Site Loader

Блок питания для галогенных ламп

Галогеновые лампы с каждым днем все активнее применяются в украшении различных торговых комплексов и витрин. Яркая цветовая гамма, насыщенность в передаче изображения придают им все большую популярность. Срок их службы намного больше, чем у обычных ламп. При этом они могут длительно работать без выключения. В галогенках используются нити накала, но процесс свечения, в сравнении с лампами накаливания, у них отличается благодаря наполнению баллона особым составом. Такие лампочки используются в различных светильниках, люстрах, кухонной мебели и бывают 220 и 12 вольтовые. Блок питания для галогенок напряжением 12 вольт необходим, потому что при прямом их включении в электрическую сеть произойдет короткое замыкание.

Содержание

  • Технические характеристики
  • Классификация
  • Трансформаторы для галогеновых ламп
  • Расчет мощности трансформатора для ламп и схема подключения
  • Переделка блока питания своими руками
    • Один из вариантов самостоятельного изготовления импульсного блока питания
    • Самостоятельная сборка
  • Рекомендации по использованию трансформатора

Технические характеристики

Вольтаж галогенок бывает не только 220 и 12 вольт. В продаже можно найти лампочки на 24 и даже на 6 вольт. Мощность тоже может быть различной – 5, 10, 20 ватт. Галогеновые лампы от 220 В включаются прямо в сеть. Тем, которые работают от 12 В, необходимы специальные устройства, преобразующие ток из сети для 12 вольт, – так называемые трансформаторы или специальные блоки питания.

Двенадцативольтовые галогенки работают очень хорошо. Раньше, в 90-е годы, применялся трансформатор больших размеров на 50 Гц, который обеспечивал работу только одной галогеновой лампы. В современном освещении применяются импульсные высокочастотные преобразователи. По размерам очень маленькие, но могут потянуть 2 – 3 лампы одновременно.

На современном рынке встречаются как дорогие, так и дешевые блоки питания. В процентном соотношении дорогих продается около 5 %, а дешевки намного больше. Хотя, в принципе, дороговизна – это еще не гарантия надежности. В крутых преобразователях, к сожалению, не используются высококачественные детали, а лишь применяются хитроумные схемные «навороты», способствующие нормальной работе блока питания хотя бы в течение гарантийного срока. Как только он заканчивается, устройство сгорает.

Классификация

Трансформаторы бывают электромагнитными и электронными (импульсными). Электромагнитные доступны по цене, надежны, их можно сделать при желании своими руками. У них есть и свои минусы – приличный вес, большие габаритные размеры, повышение температуры при длительной работе. А перепады напряжения значительно сокращают срок работы галогеновых ламп.

Электронные трансформаторы весят намного меньше, у них стабильное напряжение на выходе, они сильно не нагреваются, могут иметь защиту от КЗ и плавный пуск, увеличивающий срок эксплуатации лампы.

Трансформаторы для галогеновых ламп

Разбор будет проведен на примере блока питания фирмы «Ферон Герман Технолоджи». На выходе этот трансформатор имеет ни много ни мало – 5 ампер. Для такой небольшой коробочки значение потрясающее. Корпус сделан герметичным способом, с отсутствием всякого рода вентиляции. Наверное, поэтому некоторые экземпляры таких блоков питания плавятся от высокой температуры.

Схема преобразователя в первом варианте очень простая. Настолько минимален набор всех деталей, что вряд ли из нее можно что-то выкинуть. При перечислении видим:

  • мост из диодов;
  • RC цепь с динистором, чтобы запустился генератор;
  • генератор, собранный на полумостовой схеме;
  • трансформатор, понижающий входное напряжение;
  • низкоомный резистор, который служит в качестве предохранителя.

При большом перепаде напряжения такой преобразователь на 100% «сдохнет», приняв весь «удар» на себя. Все выполнено из довольно дешевого набора деталей. Лишь к трансформаторам нет никаких нареканий, потому что они сделаны на совесть.

Второй вариант выглядит очень слабым и недоработанным. В эмиттерные цепи вставлены резисторы R5 и R6 для ограничения тока. При этом совершенно не продумана блокировка транзисторов в случае резкого повышения тока (ее просто нет!). Сомнение вызывает электрическая цепь (на схеме она красным цветом).

Фирма «Ферон Герман Технолоджи» выпускает галогеновые лампы мощностью до 60 ватт. Сила тока блока питания на выходе получается 5 ампер. Это многовато для такой лампочки.

При снятии крышки обратите особое внимание на размеры радиатора. Для выходных 5 ампер они очень маленькие.

Расчет мощности трансформатора для ламп и схема подключения

Продаются сегодня различные трансформаторы, поэтому существуют определенные правила подбора необходимой мощности. Не стоит брать трансформатор слишком мощный. Он будет работать практически вхолостую. Недостаток мощности приведет к перегреву и дальнейшему выходу устройства из строя.

Рассчитать мощность трансформатора можно самостоятельно. Задачка скорее математическая и по силам каждому начинающему электрику. Например, необходимо установить 8 точечных галогенок напряжением 12 В и мощностью 20 ватт. Общая мощность при этом составит 160 ватт. Берем с запасом на 10 % примерно и приобретаем мощностью 200 ватт.

Схема №1 выглядит примерно таким образом: на линии 220 стоит одноклавишный выключатель, при этом оранжевый и синий провод подсоединяются ко входу трансформатора (первичные клеммы).

На линии 12 вольт все лампы подключаются к трансформатору (на вторичные клеммы). Соединяющие медные провода обязательно должны иметь одинаковое сечение, иначе яркость у лампочек будет разная.

Еще одно условие: провод, соединяющий трансформатор с галогеновыми лампами, должен быть длиной не менее 1,5 метров, лучше, если 3. Если сделать его слишком коротким, он начнет греться, и яркость лампочек снизится.

Схема №2 – для подключения галогеновых светильников. Здесь можно поступить по-другому. Разбить, к примеру, шесть светильников на две части. Для каждой установить понижающий трансформатор. Правильность такого выбора обусловлена тем, что при поломке одного из блоков питания вторая часть светильников все-таки будет продолжать работать. Мощность одной группы составляет 105 ватт. С небольшим коэффициентом запаса получаем, что приобрести необходимо два трансформатора на 150 ватт.

Совет! Каждый понижающий трансформатор запитайте своими проводами и соедините их в распределительной коробке. Места соединения оставьте в свободном доступе.

Переделка блока питания своими руками

Для работы галогенных ламп начали применяться импульсные источники тока с высокочастотным преобразованием напряжения. При домашнем изготовлении и налаживании довольно часто сгорают дорогостоящие транзисторы. Так как питающее напряжение в первичных цепях достигает 300 вольт, то к изоляции предъявляются очень высокие требования. Все эти трудности вполне можно обойти, если приспособить готовый электронный трансформатор. Он применяется для питания 12-вольтовых галогенок в подсветке (в магазинах), которые запитываются от стандартной электросети.

Существует определенное мнение, что получить самодельный импульсный блок питания – дело нехитрое. Можно лишь добавить выпрямительный мост, сглаживающий конденсатор и стабилизатор напряжения. На самом деле все обстоит куда сложнее. Если к выпрямителю подключить светодиод, то при включении можно зафиксировать только одно зажигание. Если выключить и включить преобразователь в сеть снова, повторится еще одна вспышка. Чтобы появилось постоянное свечение, необходимо к выпрямителю подвести дополнительную нагрузку, которая, отбирая полезную мощность, превращала бы ее в тепло.

Один из вариантов самостоятельного изготовления импульсного блока питания

Описываемый блок питания вполне можно изготовить из электронного трансформатора мощностью 105 Вт. Практически этот трансформатор напоминает компактный импульсный преобразователь напряжения. Для сборки дополнительно понадобится согласующий трансформатор Т1, сетевой фильтр, выпрямительный мост VD1-VD4, выходной дроссель L2.

Схема двухполярного блока питания

Такой аппарат стабильно функционирует длительное время с усилителем низкой частоты мощностью 2х20 ватт. При 220 В и силе тока 0,1 А выходное напряжение будет 25 В, при увеличении силы тока до 2 ампер напряжение падает до 20 вольт, что считается нормальной работой.

Ток, минуя выключатель и предохранители FU1 и FU2, следует на фильтр, защищающий цепь от помех импульсного преобразователя. Середину конденсаторов С1 и С2 соединяют с экранирующим кожухом блока питания. Потом ток поступает на вход U1, откуда с выходных клемм пониженное напряжение подается на согласующий трансформатор Т1. Переменное напряжение с другой (вторичной обмотки) выпрямляет диодный мост и сглаживает фильтр L2C4C5.

Самостоятельная сборка

Трансформатор Т1 изготавливается самостоятельно. Число витков на вторичной обмотке влияет на выходное напряжение. Сам трансформатор выполнен на кольцевом магнитопроводе К30х18х7 из феррита марки М2000НМ. Первичная обмотка состоит из провода ПЭВ-2 диаметром 0,8 мм, сложенного вдвое. Вторичная обмотка состоит из 22 витков провода ПЭВ-2, сложенного вдвое. При соединении конца первой полуобмотки с началом второй получаем среднюю точку вторичной обмотки. Дроссель также изготавливаем самостоятельно. Его наматывают на таком же ферритовом кольце, обе обмотки содержат по 20 витков.

Выпрямительные диоды располагаются на радиаторе площадью не менее 50 кв.см. Обратите внимание, что диоды, у которых аноды соединены с минусовым выходом, изолируются от теплоотвода слюдяными прокладками.

Сглаживающие конденсаторы С4 и С5 состоят из трех параллельно включенных К50-46 емкостью по 2200 мкФ каждый. Такой способ применяется, чтобы снизить общую индуктивность электролитических конденсаторов.

На входе блока питания лучше будет установить сетевой фильтр, но возможна работа и без него. Для дросселя сетевого фильтра можно использовать ДФ 50 Гц.

Все детали блока питания располагаются навесным монтажом на плате из изоляционного материала. Полученная конструкция помещается в экранирующий кожух из тонкой листовой латуни или луженой жести. В нем не забудьте просверлить отверстия для вентиляции воздуха.

Правильно собранный блок питания не нуждается в налаживании и начинает сразу же работать. Но на всякий случай можно проверить его работоспособность с помощью подключения на выход резистора сопротивлением 240 Ом, мощностью рассеяния 3 Вт.

Рекомендации по использованию трансформатора

Понижающие трансформаторы для галогенных ламп во время работы выделяют очень большое количество тепла. Поэтому необходимо соблюдать несколько требований:

  1. Запрещается подключение блока питания без нагрузки.
  2. Размещайте блок на негорючей поверхности.
  3. Расстояние от блока до лампочки не менее 20 сантиметров.
  4. Для лучшей вентиляции установите трансформатор в нише объемом не менее 15 литров.

Блок питания необходим для галогеновых ламп, работающих от напряжения 12 вольт. Он является своеобразным трансформатором, понижающим входные 220 В до нужных значений.

Ещё блок питания, теперь 48 Вольт 0.5 (1) Ампер. Обзор блока питания 48 Вольт. Принципиальная схема и тест блока питания 48 В

$8.21 (3шт)

Перейти в магазин

Как я писал в предыдущем обзоре, пришли ко мне несколько разных блоков питания и сегодня обзор следующего. В прошлый раз был БП на 12 Вольт, но сегодня вариант на более редкое напряжение, 48 Вольт, но при этом также имеющее свою сферу применения, о которой будет рассказано в конце обзора.
В общем как всегда, тесты, схемы и ответы на некоторые вопросы, которые задавали мне в комментариях.

Все, что касается того, как мне нравится ковырять разные блоки питания я рассказал раньше, потому сразу перейду к обзору.

Здесь я также заказал лот из трех штук, и аналогично первому БП получил три отдельных больших пакетов с защелкой.

Судя по странице товара в магазине, данный блок питания заявлен как 48 Вольт 1 Ампер, что в сумме должно дать 48 Ватт мощности.
Из названия пропала надпись — Disassembled, но зато появилось — LED.

Внешне очень аккуратно и весьма компактно.

Размеры данного блока питания составляют: 75х38х25мм, он конечно больше, чем предыдущий, но ненамного. При этом там была заявлена мощность 12 Ватт, здесь заявлено 48 Ватт. Но последнее мы еще проверим.


На одной из длинных сторон платы установлен радиатор, при этом радиатор соединен с минусом «горячей» стороны БП. Около «холодной» стороны присутствует изоляция, а сам радиатор примерно на 8-9мм короче, чем может сначала показаться по фото, т.е. изоляция выступает сильно за край радиатора.

Еще пара общих видов платы, больно уж понравилась внешне 🙂

Немного подробнее об установленных компонентах.
1. По входу присутствует предохранитель на ток 2 Ампера в стеклянном корпусе, есть также и небольшой термистор, но варистора нет. Также виден помехоподаляющий конденсатор Х типа.

2. Входной фильтр состоит из конденсатора Х типа и синфазного дросселя. Диодный мост из отдельных диодов.
3. Входной конденсатор имеет емкость 47мкФ. Для мощности в 48 Ватт это совсем впритык, но о этом позже.
4. Я ковырял много блоков питания, но первый раз увидел керамический конденсатор параллельно входному электролитическому. Возможно такое попадалось и раньше, но не уверен.

1. Высоковольтный транзистор в изолированном корпусе, тип транзистора — STK0465, даташит не смотрел, но уже из названия можно предположить что он на ток 4 Ампера и напряжение 650 Вольт. Крепеж дополнительно залит лаком, пробовал снимать, но побоялся что просто оторву радиатор и бросил эту затею, тем более что тип транзистора мне был уже известен.

2. Трансформатор довольно компактный, это обеспечивается тем, что применен не привычный Ш-образный магнитопровод. Внутри проглядывается заливка обмоток лаком.
3. Рядом расположен конденсатор цепи питания ШИМ контроллера.
4. Между радиатором и трансформатором спрятался конденсатор Y типа, соединяющий «горячую» и «холодную» стороны блока питания. Не лез к нему по причине сложности демонтажа радиатора, но номинал разглядел — 2.2 нФ.

1. Интересно что в цепи обратной связи применена не привычная оптопара PC817, а PS2561A, правда я большой разницы не вижу. Зато видно, что плата явно планировалась для двух вариантов выходного диода, как на фото, так и в корпусе TO220.

Во втором случае скорее всего предполагался радиатор. В общем-то логично, для выходного диода критичен выходной ток, а здесь он не очень высокий.
На выходе пара конденсаторов по 220мкФ 63 Вольта соединенных параллельно. Все установленные в БП конденсаторы производства Nichicon, входной KXG серии, остальные KY.
В качестве выходного фильтра установлен двухобмоточный синфазный дроссель. Также отмечу наличие в выходной цепи стабилитрона P6KE51A, дополнительно защищающего нагрузку.

В этот раз платы явно более свежие, судя по маркировке 2012-2013 года выпуска. Больше ничего узнать не смог, придется параметры выяснять экспериментально.

Качество пайки плат назвал бы средним, есть огрехи и не очень аккуратная пайка некоторых мест.

Входная часть блока питания и ШИМ контроллер. Маркировка ШИМ контроллера читается очень плохо (LzP32), потому при составлении схемы я просто нашел ближайший аналог по совпадению назначения выводов. Также на диоде цепи питания ШИМ контроллера полностью отсутствует маркировка, причем на всех трех платах.


В выходной цепи помимо привычных компонентов присутствует и стабилитрон. Дело в том, что регулируемый стабилитрон TL431 имеет максимальное напряжение до 37 Вольт, даже с учетом оптрона это максимум 40, а выходное напряжение у блока питания составляет 48 Вольт. Потому в таких случаях последовательно с оптроном ставят стабилитрон, в данном случае на 24 Вольта, он «срезает» напряжение до безопасной величины. На фото он с маркировкой ZD2.

По поводу схемотехники блока питания вопросов почти нет. В отличии от предыдущего БП здесь применен отдельный ШИМ контроллер и мощный высоковольтный транзистор. Данный вариант имеет как свои преимущества, так и недостатки.

Из преимуществ — мощность БП почти не связана с типом ШИМ контроллера.
Из недостатков — сложнее организовать защиту от перегрева.

На входе стоит разрядная цепочка из трех резисторов по 1.5МОм, которая разряжает конденсатор СХ. Привычная цепь обратной связи с добавлением стабилитрона.
Но есть и пара мелочей:
1. Точный тип микросхемы неизвестен, но ближайший аналог FAN6862, которая имеет вход измерения температуры с внешнего датчика. В обозреваемом БП этот вход используется как защита от превышения напряжения. Если по какой-то причине произойдет отключение обратной связи, то напряжение питания ШИМ контроллера поднимется, а с ним поднимется и напряжение на выводе 3 ШИМ контроллера. В итоге ШИМ контроллер начнет ограничивать выходное напряжение. По крайней мере явно задумано именно так.

2. На плате есть свободное место под терморезистор, обозначенное как NTC2. Сначала я думал, что это должна быть цепь защиты от перегрева, но включение (да и местоположение терморезистора) несколько оригинально, потому не совсем понял цель данного решения. На схеме эта цепочка обозначена красным цветом.

Переходим к тестам.
Как я писал, на странице магазина было заявлено, что БП имеет выходное напряжение в 48 Вольт при токе до 1 Ампера. И если в прошлый раз в названии товара проскальзывало другое значение тока, то здесь ток в 1 Ампер указан везде.


Все подключения были выполнены также как и с предыдущим БП, разница только в электронной нагрузке. Дело в том, что тест данного блока питания был несколько затруднен тем, что выходной ток и мощность не очень большие, но из-за напряжения в 48 Вольт я не мог применять нагрузку показанную в прошлом обзоре. Пришлось взять более мощную, но и более грубую.
На холостом ходу выходное напряжение немного занижено относительно заявленного значения, но на самом деле это абсолютно не критично, так как разница меньше даже чем 0.1% 🙂

Вообще, когда я взял плату в руки, то первая мысль была — явно блок питания на мощность порядка 25 Ватт. Данная мысль была основана на следующих наблюдениях:
1. Габариты платы
2. Емкость входного конденсатора
3. Габарит трансформатора.

Понятно что габарит трансформатора зависит от частоты работы преобразователя, но так как частота обычно в диапазоне 66-133 кГц (чаще 100-133), то и разница в габаритах не сильно большая. Бывают конечно и исключения, но не в данном случае, так как схемотехника была понятна уже при первом взгляде.

В связи с этом тест я старался проводить аккуратно, хотя у меня было еще два «запасных» подопытных.
Ниже на фото нагрузка током 200, 400, 600, 800, 1000, 1050мА.
Последнее значение выбрано неслучайно, при токе в 1.1 Ампера БП гарантированно уходит в защиту отключая выход. После снятия нагрузки опять выходит на рабочий режим.
Ну как бы ток в 1 Ампер дает, даже несколько минут подряд 🙂 Дольше не тестировал, так как на данном этапе не стояло такой цели.

На двух последних фото может показаться, что есть какие-то странности с выходным напряжением, все нормально, по мере прогрева выходное напряжение у этого БП немного растет, а так как последние два этапа проходили не мгновенно, то и выросло оно заметнее чем на первых четырех шагах.

Размах ВЧ пульсаций я бы оценил как весьма низкий, 40 мВ даже при полной нагрузке у БП с выходным напряжением в 48 Вольт это ниже 0.1%

В прошлом обзоре меня попросили посмотреть уровень пульсаций на частоте 100 Гц, решив что информация действительно может быть полезной, снял и это.
Осциллограммы сняты при токах нагрузки — 200, 300, 400, 500, 600 и 700мА, видно что наибольший размах при токах 300-500мА (15-25 Вт), хотя я ожидал что с ростом тока размах еще увеличится.

Но как всегда, более точную информацию о реальной мощности блока питания дает тест с термопрогревом.
Методика стандартна для моих обзоров, интервал каждого шага 20 минут, шаги — 200, 400, 600 и 700мА. В последнем шаге ток нагрузки был выбран исходя из результатов измерения температуры предыдущего шага.
Было замечено, что по мере прогрева растет выходное напряжение, в таблице это будет видно, но в самом конце я резко снял нагрузку и проверил какое напряжение получается на холостом ходу в прогретом состоянии.
Слева до прогрева, справа — после. На самом деле разница оказалась не так велика, как я ожидал, кроме того напряжение по сути пришло к заявленному значению.
В любом случае точность поддержания напряжения и термостабильность находятся на довольно высоком уровне.

По поводу нагрева ситуация немного неоднозначная, почему-то я сначала ждал что начнет перегреваться трансформатор, но оказалось что я был неправ и первым на «финишную прямую» вышел выходной диод. Стоит упомянуть, что на выходе стоит обычный, быстрый диод, а не диод Шоттки, так как при таких напряжениях их ставят редко. Думаю если заменить выходной диод на более быстрый, то можно получить длительную мощность еще немного больше.
Но в любом случае я уже могу сказать, что реальная длительная мощность данного БП около 25 Ватт, как я и думал в самом начале, но кратковременно он может отдавать примерно до 45-50 Ватт.

Термофото с двух ракурсов, здесь также видно, что все тепло сосредоточено в районе выходного диода.

Кроме того меня просили провести тест с воздействием на вход блока питания импульсной помехи. Правда должен сразу сказать, что к данному тесту я отношусь весьма скептически по ряду причин:
1. Условия теста не нормированы.
2. Входной фильтр блока питания защищает от проникновения помех от блока питания в электрическую сеть, но об этом чуть ниже.

Тестовый «стенд» был собран по показанной ниже схеме. Принцип предельно прост, при нажатии на кнопку переключателя на короткое время происходит разрыв контактов, когда верхний контакт уже размокнут, а нижний еще не замкнут. Так как в качестве нагрузки подключена индуктивность, то и возникает импульсная помеха.

В реальности все выглядело куда страшнее. Я использовал трансформатор мощностью 60 Ватт, хотел найти дроссель мощностью 80 Ватт для ЛДС, но видимо или выбросил, или переложил куда-то, второе более вероятно.

Дальше шел тест. я долго и нудно тыкал кнопку, при этом иногда помеха была слышна в компьютерных колонках, которые стояли рядом. Но сам блок питания видимо меня не совсем понял, так как помеху получалось зарегистрировать примерно 1 раз на 30-50 нажатий на кнопку, а так как помеха генерится два раза (при нажатии и отпускании), то получалось 1 срабатывание на 60-100 импульсов.
В итоге несколько раз я все таки зарегистрировал всплеск на выходе, максимальный полный размах был около 1 Вольта, что для 48 Вольт БП составляет всего 2% от выходного напряжения.

Так как это второй блок питания из последних «подопытных», то я решил провести этот тест и на предыдущем.
«Стенд» почти такой же как выше, заменена только электронная нагрузка на ту, которую использовал в прошлый раз.

Здесь результаты примерно аналогичны, я опять долго пытался генерить помеху и в итоге получил на выходе несколько всплесков с размахом примерно 0.2-0.3 Вольта, с учетом выходного напряжения в 12 Вольт получились почти те же 1.5-2.5% как и в тесте выше. (первые два скриншота)

Кроме того я проверил уровень пульсаций на частоте 100Гц, здесь вообще все отлично вплоть до 900мА (предпоследний скриншот), но при токе в 1 Ампер пульсации резко выросли, начала срабатывать защита блока питания.

Теперь еще несколько слов о том, почему я скептически отнесся к тесту импульсной помехой.
Для начала давайте представим себе упрощенный вариант квартирной электросети. Если представить, что помеха (пусть это будет холодильник), генерируется в точке 2, а наш БП стоит в точке 1, то мы можем получить ощутимую помеху на входе (пользователи Синклеров помнят). Но если мы перенесем блок питания в точку 4, то уровень помехи снизится во много раз, так как на пути у неё будут:
1. Провода, которые выполнены отнюдь не из сверхпроводника
2. Автоматические выключатели, токовые катушки в которых являются хоть небольшими, но индуктивностями.
3. Нагрузка, например в точке 3. Это может быть как обычный нагреватель (резистивная нагрузка), так и блок питания компьютера (емкостная нагрузка).

Т.е. нельзя подходить к проблеме «в лоб», так как сеть представляет собой довольно сложную и несколько инертную нагрузку. Потому тест с трансформатором я воспринимаю скорее как «сферический генератор в вакууме». Нет, конечно по своему он имеет смысл, но на мой взгляд лишь условный, так как входные фильтры также бывают разными.

Вообще электрическая сеть подвержена постоянным импульсным всплескам, от холодильников, искрящих контактов, мощных нагрузок (особенно индуктивных), но больше влияют природные факторы, например гроза или перехлест проводов на столбах. Опять же, последнее в городских условиях встречается куда реже, так как силовые кабели проложены под землей. Но при этом местах с плохими условиями рекомендуется применять УЗИП (Устройство Защиты от Импульсных Перенапряжений), по сути большой варистор.

Теперь по поводу самого входного фильтра БП. Для начала следует понимать, что они могут быть разными по назначению.
В самом простом варианте (не считая специально обученных перемычек), это конденсатор Х типа и синфазный дроссель, в таком варианте фильтр защищает электрическую сеть от помех блока питания. Т.е. помеха проходя со стороны БП сначала ослабляется дросселем, а потом по сути замыкается специальным конденсатором. Вообще импульсные БП генерируют массу помех в электрическую сеть, особенно если производитель сэкономил на всем.
Если надо ослаблять помехи в обе стороны, то ставят два конденсатора, до и после дросселя. В этом случае фильтр ослабляет помехи и с со стороны сети, которые могут попасть в блок питания.
Конечно частично помеха ослабляется даже входным конденсаторов после диодного моста, но специальный конденсатор сразу после дросселя более эффективен именно в случае импульсных помех.

Все это конечно очень утрированно, но я постарался объяснить «на пальцах».

Но это не все. Выше я писал о помехе, которая приходит по сетевым проводам между фазой и нулем, а существуют еще помехи относительно земли, для этого после дросселя ставят дополнительные конденсаторы, но так как их пробой может быть опасен, то соответственно Y типа.

Вообще входной фильтр блока питания может быть весьма сложным устройством, состоящим из кучи конденсаторов и дросселей. Ниже на схеме применены двухобмоточные дроссели двух типов.

Ну и собственно к чему это я все. Да собственно к тому, что следует для начала понимать, что и зачем мы вообще делаем. Если мы проектируем оборудование, где помеха на выходе может быть критична, то применяем полный вариант фильтра, если достаточно чтобы наш БП просто не «гадил» в сеть, то вполне хватит Х конденсатора и дросселя. В нашем случае мы имеем второй вариант фильтра, не более.

Теперь собственно зачем вообще нужны блоки питания на такое «хитрое» напряжение. Ниже на фото две коробочки, соединенные кабелем, при этом одна коробочка питается от другой.

Одна коробочка представляет собой блок питания, вторая — понижающий преобразователь напряжения. В сумме это пассивный аналог PoE, т.е. предназначен для питания низковольтных устройств по кабелю локальной сети. Данный вариант был собран что называется «на скорую руку», когда мне надо было запитать роутер, стоящий в 10 метрах от ближайшей розетки, а в распоряжении был только LAN кабель.

На фото видно, что даже коробочка немного подплавлена, осталась после каких-то экспериментов, а выбросить было жалко.
Вообще обычно я делал БП на 48-55 Вольт, но в данном случае напряжение 24 Вольта.

Если блок питания, показанный выше, отличается только напряжением, то вот на удаленной стороне я делал кардинально по другому. Так как в данном случае все было в пределах квартиры, то на удаленной стороне стоял просто DC-DC преобразователь.
Но в остальных случаях я делал преобразователи с гальванической развязкой и ШИМ контроллерами типа TOP414 или DPA-Switch (в зависимости от требуемой мощности). TOP412-414 был дешевле и проще, но мощность ограничена на уровне 15 Ватт (если не путаю), DPA-Switch заметно мощнее, некоторые обеспечивают до 100 Ватт.
Вообще, показанный комплект, самое простое, что я делал в подобном плане.

Кстати, на фото видно вздувшийся конденсатор, печально известный Capxon, хотя их серия KF мне очень нравится. Показанному ниже преобразователю (как и БП) больше 10 лет, на момент демонтажа с конденсатором было все в порядке. На выходе преобразователь выдает 5 Вольт с током до 3 Ампер.

На этом наверное всё, подведу итоги.
Данные блоки питания явно новее, чем показанные ранее, кроме того у меня создалось впечатление, что они и в эксплуатации особо и не были. Установлены фирменные конденсаторы, качественный трансформатор, входной и выходной фильтр и даже неожиданно… керамический конденсатор параллельно входному электролитическому конденсатору.
Параметры неплохие, блок питания реально длительно обеспечивает мощность около 25 Ватт и кратковременно до 45-50, что в таком габарите весьма неплохо. Я думаю что если взять версию на 24 Вольт, то запросто можно сделать компактный БП для паяльника TS100 (может и стоит взять такой БП попробовать).

На странице магазина указано что выходной ток 1 Ампер, но не указано, что это кратковременный ток, потому получилось как в прошлый раз, кратковременный указали в качестве длительного.
В остальном БП понравился, хотя и бывший в употреблении, что конечно добавляет опять таки некий «элемент неожиданности». К сожалению я могу говорить только за те три штуки, которые у меня на руках.

Как всегда жду вопросов и просто комментариев, надеюсь что обзор был полезен.

Небольшое дополнение.
В обзоре я писал, что пытался найти дроссель от лампы дневного света и не смог найти. Но как часто бывает, ищешь одно, а под руку попадается совсем другое и иногда даже более интересное.
Вот так и в этот раз, попался процессор, Celeron 266/66, не удержался и сфотографировал 🙂
Чувствую, что при следующих поисках найду под него и материнскую плату.

В этом году ему будет 20 лет, как быстро время летит, уже и магазина где он куплен нет и в помине.

$8.21 (3шт)

Перейти в магазин

блок питания 12 вольт своими руками

 

сделай сам портативный блок питания 12 вольт

    Я перешел на 12-вольтовое люминесцентное освещение для последние 12 лет или около того после того, как я купил прожектор Versa-Lite. Так впечатляет этот свет тем, что он легко превзошел три газовых огни и встревожены и обращены мои друзья.

    Я всегда подключал эти фонари к розетке для принадлежностей. в 4WD, однако я не всегда ночую рядом с машиной и основная возможность разряженной батареи всегда вызывает беспокойство. Что я нужен был способ безопасно доставить батарею в лагерь. У меня есть были друзья, которые возили старые автомобильные аккумуляторы и подключали фары зажимами типа «крокодил» и видели последующее повреждение от разливов и трудность доставки их в лагерь.

    На рынке доступно множество аккумуляторных блоков, но всегда считал затраты непомерно высокими, поэтому я решил сделать своими руками вариант.

    Мне посчастливилось наткнуться на герметичный провод 12 В 39 А/ч. кислотный (SLA) аккумулятор, ненужный другу, за княжескую сумму Коробка ХХХ. Большинство моих поездок — длинные выходные, мои требования низкий, и я использую только освещение и время от времени использую надувную кровать инфлятор, так что эта батарея была идеальной.

    Сначала коробка, мне нужна была достаточно прочная коробка, батарея весит 15 с лишним килограмм поэтому я прикрутил и приклеил 12мм слой. Винты были утоплены, а все соединения проклеены. Сделанный это удобно, так как я не хотел, чтобы батарея болталась в коробка в путешествии.

    Коробка отшлифована и покрыта маслом для садовой мебели I был в задней части шкафа гаража. Встроенные петли, багажный тип захваты и ручка. Убедитесь, что ручка установлена ​​в центр крышки, чтобы равномерно распределить вес, это делает его легче носить с собой.

    Теперь все провода и крепления установлены в крышке,

  • 4-ходовой стандартный блок плавких предохранителей с медным проводом, припаянным вдоль терминалы с одной стороны как автобус. Первый предохранитель на 15А для защиты питание 12 вольт.

  • 2 дополнительные розетки, установленные сбоку коробки, каждая защищена собственным предохранителем на 10А.

  • Вольтметр прикреплен к крышке, чтобы я мог измерять ход заряда и разрядка. Обратитесь к статье о Страница Collyns для соотношений напряжение/% заряда.

  • Все проводка 4 мм (проводник) с обжимным наконечником.

  • Ктек зарядное устройство подключается через прилагаемый разъем.

        Эту концепцию можно легко адаптировать для любой батареи. емкость или размер, просто используйте немного здравого смысла.
     

 

 

 

Герметичный аккумулятор 39 Ач аккумулятор и коробка в соответствии с готовая коробка
 

 

внутренние детали розетки вольтметр

 

 спасибо Гранту Smith за то, что поделился этой идеей

 

 

февраль 2009

 

Самодельная электроэнергия — Домашний журнал Backwoods

Джим Ван Сент

Выпуск №131 • Сентябрь/октябрь 2011 г.

Вы когда-нибудь задумывались, как можно жить вне сети, когда солнце не светит на ваши солнечные панели?

Наша система альтернативной энергии в усадьбе основана на постоянном токе напряжением 12 вольт. Это то, что обеспечивает ваш автомобильный аккумулятор. Многие генераторы меньшего размера, купленные в магазине, обеспечивают только переменное напряжение 115 В переменного тока. Они отлично подходят для питания ваших электроинструментов или стандартных бытовых приборов, но довольно неэффективны для зарядки 12-вольтовых аккумуляторов.

Если вы используете 12 В постоянного тока (постоянный ток) для зарядки автомобильного аккумулятора или автономной альтернативной энергетической системы, вам нужен 12-вольтовый генератор постоянного тока.

Как поселенец, не имеющий специальной подготовки, лицензий или пропусков, я хотел недорогое решение для электричества, не требующее специальных навыков или инструментов.

Все мы знаем, что в наших легковых и грузовых автомобилях есть 12-вольтовый генератор переменного тока или генератор, который питается от двигателя. Он снабжает свет, радио и вентилятор отопителя электричеством.


Мой самодельный генератор постоянного тока 12 В

Я хотел производить электричество и не тратить много денег. Моя цель состояла в том, чтобы зарядить разряженный автомобильный аккумулятор, включить радио, зажечь свет в помещении и на улице, запустить компьютер, зарядить батарейки для фонарика и запустить некоторые другие гаджеты с низким энергопотреблением.

В наши дни для нас интересным направлением является поход в местный хозяйственный магазин. Мы ходим по проходам и черпаем идеи для новых проектов, которые надеемся когда-нибудь реализовать. В недавней поездке я заметил нечто необычное. В ряду моек высокого давления за 200-300 долларов я увидел единицу с большим написанным от руки ценником в 25 долларов. Менеджер сказал, что новая стиральная машина была возвращена и не работает, а предполагаемая стоимость ремонта будет больше, чем машина была продана изначально, поэтому они просто пытались от нее избавиться. У него был новый бензиновый двигатель Honda, и он сам по себе должен был стоить более 25 долларов. Водяной насос вышел из строя, но стиральная машина мне не понадобилась. Я имел в виду другой проект.

По дороге домой я заехал на местную авторазборку. Я искал самый большой, дешевый и чистый генератор для грузовиков, который только мог найти на полках запчастей. Владелец быстро понял, что я пытаюсь сделать, вручил мне большой генератор для грузовика и позвонил мне за 20 долларов. Вернувшись к своему верстаку, я покопался и нашел несколько кусков толстого листового металла, чтобы сделать несколько монтажных кронштейнов. Вырезав и приклеив, я смог подобрать место для установки генератора, чтобы его ведущий шкив совпадал с ведущим шкивом газового двигателя с вертикальным валом. Я использовал электрическую дрель, чтобы просверлить несколько отверстий в металлических кронштейнах, чтобы они совпадали с монтажными отверстиями на генераторе. Прочные кронштейны были прикреплены к металлической раме двигателя и бывшему в употреблении генератору с помощью ¼-дюймовых крепежных винтов, стопорных шайб и гаек.

Для меня было проблемой установить шкивы на резиновый ремень нужного размера. Ремни бывают разных форм и размеров, и мне потребовалось три попытки, чтобы подобрать правильный. Размер и глубина канавок шкивов важны для предотвращения преждевременного износа ремня из-за проскальзывания.


Генератор располагался таким образом, чтобы приводной шкив
совпадал со шкивом двигателя.

Я собирался установить сильную пружину для натяжителя ремня. На данный момент я просто использовал несколько прокладок за монтажным кронштейном, чтобы натянуть ремень.

Теперь большой тест. Почти новый бензиновый двигатель завелся с первого рывка шнура стартера.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *