Site Loader

Содержание

Работа транзистора в активном режиме

В этой статье мы рассмотрим и даже посчитаем небольшой каскад, а также соберем его в реале и испытаем на практике.

Активный режим транзистора

Если вы читали прошлую статью, то наверняка помните, что транзистор в режиме усиления работает только в активном режиме. Этот активный режим находится между режимами отсечки и насыщения:

Следовательно, выходной усиленный сигнал должен находиться в области активного режима, иначе он будет сильно искажаться.

Далее вспоминаем нехитрую формулу

Работа транзистора в активном режиме

Коэффициент бета  – это коэффициент усиления по току в схеме с общим эмиттером (ОЭ). Ну и что все это значит? А значит это то, что в любом транзисторе в активном режиме ток коллектора в β (бета) раз больше, чем ток базы. Задав крохотную силу тока через базу, мы в бета раз можем увеличить силу тока в цепи коллектора.

Что будет, если на базу мы подадим переменный сигнал напряжения? Следовательно, в цепи базы переменный сигнал будет либо увеличивать, либо уменьшать силу тока, протекающую через базу, а

переменная сила тока через базу в свою очередь будет “тащить” за собой  силу тока в цепи коллектора, который будет в бета раз больше, чем базовый ток.

Если вставить резистор в цепь коллектора, то можно будет с него снимать переменное напряжение. Ну разве не замечательно? А откуда возьмется напряжение на резисторе? Дело в том, что резистор и переход коллектор-эмиттер обладают   сопротивлением  . Самый прикол в том, что переход коллектор-эмиттер – это управляемое сопротивление, зависящее от тока базы. Получаем простой делитель напряжения 😉

Но для того, чтобы усиливать переменный сигнал правильно, есть одно НО… И это “НО” заключается еще в одном резисторе.

Двухрезисторная схема смещения

Я хочу усилить синусоидальный сигнал и поэтому подаю его на базу транзистора. На выходе хочу получить усиленную копию.

Для того, чтобы получить красивую усиленную копию, надо чтобы эта копия не выходила за границы режима отсечки и насыщения и желательно, чтобы она располагалась посередине активной области. То есть надо этот сигнал сместить в середину активной области:

Поэтому, требуется добавить к схеме еще один резистор, чтобы получилась схема смещения.

Итак, давайте рассмотрим самую простую схему смещения и на ее примере разберемся, что к чему

Что здесь имеем?

Uпит  – напряжение питания. На Uвх подаем  переменный сигнал, на Uвых получаем усиленную копию. Или более понятно:

Итак, давайте рассмотрим назначение радиоэлементов в этой схеме. Транзистор используется для усиления. Я думаю, вы это уже поняли 🙂  Резистор  R2  служит для того, чтобы у нас получился делитель напряжения и  потом можно будет снять с резистора это напряжение.

Конденсаторы  С1  и С2 у нас пропуска ют переменный ток, а постоянный не пропускают. А нам постоянный ток на входе и на выходе не нужен. Мы ведь хотим усиливать переменный ток, не так ли?

И самый главный радиоэлемент в этой схеме считается резистор R1, который как раз и задает режим работы усилителя. Зачем он здесь нужен?

Во-первых, чтобы отпереть транзистор. Вывести его из режима отсечки в активный режим. А для этого, как вы помните, достаточно подать напряжение более, чем падение напряжения на переходе база – эмиттер, которое для кремниевых транзисторов составляет 0,6-0,7 Вольт. Поэтому, Uпит  должно быть больше, чем падение напряжения на переходе база-эмиттер.

Во-вторых, задать базовый ток, так как через цепь +Uпит —-> R1—-> база —-> эмиттер —-> земля

потечет ток, сила тока которого будет зависеть от того, какой резистор мы туда воткнем.

В-третьих, задавая нужный базовый ток этим резистором, мы выбираем режим работы нашего усилителя. Сейчас нас интересует режим, при котором сигнал будет “болтаться” между режимами отсечки и насыщения примерно в середине активного режима.

Как этого добиться?

Для удобства пусть у нас R1 называется RБ  (базовый резистор), а R2  назовем Rк (коллекторный резистор):

Так как мы хотим получить усиленную копию сигнала в активном (линейном) режиме транзистора, следовательно, нам надо добиться того, чтобы через базу протекала такая сила тока,  чтобы напряжение на коллекторе (в узле, куда цепляется конденсатор С2) было ровнёхонько половинка от

Uпит.

Не забываем, что у нас входной сигнал, подаваемый на базу, может принимать как положительные значения, так и отрицательные. Следовательно, напряжение на коллекторе будет принимать меньшее или большее значение. А чтобы уже усиливаемый сигнал не доходил до режима отсечки или насыщения, мы его как раз и будем держать в серединке активной области.

Расчет каскада c двумя резисторами

Берем рыжий советский транзистор КТ315Б  и рассчитаем вот такую схемку  при напряжении питания в 9 Вольт

Для того, чтобы рассчитать схему, надо действовать с конца, то есть с выхода схемы.

Для получения усиленной копии сигнала, нам надо, чтобы напряжение на коллекторе было равно половине напряжения питания, то есть получаем Uк = 9 В/2 = 4,5  Вольт. Это значит, что на Rк падает напряжение в 4,5 Вольт и на транзисторе между выводами коллектора и эмиттера тоже падает 4,5 Вольт. Для маломощных усилительных каскадов в основном ток коллектора

Iк берут в 1 миллиампер, это значит, что ток потечет по цепи +9 В —> Rк —-> коллектор—> эмиттер—->земля и если его замерить в этой цепи, то получим 1мА.

Долго не думая, находим, чему равняется RкВспоминаем дядюшку Ома  и получаем, что Rк = Uк /Iк =4,5 В/1 мА=4,5 кОм. Берем ближайший из ряда, то есть на 4,7 кОм.

Следующим шагом нам надо приблизительно узнать коэффициент бета. В этом нам может помочь простой мультиметр с функцией замера HFE (β) либо RLC-транзистор метр. В моем случае на RLC-транзистор-метре получилось что-то около 142.

Высчитываем ток  базы. Так как мы знаем, что

Работа транзистора в активном режиме

Из этой формулы находим IБ. Получается, что IБ = Iк / β = 1мА/142 = 7 микроампер.

Следующим делом находим сопротивление базового резистора: RБ =(Uпит -0,6)/ IБ = 9 В/7мкА=1,2 Мегаом. В этой формуле 0,6 В мы берем, как падение напряжения на переходе база-эмиттер.

Следующим шагом вставляем ближе к номиналу этот резистор из ближайшего ряда и замеряем  силу тока по цепи +9 В —> Rк —-> коллектор—> эмиттер—->земля с помощью миллиамперметра. Скорее всего вы не получите на миллиамперметре значение в  1мА, поэтому надо будет подгонять значение RБ либо с помощью потенциометра либо магазина сопротивления, чтобы амперметр показал нам 1 мА на табло. В моем случае RБ

я подобрал номиналом в 1 Мегаом.

Ну теперь дело за малым. Конденсаторы  С1  и С2 используются для того, чтобы пропускать  и снимать только переменное напряжение, так как мы с вами знаем, что конденсатор постоянный ток через себя  не пропускает. Для усиления звуковых частот (от 20 и до 20 000 Герц) , а также частот более 20 000 Гц вполне подойдут конденсаторы в 10 мкФ.

Вот фото моего усилителя, амперметр показывает ток в 1,04 миллиампер.

Теперь подаю на вход конденсатора С1 слабый синусоидальный сигнал. У нас получается интересная штука. После того, как я настроил каскад, на базе  имеется постоянное напряжение. Если добавить к этому напряжению еще напряжение, ток базы увеличится, что приведет к увеличению коллекторного тока. Если же уменьшить, то наоборот у нас ток базы уменьшится и следовательно, коллекторный ток тоже уменьшится. Переменный сигнал, подаваемый на базу уменьшается и увеличивается поочередно, следовательно, получается типа что-то этого:

А вот и осциллограммы, которые у меня получились. Красный сигнал – это входной, который мы подаем на  С1 , а желтый – выходной, который снимаем с С2. Частота сигнала и его цена деления показаны в нижнем левом уголке скриншота осциллографа. 

Работа транзистора в активном режиме

Ну вот! Более менее похоже на правду!

работа транзистора в режиме усиления

Если вы заметили своим наблюдательным глазом, есть одно НО… Фаза усиленного сигнала противоположна фазе исходного сигнала

. Если еще помните алгебру, то можно сказать, что фаза усиленного сигнала и фаза исходного различаются на 180 градусов. Получается, что усилитель по схеме с ОЭ (Общим Эмиттером) инвертирует фазу сигнала.

Давайте увеличим амплитуду исходного сигнала:

Работа транзистора в активном режиме

Как мы видим, усиленный сигнал исказился. В дело вступили так называемые нелинейные искажения, потому что наш усиленный сигнал добрался до области отсечки (верхний уровень желтого графика) и до области насыщения (нижний уровень желтого графика). Вы ведь не забыли, что сигнал инвертированный? В режиме отсечки, как мы видим, синусоида закруглилась, а в режиме насыщения она не могла стать более 9 Вольт, то есть больше, чем Uпит, поэтому ее резко срезало.

Давайте усилим треугольный сигнал

работа транзистора в режиме усиления

Получились чуток “пухловатые” горки. Как мы видим, данный тип усилителя обладает плохой линейностью. Это значит, что он не пропорционально увеличивает исходный сигнал.

Давайте усилим прямоугольный сигнал

Работа транзистора в активном режиме

Вроде бы нормально.

Даже если добавить амплитуду, то сигнал остается по форме таким же.

работа транзистора в режиме усиления

Прямоугольные сигналы усиливать, передавать, обрабатывать намного проще, поэтому цифровая электроника шагнула далеко вперед.

Данный тип усилителя,  работает в классе “А” , то есть в режиме линейного усилителя. Это означает, что мы полностью усиливаем форму сигнала, который подаем на вход такого усилителя. Есть также усилители B,C,D класса и другие. В этих усилителях усиливается  не вся форма сигнала, а остатки сигнала срезаются в области отсечки.

Минусы схемы

В чем минусы этой схемы? В этой схеме рабочий режим  зависит от коэффициента бета.  Это не есть гуд.

“Схему можно считать плохой, если на ее характеристики влияет величина параметра бета”

Хорвиц и Хилл “Искусство схемотехники”

Дело в том, что коэффициент бета “гуляет” в зависимости от температуры. Следовательно, наш график будет смещен, что приведет к нелинейным искажениям, так как он будет ближе находится или к области насыщения, либо к области отсечки

Заключение

Что хочу сказать по этой схеме? Схема – какашка. Она годится только для усиления сигналов с малой амплитудой. Этот пример я показал, чтобы вам было понятнее, что и как происходит в  простой усилительной схеме на транзисторе. Собирать ее не стоит, потому что в этой статье она показана, чтобы вы понимали процесс усиления. На практике лучше ее не использовать. В следующей статье мы разберем  и рассчитаем  качественный усилитель, который не боится коэффициента бета,  а также проверим этот усилитель в деле.

Активный режим работы биполярного транзистора

Добавлено 30 сентября 2017 в 15:13

Сохранить или поделиться

Когда транзистор находится в полностью выключенном (закрытом) состоянии (как разомкнутый ключ), говорится, что он в режиме отсечки. И наоборот, когда он полностью проводит ток между эмиттером и коллектором (пропускает ток такой величины, какую могут позволить источник питания и нагрузка), говорится, что он находится в режиме насыщения. Эти два режима работы были изучены ранее при использовании транзистора в качестве ключа.

Однако биполярные транзисторы не должны ограничиваться этими двумя экстремальными режимами работы. Как мы узнали в предыдущем разделе, ток базы «открывает клапан» для ограниченного количества тока через коллектор. Если это ограничение для управляемого тока больше нуля, но меньше максимального значения, разрешенного источником питания и схемой нагрузки, транзистор «удерживает» значение тока коллектора в режиме где-то между режимами отсечки и насыщения. Этот режим работы называется активным режимом.

По аналогии с автомобилем: отсечка – это состояние отсутствия движущей силы, создаваемой механическими частями автомобиля, чтобы заставить его двигаться. В режиме отсечки включается тормоз (нулевой ток базы), предотвращающий движение (ток коллектора). Активный режим – это режим круиз-контроль автомобиля на постоянной контролируемой скорости (постоянный, контролируемый ток коллектора), которую устанавливает водитель. Насыщение – это подъем автомобиля на крутой холм, который мешает ему двигаться так быстро, как пожелает водитель. Другими словами «насыщенный» автомобиль – это автомобиль с полностью вдавленной в пол педалью газа (ток базы допускает протекание тока коллектора, большего, чем может быть обеспечено схемой источника питания и нагрузки).

Давайте соберем схему для моделирования в SPICE, чтобы продемонстрировать, что происходит, когда транзистор находится в активном режиме работы.

Схема для SPICE моделирования «активного режима» (список соединений приведен ниже)Схема для SPICE моделирования «активного режима» (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 2 0.05 
.plot dc i(vammeter) 
.end 

«Q» – это стандартное буквенное обозначение для транзистора на принципиальной схеме (в России по ГОСТу принято обозначение VT), так же как «R» для резистора, а «C» для конденсатора. В этой схеме у нас есть NPN-транзистор, питаемый от батареи (V1) и управляемый источником тока (I1). Источник тока – это устройство, которое выдает заданную величину тока, генерируя такое напряжение на своих выводах, которое необходимо, чтобы обеспечить точную величину тока, протекающего через него. Как известно, источники тока трудно найти в природе (в отличие от источников напряжения, которые, наоборот, пытаются поддерживать постоянное значение напряжения, выдавая необходимое значение тока для выполнения этой задачи), но могут быть смоделированы с помощью небольшого набора электронных компонентов. Как мы сейчас увидим, транзисторы сами имеют тенденцию имитировать поведение, поддерживающее постоянную величину тока, как и источники тока, с помощью своей способности стабилизировать ток на фиксированном значении.

При SPICE моделировании мы установим источник тока в постоянное значение 20 мкА, затем будем изменять напряжение источника напряжения (V1) в диапазоне от 0 до 2 вольт и наблюдать, какой ток будет проходить через него. «Фиктивная» батарея (Vамперметр) на рисунке выше с выходным напряжением 0 вольт служит только для того, чтобы предоставить SPICE программе элемент схемы для измерения тока.

Изменение напряжения коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщенияИзменение напряжения коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщения

Постоянный ток базы 20 мкА устанавливает предельное значение для тока коллектора в 2 мА, что в точности в 100 раз больше. Обратите внимание, как выравнивается график тока коллектора (на рисунке выше) при изменении напряжения батареи от 0 до 2 вольт. Единственные исключение из этого совершенно ровного графика – в самом начале, когда напряжение батареи увеличивается от 0 до 0,25 вольта. На этом участке ток коллектора быстро растет от 0 до предельных 2 мА.

Посмотрим, что произойдет, если мы будем изменять напряжение батареи в более широком диапазоне, на этот раз от 0 до 50 вольт. Ток базы будем поддерживать на постоянном уровне 20 мкА (рисунок ниже).

Изменение напряжения коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА в режиме насыщенияИзменение напряжения коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает в результате постоянный ток коллектора 2 мА (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2
.plot dc i(vammeter) 
.end 

Тот же результат! Ток коллектора на рисунке выше удерживается точно на значении 2 мА, хотя напряжение (V1) изменяется от 0 до 50 вольт. Из нашего примера моделирования видно, что напряжение коллектор-эмиттер мало влияет на ток коллектора, за исключением очень низких уровней (чуть выше 0 вольт). Транзистор действует как стабилизатор тока, обеспечивая протекание через коллектор тока величиной 2 мА и не более.

Теперь давайте посмотрим, что произойдет, если мы будем увеличивать управляющий ток (I1) от 20 мкА до 75 мкА, снова изменяя напряжение батареи (V1) от 0 до 50 вольт, и выводя на график значения тока коллектора (рисунок ниже).

Изменение напряжения коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает в результате постоянный ток коллектора 7,5 мА. Другие графики генерируются при изменении значений тока  (i1 15u 75u 15u) в операторе анализа DC (.dc v1 0 50 2 i1 15u 75u 15u)  (список соединений приведен ниже)Изменение напряжения коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает в результате постоянный ток коллектора 7,5 мА. Другие графики генерируются при изменении значений тока (i1 15u 75u 15u) в операторе анализа DC (.dc v1 0 50 2 i1 15u 75u 15u) (список соединений приведен ниже)
bipolar transistor simulation
i1 0 1 dc 75u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2 i1 15u 75u 15u
.plot dc i(vammeter)
.end 

Неудивительно, что SPICE дает нам аналогичный график: прямая линия, закрепившаяся на этот раз на 7,5 мА – ровно в 100 раз больше тока базы – в диапазоне напряжений батареи от чуть выше 0 вольт до 50 вольт. По-видимому, ток базы является решающим фактором для тока коллектора, напряжение батареи V1 не имеет значения, если оно превышает определенный минимальный уровень.

Эта связь между напряжением и током полностью отличается от того, что мы привыкли видеть на резисторе. Для резистора ток увеличивается линейно по мере увеличения напряжения. Здесь, для транзистора, ток от эмиттера к коллектору остается ограниченным на фиксированном максимальном значении независимо от того, насколько сильно увеличивается напряжение между эмиттером и коллектором.

Часто полезно накладывать несколько характеристик зависимости ток коллектора / напряжение для разных токов базы на одном графике, как на рисунке ниже. Набор характеристик, подобный этому (для каждого значения тока базы построен отдельный график), для конкретного транзистора называется выходными характеристиками транзистора:

Зависимость тока коллектора от напряжения между коллектором и эмиттером для разных токов базыЗависимость тока коллектора от напряжения между коллектором и эмиттером для разных токов базы

Каждая кривая на графике отражает ток коллектора транзистора, построенный для диапазона напряжений коллектор-эмиттер, для заданного значения тока базы. Поскольку транзистор стремится действовать как стабилизатор тока, ограничивая ток коллектора до пропорции, установленной током базы, полезно выразить эту пропорцию в качестве стандартного показателя работы транзистора. В частности, отношения тока коллектора к току базы известно как коэффициент бета (обозначенный греческой буквой β):

\[\beta = {I_{коллектор} \over I_{база}}\]

β также известен как hfe или h21э

Иногда коэффициент β обозначается как «hfe» или «h21э«, метка, используемая в ветви математического анализа полупроводниковых приборов, известной как «гибридные параметры» или h-параметры, которая стремится достичь точных прогнозов работы транзисторов с помощью подробных уравнений. Переменных гибридных параметром много, но каждый из них обозначается буквой «h» и конкретным индексом. Переменная «hfe» («h21э«) представляет собой просто еще один (стандартизированный) способ выражения отношения тока коллектора к току базы и взаимозаменяема с “β”. Коэффициент β является безразмерной величиной.

β для любого транзистора определяется его конструкцией: он не может быть изменен после изготовления. Редко бывает, что β у двух транзисторов одной и той же конструкции точно совпадают из-за различий физических переменных, влияющих на этот коэффициент. Если работа схемы зависит от равенства β у нескольких транзисторов, за дополнительную плату могут быть приобретены «согласованные наборы» транзисторов. Однако, как правило, проектирование с такими зависимостями считается плохой практикой.

β транзистор не остается одинаковым во всех условиях эксплуатации. Для реального транзистора коэффициент β может изменяться в 3 раза в пределах его рабочих токов. Например, транзистор с объявленным значением β, равным 50, в реальных тестах отношения Iк/Iб может дать значения от 30 до 100, в зависимости от величины тока коллектора, температуры транзистора, частоты усиливаемого сигнала и других факторов. Для целей обучения для любого заданного транзистора достаточно принимать коэффициент β постоянным; и понимать, что реальная жизнь не так проста!

Иногда для понимания полезно «моделировать» сложные электронные компоненты с помощью набора более простых и понятных компонентов. Модель на рисунке ниже используется во многих вводных текстах по электронике.

Простая диодно-резисторная модель транзистораПростая диодно-резисторная модель транзистора

Эта модель отображает транзистор как комбинацию диода и реостата (переменного резистора). Ток через диод база-эмиттер управляет сопротивлением реостата коллектор-эмиттер (как подразумевается пунктирной линией, соединяющей два компонента), тем самым контролируя ток коллектора. На рисунке приведена модель NPN-транзистора, но PNP-транзистор будет отличаться не сильно (будет изменено только направление диода база-эмиттер). Эта модель преуспевает в пояснении базовой концепции усиления транзистора: как сигнал тока базы может осуществлять управление током коллектора. Однако мне эта модель не нравится, потому что она неверно передает понятие установленного значения сопротивления коллектор-эмиттер для заданного значения тока базы. Если бы она была верна, транзистор не стабилизировал бы ток коллектора, как показывают графики выходных характеристик. Вместо характеристик тока коллектора, выровненных на графике после быстрого роста по мере увеличения напряжения коллектор-эмиттер, ток коллектора продолжал бы расти прямо пропорционально напряжению коллектор-эмиттер, и мы бы увидели на графике неуклонно растущие прямые.

В более продвинутых учебниках часто встречается более подходящая модель транзистора (рисунок ниже).

Модель транзистора на основе источника токаМодель транзистора на основе источника тока

Она отображает транзистор в виде комбинации диода и источника тока, причем выход источника тока задается умножением тока базы на коэффициент β. Эта модель гораздо более точна при отображении истинных входных/выходных характеристик транзистора: ток базы устанавливает определенное значение тока коллектора, а не определенное сопротивление коллектор-эмиттер, как предполагает первая модель. Кроме того, эта модель предпочтительна при проведении анализа транзисторных схем, причем источник тока является хорошо понятным теоретическим компонентом. К сожалению, использование источника тока для моделирования контролирующего ток поведения транзистора может вводить в заблуждение: транзистор никогда не будет служить источником электрической энергии. Источник тока не моделирует тот факт, что его источником энергии является внешний источник питания, как у усилителя.

Подведем итоги:

  • Говорят, что транзистор находится в активном режиме, если он работает где-то между полностью открытым режимом (насыщение) и полностью закрытым режимом (отсечка).
  • Ток базы регулирует ток коллектора. Под регулированием мы подразумеваем, что ток коллектора не может превышать значение, которое устанавливаемое током базы.
  • Отношение между током коллектора и током базы называется «бета» (β) или hfe или h21э.
  • Коэффициенты β у всех транзисторов различны; β изменяется в зависимости от условий эксплуатации.

Оригинал статьи:

Теги

Активный режимБиполярный транзисторРежим насыщенияРежим отсечкиУчебникЭлектроника

Сохранить или поделиться

Биполярный транзистор

Биполярный транзистор — это полупроводниковый прибор с двумя взаимодействующимивыпрямляющими электронно-дырочными переходами, тремя (или более выводами). Усилительные свойства биполярных транзисторов обусловлены явлениямиинжекции и экстракции неосновных носителей заряда.

Структура биполярных итранзисторов приведена на рисунках.

Взаимодействиемеждупереходами осуществляется при малой толщине области между переходами. В этом случае носители заряда,инжектированные через переход, смещенный в прямомнаправлении, могут преодолеть малую базовую область и дойти до второго перехода.

Второй переход смещен в обратном направлении. При отсутствии инжекции носителей в область базы ток второго (обратно смещенного перехода) мал. При наличии инжекции носителей в базовую область, достигшие второго перехода носители изменяют ток, протекающий через обратно смещенный переход. То есть, ток первого перехода управляет током второго перехода.

Область транзистора, используемая в режиме инжекции, называется эмиттером.

Область транзистора, осуществляющая экстракцию (удаление) носителей заряда называется коллектором.

Средняя область транзистора называется базой.

Электронно-дырочный переход, расположенный между эмиттером и базой, называется эмиттерным переходом. Электронно-дырочный переход, расположенный между коллектором и базой, называетсяколлекторным переходом.

Для величин, относящихся к эмиттеру, коллектору и базе применяются индексы «э», «к», «б» соответственно. Например, токи в соответствующих проводниках, обозначаются . Напряжения между соответствующими электродами обозначаются двойными индексами:-напряжение между базой и эмиттером.

Электронно-дырочные переходы биполярного транзистора могут быть смещены как в прямом, так и в обратном направлении. При этом возможны три режима работы транзистора:

  1. Режим отсечки-оба перехода смещены в обратном направлении и через транзистор проходят малые токи

  2. Режим насыщения— оба перехода смещены в прямом направлении. Через транзистор при этом проходят сравнительно большие токи.

  3. Активный режим— эмиттерный переход смещен с прямом направлении, коллекторный переход смещен в обратном направлении. В этом режиме наиболее эффективно осуществляется управление током.

Физика работы биполярного транзистора в активном режиме.

Активный режим является основным режимом работы транзистора. В активном режиме на эмиттерном переходе прямое напряжение внешнего источника, то есть сопротивление эмиттерного перехода низкое -несколько ом.. На коллекторном переходе обратное включение внешнего источника — сопротивление коллекторного перехода высоко — несколько мегаом. Благодаря высокому сопротивлению коллекторного перехода в цепь коллектора можно включать нагрузку с большим сопротивлением, а ток коллектора при этом останется практически неизменным, так как он все равно будет определяться очень большой величиной сопротивления обратно смещенного коллекторного перехода.

При прямом смещении эмиттерного перехода его потенциальный барьер понижается и через переход течет ток основных носителей заряда -ток эммитера . Инжектированные через эмиттерный переход в базу носители заряда, частично рекомбинируют в базе. Ввиду малой толщины базы основная часть инжектированных носителей заряда диффундирует сквозь базу и (для базы это неосновные носители) достигает коллекторного перехода.

В исходном состоянии коллекторный переход закрыт обратным включением внешнего источника. Поэтому на коллекторном переходе существует потенциальный барьер и соответствующее электрическое поле. Через коллекторный переход могут проходить только неосновные носители. Поэтому инжектированные через эмиттерный переход носители — для коллекторного перехода это неосновные носители — подхватываются полем и проходят через коллекторный переход, создавая коллекторный ток . Следовательно, коллекторный переход осуществляет удаление -экстракцию- неосновных носителей из базовой области.

Те носители, которые не принимают участия в создании коллекторного тока, а рекомбинируют в теле базы, создают тем базовый ток .

Очевидно, что ток коллектора меньше тока эмиттера. Из условия равенства токов в узле (закон Кирхгофа для токов) следует следующее равенство:.

Необходимо чтобы ток базы был по возможности ниже. Обычно ток базы составляет единицы процентов от величины тока эмиттера. Это достигается при изготовлении транзисторов уменьшением концентрации примесей в базе, уменьшением толщины базы. При выполнении этих условий можно считать, что токи эмиттера и коллектора примерно равны .

Следовательно ток коллектора может изменяться от очень малой величины (практически от нуля), определяемой обратным током электронно-дырочного перехода, до значения тока эмиттерного перехода.

Если ток коллектора возрастает при неизменном напряжении на коллекторе (-схема включения с общей базой), то физически это означает, что сопротивление коллекторного перехода снижается до величины того же порядка, что и сопротивление эмиттерного перехода. Следовательно, в результате инжекции носителей из эмиттера происходит преобразование сопротивления коллектора (transferresistor- отсюда и название транзистор).

Напряжение на эмиттерном переходе значительно меньше чем напряжение на коллекторном переходе (). Токи коллектора и эмиттера практически равны. Мощности выделяемые в эмиттерной цепии коллекторной цепиразличны, причем. Следовательно, биполярный транзистор способен усиливать мощность входного сигнала, то есть является усилительным прибором.

Биполярный транзистор

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.

β = IC / IB

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

2 Работа транзистора в активном режиме

Рассмотрим работу транзистора, включенного по схеме с общей базой, на примере п-р-п транзистора. При отсутствии электрического поля (UКБ=0, UЭБ=0) потенциальные барьеры эмиттерного и коллекторного переходов одинаковы (φКБ= φЭБ=0,3…0,8 В). Потоки неосновных носителей заряда (электронов) в базу и из базы одинаковы и существует термодинамическое равновесие этих потоков (рис.5.4.а,б).

При нормальном включении п-р-п транзистора эмиттерный переход смещается в прямом направлении, а коллекторный – в обратном (рис.5.4 в,г). Прямо смещенный эмиттерный переход имеет небольшое сопротивление — несколько Ом. Коллекторный переход, при отсутствии инжекции из эмиттера, имеет очень большое сопротивление – несколько МОм. Поэтому в цепь коллектора можно включать нагрузку с большим сопротивлением, практически не изменяя значения коллекторного тока.

При прямом смещении эмиттерного перехода снижается его потенциальный барьер и электроны из эмиттера могут преодолеть потенциальный барьер эмиттерного перехода и попасть в базу, создавая ток неосновных носителейIЭn. Навстречу этому потоку электронов из эмиттера будет направлен также встречный поток дырок из базы в эмиттер IЭр. Однако биполярные транзисторы изготовляют таким образом, чтобы концентрация электронов в эмиттере значительно превышала концентрацию дырок в базе. В этом случае малым потоком дырок IЭр, инжектируемых из базы в эмиттер, можно пренебречь и считать, что при прямом смещении весь ток эмиттера определяется потоком инжектированных электронов:

(5.1)

Эффективность инжекции электронов в базу определяется коэффициентом инжекции неосновных носителей:

(5.2)

Часть электронов инжектированных из эмиттера рекомбинирует с дырками в базе, создавая ток IБ. Однако количество рекомбинируемых носителей заряда в базе будет небольшим, поскольку толщина базы мала (много меньше диффузионной длины), это значит, что практически все электроны из эмиттера попадут в коллектор, минуя базу. В этом случае ток коллектора практически будет равен току эмиттера:

(5.3)

Эффективность переноса неосновных носителей из базы в коллектор определяется коэффициентом переноса:

(5.4)

В результате этого ток коллектора повышается от очень малого значения обратного тока коллекторного перехода до . Таким образом, в обратно смещенном коллекторном переходе становится практически равным току прямо смещенного эмиттерного перехода.

Если ток коллектора возрастает при неизменном напряжении источника питания UИК, то физически это означает, что сопротивление коллекторного перехода снизилось и стало такого же порядка как и сопротивление эмиттерного перехода. Следовательно, в результате инжекции из эмиттера происходит преобразование сопротивления коллектора (transfer resistor).

Поскольку сопротивление коллектора значительно снизилось, то оно становится значительно ниже сопротивления нагрузки RН, поэтому падением напряжения на коллекторе можно пренебречь и считать, что все падение напряжения источника питания UИК сосредоточено на нагрузке:

(5.5)

Падение напряжения на эмиттере будет равно:

(5.6)

Так как сопротивление нагрузки значительно больше сопротивления прямо смещенного эмиттернрго перехода, то при одинаковых коллекторном и эмиттерном токах , а, т.е. произошло усиление входного сигнала по напряжению и по мощности. Следовательно, биполярный транзистор является активным усилительным устройством, т.к. он способен усиливать мощность.

Основным параметром биполярного транзистора является коэффициент передачи эмиттерного тока:

(5.7)

Коэффициент передачи эмиттерного тока определяется двумя параметрами: коэффициентом инжекции γ и коэффициентом переноса β*

(5.8)

Усилительные свойства транзистора определяются только электронной составляющей тока инжектированных эмиттером носителей заряда (неосновными носителями), а дырочная составляющая никаких полезных функций не выполняет.

Как следует из (5.2) коэффициент инжекции γ определяет долю электронной составляющей в общем токе эмиттера, поэтому коэффициент инжекции стараются максимально приблизить к 1. Этого можно добиться, уменьшая толщину базы и значительно легируя область эмиттера, и слабо легируя область базы.

С другой стороны, увеличить коэффициент передачи эмиттерного тока можно увеличив коэффициент переноса β*. Очевидно, что коэффициент переноса тем ближе к 1, чем тоньше база и больше диффузионная длина электронов (неосновных носителей в базе). Это связано с уменьшением вероятности рекомбинации неосновных носителей заряда в базе.

Как следует из сказанного связь между эмиттерным, базовым и коллекторным токами определяется выражением:

(5.9)

Или учитывая (5.7):

(5.10)

Аналогично

(5.11)

где βCT – статический коэффициент передачи базового тока.

Коэффициенты передачи эмиттерного и базового токов связаны соотношением:

(5.12)

Режимы работы биполярного транзистора:

— Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт) UЭБ>0;UКБ<0;

— Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

— Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

— Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

— Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а вколлекторную или в эмитерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя диод, включенный последовательно с резистором. Подобные схемы каскадов отличаются малым количеством комплектующих схему элементов, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, неразборчивостью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

— Коэффициент усиления по току Iвых/Iвх.

— Входное сопротивление Rвх=Uвх/Iвх

Схема включения с общей базой

Усилитель с общей базой.

— Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.

— Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]

— Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства:

— Хорошие температурные и частотные свойства.

— Высокое допустимое напряжение

Недостатки схемы с общей базой :

— Малое усиление по току, так как α < 1

— Малое входное сопротивление

— Два разных источника напряжения для питания.

Схема включения с общим эмиттером

Iвых = Iк

Iвх = Iб

Uвх = Uбэ

Uвых = Uкэ

— Коэффициент усиления по току: Iвых/Iвх=Iк/Iб=Iк/(Iэ-Iк) = α/(1-α) = β [β>>1]

— Входное сопротивление: Rвх=Uвх/Iвх=Uбэ/Iб

Достоинства:

— Большой коэффициент усиления по току

— Большой коэффициент усиления по напряжению

— Наибольшее усиление мощности

— Можно обойтись одним источником питания

— Выходное переменное напряжение инвертируется относительно входного.

Недостатки:

— Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Схема с общим коллектором

Iвых = Iэ

Iвх = Iб

Uвх = Uбк

Uвых = Uкэ

— Коэффициент усиления по току: Iвых/Iвх=Iэ/Iб=Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1]

— Входное сопротивление: Rвх=Uвх/Iвх=(Uбэ+Uкэ)/Iб

Достоинства:

— Большое входное сопротивление

— Малое выходное сопротивление

Недостатки:

— Коэффициент усиления по напряжению меньше 1.

Схему с таким включением называют «эмиттерным повторителем»

Основные параметры

— Коэффициент передачи по току

— Входное сопротивление

— Выходная проводимость

— Обратный ток коллектор-эмиттер

— Время включения

— Предельная частота коэффициента передачи тока базы

— Обратный ток колектора

— Максимально допустимый ток

— Граничная частота коэффициента передачи по схеме с общим эмитером

Технология изготовления транзисторов

— эпитаксиально-планарная

— сплавная

— диффузионный

— диффузионносплавной

Применение транзисторов

— Усилители, каскады усиления

— Генератор

— Модулятор

— Демодулятор (Детектор)

— Инвертор (лог. элемент)

— Микросхемы на транзисторной логике (см. транзисторно-транзисторная логика, диодно-транзисторная логика, резисторно-транзисторная логика)

Полевой транзистор

Полевой транзистор — полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом.

Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

Схемы включения полевых транзисторов

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

Классификация полевых транзисторов

По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).

Транзисторы с управляющим p-n переходом

Полевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.

Рис. 1. Устройство полевого транзистора с управляющим p-n переходом

Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебании как по мощности, так и по току и напряжению.

Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.

Области применения полевых транзисторов

Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур, которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии.

Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надёжность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 порядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие тиристоры. В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, так как обладают малыми нелинейными и динамическими искажениями.

Что собой представляет, как устроен и работает биполярный транзистор

Принципы работы. Режимы: нормальный (в активной области), отсечки и
насыщения. За счёт чего усиливает транзистор?

Сначала хотел приписать в названии темы малоприятные: «для начинающих» или «для чайников», но, слегка поразмыслив, пришёл к выводу — «А ведь далеко не каждый электронщик, считающий себя продвинутыми, понимает: как технологически устроен транзистор, за счёт чего он обладает усилительными свойствами, что влияет на характеристики транзистора и откуда появился этот загадочный зверь — «дырка»«.

Начнём: Транзистор — это полупроводниковый электронный прибор, работающий по принципу взаимодействия двух, близко расположенных на кристалле p-n переходов. А коли прибор полупроводниковый, то это значит, что, как ни крути, а изготовлен транзистор из полупроводниковых материалов таких как: кремний, германий, индий и т.д. А что это такое — полупроводниковый материал или по-простому полупроводник?

Полупроводники по своим свойствам занимают промежуточное положение между проводниками и диэлектриками. При температурах, не сильно отличающихся от абсолютного нуля (-273,15°C), полупроводники обладают свойствами диэлектриков. Однако даже при незначительном повышении температуры, сопротивление полупроводника быстро уменьшается, и он начинает проводить электрический ток — т.е. становится проводящим. За счёт чего это происходит?

С ростом температуры кристалл полупроводника получает некоторую долю энергии в виде тепла, достаточную для того, чтобы часть отрицательно заряженных электронов покинуло свои атомы и перешло в межатомное пространство. Такие электроны называются свободными, а атомы кристаллической решётки, от которых отпочковались электроны, приобретают несбалансированный положительный заряд и получают условное название — «дырка».

Таким образом, при температурах выше -273,15°C в кристалле чистого полупроводника содержится некоторое количество зарядов обоих знаков — свободные электроны и дырки. Если кристалл не содержит примесей, то в любой момент времени количество свободных электронов равно числу имеющихся в кристалле дырок.
Другое дело, если к чистому полупроводнику подмешать некое вещество! В зависимости от свойств этой примеси мы можем получить: либо концентрацию дырок, намного превышающую концентрацию электронов (полупроводник p-типа), либо наоборот — превышение концентрации электронов над концентрацией дырок (полупроводник n-типа).

Итак, p-полупроводник (от англ. positive) — это полупроводник с положительным дырочным типом проводимости, а n-полупроводник (от англ. negative) — с отрицательным электронным типом проводимости.

Ну вот, а теперь можно переходить к описанию структурной схемы транзистора.

pnp и npn транзисторы
Рис.1

Как следует из рисунка Рис.1, биполярные транзисторы — это приборы, изготовленные на основе трёхслойной полупроводниковой структуры. В зависимости от порядка чередования областей, различают изделия двух типов проводимости: прямой (p-n-p) и обратной (n-p-n).
Легко заметить, что подобная комбинация полупроводников в транзисторе напоминает встречно-последовательное соединение двух диодов с общим катодом (p-n-p) либо анодом (n-p-n). Эта аналогия справедлива лишь в одном случае — она позволяет легко тестировать транзистор на предмет его живучести при помощи обычного омметра или мультиметра.

Рассмотрим цепь, иллюстрирующую работу n-p-n транзистора типа в различных режимах.
режим отсечки транзистораактивный режим транзисторарежим насыщения транзистораpnp и npn транзисторы
Рис.2 а) Режим отсечки тр-ра pnp и npn транзисторыб) Активный режим тр-ра pnp и npn транзисторыв) Режим насыщения тр-ра

На Рис.2 приведено классическое включение транзистора n-p-n типа по схеме с общим эмиттером. Положительный вывод источника питания через нагрузку (в качестве которой в нашем случае выступает светодиод) подключается к коллектору транзистора, отрицательный — к эмиттеру полупроводника и для кучи — к земляной шине.

Подадим нулевое смещение на базу транзистора (Рис.2 а)), посредством чего введём его в режим отсечки, соответствующий условию Uэб . В этом случае и эмиттерный, и коллекторный p-n-переходы оказываются запертыми, и в коллекторной цепи будет протекать лишь незначительный обратный ток Iко ≈ току обратно смещённого диода. Основные носители заряда (электроны в коллекторной/эмиттерной областях и дырки в базовой) сидят в отведённых областях и никуда выбираться не собираются, ввиду отсутствия воздействия на них какого-либо электрического поля.

Другое дело если мы подадим между базой и эмиттером транзистора небольшое напряжение Uэб > 0,6—0,7 В (Рис.2 б)) и тем самым переведём его в активный (нормальный) режим. В данном режиме переход база-эмиттер оказывается включённым в прямом направлении (открыт), а переход база-коллектор — в обратном (закрыт):
Поскольку прослойка р-полупроводника базы технологически сделана очень тонкой, положительное напряжение, приложенное к базе, сможет «дотянуться» своим электрическим полем до значительно большей по размеру n-области эмиттера. Под действием этого поля электроны из эмиттера направляются к базе и проникают внутрь неё. Малая часть электронов встречается и рекомбинирует (нейтрализуется) с дырками, являющимися основными носителями базы, но в связи с её малыми размерами (а соответственно и малым количеством дырок) бОльшая часть электронов проходит сквозь базу и доходит-таки до коллекторного перехода.
Уменьшение числа дырок в базе, происходящее в результате рекомбинации, компенсируется источником питания Bat2 и обуславливает ток базы, который, как мы уже поняли — значительно меньше тока эмиттера, который находится в прямой зависимости к интенсивности потока электронов.
Далее под действием электрического поля, создаваемого положительным потенциалом источника Bat1, электроны проникают из базы через p-n-переход в коллектор транзистора, выходят наружу и через источник питания замыкаются обратно в область эмиттера.
Если дальше повышать напряжение на базе, то количество электронов, участвующих в процессе циркуляции по цепи также увеличится. Результатом будет являться незначительное (в абсолютном выражении) увеличение тока базы и значительное увеличение тока коллектора.
А поскольку ток в цепи прямопропорционален интенсивности потока носителей заряда, то, исходя из всего вышесказанного и в соответствии с первым законом Кирхгофа, в транзисторе всегда существует следующее соотношение между токами: Iк = Iэ — Iб.
Величина отношения токов коллектора и эмиттера характеризует такой параметр транзистора, как — коэффициент передачи тока α = Iк / Iэ. Из формул следует, что коэффициент передачи тока транзистора всегда меньше единицы и принимает значение ≈ 0,9-0,99.

Усиливающее свойство транзистора заключается в том, что посредством относительно малого тока базы можно управлять большим током коллектора. Причём, в активном режиме — изменение тока коллектора прямо пропорционально изменению тока базы: ΔIк = ΔIб x h21э , где h31э (или β) — статический коэффициент передачи тока транзистора. Этот параметр является справочным и для разных полупроводников составляет величину от 10—12 до 200—300.

И последний режим работы транзистора — режим насыщения (Рис 2 в)) или по-умному — режим двойной инжекции.
При дальнейшем повышении уровня напряжения на базе, ток в коллекторной цепи Iк также увеличивается, что приводит (согласно закону Ома) к пропорциональному увеличению падения напряжения на нагрузке и, как следствие — уменьшению напряжения Uк.
При определённом уровне этого напряжения Uк, коллекторный переход база-коллектор начнёт переходить в прямосмещённое (открытое) состояние, т.е. оба p-n перехода транзистора окажутся открытыми. Уровень напряжения на базе, при котором начинается этот процесс, называется Uбэ.нас, является справочной величиной и указывается при неком фиксированном токе коллектора.
Физически, это прямое смещение КП приводит к тому, что не только эмиттер будет засылать (инжектировать) электроны в базу, но и коллектор — тоже. Движение этих коллекторных электронов противоположно направлению диффузионного тока эмиттера и активно препятствует дальнейшему повышению тока транзистора.
В результате этого противостояния, ток коллектора практически перестаёт зависеть от дальнейшего увеличения уровня напряжения на базе и фиксируется на уровне, называемом Iк.нас. Ещё один паспортный параметр, характеризующий работу транзистора в режиме насыщения — Uкэ.нас показывает величину падения напряжения между коллектором и эмиттером при заданном токе коллектора.
В связи с тем, что величина тока Iк.нас может принимать значения, значительно превышающие токи транзистора, находящегося линейном режиме, следует внимательно относиться к выбору коллекторной нагрузки, чтобы не превысить максимально допустимых значений мощностей как самого транзистора, так и нагрузки. В случае, изображённом на Рис 2 в), этот выходной ток будет явно выше 20мА, допустимых для светодиода, что собственно говоря, и отображено на схеме.

pnp и npn транзисторы

Рис.3

Ну и под занавес приведу пример работы транзисторного каскада ОЭ в активном режиме (Рис.3).
Переменный резистор R1 принимает значения от 0 (в верхнем положении) до 680кОм (в нижнем).
В первом приближении — изменением значения напряжения Uбэ можно пренебречь и считать его равным Uбэ ≈ 0,6 В.
Тогда, согласно закону Ома, в верхнем положении потенциометра ток базы будет равен:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/51к = 0,16 мА,
а в нижнем:
Iб ≈ (UBat1 — Uбэ)/(R1+R2) = (9в-0,6в)/(51к +680к) = 0,011 мА,
А поскольку мы помним, что Iк = Iб x h21э, то в верхнем положении R1 — Iк = 16мА, т.е. яркость светодиода близка к максимальной.
В нижнем положении R1 — Iк = 1,1мА, т.е. светодиод не светится, либо светится очень слабо.
В промежуточных положениях ручки потенциометра — токи, а соответственно и яркость свечения, также принимают промежуточные значения.

На следующей странице рассмотрим эквивалентную схему транзистора, а также свойства и характеристики различных типов усилительных каскадов.

pnp и npn транзисторы

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *