Применение полевого транзистора
Полевые транзисторы используют как аналоговые выключатели. Применение их как выключателей в аналоговых схемах является прямым следствием их способа работы. Это обусловлено тем обстоятельством, что когда напряжение на затворе-источнике, VGS равно нулю, n-канал транзистора будет работать в области насыщения и будет действовать почти как небольшая схема.
Таким образом, напряжение на выходе будет равно нулю (Рисунок 1). С другой стороны, если отрицательное напряжение находится между выводами затвора и источника i.e., если VGS отрицательно, то транзистор работает в области выключения или в области отсечки.
Это означает, что в данном случае полевой транзистор действует как открытая схема и ток стока, ID будет равен нулю. Вследствие этого, напряжение через загрузочное сопротивление RD будет равно нулю, что порождает то обстоятельство, что VDD похоже на V0.
Рисунок 1 Полевой транзистор как аналоговый выключатель
Это свойство вести себя как выключатель может быть использовано для проектирования аналогового мультиплексора, как показано на рисунке 2.
Рисунок 2 n-к-1 Мультиплексор, использующий полевые транзисторы.
Тут каждый из сигналов на входе (сигнал 1, сигнал 2, … сигнал n) проходит через выделенный полевой транзистор с управляющим p-n-переходом (T1, T2, … Tn) перед контактом с выводом выхода, V0. Тут лишь один сигнал среди множества сигналов на входе возникает на выводе выхода, в зависимости от напряжения VGS на выводах затвора.
К примеру, если VGS2 отрицательное, в то время как все остальные VGS равны нулю, то сигнал на выходе будет Сигналом 2. Более того, способность к выключению у биполярных транзисторов с изолированным затвором используется в двигателе внутреннего сгорания, а именно в обмотках, ответственных за возгорание, которые требуют быстрого выключения и возможностей блокировки напряжения.
Усилители
Переход в полевых транзисторах используется на стадии усиления. Он изолирует предыдущую стадию от следующей стадии и, таким образом, действует как буферные усилители (Рисунок 3). Это обусловлено тем, что такие транзисторы имеют очень высокое полное сопротивление на входе, в силу чего предыдущая стадия будет слегка загружена, вызывая полный выход Стадии 1, возникая на входе буфера.
Можно сделать так, что весь выход буфера будет возникать на входе в Стадии 2, используя данные транзисторы в конфигурации общего стока, благодаря низкому полному сопротивлению на выходе. Это даже значит, что буферные усилители способны к управлению большими нагрузками или сопротивлениями с небольшой нагрузкой.
Рисунок 3 Полевой транзистор как буферный усилитель
Полевые транзисторы являются устройствами, которые издают мало шума, по крайней мере, если сравнивать их с биполярными плоскостными транзисторами. Это делает их полезными компонентами для использования в качестве усилителя на приёмниках с внешним интерфейсом, ведь они нуждаются в минимальном уровне шума на выходе в итоге.
Стоит также отметить, что полевые транзисторы являются устройствами с контролируемым напряжением, что делает их идеальными для использования в качестве усилителей для радио частот. Причина этого в том, что за исключением усилителя для радио частот откликаются достаточно хорошо, даже когда антенны в конце приёмника принимают недельные сигналы (сигналы с очень низким током).
Полевой транзистор как усилитель в конфигурации общего источника может быть использован для управления другим полевым транзистором (усилителем) в конфигурации общего затвора, формируя каскадный усилитель, как показано на рисунке 4.
Хотя коэффициент усиления каскадного усилителя такой же, как и у усилителя в конфигурации с общим источником, его ёмкостное сопротивление на входе весьма низкое, если сравнивать с ним же у усилителя в конфигурации с общим источником. Более того, каскадный усилитель даёт очень высокое сопротивление на входе.
Генератор с фазовращателем
Полевой транзистор даёт высокое полное сопротивление на своих выводах входа, которое уменьшает эффект нагрузки. Также они могут использоваться как для усиления, так и для функций обратной связи. Эта особенность полевых транзисторов делает их подходящими для использования в схемах генераторов с фазовращателем, как показано на рисунке 5.
Рисунок 5 Полевой транзистор как генератор с фазовращателем
Модулятор
Полевой транзистор, действующий как выключатель, может быть использован как модулятор (Рисунок 6), где напряжение постоянного тока, VDS преобразуется в напряжение переменного тока с таким же уровнем амплитуды, VAC. Это вытекает из того, что квадратная форма волны напряжения используется как VGS, в результате чего транзистор действует в области выключения и в области насыщения, попеременно. Такие схемы модулятора помогают преодолеть проблему смещения, которая существует в случае усилителей с непосредственной связью.
Рисунок 6 Полевой транзистор как модулятор
Ограничитель тока
N-канальный полевой транзистор, чей терминал затвора укорочен вместе с выводом источника, действует как ограничитель тока. Это означает, что в этом размещении, полевой транзистор даёт току проходить через них, чтобы достигнуть только определённого уровня, после чего, он становится удерживаемой постоянной, безотносительной к колебаниям уровня напряжения. Эти ограничители тока из интегральной части не изменяющегося постоянного тока или стабилизирующих диодов.
Рисунок 6 Полевой транзистор как ограничитель тока
Полевые транзисторы широко используются в интегрированных схемах из-за их компактного размера. Они используются в схемах микшеров для телевизоров и радиоприемников из-за низких модуляционных искажений. Более того, полевые транзисторы также применяют в резисторах с переменным напряжением в операционных усилителях, схемах контроля звука, ведь они обеспечивают большую изоляцию между их выводами затвора и стока. Полевые транзисторы применяются в таких областях как цифровая электроника и оптоволоконные системы.
Пора подвести итоги: полевой транзистор может использоваться как аналоговый выключатель, как усилитель, как генератор с фазовращателем, как модулятор и как ограничитель тока. Каждый вариант имеет свои особенности, делающие его действительно значимым.
Вряд ли можно переоценить роль полевого транзистора в повседневной жизни. Все перечисленные пять способов его применения имеют очень существенное значение в наши дни. Сложно выделить какое-то наиболее значимое использование среди названных, ведь каждое может оказаться где-то просто незаменимым.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
Полевые транзисторы. Виды и устройство. Применение и особенности
Полевые транзисторы являются полупроводниковыми приборами. Особенностью их является то, что ток выхода управляется электрическим полем и напряжением одной полярности. Регулирующий сигнал поступает на затвор и осуществляет регулировку проводимости перехода транзистора. Этим они отличаются от биполярных транзисторов, в которых сигнал возможен с разной полярностью. Другим отличительным свойством полевого транзистора является образование электрического тока основными носителями одной полярности.
Разновидности
Существует множество разных видов полевых транзисторов, действующих со своими особенностями.
- Тип проводимости. От нее зависит полюсность напряжения управления.
- Структура: диффузионные, сплавные, МДП, с барьером Шоттки.
- Количество электродов: бывают транзисторы с 3-мя или 4-мя электродами. В варианте с 4-мя электродами подложка является отдельной частью, что дает возможность управлять прохождением тока по переходу.
- Материал изготовления: наиболее популярными стали приборы на основе германия, кремния. В маркировке транзистора буква означает материал полупроводника. В транзисторах, производимых для военной техники, материал маркируется цифрами.
- Тип применения: обозначается в справочниках, на маркировке не указан. На практике известно пять групп применения «полевиков»: в усилителях низкой и высокой частоты, в качестве электронных ключей, модуляторов, усилителей постоянного тока.
- Интервал рабочих параметров: набор данных, при которых полевики могут работать.
- Особенности устройства: унитроны, гридисторы, алкатроны. Все приборы имеют свои отличительные данные.
- Количество элементов конструкции: комплементарные, сдвоенные и т. д.
Кроме основной классификации «полевиков», имеется специальная классификация, имеющая принцип действия:
- Полевые транзисторы с р-n переходом, который осуществляет управление.
- Полевые транзисторы с барьером Шоттки.
- «Полевики» с изолированным затвором, которые делятся:
— с индукционным переходом;
— со встроенным переходом.
В научной литературе предлагается вспомогательная классификация. Там говорится, что полупроводник на основе барьера Шоттки необходимо выделить в отдельный класс, так как это отдельная структура. В один и тот же транзистор может входить сразу оксид и диэлектрик, как в транзисторе КП 305. Такие методы применяют для образования новых свойств полупроводника, либо для снижения их стоимости.
На схемах полевики имеют обозначения выводов: G – затвор, D – сток, S – исток. Подложку транзистора называют «substrate».
Конструктивные особенности
Электрод управления полевым транзистором в электронике получил название затвора. Его переход выполняют из полупроводника с любым видом проводимости. Полярность напряжения управления может быть с любым знаком. Электрическое поле определенной полярности выделяет свободные электроны до того момента, пока на переходе не закончатся свободные электроны. Это достигается воздействием электрического поля на полупроводник, после чего величина тока приближается к нулю. В этом заключается действие полевого транзистора.
Электрический ток проходит от истока к стоку. Разберем отличия этих двух выводов транзистора. Направление движения электронов не имеет значения. Полевые транзисторы обладают свойством обратимости. В радиотехнике полевые транзисторы нашли свою популярность, так как они не образуют шумов по причине униполярности носителей заряда.
Главной особенностью полевых транзисторов является значительная величина сопротивления входа. Это особенно заметно по переменному току. Эта ситуация получается по причине управления по обратному переходу Шоттки с определенным смещением, или по емкости конденсатора возле затвора.
Материалом подложки выступает нелегированный полупроводник. Для «полевиков» с переходом Шоттки вместо подложки закладывают арсенид галлия, который в чистом виде является хорошим изолятором.
К нему предъявляются требования:
- Отсутствие отрицательных факторов в соединении с переходом, стоком и истоком: гистерезис свойств, паразитное управление, чувствительность к свету.
- Устойчивость к температуре во время изготовления: невосприимчивость к эпитаксии, отжигу. Отсутствие различных примесей в активных слоях.
- Минимальное количество примесей.
- Качественная структура кристаллической решетки с наименьшим количеством дефектов.
На практике оказывается трудным создание структурного слоя со сложным составом, отвечающим необходимым условиям. Поэтому дополнительным требованием является возможность медленного наращивания подложки до необходимых размеров.
Полевые транзисторы с р-n переходом
В такой конструкции тип проводимости затвора имеет отличия от проводимости перехода. Практически применяются различные доработки. Затвор может быть изготовлен из нескольких областей. В итоге наименьшим напряжением можно осуществлять управление прохождением тока, что повышает коэффициент усиления.
В разных схемах применяется обратный вид перехода со смещением. Чем больше смещение, тем меньше ширина перехода для прохождения тока. При определенной величине напряжения транзистор закрывается. Применение прямого смещения не рекомендуется, так как мощная цепь управления может оказать влияние на затвор. Во время открытого перехода проходит значительный ток, или повышенное напряжение. Работа в нормальном режиме создается путем правильного выбора полюсов и других свойств источника питания, а также подбором точки работы транзистора.
Во многих случаях специально применяют непосредственные токи затвора. Такой режим могут применять и транзисторы, у которых подложка образует переход вида р-n. Заряд от истока разделяется на сток и затвор. Существует область с большим коэффициентом усиления тока. Этот режим управляется затвором. Однако, при возрастании тока эти параметры резко падают.
Подобное подключение применяется в схеме частотного затворного детектора. Он применяет свойства выпрямления перехода канала и затвора. В таком случае прямое смещение равно нулю. Транзистор также управляется затворным током. В цепи стока образуется большое усиление сигнала. Напряжение для затвора изменяется по закону входа и является запирающим для затвора.
Напряжение в стоковой цепи имеет элементы:
- Постоянная величина. Не применяется.
- Сигнал несущей частоты. Отводится на заземление с применением фильтров.
- Сигнал с модулирующей частотой. Подвергается обработке для получения из него информации.
В качестве недостатка затворного детектора целесообразно выделить значительный коэффициент искажений. Результаты для него отрицательные для сильных и слабых сигналов. Немного лучший итог показывает фазовый детектор, выполненный на транзисторе с двумя затворами. Опорный сигнал подается на один их электродов управления, а информационный сигнал, усиленный «полевиком», появляется на стоке.
Несмотря на значительные искажения, этот эффект имеет свое назначение. В избирательных усилителях, которые пропускают определенную дозу некоторого спектра частот. Гармонические колебания фильтруются и не влияют на качество действия схемы.
Транзисторы МеП, что означает – металл-полупроводник, с переходом Шоттки практически не отличаются от транзисторов с р-n переходом. Так как переход МеП имеет особые свойства, эти транзисторы могут функционировать на повышенной частоте. А также, структура МеП простая в изготовлении. Характеристики по частоте зависят от времени заряда затворного элемента.
МДП-транзисторы
База элементов полупроводников постоянно расширяется. Каждая новая разработка изменяет электронные системы. На их базе появляются новые приборы и устройства. МДП-транзистор действует путем изменения проводимости полупроводникового слоя с помощью электрического поля. От этого и появилось название – полевой.
Обозначение МДП расшифровывается как металл-диэлектрик-полупроводник. Это дает характеристику состава прибора. Затвор изолирован от истока и стока тонким диэлектриком. МДП транзистор современного вида имеет размер затвора 0,6 мкм, через который может протекать только электромагнитное поле. Оно оказывает влияние на состояние полупроводника.
При возникновении нужного потенциала на затворе возникает электромагнитное поле, которое оказывает влияние на сопротивление участка стока-истока.
Достоинствами такого применения прибора является:
- Повышенное сопротивление входа прибора. Это свойство актуально для применения в цепях со слабым током.
- Небольшая емкость участка сток-исток дает возможность применять МДП-транзистор в устройствах высокой частоты. При передаче сигнала искажений не наблюдается.
- Прогресс в новых технологиях производства полупроводников привел к разработке транзисторов IGBT, которые включают в себя положительные моменты биполярных и полевых приборов. Силовые модули на их основе широко применяются в приборах плавного запуска и преобразователях частоты.
При разработке таких элементов нужно учесть, что МДП-транзисторы имеют большую чувствительность к повышенному напряжению и статическому электричеству. Транзистор может сгореть при касании к его выводам управления. Следовательно, при их установке необходимо применять специальное заземление.
Такие полевые транзисторы обладают многими уникальными свойствами (например, управление электрическим полем), поэтому они популярны в составе электронной аппаратуры. Также следует отметить, что технологии изготовления транзисторов постоянно обновляется.
Похожие темы:
Транзистор | Назначение |
2П101 | для работы во входных каскадах усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
КП102 | для работы во входных каскадах усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
2П103
2П103-9 |
для работы во входных каскадах усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
2ПС104 | для работы во входных каскадах дифференциальных малошумящих усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
2П201 | для работы во входных каскадах усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
2ПС202 | для работы во входных каскадах дифференциальных малошумящих усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
КПС203 | для работы во входных каскадах дифференциальных малошумящих усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
КП301 | для применения во входных каскадах малошумящих усилителей и нелинейных малосигнальных схемах с высоким входным сопротивлением |
КП302 | для применения в широкополосных усилителях в диапазоне частот до 150 МГц, а также в переключающих и коммутирующих устройствах |
КП303 | предназначены для применения во входных каскадах усилителей высокой (Д, Е, И) и низкой (А, Б, В, Ж) частот с высоким входным сопротивлением. Транзисторы КП303Г предназначены для применения в зарядочувствительных усилител ях и других схемах ядерной спектрометрии |
КП304 | предназначены для применения в переключающих и усилительных схемах с высоким входным сопротивлением |
2П305 | предназначены для применения в усилительных каскадах высокой и низкой частот с высоким входным сопротивлением |
КП306 | предназначены для применения в преобразовательных и усилительных каскадах высокой и низкой частот с высоким входным сопротивлением |
КП307 | предназначены для применения во входных каскадах усилителей высокой и низкой частот с высоким входным сопротивлением. Транзисторы КП307Ж предназначены для применения в зарядочувствительных усилителях и других схемах ядерной спектрометрии |
2П308-9 | предназначены для применения во входных каскадах усилителей низкой частоты и постоянного тока (А, Б, В), в переключающих схемах и схемах коммутаторов (Г, Д) с высоким входным сопротивлением. |
КП310 | для применения в приемно-передающих устройствах сверхвысокочастотного диапазона |
КП312 | предназначены для применения во входных каскадах усилителей и преобразователей сверхвысокочастотного диапазона |
КП313 | предназначены для применения в усилительных каскадах высокой и низкой частот с высоким входным сопротивлением |
КП314 | для применения в охлаждаемых каскадах предусилителей устройств ядерной спектрометрии |
КПС315 | для работы во входных каскадах дифференциальных малошумящих усилителей низкой частоты и постоянного тока с высоким входным сопротивлением |
КПС316 | для работы во входных каскадах дифференциальных усилителей, балансных схем различного назначения с высоким входным сопротивлением |
3П320-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки для СВЧ усилительных устройств с нормированных коэффициентом шума на частоте 8 ГГц |
3П321-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки для СВЧ усилительных устройств с нормированных коэффициентом шума на частоте 8 ГГц |
КП322 | тетрод на основе p-n перехода для усилительных и смесительных каскадов на частотах до 400 МГц |
КП323-2 | транзистор с p-n переходом для входных каскадов предварительных малошумящих предварительных усилителей низкой и высокой частот (до 400 МГц) |
3П324-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки для СВЧ усилительных устройств с нормированных коэффициентом шума на частоте 12 ГГц |
3П325-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 8 ГГц для СВЧ устройств с малым уровнем шума, а также для фотоприемных устройств с малым уровнем собственных шумов |
3П326-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 17.4 ГГц для применения во входных и последующих каскадах малошумящих усилителей |
КП327 | МОП тетрод с n-каналом и затворами, защищенными диодами, для селекторов телевизионных каналов метровых и дециметровых волн |
3П328-2 | арсенидогаллиевые полевые двухзатворные транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 8 ГГц для применения во входных и последующих каскадах малошумящих усилителей |
КП329 | для применения во входных каскадах усилителей низкой и высокой частот (до 200 МГц), в переключающих устройствах и коммутаторах с высоким входным сопротивлением |
3П330-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 25 ГГц (3П330А-2, 3П330Б-2) и 17.4 ГГц (3П330В-2) для применения во входных и последующих каскадах малошумящих усилителей |
3П331-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 10 ГГц для применения в малошумящих усилителях и усилителях с расширенным динамическим диапазоном |
2П332 | полевой p-канальный транзистор для переключающих и усилительных устройств |
2П333 | полевой n-канальный транзистор для применения во входных каскадах усилителей низкой и высокой частот (до 200 МГц), в переключающих устройствах и коммутаторах с высоким входным сопротивлением |
2П335-2 | для усилительных устройств |
2П336-1 | для переключающих и усилительных устройств |
2П337-Р | транзисторы подобранные в пары по электрическим параметрам предназначены для применения в балансных усилителях, дифференциальных усилителях с высоким входным сопротивлением на частотах до 400 МГц |
2П338-Р1 | транзисторы подобранные в пары по электрическим параметрам предназначены для применения в балансных усилителях, дифференциальных усилителях с высоким входным сопротивлением |
3П339-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частотах 8 и 17.4 ГГц для применения в малошумящих усилителях, в усилителях с расширенным динамическим диапазоном и в широкополосных усилителях |
2П341 | транзистор с p-n переходом для входных каскадов малошумящих усилителей в диапазоне частот 20 Гц — 500 МГц |
КП342 | для переключающих устройств |
3П343-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 12 ГГц для применения во входных и последующих каскадах малошумящих усилителей |
3П344-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с нормированных коэффициентом шума на частоте 4 ГГц для применения во входных и последующих каскадах малошумящих усилителей |
3П345-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки для применения в фотоприемных устройствах с малым уровнем собственных шумов |
КП346-9 | МОП n-канальный двухзатворный транзистор с затворами, защищенными диодами, для селекторов каналов ТВ приемником (А,Б- для дециметровых волн, В- для метровых волн) |
2П347-2 | n-канальный двухзатворный транзистор для входных каскадов радиоприемных устройств |
КП350 | предназначены для применения в усилительных, генераторных и преобразовательных каскадах сверхвысокой частоты (до 700 МГц) |
КП351 | транзисторы с барьером Шоттки с двумя затворами (3П351А-2) и с одним затвором (3П351А1-2), предназначены для применения в малошумящих усилителях, смесителях и других устройствах в сантиметровом диапазоне |
КП365А | BF410C n-канальный транзистор |
КП382А | BF960 двухзатворный полевой транзистор селекторов каналов ЦТ |
КП501А | ZVN2120 высоковольтный полевой МОП-транзистор, используемый в качестве ключа для аналоговых средств связи |
КП601
2П601-9 |
полевые транзисторы с диффузионным затвором и n-каналом, работа во входных и выходных каскадах усилителей и преобразователей частоты |
АП602-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом, работа в усилителях мощности, автогенераторах, преобразователях частоты в диапазоне частот 3-12 ГГц |
3П603-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом, работа в усилителях мощности, автогенераторах, преобразователях частоты в диапазоне частот до 12 ГГц |
3П604-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом, работа в усилителях мощности, автогенераторах, преобразователях частоты в диапазоне частот 3-18 ГГц |
3П605-2 | арсенидогаллиевые полевые транзисторы с
барьером Шоттки и n-каналом, работа в малошумящих усилителях и усилителях
с расширенным динамическим диапазоном |
3П606-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом, работа в усилителях мощности, автогенераторах, преобразователях частоты в диапазоне частот до 12 ГГц |
3П607-2 | арсенидогаллиевые полевые транзисторы с n-каналом для работы в усилителях мощности, генераторах, преобразователях частоты в диапазоне частот до 10 ГГц |
3П608-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом для работы в выходных каскадах усилителей и генераторов |
КП701 | полевые транзисторы с изолированным затвором для вторичных источников питания, переключающих и импульсных устройств с частотой переключения до 1 МГц |
КП702 | полевые транзисторы с изолированным затвором и n-каналом для вторичных источников питания, переключающих и импульсных устройств, ключевых стабилизаторов и преобразователей напряжения, усилителей, генераторов |
КП703 | полевые транзисторы с изолированным затвором и p-каналом для вторичных источников питания, переключающих и импульсных устройств, ключевых стабилизаторов и преобразователей напряжения, усилителей, генераторов |
КП704 | полевые транзисторы с изолированным затвором и n-каналом для использования в выходных каскадах оконечных видеоусилителей многоцветных графических дисплеев, во вторичных источниках энергопитания, в устройствах коммутации электрических цепей |
КП705 | полевые транзисторы с изолированным затвором и n-каналом для использования в импульсных источниках питания, в переключающих и импульсных устройствах |
КП706 | полевые транзисторы с изолированным затвором и n-каналом для использования в импульсных источниках питания, в переключающих и импульсных устройствах |
КП709 | полевые транзисторы с изолированным затвором и n-каналом для использования в импульсных источниках электропитания ТВ приемников четвертого и пятого поколений, переключающих и импульсных устройствах радиоэлектронной аппар атуры, устройствах электропривода. Аналог BUZ90, BUZ90A Siemens. |
КП712 | полевые транзисторы с изолированным затвором и p-каналом для работы в импульсных устройствах |
КП717Б | IRF350 МОП-транзистор с 400 В, 0.3 Ом |
КП718А | BUZ45 МОП-транзистор с 500 В, 0.6 Ом |
КП718Е1 | IRF453 МОП-транзистор с 500 В, 0.6 Ом |
КП722А | BUZ36 МОП-транзистор с 200 В, 0.12 Ом |
КП723А | IRF44 МОП-транзистор с 60 В, 0.028 Ом |
КП723Б | IRF44 МОП-транзистор с 60 В, 0.028 Ом |
КП723В | IRF45 МОП-транзистор с 60 В, 0.028 Ом |
КП724Г | IRF42 МОП-транзистор с 60 В, 0.028 Ом |
КП724А | MTP6N60 МОП-транзистор с 600 В, 1.2 Ом |
КП724Б | IRF842 МОП-транзистор с 600 В, 1.2 Ом |
КП725А | TPF450 МОП-транзистор с 500 В, 0.4 Ом |
КП726А | BUZ90 МОП-транзистор с 600 В, 1.2 Ом |
КП728А | МОП-транзистор с 800 В, 3.0 Ом |
КП801 | полевые транзисторы p-n переходом для применения в выходных каскадах усилителей звуковоспроизводящей аппаратуры |
КП802 | полевые транзисторы p-n переходом работа в ключевых схемах преобразователей постоянного напряжения в качестве быстродействующего коммутатора |
КП803 | полевые транзисторы с изолированным затвором для вторичных источников питания, переключающих и импульсных устройств, а также для ключевых стабилизаторов и преобразователей напряжения, усилителей и генераторов |
КП804 | полевые транзисторы с изолированным затвором и n-каналом для быстродействующих импульсных схем |
КП805 | полевые транзисторы с изолированным затвором и n-каналом для построения источников вторичного электропитания с бестрансформаторным входом, работающих от промышленной сети переменного тока с частотой 50 Гц и напряжением 220 В и для других устройств преобразования электрической энергии |
КП809 | МОП транзисторы для работы на частотах до 3 МГц и выше в импульсных источниках питания с бестрансформаторным входом, в регуляторах, стабилизаторах и преобразователях |
КП810 | прибор со статической индукцией для применения в схемах высокочастотных источников питания с бестрансформаторным входом, ключевых усилителях мощности |
КП812 | полевые транзисторы с изолированным затвором и n-каналом для импульсных источников питания, регуляторов, усилителей звуковой частоты |
КП813 | МОП транзисторы для работы на частотах до 3 МГц и выше в импульсных источниках питания с бестрансформаторным входом, в регуляторах, стабилизаторах и преобразователях |
КП814 | полевые транзисторы с изолированным затвором и n-каналом для импульсных источников питания |
КП901 | полевые транзисторы с изолированным затвором предназначены для применения в усилительных и генераторных каскадах в диапазоне коротких и ультракоротких длин волн (до 100 МГц) |
КП902 | полевые транзисторы с изолированным затвором для применения в приемно-передающих устройствах в диапазоне частот до 400 МГц |
КП903 | полевые транзисторы p-n переходом для применения в приемно-передающих и переключающих устройствах в диапазоне частот до 30 МГц |
КП904 | полевые транзисторы с изолированным затвором предназначены для применения в усилительных, преобразовательных и генераторных каскадах в диапазоне коротких и ультракоротких длин волн |
КП905 | полевые транзисторы с изолированным затвором для усиления и генерирования сигналов в диапазоне частот до 1500 МГц |
КП907 | полевые транзисторы с изолированным затвором для усиления и генерирования сигналов в диапазоне частот до 1500 МГц, а также для применения в быстродействующих переключающих устройствах наносекундного диапазона |
КП908 | полевые транзисторы с изолированным затвором для усиления и генерирования сигналов в диапазоне частот до 2.25 ГГц |
КП909 | полевые транзисторы с изолированным затвором для работы в усилительных и генераторных устройствах в непрерывном и импульсном режимах на частотах до 400 МГц |
АП910-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом для работы в усилителях мощности, генераторах, в диапазоне частот до 8 ГГц |
КП911 | полевые транзисторы с изолированным затвором для работы в усилительных и генераторных устройствах |
КП912 | полевые транзисторы с изолированным затвором для применения в ключевых стабилизаторах и преобразователях напряжения, импульсных устройствах, усилителях и генераторах |
КП913 | полевые транзисторы с изолированным затвором для усиления и генерирования сигналов в диапазоне частот до 400 МГц при напряжении питания до 45 В |
2П914 | полевой транзистор с p-n переходом д для применения в усилителях, преобразователях и генераторах высокой частоты, а также в переключающих устройствах |
3П915-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом для работы в усилителях мощности, генераторах, в диапазоне частот до 8 ГГц |
КП918 | полевые транзисторы с изолированным затвором для усиления и генерирования сигналов в диапазоне частот до 1 ГГц, а также для быстродействующих переключающих устройств |
КП920 | полевые транзисторы с изолированным затвором для усиления и генерирования сигналов в диапазоне частот до 400 МГц, а также для быстродействующих переключающих устройств |
КП921 | полевые транзисторы с изолированным затвором, предназначен для применения в быстродействующих переключающих устройствах |
2П922
2П922-1 |
полевые транзисторы с изолированным затвором и n-каналом, предназначены для применения в источниках вторичного электропитания, быстродействующ их переключающих и импульсных устройствах, а также в стабилизаторах и преобразователях напряжения |
КП923 | полевые транзисторы с изолированным затвором для работы в усилительных и генераторных устройствах, в линейных усилительных устройствах на частоты до 1 ГГц |
3П925-2 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом для работы в широкополосных усилителях мощности в диапазоне частот 3.7-4.2 ГГц (3П925А) и 4.3-4.8 ГГц (3П925Б) в тракте с волновым сопротивлением 50 Ом и содержит внутренние соглассующие цепи |
2П926 | полевые транзисторы для вторичных источников питания, переключающих и импульсных устройств, а также для ключевых и линейных устройств |
3П927 | арсенидогаллиевые полевые транзисторы с барьером Шоттки с n-каналом для работы в усилителях мощности, автогенераторах, преобразователях частот ы в диапазоне частот 1-18 ГГц |
2П928 | два МОП транзистора с n-каналом и общим истоком, генераторные, предназначены для применения в усилителях мощности и генераторах |
3П930 | арсенидогаллиевые полевые транзисторы с барьером Шоттки и n-каналом для работы в диапазоне частот 5.7-6.3 ГГц |
КП932 | высоковольтный транзистор для работы в каскадах видеоусилителей цветных дисплеев |
КП933 | два МДП транзистора с n-каналом и общим истоком для работы в линейных и широкополосных усилительных устройствах и автогенераторах с высокой стабильностью частоты (для усиления и генерирования сигналов с частотой до 1 ГГц ) |
КП934 | транзисторы со статической индукцией и n-каналом предназначенные для применения в источниках вторичного электропитания и в высоковольтных ключевых устройствах |
КП937 | переключательные полевые транзисторы с p-n переходом и n-каналом для применения в источниках вторичного электропитания, преобразователях напряжения, системах электропривода, импульсных генераторах электроискровых обрабат ывающих комплексов |
КП938 | переключательные высоковольтные полевые транзисторы с p-n переходом и n-каналом для применения в источниках вторичного электропитания, для питания двигателей постоянного и переменного тока, в мощных коммутаторах, усилителях низкой частоты |
2П941 | для генерирования сигналов и усиления мощности в радиоэлектронных схемах с рабочей частотой до 400-600 МГц при напряжении питания 12 В |
КП944 | МДП транзистор с p-каналом для работы в схемах управления накопителей ЭВМ на магнитных дисках |
КП944 | МДП транзистор с n-каналом для работы в схемах управления накопителей ЭВМ на магнитных дисках |
КП946 | прибор со статической индукцией для применения в схемах высокочастотных источников питания с бестрансформаторным входом, ключевых усилителях мощности |
КП948 | прибор со статической индукцией для применения в схемах высокочастотных источников питания с бестрансформаторным входом, ключевых усилителях мощности |
КП953 | прибор со статической индукцией для применения в схемах высокочастотных источников питания с бестрансформаторным входом, ключевых усилителях мощности |
КП955 | прибор со статической индукцией для применения в схемах высокочастотных источников питания с бестрансформаторным входом, ключевых усилителях мощности |
Полевой транзистор — это… Что такое Полевой транзистор?
Полевой транзистор (англ. field-effect transistor, FET) — полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом.
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).
История создания полевых транзисторов
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 29 мая 2012. |
Идея полевого транзистора с изолированным затвором была предложена Лилиенфельдом в 1926—1928 годах. Однако объективные трудности в реализации этой конструкции позволили создать первый работающий прибор этого типа только в 1960 году. В 1953 году Дейки и Росс предложили и реализовали другую конструкцию полевого транзистора — с управляющим p-n-переходом. Наконец, третья конструкция полевых транзисторов — полевых транзисторов с барьером Шоттки — была предложена и реализована Мидом (англ.)русск. в 1966 году. Затем в 1977 году ученый Джеймс МакКаллахем из Bell Labs установил, что использование полевых транзисторов может существенно увеличить производительность существующих вычислительных систем.
Схемы включения полевых транзисторов
Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).
На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.
Классификация полевых транзисторов
По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом, или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).
Транзисторы с управляющим p-n переходом
Рис. 1. Устройство полевого транзистора с управляющим p-n переходомПолевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.
Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком (Source). Электрод, через который из канала уходят основные носители заряда, называют стоком (Drain). Электрод, служащий для регулирования поперечного сечения канала, называют затвором (Gate).
Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.
Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению.
Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах.
От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.
Транзисторы с изолированным затвором (МДП-транзисторы)
Рис. 2. Устройство полевого транзистора с изолированным затвором.Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.
В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.
Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.
Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.
В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).
В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.
Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.
МДП-транзисторы с индуцированным каналом
При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.
В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.
Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.
МДП-транзисторы со встроенным каналом
Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом. В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).
Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.
Формулы расчёта в зависимости от напряжения UЗИ
1. Транзистор закрыт
Пороговое значение напряжения МДП транзистора
2. Параболический участок.
-удельная крутизна передаточной характеристики транзистора.
3. Дальнейшее увеличение приводит к переходу на пологий уровень.
- — Уравнение Ховстайна.
МДП-структуры специального назначения
В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.
Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.
В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.
Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.[1]
В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности.[2][3]
За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы (англ.)). В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера.[4]
Области применения полевых транзисторов
Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур, которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах.
За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии.
Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надёжность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 порядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие тиристоры. В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, так как обладают малыми нелинейными и динамическими искажениями.
См. также
Ссылки
Примечания
- ↑ Дьяконов В. П. Intel. Новейшие информационные технологии. Достижения и люди. М.: СОЛОН-Пресс.- 2004.- 416 с.
- ↑ Схемотехника устройств на мощных полевых транзисторах: Справочник. В. В. Бачурин, В. Я. Ваксембург, В. П. Дьяконов и др.; Под ред. В. П. Дьяконова.- М.: Радио и связь, 1994.- 280 с.
- ↑ Энциклопедия устройств на полевых транзисторах. Дьяконов В. П., Максимчук А. А., Ремнев А. М., Смердов В. Ю.; Под ред. проф. В. П. Дьяконова.- М.: СОЛОН-Р, 2002.- 512 с.
- ↑ Semiconductor Physical Electronics (Second Edition). Sheng S. Li.- Springer, 2006.- 708 p. ISBN 0-387-28893-7 ISBN 978-0387-28893-2