастион
(365) 512-514
+7-978-755-44-25
www.bastion24.com

Охранные системы
(365) 251-04-78
(365) 251-14-78
+7 (978) 824-22-38

Филиал Защита СБ
(4725) 42-02-31
www.zassb.ru

Филиал ЭТМ
(4725) 42-25-13, 42-62-51
www.etm.ru

Филиал ЦСБ
(8452) 65-03-50, 8-800-100-81-98
www.centrsb.ru

Филиал ЭТМ
(4752) 53-70-07,
53-70-00
www.etm.ru

Филиал ЭТМ
(4872) 22-24-25,
22-24-26,
22-26-71
www.etm.ru

Центр Систем Безопасности
(3452) 500-067, 48-46-46, 41-52-55
www.csb72.ru

Филиал ДЕАН
(3452) 63-83-98, 63-83-99
www.dean.ru

Филиал ЛУИС+
(3452) 63-81-83
(3452) 48-95-35
www.luis.ru

Филиал РАДИАН
(3452) 63-31-85, 63-31-86
www.radiantd.ru

Филиал ЭТМ
(3452) 65-02-02
(3452) 79-66-60 (61/63)
(3452) 65-01-01
www.etm.ru

Востокспецсистема
(4212) 67-42-42
www.vssdv.ru

КОМЭН
(4212) 75-52-53, 75-52-54, 60-32-35
www.koman.ru

ТД «Планета Безопасности»
(4212) 74-62-12, 20-40-06, 74-85-11
www.planeta-b.ru

Филиал Хранитель
(4212) 21-70-82, 21-30-50, 24-96-56
www.hranitel-dv.ru

Филиал ЭТМ
(8202) 49-00-33, 49-00-39
www.etm.ru

АИСТ
+7 (4852) 45-10-78
+7 (4852) 45-10-73
www.aist76.ru

Филиал ЭТМ
(4852) 55-15-15,
55-57-94,
55-31-84,
55-33-84
www.etm.ru

ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220

   Понадобился мне для некоторых целей повышающий преобразователь с 12В на стандартное сетевое напряжение 220 вольт. Поискав на форуме решил сделать из запчастей блока питания компьютера. Сразу замечу, что трансформатор лучше брать побольше — маленький может своеобразно мигать и обычно тянет в нормальном режиме порядка 20 ватт, а то и меньше. Радиаторы ставятся при нагрузке более 50 ватт, когда транзисторы нагреваются выше нормы.


Схема электрическая преобразователя 12-220 вольт

   Конструктивно плата устройства может крепится в любом корпусе, обеспечивающим защиту от прикосновения человеком. Рисунок смотрите на фото или ищите файл на форуме.

   Если питать будем телевизор или лампочку, то можно вообще не использовать выпрямитель Кстати, компактную люминисцентную лампу КЛЛ, этот преобразователь также запускает — пробовал с лампой на 15 Вт. Все детали, кроме трансформатора, брались новыми — поэтому особых проблем не наблюдалось. В будущем планируется сделать еще два экземпляра, с учетом выявленных осбенностей по деталям и схематически.


   Небольшое описание схемы и ее работы от уважаемого пользователя форума ear: Схема представляет собой двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494 (и ее аналогов), что позволяет сделать её довольно простой. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение. Также можно использовать его и без диодов, получая переменное напряжение. Для электронных балластов постоянное напряжение и полярность включения не актуальна, так как в схеме балласта на входе стоит диодный мост (правда диоды там не такие «шустрые» как в нашем преобразователе).  


   В преобразователе 12 вольт в 220 используется готовый высокочастотный понижающий трансформатор из блока питания (БП) компьютера, но в нашем преобразователе он станет наоборот повышающим. Понижающий трансформатор можно взять как из AT так и из ATX БП. Из практики трансформаторы отличаются только габаритами, а расположение выводов идентично. Убитый БП (или трансформатор из него) можно найти в любой мастерской по ремонту компьютеров.  

 C1 – это 1 нанофарад, на корпусе кодировка 102;
 R1 – задает ширину импульсов на выходе.
 R2 (совместно с C1) задаёт рабочую частоту.

   Уменьшаем сопротивление R1 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту. И наоборот. 


   Транзисторы – мощные МОП (металл-окисел-полупроводник) полевые транзисторы, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N. Радиатор не нужен, так как продолжительная работа не вызывает ощутимый нагрев транзисторов. А если возникнет желание поставить на радиатор, то, внимание, фланцы корпусов транзисторов не закорачивать через радиатор! Используйте изоляционные прокладки и шайбы втулки от компьютерного БП. 


   Тем не менее, для первого запуска радиатор не помешает; по крайней мере транзисторы сразу не сгорят от перегрева в случае ошибок монтажа или КЗ на выходе. Защиту схемы от перегрузки и переполюсовки можно реализовать через предохранитель и диод на входе.  


   У меня в качестве ключей например были применены популярные полевые irf540n. В конференции ведется обсуждение схемы преобразователя и там вы можете задавать возникающие по ходу сборки вопросы. Сборка и испытания: redmoon.

   Форум по инверторным источникам питания

   Форум по обсуждению материала ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220

Автомобильный переходник адаптер с 220 вольт на 12 вольт. Автомобильный матрас на заднее сиденье машины

Надувной автомобильный матрас на задние сидения автомобиля для путешествий

 

Эта конструкция имеет не одну, а две (нижние) подушки и подходит практически к любой марке машин у которых разное расстояние между задними и передними сиденьями. Идеально для машин с ровным полом (задние сидения).
Если убрать одну подставку, то можно сесть рядом с лежачим ребенком.

________________________________________________________

Автомобильный сетевой переходник, (адаптер напряжения, понижающий инвертор, блок питания, понижающий адаптер) с 220 вольт на 12 вольт, с розеткой прикуривателя

Автомобильный понижающий переходник адаптер АС/DC с 220 вольт на 12 вольт с розеткой прикуривателя применяется для подключения автомобильных приборов от сети 220 вольт. Все адаптеры напряжения имеют розетку как в прикуривателе автомобиля. С помощью сетевого автомобильного блока питания легко подключить автомобильный компрессор, автомобильный пылесос, автомобильный холодильник, автомобильную минимойку и т. д. КПД у адаптеров ≥90%. Напряжение при котором работают преобразователи питания 110-240V 50/60HZ. Работают при температуре — 20℃ + 60℃.  Автомобильный блок питания преобразует ток с 220v в 12v. AC/DC12V. 

 

Адаптер 60w 5А (от 1А до 5А) — 700р.    Адаптер 120w 10А (от 1А до 13А) — 1300р.

Адаптер 150w 13А (от 1А до 13А) — 1800р.     Адаптер 180w 15А (от 1А до 15А) — 2000р.  

_____________________________________________________________

1. Москва — самовывоз м. Печатники (около метро) бесплатно, почта РФ 1 — 2 дня — 200р. (экономия по доставке 150р. — 350р.) 100% предоплата за товар и доставку
2. Москва — наложенный платеж по тарифам почты России (оплачиваете при получении посылки) 300р. + пакет 50р. + перевод денег на наш счет 150р. — 350р.).
3. РФ — почта России (наложенный платеж по тарифам почты России)
4. РФ — почта России 100% предоплата за товар и доставку (экономия 150р. — 550р.)

____________________________________

При выборе понижающего переходника адаптера АС/ убедитесь в технических параметрах своего прибора и выбирайте адаптер с запасом по напряжению и силе тока.

Как не купить ОПАСНЫЙ адаптер.  Прочитайте перед покупкой >>>

Как выбрать автомобильный переходник преобразователь напряжения AC/DC с 220 на 12 вольт >>>

Адаптеры 150W и 180W имеют встроенный вентилятор охлаждения

 

Для всех адаптеров напряжения применяются усиленные провода только с такими вилками!

Будьте внимательны и не покупайте подделок!

ИП Панченко Валерий Иванович ИНН 772331 матрас в машину на заднее сидение 

Сетевые адаптеры производятся с вентилятором охлаждения и без. Автомобильный матрас

Блок питания 12 вольт 20 ампер своими руками

Многие электротехнические устройства питаются от постоянного напряжения величиной 12 вольт. Если такая техника не особо нуждается в высокой стабильности напряжения, то вполне подойдет самый простой блок питания, состоящий из понижающего трансформатора, диодного моста и фильтрующего конденсатора электролита. Тут вопрос остается только за мощностью такого источника питания, ну и следовательно от нее зависит, какие именно функциональные части будет стоять в блоке питания на 12 вольт. В этой статье давайте разберемся более подробно с этой темой.

Итак, схема простого блока питания на 12 вольт начинается с понижающего трансформатора, задача которого сетевое переменное напряжение 220 вольт понизить до более низкого. Логично предположить, что это пониженное напряжение должно в нашем случае быть 12 вольт. Но нет. На выходе вторичной обмотки трансформатора, для получения в итоге постоянных 12 вольт должно быть около 10 вольт. Почему так? Просто существует в электротехнике такой вот эффект — переменное напряжение после диодного моста имеет выпрямленный ток, но он скачкообразной формы. Когда мы к выходу моста подсоединяем фильтрующий конденсатор электролит эти скачки постоянного напряжения сглаживаются, а само напряжение увеличивается примерно на 18%. Вот и получается, что переменные 10 вольт после выпрямительного моста и фильтрующего конденсатора электролита превратятся в постоянные 12 вольт.

Нам нужно определится, в первую очередь, с мощностью нашего блока питания на 12 вольт. Какую именно максимальную силу тока мы хотим, чтобы он имел. К примеру, нужно иметь максимальную силу тока в 5 ампер. В этом случае, чтобы спаять хороший блок питания на 12 вольт с этим током нам понадобится понижающий трансформатор мощностью около 80 ватт. Напомню, чтобы найти электрическую мощность нужно силу тока перемножить на напряжение. Следовательно мы наши 12 вольт умножаем на 5 ампер и получаем 60 ватт. Плюс к этому мы добавляем небольшой запас (пусть будет 20 ватт). Вот и видим, что нужен трансформатор на 80 ватт (это если идти по оптимальному пути, хотя если вы поставите большей мощности транс, то это только повлияет на общие размеры источника питания).

Для получения тока на вторичной обмотке около 5 ампер, диаметр этой самой обмотки должен быть не менее 1,6 мм (медь). Для определения зависимости диаметра провода вторичной обмотки и силы тока, который она должна обеспечивать нужно смотреть в справочные таблицы (их легко найти в интернете воспользовавшись поиском).

Теперь нужно подобрать подходящий выпрямительный диодный мост, который нам позволит сделать из переменного напряжения постоянное, хотя и скачкообразной формы. Опять же, нужно в начале определится с силой тока, которую диодный мост может выдержать без негативных воздействий на него. Мы определились, что нам нужен максимальный ток 5 ампер. Как и в случае с трансформатором добавим к этому некий запас. В итоге, находим диодный мост (диоды под него) на силу тока в 8-10 ампер. Мост должен быть рассчитан на напряжение не менее 12 вольт (хотя диоды с маленьким обратным напряжением это редкость, обычно они рассчитаны на достаточно большие обратные напряжения). Либо ставим готовый целостный диодный мост, или паяем его сами из четырех диодов с нужными параметрами.

Ну, и последним важным функциональным элементом нашего самодельного блока питания на 12 вольт, что будем паять своими руками, является конденсатор электролит. Он выполняет фильтрующую роль, сглаживая скачки постоянного напряжения, делая постоянное напряжение более ровным (хотя и не идеальным). Для нашего блока питания вполне подойдет конденсатор электролит, рассчитанный на напряжение 16-25 вольт и емкостью около 5 000 — 10 000 микрофарад. Вот и все, осталось только эти все компоненты спаять в единую схему и собрать в подходящем корпусе.

Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод — это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.


Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.


Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выходное напряжение.
  • Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.


    И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

    Похожие записи:

    Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

    • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
    • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
    • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

    Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

    Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

    Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

    Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

    Компоновка прибора

    Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.


    На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.


    Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

    Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.


    Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

    Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

    Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

    Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

    Проблемы простого блока питания с нагрузкой

    Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

    Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

    1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
    2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
    3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

    На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.


    Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

    Блок питания повышенной мощности

    Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

    Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

    На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

    Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

    Тема: как сделать простой, регулируемый плавно, блок питания своими руками.

    Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

    Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

    Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

    Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор — его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

    Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

    Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

    Проще говоря — выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1.2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

    суть работы, как сделать самодельное понижающее устройство на 10 ампер

    Чтобы преобразовать напряжение в какую-либо сторону, используют трансформаторы, понижающие либо повышающие ток. Они являют собой электрический прибор с повышенным КПД, их применяют во множестве производственных и бытовых областях.

    Возможно изготовить данный прибор самостоятельно, пользуясь схемой устройства трансформатора.

    Сборка устройства, повышающего напряжение, требует точного выполнения всего технологического процесса и соблюдения рекомендаций специалистов.

    Каркас

    Сделать каркас трансформатора своими руками не сложно. Подходящий материал для этого — картон. Полость внутри каркаса должна быть немного больше по размеру, чем тело сердечника, а боковины без труда входить в проём трансформатора. Используя круглый сердечник, наматываются две катушки, при использовании пластин в форме буквы «Е» — одну.

    Применяя круглый сердечник от лабораторного автотрансформатора его нужно вначале обмотать изоляционной лентой и уже потом наматывать провод, по всему кругу распределяя витки необходимого количества.

    Закончив намотку первичного слоя провода, ее надо заизолировать четырьмя слоями тканевой изоляцией, поверх начать накручивать витки вторичной обмотки. Затем такой же лентой полностью обматывают провод, оставив лишь окончания обмоток.

    Используя обычные магнитопровода, каркас изготавливается следующим образом:
    • выкраивается гильза с отгибами на торцах;
    • вырезаются боковины из картона;
    • по разметке сворачивают основу катушки в маленькую коробку;
    • затем она заклеивается;
    • снабжают гильзу боковинами;
    • зафиксировав отворотами, приклеивают.

    Испытание

    Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

    Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

    Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

    Обмотки

    На брусок из дерева, размерами как у стержня, одевают катушку. Но прежде нужно просверлить в нем отверстие для намоточного прутка.

    Данный элемент вставляют в обмоточное приспособления и производят намотку:

    • сначала на катушку нужно намотать лакоткань в два слоя;
    • один из концов провода зафиксировать на боковине и произвести медленное вращение рукоятки станка;
    • наматывание витков нужно производить вплотную, делая между слоями прослойки из тканевой изоляции;
    • после этих действий, провод обкусывают и получившийся второй конец фиксируют на боковине вблизи с первым;
    • оба конца оснащают изоляционными трубками;
    • наружную часть обмотки изолируют;
    • таким же образом делается вторичная обмотка.

    Так производится намотка трансформатора своими руками.

    Если все выполнено правильно, то трансформатор будет работать без перебоев.

    При желании наглядно посмотреть трансформаторы, собранные своими руками можно найти фото в различных источниках.

    Суть работы устройства

    Трансформатор — это электронное устройство, использующееся для преобразования переменного сигнала одной амплитуды в другую без изменения частоты. Сложно найти электротехническое оборудование, которое бы не содержало в своей схеме такое изделие. Оно является ключевым звеном в передаче энергии от одной части цепи к другой.

    Появление трансформатора стало возможным после изобретения индукционной катушки в 1852 году механиком из Германии Румкорфом. Его устройство было похоже на катушку для наматывания ниток, но вместо последних использовалась проволока. Внутри катушки располагалась другая такая же конструкция. При подаче тока на нижнюю катушку фиксировалось напряжение и на верхней. Объяснялось это явлением, названным индуктивностью.

    Кто точно изобрёл трансформатор, доподлинно неизвестно. В 1831 году Фарадей, проводя эксперименты, обнаружил, что в замкнутом контуре при изменении магнитного поля возникает электричество. Он также нарисовал примерную схему, как должен выглядеть трансформатор. Используя в 1876 году стальной сердечник и две катушки, русский учёный Яблочков фактически изготовил прообраз современного устройства. При подаче тока на одну из них он наблюдал возникновение магнитной индукции, приводящей к появлению тока на другой. При этом напряжение на катушках было разным из-за отличающегося количества витков.

    Появление такой конструкции подтолкнуло других учёных к исследованиям, в результате которых появилась технология изготовления современного трансформатора.

    Принцип действия

    Современная промышленность выпускает трансформаторы, отличающиеся как по внешнему виду, так и по характеристикам. Но их всех объединяет принцип действия и пять элементов конструкции. Чтобы понять, как работает понижающий трансформатор с 220 на 12 вольт, необходимо знать эти основные части изделия. К ним относятся:

    1. Сердечник. По-другому его называют магнитопровод. Его назначение проводить магнитный поток. По виду исполнения сердечники делятся на три группы: плоскостные, ленточные, формованные. Изготавливают из электротехнической стали, феррита или пермаллоя, то есть материалов, имеющих способность к высокой намагниченности и обладающих проводящими свойствами.
    2. Обмотки. Представляют собой токопроводящую проволоку, намотанную витками. В качестве материала для её изготовления используется медь или алюминий.
    3. Каркас. Служит для намотки на него обмоток, изготавливается из изоляционного материала.
    4. Изоляция. Защищает катушки от межвиткового замыкания, а также их непосредственного контакта с токопроводящими частями конструкции. Чаще всего используется лак, клипперная лента, лакоткань.
    5. Монтажные выводы. Для предотвращения обрыва обмоток во время монтажа в конструкции делаются специальные выводы, позволяющие подключать к трансформатору источник питания и нагрузку.

    Основной частью обмотки является виток. Именно из-за него и создаётся магнитная сила, впоследствии приводящая к появлению электродвижущей (ЭДС).

    Таким образом, трансформатор представляет собой замкнутый контур (сердечник) на котором располагаются катушки (обмотки). Их количество может составлять от двух и более штук (исключение автотрансформатор). Катушка, подключаемая к источнику питания, называется первичной, а которая соединяется с нагрузкой — вторичной.

    При подключении к источнику переменной энергии через первичную обмотку устройства начинает протекать изменяющийся во времени ток (синусоидальный). Он создаёт переменное электромагнитное поле. Линии магнитной индукции начинают пронизывать сердечник, в котором происходит их замыкание. В результате на намотанных витках вторичной катушки индуцируется ЭДС, создающая ток при подключении выводов к нагрузке.

    Характеристики и виды изделия

    Разность потенциалов, возникающая между выводами вторичной обмотки, зависит от коэффициента трансформации, определяющегося отношением количества витков вторичной и первичной катушки. Математически это можно описать формулой: U2/U1 = n2/n1 = I1/I2, где:

    • U1, U2 — соответственно разность потенциалов на первичной и вторичной обмотке.
    • N1, N2 — количество витков первичной и вторичной катушки.
    • I1, I2 — сила тока в обмотках.

    По виду сердечника трансформаторы на 12 В разделяются на кольцевые, Ш-образные и П-образные. По конструктивному же исполнению они бывают: броневыми, стержневыми и тороидальными (кольцевыми). Стержневой тип собирается из П-образных пластин. На броневом виде используются боковые стержни без обмоток. Этот вид самый распространённый, так как обмотки надёжно защищены от механических повреждений, хотя при этом эффективность охлаждения уменьшается.

    Тороидальный же трансформатор обладает самыми лучшими характеристиками. Его конструкция способствует хорошему охлаждению. Эффективное распределение магнитного поля увеличивает КПД изделия. Этот тип является самым популярным среди радиолюбителей, так как простота конструкции позволяет быстро его разбирать и собирать. Например, очень часто, именно на базе тора делают самодельные мощные сварочные аппараты.

    К основным параметрам изделия относят:

    1. Мощность. Обозначает величину энергии, передающуюся через устройство, не приводя к его повреждению. Определяется толщиной провода, используемого при намотке катушек, а также размеров магнитопровода и частоты сигнала.
    2. КПД. Определяется отношением мощности, затрачиваемой на полезную работу к потребляемой.
    3. Коэффициент трансформации. Определяет способ преобразования.
    4. Количество обмоток.
    5. Ток короткого замыкания. Определяет максимальную силу тока, которую может выдержать устройство без перегорания обмоток.

    Фото советы как сделать трансформатор своими руками


    Вам понравилась статья? Поделитесь

    0

    Схемы подключения трансформаторов тока

    Силового оборудования

    Схема подключения для 110 кВ и выше:

    Схема подключения для 6-10 кВ в ячейках КРУ:

    Вторичные цепи

    Схема включение трансформатора тока в полную звезду:

    Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):

    Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):

    Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):

    Технические требования к конденсатору

    Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.

    Корпус для инвертора

    Первое, что нужно учесть — потери преобразования электричества, выделяющиеся в виде тепла на ключах схемы. В среднем эта величина составляет 2–5% от номинальной мощности устройства, но показатель этот имеет свойство расти из-за неправильного подбора или старения комплектующих.

    Отвод тепла от полупроводниковых элементов имеет ключевое значение: транзисторы очень чувствительны к перегреву и выражается это в быстрой деградации последних и, вероятно, их полному отказу. По этой причине основанием для корпуса должен служить теплоотвод — алюминиевый радиатор.

    Из радиаторных профилей хорошо подойдёт обычная «расчёска» шириной 80–120 мм и длиной около 300–400 мм. к плоской части профиля винтами крепятся экраны полевых транзисторов — металлические пятачки на их задней поверхности. Но и с этим не всё просто: электрического контакта между экранами всех транзисторов схемы быть не должно, поэтому радиатор и крепления изолируются слюдяными плёнками и картонными шайбами, при этом по обе стороны диэлектрической прокладки металлсодержащей пастой наносится термоинтерфейс .

    Популярные виды и стоимость трансформаторов

    Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

    • ТТИ;
    • ТТН;
    • ТОП;
    • ТОЛ и другие.

    Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

    • 0,66 кВ от 300 – 5000,
    • 6-10 кВ 10000 – 45000,
    • 35 кВ – около 50 000р,
    • 110 кВ и выше – нужно уточнять у производителя.

    Возможные неисправности

    Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

    Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

    Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

    Для чего может использоваться напряжение 12 или 24 вольт в быту

    В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

    • аккумуляторные электродрели, шуруповерты и электропилы;
    • стационарные насосы для полива огородов;
    • аудио-видеотехника и радиоэлектронная аппаратура;
    • системы видеонаблюдения и сигнализации;
    • батареечные радиоприемники и плееры;
    • ноутбуки (нетбуки) и планшеты;
    • галогенные и LED-лампы, светодиодные ленты;

    • портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
    • паяльные станции и электропаяльники;
    • зарядные устройства мобильных телефонов и повербанков;
    • слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
    • детские игрушки, елочные гирлянды, помпы аквариумов;
    • различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

    Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

    Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

    Преобразователи переменного тока в постоянный ток

    , преобразование настенного питания переменного тока 110/220 В в 12 В постоянного тока — преобразователи напряжения

    Купите преобразователь переменного тока в постоянный, чтобы заменить дорогой автомобильный аккумулятор на 12 В постоянного тока. Эти преобразователи напряжения переменного / постоянного тока принимают питание переменного тока 110 В или 220 В от сетевой розетки и преобразуют его в мощность 12 В постоянного тока, что исключает необходимость использования батарей для оборудования с батарейным питанием.

    Эти универсальные преобразователи напряжения могут преобразовывать как 110 В, так и 220 В в напряжение 12 В постоянного тока.Также известен как источник питания класса 2 или преобразователи напряжения переменного / постоянного тока. Многие модели предназначены для преобразования напряжения 12 В постоянного тока, 24 В, 3 В, 6 В, 9 В, 12 В, 15 или 18 В постоянного тока в напряжение переменного тока 110–240 В дома, в офисе или в дороге.

    Пожалуйста, прочтите наше Руководство по покупке трансформатора , прежде чем делать выбор.

    Быстрая доставка через FedEx в любую точку США.

    • DF-1763 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, макс. 10 А
      Подробнее…

      59,99 долл. США 79,99 долл. США

    • DF-1765 Универсальный преобразователь переменного тока в постоянный с выходом 12 В — 13,8 В постоянного тока, 20 А
      Подробнее …

      82,99 $ $ 109.95

    • DF-1766 Универсальный преобразователь 110 В 220 В переменного тока в постоянный с выходом 12 В постоянного тока, 25 А
      Подробнее…

      92,99 доллара США $ 112.95

    • DF-1767 Универсальный преобразователь 110/220 В переменного тока в 12 В-13,8 В постоянного тока, макс., 30 А
      Подробнее …

      119,99 долл. США

    • DF-1768 Универсальный 110/220 В переменного тока до 12 В — 13.Преобразователь постоянного тока на 8 В, 40 А
      Подробнее …

      139,99 долл. США $ 179,99

    • DF-1769 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, 50 А
      Подробнее …

      169 долларов.99

    • DF-1745 Универсальный преобразователь переменного тока в постоянный 3В, 6В, 9В, 12В, 15В Выход постоянного тока Макс. 8 Amps
      Подробнее …

      139,99 долл. США

    • DF-1730 Универсальный преобразователь переменного тока в постоянный ток 110-240 В переменного тока в 0-30 В постоянного тока, 5 А
      Подробнее…

      109,99 долл. США

    • DF-1736 Универсальный преобразователь переменного тока в постоянный — Вход: 110-240 В Выход: 0-40 В постоянного тока, макс. 6 А
      Подробнее …

      129,99 долл. США

    • DF-1730SL Универсальный преобразователь переменного тока в постоянный Вход: 110/240 В Выход: 0–30 В, макс. 20 А
      Подробнее…

      229,99 долл. США

    ИСТОЧНИК ПИТАНИЯ И ХРАНЕНИЯ НА 12 Вольт 220 Вольт (PDF)

    Этот проект предназначен для создания источника питания постоянного тока от 220 А до 12 В, который также может сохранять мощность в течение длительного времени. Используемая схема является эффективной и внесла множество улучшений в существующие источники питания постоянного тока, такие как регулировка напряжения и устранение пульсаций на выходе.Напряжение 220 АС сначала преобразуется в 12 В переменного тока понижающим трансформатором, затем используется двухполупериодный выпрямительный мост (на основе моста пшеничного камня) для преобразования переменного тока в постоянный ток.Затем этот выходной сигнал дважды фильтруется двумя механизмами.

    > Для устранения ряби в форме волны мостовой схемы.

    > Создайте регулируемый и эффективный источник питания.

    NPN-транзистор с базой, подключенной к стабилитрону, также используется в качестве коммутирующей цепи.Затем на выходе получается 12 В. Схемы и формы сигналов создаются с помощью PSpice. Благодаря регулировке напряжения и устранению пульсаций на выходе этот источник питания также можно использовать в качестве «разрядника батареи», который обеспечивает постоянный и эффективный выход на нагрузку без необходимости в батарее.

    В области электротехники всегда есть потребность в источниках питания постоянного тока. Основными преимуществами этих блоков питания постоянного тока являются портативность и экономическая эффективность по сравнению с блоками питания A.C, но иногда дешевизна этих источников питания постоянного тока приводит к неэффективности их выхода. То есть выход большинства имеющихся на рынке источников питания постоянного тока имеет пульсации и не является чистым постоянным током.Кроме того, выходное напряжение неточно из-за потерь в цепи. Чтобы устранить эти недостатки в источниках питания постоянного тока, мы создали эффективную схему, которая не только устраняет пульсации выходного напряжения, чтобы получить чистый сигнал постоянного тока, но также регулирует напряжение до постоянного и желаемого значения.Это достигается за счет использования схемы фильтра и транзистора, который используется в качестве переключателя. Мы использовали мостовой выпрямитель вместо двухдиодного выпрямителя (который также производит двухполупериодное выпрямление), потому что мостовой выпрямитель не требует высокого «пикового обратного напряжения», поскольку он использует большую часть обмоток трансформатора. Мы также использовали простой трансформатор вместо центрального ответвителя, потому что он дешевле и обеспечивает компактную и дешевую передачу энергии. Использование схемы RL в качестве фильтра повысило эффективность схемы за счет устранения пульсаций в D.C, который исправляется мостом. Использование транзистора в качестве переключателя привело к еще одному усовершенствованию схемы, т.е. он отрегулировал напряжение до постоянного значения, что спасло нашу нагрузку от повреждений, вызванных колебаниями напряжения. Используются перезаряжаемые никель-металлогидридные батареи, которые в наши дни широко используются в бытовой электронике. Они также имеют меньшее время зарядки и очень долговечны. Благодаря эффективному сочетанию значений элементов схемы к выходной схеме i можно подключать различные нагрузки.е. любой элемент схемы, имеющий напряжение 12 В и сопротивление более 10 Ом.

    ПРИМЕНЕНИЕ

    > Схема может использоваться в качестве «разрядника батареи», поскольку она обеспечивает постоянное регулируемое напряжение и отсутствие пульсаций на выходе. Его можно использовать для вывода мощности непосредственно на нагрузку, а не сначала на батарею. Это снижает стоимость аккумулятора.

    > Может использоваться как зарядное устройство. Его можно отсоединить от схемы и затем использовать для подачи питания на различные электронные устройства.

    > Его можно использовать в качестве регулятора напряжения постоянного тока, способного обеспечивать напряжение без пульсаций.

    > Для зарядки аккумуляторной батареи электромобиля.

    > Для подзарядки стартерной аккумуляторной батареи автомобиля, где используется модульное зарядное устройство.

    Связанные

    Цепь двойного источника питания (+12 В и -12 В): 3 ступени (с изображениями)

    Две внешние клеммы трансформатора с центральным ответвлением подключены к схеме мостового выпрямителя.Схема выпрямителя — это преобразователь, который преобразует источник переменного тока в источник постоянного тока. Обычно он состоит из диодных переключателей, как показано на принципиальной схеме.

    Чтобы преобразовать переменный ток в постоянный, мы можем сделать два типа выпрямителей: полумостовой выпрямитель и полумостовой выпрямитель. В полумостовом выпрямителе выходное напряжение составляет половину входного напряжения. Например, если входное напряжение составляет 24 В, то выходное напряжение постоянного тока составляет 12 В, а количество диодов, используемых в этом типе выпрямителя, равно 2. В полномостовом выпрямителе количество диодов равно 4, и он подключен, как показано на рисунке, а выходное напряжение равно 2. такое же, как входное напряжение.

    Отфильтруйте пульсации на выходе:
    Теперь выход 24 В постоянного тока, который содержит пульсации от пика до пика, не может быть напрямую подключен к нагрузке. Итак, чтобы убрать пульсации с питания, используются конденсаторы фильтра. Теперь используются два фильтрующих конденсатора номиналом 2200 мкФ и 25 В, как показано на принципиальной схеме. Соединение обоих конденсаторов таково, что общий вывод конденсаторов подключается непосредственно к центральному выводу центрального трансформатора с ответвлениями. Теперь этот конденсатор будет заряжаться до 12 В постоянного тока, поскольку оба подключены к общей клемме трансформатора.Кроме того, конденсаторы устраняют пульсации от источника постоянного тока и дают чистый выходной сигнал постоянного тока. Но выход обоих конденсаторов не регулируется. Итак, чтобы сделать питание регулируемым, выходные конденсаторы передаются на микросхемы регулятора напряжения, что объясняется в следующем шаге.

    Регулировка источника питания 12 В постоянного тока
    Следующая важная вещь — отрегулировать лабораторное выходное напряжение конденсаторов, которое в противном случае будет изменяться в соответствии с изменением входного напряжения. Для этого в зависимости от требований к выходному напряжению используются микросхемы стабилизаторов.Если нам нужно выходное напряжение +12 В, то используется IC 7812. Если необходимое выходное напряжение + 5В, то используется 7805 IC. Последние две цифры IC обозначают номинальное выходное напряжение. Третья последняя цифра показывает положительное или отрицательное напряжение. Для положительного напряжения (8) и для отрицательного напряжения (9) используется число. Таким образом, IC7812 используется для регулирования напряжения +12 В, а IC7912 — для регулирования напряжения -12 В.

    Объяснение 4 простых схем бестрансформаторного источника питания

    В этом посте мы обсуждаем 4 простых в сборке, компактных простых схемах бестрансформаторного источника питания.Все схемы, представленные здесь, построены с использованием теории емкостного реактивного сопротивления для понижения входного сетевого напряжения переменного тока. Все представленные здесь конструкции работают независимо без трансформатора или без трансформатора .

    Концепция бестрансформаторного источника питания

    Как следует из названия, бестрансформаторная схема источника питания обеспечивает низкий постоянный ток от сети высокого напряжения переменного тока без использования трансформатора или катушки индуктивности.

    Он работает за счет использования высоковольтного конденсатора для понижения сетевого переменного тока до необходимого более низкого уровня, который может быть подходящим для подключенной электронной схемы или нагрузки.

    Характеристики напряжения этого конденсатора выбраны таким образом, чтобы его пиковое значение действующего напряжения было намного выше, чем пиковое напряжение сети переменного тока, чтобы гарантировать безопасное функционирование конденсатора. Пример конденсатора, который обычно используется в цепях бестрансформаторного питания, показан ниже:

    Этот конденсатор подключается последовательно с одним из входов сети, предпочтительно с фазовой линией переменного тока.

    Когда сетевой переменный ток поступает на этот конденсатор, в зависимости от номинала конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает сетевой переменный ток от превышения заданного уровня, как указано номиналом конденсатора.

    Однако, несмотря на то, что ток ограничен, напряжение нет, поэтому, если вы измеряете выпрямленный выход бестрансформаторного источника питания, вы обнаружите, что напряжение равно пиковому значению сетевого переменного тока, что составляет около 310 В, и это может насторожить любого нового любителя.

    Но поскольку конденсатор может значительно снизить уровень тока, с этим высоким пиковым напряжением можно легко справиться и стабилизировать его с помощью стабилитрона на выходе мостового выпрямителя.

    Мощность стабилитрона должна быть выбрана соответствующим образом в соответствии с допустимым уровнем тока конденсатора.

    ВНИМАНИЕ: прочтите предупреждающее сообщение в конце сообщения

    Преимущества использования схемы бестрансформаторного источника питания

    Идея недорогая, но очень эффективная для приложений, требующих малой мощности для работы.

    Использование трансформатора в источниках питания постоянного тока, вероятно, довольно распространено, и мы много слышали об этом.

    Однако одним из недостатков использования трансформатора является то, что вы не можете сделать устройство компактным.

    Даже если текущие требования к вашей схеме невысоки, вы должны включить тяжелый и громоздкий трансформатор, что сделает работу действительно громоздкой и беспорядочной.

    Схема бестрансформаторного источника питания, описанная здесь, очень эффективно заменяет обычный трансформатор для приложений, требующих тока ниже 100 мА.

    Здесь на входе используется высоковольтный металлизированный конденсатор для необходимого понижения мощности сети, а предыдущая схема представляет собой не что иное, как простые мостовые конфигурации для преобразования пониженного переменного напряжения в постоянное.

    Схема, показанная на схеме выше, представляет собой классическую конструкцию, может использоваться в качестве источника питания постоянного тока 12 В для большинства электронных схем.

    Однако, обсудив преимущества вышеупомянутой конструкции, стоит сосредоточиться на нескольких серьезных недостатках, которые эта концепция может включать.

    Недостатки схемы бестрансформаторного источника питания

    Во-первых, схема не может выдавать сильноточные выходные сигналы, но это не будет проблемой для большинства приложений.

    Еще один недостаток, который, безусловно, требует некоторого внимания, заключается в том, что данная концепция не изолирует цепь от опасных потенциалов сети переменного тока.

    Этот недостаток может иметь серьезные последствия для конструкций с оконечными выводами или металлическими шкафами, но не имеет значения для устройств, в которых все находится в непроводящем корпусе.

    Таким образом, начинающие любители должны работать с этой схемой очень осторожно, чтобы избежать поражения электрическим током. И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проходить через нее, что может вызвать серьезное повреждение цепи с питанием и самой цепи питания.

    Однако в предложенной простой схеме бестрансформаторного источника питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих каскадов после мостового выпрямителя.

    Этот конденсатор заземляет мгновенные скачки высокого напряжения, тем самым эффективно защищая связанную с ним электронику.

    Как работает схема

    Работу этого источника питания без преобразования можно понять по следующим пунктам:

    1. Когда вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня. уровень, определяемый значением реактивного сопротивления C1.Здесь можно приблизительно принять значение около 50 мА.
    2. Тем не менее, напряжение не ограничено, и поэтому полные 220 В или все, что может быть на входе, может достигать следующей ступени мостового выпрямителя.
    3. Мостовой выпрямитель выпрямляет эти 220 В постоянного тока до более высоких 310 В постоянного тока из-за преобразования среднеквадратичного значения в пиковое значение сигнала переменного тока.
    4. Этот постоянный ток 310 В мгновенно понижается до постоянного низкого уровня с помощью следующего каскада стабилитрона, который шунтирует его на значение стабилитрона. Если используется стабилитрон 12 В, он станет 12 В и так далее.
    5. C2, наконец, фильтрует 12 В постоянного тока с рябью в относительно чистый 12 В постоянного тока.

    1) Базовая бестрансформаторная конструкция

    Давайте попробуем более подробно разобраться в функциях каждой из частей, используемых в приведенной выше схеме:

    1. Конденсатор C1 становится наиболее важной частью схемы, так как он является единственным который снижает высокий ток из сети 220 В или 120 В до желаемого более низкого уровня, чтобы соответствовать выходной нагрузке постоянного тока. Как показывает практика, каждая отдельная микрофарада этого конденсатора будет обеспечивать выходную нагрузку током около 50 мА.Это означает, что 2 мкФ обеспечит 100 мА и так далее. Если вы хотите узнать расчеты более точно, вы можете обратиться к этой статье.
    2. Резистор R1 используется для обеспечения пути разряда для высоковольтного конденсатора C1 всякий раз, когда цепь отключена от сетевого входа. Потому что C1 имеет способность сохранять в себе сетевой потенциал 220 В, когда он отключен от сети, и может подвергнуться риску поражения высоким напряжением любого, кто дотронется до контактов вилки. R1 быстро разряжает C1, предотвращая любой подобный сбой.
    3. Диоды D1 — D4 работают как мостовой выпрямитель для преобразования слаботочного переменного тока конденсатора C1 в слаботочный постоянный ток. Конденсатор C1 ограничивает ток до 50 мА, но не ограничивает напряжение. Это означает, что постоянный ток на выходе мостового выпрямителя является пиковым значением 220 В переменного тока. Это можно рассчитать как: 220 x 1,41 = 310 В постоянного тока приблизительно . Итак, у нас на выходе моста 310 В, 50 мА.
    4. Однако напряжение 310 В постоянного тока может быть слишком высоким для любого низковольтного устройства, кроме реле.Поэтому стабилитрон подходящего номинала используется для шунтирования 310 В постоянного тока на желаемое более низкое значение, такое как 12 В, 5 В, 24 В и т. Д., В зависимости от характеристик нагрузки.
    5. Резистор R2 используется как токоограничивающий резистор. Вы можете почувствовать, когда C1 уже существует для ограничения тока, зачем нам нужен R2. Это связано с тем, что во время периодов мгновенного включения питания, то есть когда входной переменный ток впервые подается на схему, конденсатор C1 просто действует как короткое замыкание в течение нескольких миллисекунд.Эти несколько начальных миллисекунд периода включения позволяют полному высокому току 220 В переменного тока попасть в цепь, чего может быть достаточно, чтобы разрушить уязвимую нагрузку постоянного тока на выходе. Чтобы этого не произошло, введем R2. Однако лучшим вариантом может быть использование NTC вместо R2.
    6. C2 — это конденсатор фильтра, который сглаживает пульсации 100 Гц от выпрямленного моста до более чистого постоянного тока. Хотя на схеме показан высоковольтный конденсатор 10uF 250V, вы можете просто заменить его на 220uF / 50V из-за наличия стабилитрона.

    Схема печатной платы для объясненного выше простого бестрансформаторного источника питания показана на следующем изображении. Обратите внимание, что я добавил место для MOV также на печатной плате со стороны входа сети.

    Пример схемы для светодиодного декоративного освещения

    Следующая схема бестрансформаторного или емкостного источника питания может использоваться в качестве схемы светодиодной лампы для безопасного освещения второстепенных светодиодных цепей, таких как маленькие светодиодные лампы или светодиодные гирлянды.

    Идею запросил г-н.Jayesh:

    Требования к требованиям

    Струна состоит из примерно 65-68 светодиодов на 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 6 струн связаны вместе, чтобы образовать одну струну, так что расположение лампочки составляет 4 дюйма в окончательной веревке. итак всего 390 — 408 светодиодных лампочек в финальной тросе.
    Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы
    1) одна строка из 65-68 строк.
    или
    2) полная веревка из 6 струн вместе.
    у нас есть еще одна веревка из 3-х струн. Струна состоит из примерно 65-68 светодиодов с напряжением 3 В, соединенных последовательно примерно на расстоянии, скажем, 2 фута, такие 3 струны связаны вместе, чтобы образовать одну струну, поэтому расположение лампочки получается, что длина последней веревки составляет 4 дюйма. итак всего 195-204 светодиодных лампочки в готовом тросе.
    Итак, пожалуйста, предложите мне наилучшую схему драйвера для работы
    1) одна строка из 65-68 строк.
    или
    2) полная веревка из 3-х струн вместе.
    Пожалуйста, предложите лучшую надежную схему с устройством защиты от перенапряжения и посоветуйте, какие дополнительные устройства необходимо подключить для защиты цепей.
    и, пожалуйста, обратите внимание на то, что на принципиальных схемах указаны значения, необходимые для того же, поскольку мы не являемся техническим специалистом в этой области.

    Конструкция схемы

    Схема драйвера, показанная ниже, подходит для управления любой цепочкой светодиодных ламп , имеющей менее 100 светодиодов (для входа 220 В), каждый светодиод рассчитан на 20 мА, 3,3 В, 5 мм светодиоды:

    Здесь вход конденсатор 0,33 мкФ / 400 В определяет величину тока, подаваемого на светодиодную цепочку. В этом примере это будет около 17 мА, что примерно соответствует выбранной светодиодной цепочке.

    Если один драйвер используется для большего количества параллельных цепочек светодиодов 60/70, то просто указанное значение конденсатора может быть пропорционально увеличено для поддержания оптимального освещения светодиодов.

    Следовательно, для 2-х цепочек, параллельно подключенных, требуется значение 0,68 мкФ / 400 В, для 3-х цепочек вы можете заменить его на 1 мкФ / 400 В. Аналогично, для 4-х струн его необходимо увеличить до 1,33 мкФ / 400 В и так далее.

    Важно : Хотя я не показал ограничивающий резистор в конструкции, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой цепочкой светодиодов для дополнительной безопасности.Его можно было вставить в любом месте последовательно с отдельными струнами.

    ВНИМАНИЕ: ВСЕ ЦЕПИ, УКАЗАННЫЕ В ДАННОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТЕВОЙ ПИТАНИЯ, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ AC ……..

    2) к бестрансформаторному источнику питания со стабилизированным напряжением

    Теперь давайте посмотрим, как обычный емкостной источник питания может быть преобразован в бестрансформаторный источник питания без перенапряжения или стабилизированного напряжения, применимый практически ко всем стандартным электронным нагрузкам и схемам.Идея была предложена г-ном Чанданом Мэйти.

    Технические характеристики

    Если вы помните, я уже общался с вами раньше с комментариями в вашем блоге.

    Бестрансформаторные схемы действительно хороши, я протестировал пару из них и использовал светодиоды мощностью 20 Вт, 30 Вт. Теперь я пытаюсь добавить контроллер, вентилятор и светодиоды вместе, следовательно, мне нужен двойной источник питания.

    Примерная спецификация:

    Номинальный ток 300 мАР1 = 3.3-5 В 300 мА (для контроллера и т. Д.) P2 = 12-40 В (или более высокий диапазон), 300 мА (для светодиода)
    Я решил использовать вашу вторую цепь, как упоминалось https://www.homemade-circuits.com/2012/ 08 / high-current-transformerless-power.html

    Но я не могу заморозить способ получения 3,3 В без использования дополнительного конденсатора. 1. Можно ли поставить вторую схему с выхода первой? 2. Или второй мост TRIAC, который нужно разместить параллельно первому, после конденсатора, чтобы получить 3.3-5V

    Буду рад, если Вы любезно поможете.

    Спасибо,

    Конструкция

    Функционирование различных компонентов, используемых на различных этапах показанной выше схемы управления напряжением, можно понять из следующих пунктов:

    Напряжение сети выпрямляется четырьмя 1N4007 диоды и фильтруется конденсатором 10 мкФ / 400 В.

    Выходной сигнал на 10 мкФ / 400 В теперь достигает примерно 310 В, что является пиковым выпрямленным напряжением, достигаемым от сети.

    Сеть делителей напряжения, сконфигурированная в основании TIP122, обеспечивает снижение этого напряжения до ожидаемого уровня или требуемого уровня на выходе источника питания.

    Вы также можете использовать MJE13005 вместо TIP122 для большей безопасности.

    Если требуется 12 В, потенциометр 10 кОм может быть установлен для достижения этого через эмиттер / землю TIP122.

    Конденсатор 220 мкФ / 50 В гарантирует, что во время включения база получает мгновенное нулевое напряжение, чтобы держать ее в выключенном состоянии и защищать от начального скачка напряжения.

    Катушка индуктивности также обеспечивает высокое сопротивление в течение периода включения катушки и предотвращает попадание пускового тока внутрь цепи, предотвращая возможное повреждение цепи.

    Для достижения 5 В или любого другого прилагаемого пониженного напряжения можно использовать регулятор напряжения, такой как показанная 7805 IC.

    Принципиальная схема

    Использование полевого МОП-транзистора

    Вышеупомянутая схема, использующая эмиттерный повторитель, может быть дополнительно улучшена за счет применения источника питания истокового повторителя МОП-транзистора вместе с дополнительным каскадом регулирования тока с использованием транзистора BC547.

    Полную принципиальную схему можно увидеть ниже:

    Видео-подтверждение защиты от перенапряжения

    3) Цепь бестрансформаторного источника питания с нулевым переходом

    Третий интерес объясняет важность обнаружения пересечения нуля в емкостных бестрансформаторных источниках питания для полной защиты от бросков импульсных токов при включении сетевого выключателя. Идея была предложена г-ном Фрэнсисом.

    Технические характеристики

    Я с большим интересом читал статьи о бестрансформаторных источниках питания на вашем сайте, и, если я правильно понимаю, основная проблема заключается в возможном пусковом токе в цепи при включении, и это вызвано тем, что включение не всегда происходит при нулевом напряжении цикла (переход через ноль).

    Я новичок в электронике, и мои знания и практический опыт очень ограничены, но если проблема может быть решена, если реализован переход через нуль, почему бы не использовать компонент перехода через нуль для управления им, такой как оптотриак с переходом через ноль.

    Входная сторона Optotriac имеет малую мощность, поэтому можно использовать резистор малой мощности для понижения сетевого напряжения для работы Optotiac. Поэтому на входе оптотриака конденсатор не используется. Конденсатор подключен к выходу, который будет включаться TRIAC, который включается при переходе через нуль.

    Если это применимо, это также решит проблемы с высокими требованиями к току, поскольку Optotriac, в свою очередь, может без каких-либо затруднений управлять другим более высоким током и / или напряжением TRIAC. В цепи постоянного тока, подключенной к конденсатору, больше не должно быть проблем с пусковым током.

    Было бы неплохо узнать ваше практическое мнение и спасибо, что прочитали мою почту.

    С уважением,
    Фрэнсис

    Дизайн

    Как правильно указано в приведенном выше предположении, вход переменного тока без контроля перехода через нуль может быть основной причиной броска импульсного тока в емкостных бестрансформаторных источниках питания.

    Сегодня, с появлением сложных оптоизоляторов драйвера симистора, переключение сети переменного тока с контролем перехода через нуль больше не является сложной задачей и может быть легко реализовано с использованием этих устройств.

    О оптопарах MOCxxxx

    Драйверы симисторов серии MOC представлены в виде оптопар и являются специалистами в этом отношении и могут использоваться с любым симистором для управления сетью переменного тока посредством обнаружения и контроля перехода через ноль.

    Драйверы симисторов серии MOC включают в себя MOC3041, MOC3042, MOC3043 и т. Д., Все они почти идентичны по своим рабочим характеристикам с небольшими различиями в размах напряжений, и любой из них может быть использован для предлагаемого приложения для контроля перенапряжения в емкостных источниках питания.

    Обнаружение и выполнение перехода через нуль обрабатываются внутри этих блоков оптических драйверов, и нужно только сконфигурировать силовой симистор с ним, чтобы засвидетельствовать предполагаемое управляемое срабатывание интегральной схемы симистора при переходе через нуль.

    Прежде чем исследовать схему бестрансформаторного питания симистора без перенапряжения с использованием концепции управления переходом через ноль, давайте сначала вкратце разберемся, что такое переход через нуль, и связанные с ним особенности.

    Что такое переход через нуль в сети переменного тока

    Мы знаем, что потенциал сети переменного тока состоит из циклов напряжения, которые растут и падают с изменением полярности от нуля до максимума и наоборот по заданной шкале.Например, в нашей сети переменного тока 220 В напряжение переключается с 0 на пиковый + 310 В) и обратно до нуля, затем идет вниз от 0 до -310 В и обратно к нулю, это происходит непрерывно 50 раз в секунду, составляя переменный ток 50 Гц. цикл.

    Когда сетевое напряжение близко к мгновенному пику цикла, то есть около 220 В (для 220 В) на входе сети, оно находится в самой сильной зоне с точки зрения напряжения и тока, и если происходит включение емкостного источника питания в этот момент можно ожидать, что все 220 В выйдет из строя через источник питания и связанную с ним уязвимую нагрузку постоянного тока.Результатом может быть то, что мы обычно наблюдаем в таких блоках питания … то есть мгновенное сгорание подключенной нагрузки.

    Вышеупомянутые последствия обычно наблюдаются только в емкостных бестрансформаторных источниках питания, поскольку конденсаторы имеют характеристики короткого замыкания в течение доли секунды, когда они подвергаются напряжению питания, после чего они заряжаются и настраиваются в соответствии с заданными параметрами. выходной уровень

    Возвращаясь к проблеме пересечения нулевого уровня сети, в обратной ситуации, когда сеть приближается или пересекает нулевую линию своего фазового цикла, ее можно рассматривать как самую слабую зону с точки зрения тока и напряжения, и можно ожидать, что любое устройство, включенное в этот момент, будет полностью безопасным и не подверженным скачкам напряжения.

    Следовательно, если емкостной источник питания включается в ситуациях, когда вход переменного тока проходит через нулевую фазу, мы можем ожидать, что выходной сигнал источника питания будет безопасным и не будет иметь импульсного тока.

    Как это работает

    Схема, показанная выше, использует драйвер оптоизолятора симистора MOC3041 и сконфигурирована таким образом, что при каждом включении питания он срабатывает и инициирует подключенный симистор только во время первого перехода фазы переменного тока через ноль, а затем поддерживает нормально включенным переменный ток до тех пор, пока питание не будет отключено и снова не включено.

    Обращаясь к рисунку, мы можем увидеть, как крошечный 6-контактный MOC 3041 IC соединен с симистором для выполнения процедур.

    Вход на симистор подается через высоковольтный токоограничивающий конденсатор 105/400 В, нагрузку можно увидеть, подключенную к другому концу источника питания через конфигурацию мостового выпрямителя для достижения чистого постоянного тока на предполагаемой нагрузке, которая может светодиод.

    Как контролируется импульсный ток

    При включении питания сначала симистор остается выключенным (из-за отсутствия привода затвора), как и нагрузка, подключенная к мостовой сети.

    Напряжение питания, получаемое с выхода конденсатора 105/400 В, достигает внутреннего ИК-светодиода через контакт 1/2 оптической микросхемы. Этот вход контролируется и обрабатывается внутри в соответствии с реакцией светодиодного ИК-света … и как только обнаруживается, что поданный цикл переменного тока достигает точки пересечения нуля, внутренний переключатель мгновенно переключает и запускает симистор и сохраняет систему включенной в течение оставшееся время до выключения и повторного включения агрегата.

    При описанной выше настройке при каждом включении питания оптоизолирующий симистор MOC обеспечивает включение симистора только в тот период, когда сеть переменного тока пересекает нулевую линию своей фазы, что, в свою очередь, отлично поддерживает нагрузку. безопасный и свободный от опасного всплеска спешки.

    Улучшение вышеупомянутой конструкции

    Здесь обсуждается комплексная схема емкостного источника питания, имеющая детектор перехода через ноль, ограничитель перенапряжения и регулятор напряжения, идея была представлена ​​г-ном Чами.

    Разработка улучшенной схемы емкостного источника питания с Обнаружение пересечения нуля

    Привет, Свагатам.

    Это моя конструкция емкостного источника питания с защитой от перенапряжения с переходом через ноль и стабилизатором напряжения, я постараюсь перечислить все мои сомнения.
    (я знаю, что это будет дорого для конденсаторов, но это только для целей тестирования)

    1-Я не уверен, нужно ли менять BT136 на BTA06 для обеспечения большего тока.

    2-Q1 (TIP31C) может обрабатывать только 100 В макс. Может его стоит поменять на транзистор 200В 2-3А?, Вроде 2SC4381.

    3-R6 (200R 5W), я знаю, что этот резистор довольно маленький, и это моя ошибка
    , я действительно хотел поставить резистор 1 кОм.А вот с резистором 200R 5W
    работать будет?

    4-Некоторые резисторы были изменены в соответствии с вашими рекомендациями, чтобы сделать его способным к напряжению 110 В. Может быть, 10 кОм нужно меньше?

    Если вы знаете, как заставить его работать правильно, я буду очень рад исправить это. Если он работает, я могу сделать для него печатную плату, и вы можете опубликовать ее на своей странице (бесплатно, конечно).

    Спасибо, что нашли время и просмотрели мою полную неисправностей схему.

    Хорошего дня.

    Chamy

    Оценка конструкции

    Привет, Chamy,

    мне кажется, что ваша схема в порядке. Вот ответы на ваши вопросы:

    1) да BT136 следует заменить на симистор более высокого номинала.
    2) TIP31 можно заменить транзистором Дарлингтона на 200 В, например, BU806 и т. Д., Иначе он может работать некорректно.
    3) при использовании Дарлингтона базовый резистор может быть высокого номинала, может быть, резистор 1 кОм / 2 Вт будет вполне нормальным.
    Однако дизайн сам по себе выглядит излишним, гораздо более простую версию можно увидеть ниже https://www.homemade-circuits.com/2016/07/scr-shunt-for-protecting-capacitive-led.html
    С уважением

    Swagatam

    Ссылка:

    Zero Crossing Circuit

    4) Импульсный бестрансформаторный источник питания с использованием IC 555

    Это четвертое простое, но интеллектуальное решение реализовано здесь с использованием IC 555 в ее моностабильном режиме для управления резкими скачками напряжения без трансформатора. питание через схему переключения при переходе через нуль, при которой входная мощность от сети может поступать в схему только во время перехода сигнала переменного тока через нуль, тем самым исключая возможность скачков напряжения.Идею подсказал один из заядлых читателей этого блога.

    Технические характеристики

    Будет ли работать бестрансформаторная схема с нулевым переходом для предотвращения начального пускового тока, не позволяя включаться до точки 0 в цикле 60/50 Гц?

    Многие твердотельные реле, которые дешевы, менее 10,00 индийских рупий и имеют встроенную возможность.

    Также я хотел бы управлять 20-ваттными светодиодами с этой конструкцией, но я не уверен, какой ток или насколько горячие конденсаторы получат, я полагаю, это зависит от того, как светодиоды подключены последовательно или параллельно, но допустим, что конденсатор рассчитан на 5 амперы или 125 мкФ конденсатор нагреется и взорвется ???

    Как читать характеристики конденсаторов, чтобы определить, сколько энергии они могут рассеять.

    Вышеупомянутый запрос побудил меня искать соответствующую конструкцию, включающую концепцию переключения перехода через нуль на основе IC 555, и натолкнулся на следующую превосходную схему бестрансформаторного источника питания, которую можно было бы использовать для убедительного устранения всех возможных шансов на скачки напряжения.

    Что такое переключение с переходом через нуль:

    Важно сначала изучить эту концепцию, прежде чем исследовать предлагаемую бестрансформаторную схему без перенапряжения.

    Все мы знаем, как выглядит синусоида сетевого сигнала переменного тока.Мы знаем, что этот синусоидальный сигнал начинается с отметки нулевого потенциала и экспоненциально или постепенно повышается до точки пикового напряжения (220 или 120), а оттуда экспоненциально возвращается к отметке нулевого потенциала.

    После этого положительного цикла форма сигнала опускается и повторяет вышеуказанный цикл, но в отрицательном направлении, пока снова не вернется к нулевой отметке.

    Вышеупомянутая операция происходит примерно от 50 до 60 раз в секунду в зависимости от технических характеристик электросети.
    Так как эта форма сигнала входит в цепь, любая точка формы сигнала, отличная от нуля, представляет потенциальную опасность выброса при включении из-за высокого тока в форме сигнала.

    Однако вышеупомянутой ситуации можно избежать, если нагрузка сталкивается с переключателем во время перехода через нуль, после чего экспоненциальный рост нагрузки не представляет никакой угрозы для нагрузки.

    Именно это мы и попытались реализовать в предлагаемой схеме.

    Работа схемы

    Ссылаясь на приведенную ниже принципиальную схему, 4 диода 1N4007 образуют стандартную конфигурацию мостовых выпрямителей, катодный переход создает пульсацию на линии 100 Гц.
    Вышеупомянутая частота 100 Гц снижается с помощью делителя потенциала (47 кОм / 20 кОм) и подается на положительную шину IC555. По этой линии потенциал соответствующим образом регулируется и фильтруется с помощью D1 и C1.

    Вышеупомянутый потенциал также прикладывается к базе Q1 через резистор 100 кОм.

    IC 555 сконфигурирован как моностабильный MV, что означает, что на его выходе будет высокий уровень каждый раз, когда его контакт №2 заземлен.

    В течение периодов, в течение которых напряжение сети переменного тока выше (+) 0,6 В, Q1 остается выключенным, но как только форма сигнала переменного тока касается нулевой отметки, то значение ниже (+) 0.6 В, Q1 включает заземляющий контакт №2 ИС и обеспечивает положительный выход контакта №3 ИС.

    Выход IC включает SCR и нагрузку и сохраняет его включенным до истечения времени MMV, чтобы начать новый цикл.

    Время включения моностабильного может быть установлено изменением предустановки 1M.

    Большее время включения обеспечивает больший ток нагрузки, делая ее ярче, если это светодиод, и наоборот.

    Условия включения этой схемы бестрансформаторного питания на основе IC 555, таким образом, ограничиваются только тогда, когда переменный ток близок к нулю, что, в свою очередь, гарантирует отсутствие скачков напряжения при каждом включении нагрузки или схемы.

    Принципиальная схема

    для приложения драйвера светодиода

    Если вы ищете бестрансформаторный источник питания для приложения драйвера светодиода на коммерческом уровне, то, вероятно, вы можете попробовать концепции, описанные здесь.

    220 В, понижающий 12 В 0,5 А, решение для включения питания умного дома Небольшой вспомогательный источник питания для бытовой техники 24 В 0,3 А, большой ток

    Zhongguang core source профессиональное решение для электропитания, операционный усилитель, моторный привод, высокомощные MOS и другие поставщики системных услуг, решения по источникам питания для небольших бытовых приборов, промышленные вспомогательные источники питания, интеллектуальная ИС привода с затемнением светодиодов, мощность: менее 30 Вт, целевые решения Доступны функции продукта, позволяющие снизить стоимость системы и повысить гибкость конструкции.
    12V Buck 5V 2A SOT23-6 Малый корпус Synchronous Buck IC 12V Buck 5V 3A Малый корпус Большой ток DC-DC Boost
    Boost Solution:
    5-35V Boost 8-100V различные решения Boost Высокая мощность 300W
    40-80V Boost Повышающее напряжение 45-300 В

    Понижающее решение:
    8-80 В, понижающее напряжение, 5 В, 1 А, 12 В, 500 мА, понижающее напряжение, высокое напряжение
    , понижающее напряжение, 15-100 В, 12 В, 2 А, 5 В, 1 А, повышенное напряжение, высокое напряжение, понижающее напряжение, ступенчатое решение

    Кроме того, компания предлагает широкий выбор вафельных гранул DC-DC, чтобы помочь клиентам в производстве упаковки.

    M P1484 dc-dc wafer 1482 power IC пластина A P2576 2596 пластина
    431 пластина эталонного источника A P4310 пластина A P2952 пластина 4329 пластина 1117 пластина
    Boost IC пластина Buck IC пластина 432 пластины различные DC-DC пластины 9

    1 Понижающее напряжение 220 В Выходная мощность 12 В / 24 В больше для адаптации к приложениям с более высокой мощностью
    2 Неизолированные цепи не требуют трансформатора, а периферийные схемы проще
    3 Экономия затрат на периферийные компоненты
    4 Полностью интегрированная схема замедленного запуска снижает нагрузку на устройство и выбросы выходного напряжения
    5 Внешние схемы для точного программирования предельного тока
    6 Более широкий рабочий цикл для более высокой выходной мощности и меньшего размера конденсатора входного фильтра
    7 Обнаружение пониженного входного напряжения (УФ) предотвращает нежелательные колебания выходного напряжения при отключении
    8 Цепь отключения при перенапряжении на входе (OV) увеличивает устойчивость к скачкам напряжения на входе
    9 с защитой от короткого замыкания на выходе, защитой от обрыва цепи

    MC34119 Усилитель звука малой мощности
    NE592 Видеоусилитель OP07-CP Прецизионный операционный усилитель TI [ДАННЫЕ] Прецизионный операционный усилитель OP07-DP TI [
    NE5532 Высокоскоростной малошумящий двойной операционный усилитель TI Двойной операционный усилитель NE5534 Высокоскоростной малошумящий Одиночный операционный усилитель TI Одиночный операционный усилитель OPA602 Высокоскоростной высокоточный ОУ (без OPA2602) OPA604 Одиночный ОУ OPA2604 с двумя малошумящими усилителями
    OPA132 одиночный OPA2132 двойной OPA4132 четыре высокоскоростных малошумящих ОУ
    OPA227 OPA2227 OPA4227 OPA228 OPA2228 Операционный усилитель с низким уровнем шума
    AD844: однокристальный операционный усилитель 60 МГц, 2000 В / сШирокая полоса пропускания, очень быстрая реакция на большой сигнал
    Обычно используемый усилитель, управляемый напряжением: AD603 VCA810 VCA820 AD603: Малошумящий операционный усилитель с управляемым напряжением, Полоса пропускания 90 МГц VCA810: 35 МГц Широкополосный управляемый напряжением усилитель с широким диапазоном регулировки усиления
    25 мВ / дБ (-40 ~ 40 дБ)
    VCA820: операционный усилитель с регулируемым усилением 150 МГц (-20 ~ + 20 дБ)

    OK122 полоса пропускания 150 кГц малошумящий операционный усилитель
    OK222 полоса пропускания 1 МГц малошумящий низкий ток покоя
    OK358 полоса пропускания 1 МГц двойной операционный усилитель
    OK324 полоса пропускания 1 МГц четырехканальный операционный усилитель
    OK522 полоса пропускания 3.Двойной операционный усилитель с низким уровнем шума, 6 МГц
    OK622 Полоса пропускания 6,5 МГц Операционный усилитель с низким уровнем шума
    OK722 Полоса пропускания 10 МГц Двойной операционный усилитель с низким уровнем шума
    OK6041 6042 Одиночный и двойной ОУ с низким статическим энергопотреблением
    OK8051 8052 Полоса пропускания 250 МГц, одно- и двухканальный
    OK8551 8552 8554 Высокоточный одноканальный двухканальный ОУ с нулевым температурным дрейфом

    Измерение температуры
    датчик давления
    Прецизионное измерение тока
    Электронные весы
    Тензометрический усилитель
    Медицинские инструменты
    Усилитель термопары
    Портативное испытательное оборудование

    Pyle — В дороге — Блок питания

    PS5A
    MSRP: 28 долларов США.99
    Кабель питания 12 В, адаптер переменного / постоянного тока (штекерный разъем для видеонаблюдения)
    PCO885
    MSRP: 0 долларов США.00
    Кондиционер питания для монтажа в 19-дюймовую стойку — Блок питания мощностью 3600 Вт с 20 розетками
    PSWNV120
    MSRP: 48 долларов.99
    Понижающая мощность с 24 В на 12 В — Преобразователь источника питания постоянного тока для автомобиля (для автомобиля / грузовика 24 В, фургона, автобуса, прицепа, жилого дома)
    PSWNV240
    MSRP: 62 доллара.99
    Понижающая мощность с 24 В на 12 В — Преобразователь источника питания постоянного тока для транспортного средства, 240 Вт (для автомобиля / грузовика 24 В, фургона, автобуса, прицепа, жилого дома)
    PSWNV480
    MSRP: 79 долларов.99
    Понижающая мощность с 24 В на 12 В — преобразователь источника питания постоянного тока для транспортного средства, 480 Вт (для автомобилей / грузовиков 24 В, фургонов, автобусов, прицепов, жилых автофургонов)
    PSWNV720
    MSRP: 97 долларов.99
    Понижающая мощность с 24 В на 12 В — Преобразователь источника питания постоянного тока для транспортного средства, 720 Вт (для автомобиля / грузовика 24 В, фургона, автобуса, прицепа, жилого дома)
    PVTC300U
    MSRP: 66 долларов.99
    Повышающий и понижающий преобразователь напряжения 300 Вт с USB-портом для зарядки — 110/220 В переменного тока
    UPS8KX
    MSRP: 97 долларов.99
    Блок питания на 6 ампер
    ПСВ40У
    MSRP: 59 долларов США.99
    Настольный источник питания — преобразователь переменного тока в постоянный с USB-портом для зарядки, цифровой ЖК-дисплей, регулируемое напряжение (4 А)
    ПБПК52
    MSRP: 268 долларов.99
    Многофункциональный автомобильный аварийный инструмент на обочине дороги, отскок 4-в-1, воздушный насос для шин, внешний аккумулятор, фонарик
    ПЛ12В3П
    MSRP: 35 долларов.99
    Подключите к автомобилю от 1 до 3 умножитель прикуривателя и станцию ​​управления питанием
    УПЛ12В2ЦП
    MSRP: 24 доллара.99
    Подключите к автомобилю от 1 до 2 множитель прикуривателя
    PL12V2AC
    MSRP: 28 долларов США.99
    Подключите к автомобилю от 1 до 2 умножитель прикуривателя и регулируемый трансформатор переменного напряжения
    UPL12AT3C
    MSRP: 28 долларов США.99
    Комбинированный комплект для пепельницы с мультипликатором прикуривателя от 1 до 3 в автомобиле
    PL12AT3C
    MSRP: 28 долларов США.99
    Комбинированный комплект для пепельницы с мультипликатором прикуривателя от 1 до 3 в автомобиле
    PINV22
    MSRP: 73 доллара.99
    Подключите автомобильный инвертор мощностью 100 Вт от 12 В до 115 В переменного тока с модифицированной синусоидой и 5-вольтовой USB-розеткой
    PINV44
    MSRP: 95 долларов США.99
    Подключите автомобильный инвертор мощностью 300 Вт от 12 В до 115 В переменного тока с модифицированной синусоидальной волной и 5-вольтовой USB-розеткой
    ПИНВ11
    MSRP: 62 доллара.99
    Подключите автомобильный инвертор мощностью 50 Вт от 12 В до 115 В переменного тока с модифицированной синусоидальной волной
    ПНВУ200
    Рекомендуемая производителем розничная цена: 55 долларов США.99
    Автомобильный компактный инвертор мощностью 160 Вт постоянного / переменного тока
    PCO865
    MSRP: 231 доллар.99
    Устройство защиты от перенапряжения для профессионального аудио источника питания — полоска стабилизатора питания для монтажа в стойку с (4) USB-портами для зарядки

    Изолированный импульсный блок питания от 100 ~ 240 В до 12 В постоянного и переменного тока Понижающий понижающий преобразователь напряжения

    $ 39.99 $ 5,99

    Код продукта : MP1205A

    Производитель : PCsensor

    Уровень запасов : 10000


    MP1205A — изолированный силовой модуль AC-DC с выходом 12 В 0,5 А. Используйте упаковку оболочки и заливку клея AB, влагостойкую, пыленепроницаемую и хорошо отводящую тепло.
    Универсальное входное напряжение: 100 ~ 240 В переменного тока.
    Выбор материала промышленного класса, высокая эффективность, высокая точность выходного напряжения и низкая пульсация. Изделие легко установить и его можно приварить непосредственно к материнской плате.Он широко используется в источниках питания различных панелей промышленного управления , устройства управления переключателем умного дома и т. Д.

    Характеристики продукта

    Приложения
    1 、 Источник питания материнской платы управления холодным и сухим оборудованием
    2 、 Станок для снятия изоляции, источник питания материнской платы управления станка
    3 、 Источник питания материнской платы управления воздушным компрессором
    4 、 Питание материнской платы управления станка лазерной резки питание
    5 、 Все виды печатных плат, требующих питания

    Параметр продукта

    Диапазон частот (Гц)


    06
    Входные характеристики

    Номинальное входное напряжение (В)

    AC 100 ~ 240 В

    3

    50 ~ 60 Гц

    Входной ток (мА)

    65 мА при 110 В перем. ≤200 мВт

    Время задержки пуска (мс)

    < 500 мс

    90 662
    Выходные характеристики

    Выходное напряжение (В)

    DC 12 В ± 1%

    Номинальный ток (A)

    0.5A

    Номинальная мощность (Вт)

    6 Вт

    Пульсация на выходе (мВ)

    Номинальное входное напряжение,

    3

    3 9065

    3 20 МГц

    Регулировка нагрузки

    Нагрузка 10-100%

    ± 3%

    Эффективность преобразования

    ≥75% при 110 В переменного тока ≥80% при 220 В переменного тока 4 Защита от перегрузки

    Номинальное входное напряжение

    115% -150% номинальной выходной мощности

    Максимальная токовая защита

    ≥1.1 раз Io

    Защита от короткого замыкания

    Короткое замыкание не повреждает устройство, и выход может быть автоматически сброшен после срабатывания

    Другие характеристики

    высокое напряжение (В)

    Подайте высокое напряжение между входом и выходом, проверьте в течение 60 с, ток утечки ≤5 мА

    2000 В переменного тока

    Рабочая температура (℃)

    -30 ~ 70 ℃

    Рабочая влажность (относительная влажность)

    20-90%, без конденсации

    Размер продукта

    Принципиальная внутренняя схема продукта

    Типовая схема применения модуля
    AC / Power

    9140 3

    Выходное напряжение

    63

    6 Вт4 * 29,4 * 22,6 мм

    2 912 91 -12V

    Модель

    Тип выхода

    Мощность

    Размер

    MP1205A

    Один выход

    12 В

    MP0510A

    Один выход

    5 В

    6 Вт

    3

    3

    2

    12W

    MPD0505A

    Двойной выход

    + 5V

    -5V

    2 10W

    2 10W

    + 5 В

    + 12 В

    10 Вт

    Примечание: подробную информацию о каждой модели см.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *