Схемы простых генераторов импульсов
Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.
Рис. 6.1
Рис. 6.2
Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.
На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).
Рис. 6.3
Рис. 6.4
Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.
Рис. 6.5
Рис. 6.6
Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.
Рис. 6.7
Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100… 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.
Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см. , например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.
Рис. 6.8
Рис. 6.9
На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.
Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.
Рис. 6.10
Рис. 6.11
На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.
Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).
Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.
При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.
Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.
Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.
Рис. 6.12
Рис. 6.13
Рис. 6.14
Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.
Рис. 6.15
Рис. 6.16
Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
Генератор с регулировкой частоты и скважности импульсов на КР1006ВИ1
12.12.2018
Генераторы
2816
Схема задающего генератораВ радиолюбительской литературе много написано о задающих генераторах их модернизации и улучшении характеристик. Предлагаю вниманию читателей простой задающий генератор с возможностью регулирования параметров выходных импульсов в широких пределах, то есть генератор универсального назначения, который при небольшой доработке выходного каскада (об этом рассказано ниже) может эффективно использоваться как высокочастотный преобразователь напряжения.
Задающий генератор для различных электронных устройств удобно реализовать на широко распространенной микросхеме-таймере КР1006ВИ1 (зарубежный аналог LM555). На рис. 1 приведена простая и эффективная схема такого генератора.
Рассмотрим ее подробнее. Микросхема включена по классической схеме. Времязадающие резисторы R2 и R3 своими сопротивлениями определяют параметры импульсов генератора и его частоту в широких пределах. Причем сопротивление резистора R2 определяет частоту, a R3 — соответственно ширину импульсов генератора. Кроме удобства регулировки параметров выходных импульсов генератора, такое устройство можно применять универсально, в любых электронных узлах и «самоделках», где требуется задающий генератор с периодом длительности выходных импульсов 10…100 мкс, а периода следования в диапазоне 50…100 мкс. Эти параметры также зависят и от емкости конденсатора С1.
Оксидный конденсатор СЗ сглаживает пульсации напряжения от источника питания.
В налаживании устройство не нуждается и начинает работать сразу после подачи питания.
Напряжение источника питания в диапазоне 6… 15 В. Следует учитывать, что амплитуда выходных импульсов задающего генератора пропорциональна напряжению источника питания.
Переменные резисторы R2, R3 с линейной характеристикой изменения сопротивления, много-оборотные, например, СП5-1ВБ.
Практическое применение генератор находит в высокочастотных устройствах ЭПРА (электронных пускорегулирующих аппаратов), управляющих лампами дневного света, преобразователей напряжения, в охранных и других устройствах бытового предназначения. Выходной ток генератора на микросхеме КР1006ВИ1 (вывод 3 DA1) не превышает 250 мА, что для многих радиолюбительских конструкций вполне достаточно. Однако, для управления более мощной нагрузкой, необходим усилитель тока выходного каскада, электрическая схема которого представлена на рис.
Полевой транзистор в данном электронном узле может быть заменен на КП743 с любым буквенным индексом, IRF510, BUZ21L, SPP21N10 и их аналоги. Резистор R5 в данной схеме представляет эквивалент нагрузки, которой может быть спираль нагревательного прибора, лампа накаливания и тому подобные устройства. В другом варианте выходное напряжение снимают с резистора R5 и подают на последующие каскады.
Для устройств преобразователей и умножителей напряжения лучше подходит выходной каскад на полевом транзисторе, электрическая схема которого представлен на рис. 3. Здесь, как видно из схемы, в цепи нагрузки полевого транзистора включена обмотка повышающего трансформатора Т1. Выходное напряжение преобразователя снимается с вторичной обмотки Т1 и может быть (без изменений и дополнений схемы) управлять лампой дневного света (ЛДС) с максимальной мощностью до 40 Вт.
Для дополнительной защиты выходного каскада в схеме с трансформатором применен сапрессор (так называют защитный стабилитрон), например, из серии КС515 с любым буквенным индексом. Применение сап-рессора связано с источником питания так, что защитный стабилитрон должен иметь напряжение стабилизации не менее 3/4U .
- Генератор сигнала
аккуратная маленькая схема генератора импульсов, которая мне нравится
Обновление (11 октября 2015 г.): Я добавил свой файл схемы и список соединений на случай, если вы захотите поиграть с этой схемой в своей локальной установке LTSpice. Это бесплатно, так что вы тоже можете!
Я медленно изучал книгу Горовица и Хилла Art of Electronics, 3-е издание , чтобы освежить и усовершенствовать свои знания в области аналоговой электроники. Большая часть моей профессиональной жизни связана со сборкой сложных ИС, и недостаточно со строительными блоками электронных схем. Я решил, что возьму более поучительные примеры из AoE и опубликовать здесь мою работу над ними. Ожидайте немного сухой прозы, несколько нацарапанных заметок на инженерной бумаге и, возможно, симуляцию или две, как я считаю нужным. (В настоящее время я использую LTSpice для Mac, но я не в восторге от него. Есть предложения?!)
Простой генератор импульсов
Рис. обеспечить быстрый импульс на выходе Vout при стимуляции нарастающим фронтом на Vin.
###Примечания по условиям постоянного тока
- Q1 выключен, что означает, что V Q1-C равно 5 В.
- Q2, однако, включен. Это помещает V Q2-B примерно на 0,7 В, а V Q2-C /V Out на землю.
- Обратите внимание, что состояния включения/выключения транзисторов Q1 и Q2 в совокупности создают напряжение около 4,3 В на конденсаторе C1.
###AC Анализ Предположим, мы стимулируем V в с нарастающим фронтом 5V. Это включит Q1, скорость которого ограничена только временем включения этого транзистора. Важно выбрать R1 таким образом, чтобы вы могли гарантировать переход Q1 в состояние насыщения; мы хотим, чтобы этот транзистор был включен, когда V в зашкаливает!
Это быстрое включение Q1 приведет к снижению напряжения коллектора, V Q1-C , на землю. Обратите внимание на состояние постоянного тока C1 — он все еще сохраняет заряд ~ 4,3 В, который он приобрел, пока схема находилась в устойчивом состоянии. В результате напряжение V Q2-B теперь составляет -4,3 В, отключая Q2 и возбуждая V Out до +5 В. Вы заметите, что когда V Q1-E находится на земле, комбинация R3 и C1 эффективно образуют RC-цепь с начальным состоянием V 9{\ frac {t} {\ tau}} \] \ [ln \ big (\ frac {1} {0,462} \ big) = \ frac {t} {\ tau} \ Rightarrow ln \ big (\ frac {1) }{0,462}\big) * \tau = t = 0,722 \tau\] \[0,722 \tau \приблизительно R3C1\]
По сути, это показывает нам, что мы можем установить время включения импульса, используя R 3 и C 1 аналогичны выбору значений для RC-цепи. Прохладный!
Примечания по характеристикам переменного тока
Первое, что предполагает эта схема, это то, что V в будет работать на высоком уровне и оставаться на высоком уровне. Что произойдет, если входной импульс короче, чем R3 * C1?
Рисунок 2: Выходной сигнал генератора импульсов, где Vin имеет высокое значение меньше, чем Tau
Моделирование выше показывает представление LTSpice того, что происходит с этой схемой, когда входной импульс меньше постоянной времени. Выходной импульс, в свою очередь, укорачивается — как только Q1 вернется в нормальное выключенное состояние, заряд C1 будет поляризован в направлении, противоположном установившемуся постоянному току. Это просто поможет шине 5 В удерживать Q2 во включенном состоянии и укорачивать выходной импульс. Что, если мы хотим пульс в V вместо , длина которого всегда R3 * C1? Нам нужно отделить вывод от ввода. Этого легко добиться с помощью другого транзистора, который контролирует выход схемы.
Рис. 3. Генератор импульсов с гарантированной шириной импульса
Q3 служит для удержания V Q1-C на земле при обнаружении нарастающего фронта в основании Q1. Пока входной импульс не меньше времени включения транзистора Q1, схема будет работать правильно. Это связано с тем, что после того, как Q1 успешно загнал V Q1-C на землю, Q3 также будет включен, обеспечивая еще один путь для удержания цепи R3/C1 на земле. Рисунок 4 показывает это улучшение ширины выходного импульса.
Рис. 4. Выход генератора импульсов с гарантированной шириной выходного сигнала
Добавление Q3 немного упростило прогнозирование работы схемы, позволив нам изменить ширину импульса, изменив значения C1 и R3. Однако это была не серебряная пуля. Рисунок 4 показывает, что спадающий фронт импульса не такой резкий, как нарастающий фронт. В начале спада имеется отчетливо закругленный угол, который является результатом плавного перехода напряжения R3/C1 через напряжение включения Q3. Мы мало что можем сделать с этой схемой, чтобы ускорить этот переход, не влияя на ширину импульса. Вместо этого нам нужно изменить мощность выходного привода с помощью еще одного небольшого дополнения.
Рисунок 5: Выход генератора импульсов с выходом триггера Шмитта
Этот выходной каскад представляет собой триггер Шмитта, представляющий собой удобную небольшую схему для очистки медленных или шумных переходов фронтов. Переход к моделированию показывает, что это помогло нам:
Рисунок 5: Выход генератора импульсов с выходом триггера Шмитта
Все это хорошо, но вы никогда не будете использовать эту схему в реальном приложении. Почему? Власть! Проверьте ток только через R8. Эта одиночная ветвь цепи достигает пика около 9мА при включенном Q5. Большинство современных микросхем потребляют гораздо меньше тока, чем 9 мА. Многие современные устройства DRAM — компоненты с миллиардов транзисторов — потребляют менее 100 микроампер в состоянии самообновления. Тем не менее, это забавная небольшая схема, и ее достаточно легко построить в поучительных целях.
Благодарности
Я взял эту схему и ее усовершенствования из превосходной книги Горовица и Хилла Art of Electronics, 3-е издание . Вы можете проверить это на странице 77.
⤧ Следующая запись Прошивка микроконтроллеров Freescale без Kinetis Design Suite ⤧ Предыдущая запись Неудобные истины NAND Flash
Быстрый и простой генератор импульсов
Посмотреть галерею
Команда
(1)
- Бхарбор
Этот проект был создано 09.
Некоторые недавние обсуждения проекта заставили меня заинтересоваться простым способом генерации импульсов с быстрым фронтом. @Ted Yapo сказал, что вы можете генерировать импульсы с временем нарастания 0,5 нс с помощью инвертора 74LVC04. Я не хотел очень высокой частоты повторений на импульсах, поэтому я использовал 74LVC04 с 555, работающим в нестабильном режиме с частотой около 18 Гц. Выход ’04 направляется через резистор 50 Ом на разъем SMA. Вот результаты. Краткий обзор: Да, скорость фронта находится в диапазоне от 0,5 нс до 1 нс.
Детали
Тестируемая печатная плата была построена с конденсаторами 4,7 мкФ 25 В X7R и 0,1 мкФ 25 В X7R, развязывающими источник питания постоянного тока для 555 и инвертора 74LVC1G04. Схема достаточно проста, так как она была построена на двухслойной плате, где почти вся задняя сторона платы используется в качестве заземляющего слоя, а около половины передней стороны платы используется в качестве силового слоя.
Все показанные тесты проводились с напряжением 5,0 В на плате от настольного источника питания. Плата PulseGen была подключена к адаптеру SMA-BNC и гибочному разъему BNC, чтобы подключиться к входу прицела как можно ближе. Осциллограф был настроен на вход 1:1 с оконечной нагрузкой 50 Ом.
Вот изображение времени нарастания импульса, полученное с шагом 1 нс/дел.
На переднем фронте видны некоторые выбросы/пульсации, больше, чем я надеялся.
Затем та же конфигурация захвачена при 0,5 нс/дел.
Время нарастания выглядит примерно как 0,75 нс. Мне было любопытно, будет ли виден небольшой провал под землей в начале или выброс в конце подъема на блоке питания для 04 года, но этого не было. Блок питания выглядел чистым при просмотре на другом канале прицела.
Вот снимок времени спада на 1 нс/дел.
Похоже, что это аналогичный период (около 0,75 нс), с небольшим звоном на обоих концах. Здесь она зафиксирована при 0,5 нс/дел.