Управление мощной нагрузкой постоянного тока. Часть 3.
Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.
МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.
Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.
Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.
Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.
МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.
Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).
У меня самыми ходовыми МОП транзисторами являются
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.
Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
- На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
- применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.
Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных. Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.
- Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I
Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:
Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I
При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.
Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff
При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил,
А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков.
Транзистор полевой
В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода:
исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.
сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.
затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.
Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.
Рис.1. Типы полевых транзисторов и их схематическое обозначение.
«Полевик» с изолированным затвором и индуцированным каналом
Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».
Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.
Обратный диод
Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.
Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.
В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.
Рис.2. Паразитные элементы в составе полевого транзистора.
Основные преимущества MOSFET
- меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
- простая схема управления. Схемы управления напряжением более просты, чем схемы управления током.
- высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
- повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.
Основные характеристики MOSFET
- Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
- Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
- Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
- Ids – максимальный постоянный ток через транзистор.
- Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
- Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
- Qg – заряд который необходимо передать затвору для переключения.
- Vgs(max) – максимальное допустимое напряжение затвор-исток.
- t(on), t(of) – время переключения транзистора.
- характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)
Что еще нужно знать про полевой транзистор?
P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.
МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.
МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.
Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs<0 (красный провод вольтметра на затвор, черный на исток). У силовых транзисторов управляющее напряжение, при котором будет минимальное сопротивление – 10 вольт и больше. У низковольтных «полевиков», которые управляются логическими уровнями микросхем, оно составляет 4.5 вольт или 2.5В , для разных транзисторов. Общее правило: чем выше напряжение – тем транзистор лучше откроется, но это напряжение не должно превышать масимально допустимого Vgs(max).
Схема включения MOSFET
Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.
Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.
Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.
Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).
Рис. 3. Классическая схема включения MOSFET в ключевом режиме.
МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).
МОП транзисторы, используемые в цифровой электронике, делятся на два типа.
- Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
- Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.
Схемы Подключения Полевых Транзисторов — tokzamer.ru
Схемы включения биполярного транзистора Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором Рис. Если пластина имеет показатель n, то будет р.
Предназначен для усиления мощности электромагнитных колебаний. С изолированным затвором делятся на: с встроенным и индуцированным каналом.
Схемы включения полевых транзисторов Подобно тому, как в различных электронных устройствах биполярные транзисторы работают с включением по схеме с общим эмиттером, с общим коллектором или с общей базой, полевые транзисторы во многих случаях можно использовать аналогичным образом включая их: с общим истоком, с общим стоком или с общим затвором. Транзистор с индуцированным каналом может работать только в режиме обогащения.
Как проверить полевой транзистор с помощью тестера.
Стоко-затворная характеристика показывает то же самое, отличия опять-таки в напряжениях на затворе.
Современные приборы практически не боятся этого, поскольку по входу в них могут быть встроены защитные устройства типа стабилитронов, которые срабатывают при превышении напряжения. Мы получили наглядную модель биполярного транзистора структуры p-n-p.
Время нагрева зависит от температуры утюга и лежит в пределах 30 — 90 секунд. На рис.
С индуцированным каналом Транзисторы со встроенным каналом На схеме вы видите транзистор с встроенным каналом. Типы полевых транзисторов Когда ориентируются по данным деталям электрических схем, то принимают во внимание такие показатели: внутреннее и внешнее сопротивление, напряжение отсечки и крутизна стокозатворной характеристики.
Исток источник носителей заряда, аналог эмиттера на биполярном.
Драйверы для полевых транзисторов, самые простые и распространённые
Что такое транзистор?
Одно из их главных предназначений — работа в ключевом режиме, то есть транзистор либо закрыт, либо полностью открыт, когда сопротивление перехода Сток — Исток практически равно нулю. Вот результаты моделирования такой ситуации.
Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.
Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда. Как работает полевой транзистор?
Каскад ОЗ обладает низким входным сопротивлением, в связи с чем имеет ограниченное применение.
Поделитесь с друзьями:. Транзистор полевой Первоначально определимся с терминологией.
МДП — транзисторы в качестве диэлектрика используют оксид кремния SiO2.
В силу конструктивных особенностей МОП-транзисторы чрезвычайно чувствительны к внешним электрическим полям.
5 СХЕМ на ОДНОМ ПОЛЕВОМ (МОП, МДП, MOSFET) ТРАНЗИСТОРЕ 2N65F
Читайте дополнительно: Как правильно сделать смету на электромонтажные работы
Виды транзисторов
Каждая из ветвей отличается на 0.
Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.
Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си.
Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.
Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.
Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.
Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует.
Защита от переполюсовки на основе полевого транзистора
Транзистор полевой
При добавлении бора акцептор легированный кремний станет полупроводником с дырочной проводимостью p-Si , то есть в его структуре будут преобладать положительно заряженные ионы. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током.
На рисунке приведен полевой транзистор с каналом p-типа и затвором выполненным из областей n-типа. Опишем подробнее каждую модификацию.
Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале.
Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам. Устройство полевого транзистора с управляющим p-n переходом Приведено на рис.
См. также: Подключить электричество к участку
Другие популярные статьи
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора. Транзистор имеет три вывода: исток, сток, затвор. Vgs — управляющее напряжение, Vg-Vs.
Этот принцип используют для усиления сигналов. На конкретной схеме это p-канальный прибор затвор — это n-слой, имеет меньше удельное сопротивление, чем область канала p-слой , а область p-n-перехода в большей степени расположена в p-области по этой причине.
Похожие публикации
Типы полевых транзисторов и их схематическое обозначение. В результате возникают некомпенсированные заряды: в области n-типа — из отрицательных ионов, а в области p-типа из положительных. Схема с общим истоком Истоком называют электрод, через который в канал поступают носители основного заряда. С общим стоком в. МДП — транзисторы выполняют двух типов — со встроенным каналом и с индуцированным каналом.
Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок в зависимости от типа проводимости основного кристалла. И даже наоборот, его наличие специально используется в некоторых схематических решениях. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной.
Схемы включения полевых транзисторов
Полевой транзистор схема управления нагрузкой постоянного тока
Полевой транзистор схема: эффективная регулировка нагрузки постоянного тока
Полевой транзистор схема, которого представлена в этой публикации способна управлять мощной постоянной нагрузкой также эффективно как и сборки Дарлингтона или биполярные транзисторы.
Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением. МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.
Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.
Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.
Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.
МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.
Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).
У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.
Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.
Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.
Тут вариантов три:
- На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
- применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.
Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных.
Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.
- Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.
Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.
Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10.
Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.
Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:
Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I2R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.
При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.
Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие.
Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.
При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).
А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков
Источник
Полевой транзистор как коммутатор (JFET)
Добавлено 5 апреля 2018 в 07:38
Сохранить или поделиться
Как и биполярный родственник, полевой транзистор может использоваться в качестве коммутатора вкл/выкл, управляющего подачей питания на нагрузку. Давайте начнем исследование использование полевого транзистора в качестве коммутатора со знакомой схемы включения лампы:
Помня о том, что управляемый ток в полевом транзисторе течет между истоком и стоком, мы заменяем контакты ключа на рисунке выше выводами истока и стока:
Если вы еще не заметили, выводы истока и стока полевого транзистора выглядят на условном обозначении одинаково. В отличие от биполярного транзистора, где эмиттер четко отличается от коллектора наличием стрелки, линии истока и стока полевого транзистора выглядят как линии, перпендикулярные полосе, представляющей полупроводниковый канал. Это не случайно, поскольку выводы истока и стока полевого транзистора на практике часто являются взаимозаменяемыми! Другими словами, полевые транзисторы обычно способны обрабатывать ток канала любого направления, от истока к стоку или от стока к истоку.
Теперь всё, что нам нужно на схеме, – это способ управления проводимостью полевого транзистора. При нулевом приложенном напряжении между затвором и истоком канал полевого транзистора будет «открыт», что позволит току протекать к лампе. Чтобы выключить лампу, нам нужно будет подключить еще один источник постоянного напряжения между выводами затвора и истока полевого транзистора следующим образом:
Замыкание этого ключа «пережмет» канал полевого транзистора, заставив его перейти в режим отсечки и выключить лампу:
Обратите внимание, что через затвор ток не протекает. Как PN переход с обратным смещением, он твердо противостоит потоку через него любых электронов. Как устройство, управляемое напряжением, полевой транзистор требует незначительного входного тока. Это является достоинством полевого транзистора по сравнению с биполярным транзистором: для управляющего сигнала требуется практически нулевая мощность.
Размыкание управляющего ключа должно снова отключить от затвора постоянное напряжение обратного смещения, таким образом позволяя транзистору снова открыться. В идеале, так это должно работать. На практике это может не работать вовсе:
После размыкания ключа ток через лампу не протекает!Почему? Почему канал полевого транзистора не открывается снова и не пропускает ток через лампу, как он делал ранее без напряжения, приложенного между затвором и истоком? Ответ заключается в работе обратно смещенного перехода затвор-исток. Область истощения в этом переходе действует как изолирующий раздел, отделяющий затвор от истока. Таким образом, он обладает определенной емкостью, способной хранить потенциал электрического разряда. После того, как этот переход был принудительно обратно смещен подачей внешнего напряжения, он будет стремиться удерживать это напряжение обратного смещения, как сохраненный заряд, даже после того, как источник этого напряжения был отключен. То, что необходимо для повторного открытия полевого транзистора, заключается в том, чтобы слить этот накопленный заряд между затвором и истоком через резистор:
Через резистор стекает заряд, сохраненный в PN переходе, чтобы позволить транзистору открыться сноваВеличина резистора не очень важна. Емкость перехода затвор-исток полевого транзистора очень мала, и поэтому даже довольно высокоомный разрядный резистор создает быструю постоянную времени RC цепи, позволяя транзистору снова начать проводить ток с небольшой задержкой после размыкания ключа.
Как и с биполярным транзистором, не имеет большого значения, откуда подается управляющее напряжение. Мы могли бы использовать солнечный элемент, термопару или любой другой тип устройства, генерирующего напряжение, чтобы обеспечить напряжение, управляющее проводимостью полевого транзистора. Всё, что требуется от источника напряжения для работы коммутатора на полевом транзисторе, – это достаточное напряжение, чтобы обеспечить отсечку канала полевого транзистора. Этот уровень обычно составляет несколько вольт постоянного напряжения и называется напряжением срабатывания или отсечки. Точное напряжение срабатывания для любого заданного полевого транзистора является функцией его уникальной конструкции и не является универсальным значением, например, как 0,7 В для напряжения перехода база-эмиттер кремниевого биполярного транзистора.
Подведем итоги:
- Полевые транзисторы управляют током между выводами истока и стока с помощью напряжения, приложенного между затвором и истоком. В полевом транзисторе (JFET) имеется PN-переход между затвором и истоком, который для управления током исток-сток обычно смещается в обратном направлении.
- Полевые транзисторы являются обычно нормально открытыми (нормально насыщенными) устройствами. Прикладывание напряжения обратного смещения между затвором и истоком приводит к расширению области истощения этого перехода, тем самым «пережимая» канал между истоком и стоком, через который проходит управляемый ток.
- Может потребоваться установить «отводящий» резистор между затвором и истоком, чтобы разрядить сохраненный заряд, накопленный естественной емкостью перехода, когда будет снято управляющее напряжение. В противном случае заряд может сохраняться, удерживая полевой транзистор в режиме отсечки даже после отсоединения источника питания.
Оригинал статьи:
Теги
КоммутацияПолевой транзисторТранзисторный ключУчебникЭлектроникаСохранить или поделиться
Управление MOSFET-ами #1 | VasiliSk’s blog
В инете полно статей о том как работают MOSFET-ы (ака полевики, т.е. полевые транзисторы), что надо рулить напряжением а не током. Разберем поподробнее + и – разных драйверов.
Теория проводимости
Есть N-канальные и P-канальные полевики, также ввиду особенностей производства, между Source и Drain образуется “паразитный” диод.
N-канальный MOSFET:
Для управления N-канальным полевиком необходимо приложить положительное напряжение относительно Source порядка 10V. В импульсных преобразователях на частотах 50+кГц требуется быстро открыть полевик, чтобы его сопротивление резко уменьшилось до ~0 ом. В таком случае потерь тепла будет меньше. Почему? Если заглянуть в любой даташит на полевой транзистор то можно обнаружить что сопротивление перехода Drain-Source меняется в зависимости от напряжения на Gate-Source. Взьмем абстрактный транзистор: если при 5V сопротивление будет составлять 1 ом, то при 10V уже 0.5-0.7Ом, что в ~два раза меньше, как следствие потери при более высоком напряжении управления тоже уменьшаются. Всего то! Однако у Gate есть внутренняя емкость. От десятков пикофарад у самых слабых полевиков до нанофарад у таких монстров как APT5016 (хотя это еще не самый злой полевик).
P-канальный MOSFET:
У P-канального наоборот, надо на Gate подать отрицательное напряжение относительно Source чтобы полевик открылся. Ситуация с сопротивлением открытого канала аналогична.
Драйвера
Для того чтобы быстро перезарядить Gate необходимо приложить, в зависимости от полевика, различное усилие. В интернете есть формулы для расчета токов, протекающих через драйвер. Я же хочу показать какие есть схемы управления полевиками. Конкретно нас интересует ключевой режим работы MOSFET-а.
Напрямую от контроллера
Не самый лучший вариант. Исключение составляют контроллеры со встроенным драйвером. RG резистор ограничивает ток через контроллер и уменьшает пульсации. У полевиков тоже есть своя индуктивность, она небольшая, но при быстром нарастании/спаде возникают колебания как в LC контуре. В моих краях найти контроллер со встроенным драйвером либо сложно либо дорого, поэтому приходится колхозить на универсальном ШИМ контроллере, под названием TL494.
Еще одна заметка по поводу резистора RG, когда требуется управлять большими токами и приходится ставить по 2-3+ транзистора, то данный резистор необходимо ставить перед каждым полевиком:
Особо крутые контроллеры, как на материнках, работающие на частотах 0.5-2МГц не требуют данного резистора и имеют отдельный выход для каждого полевика. Каждый полевик там представляет собой отдельную фазу с отдельным дросселем. Такие частоты выбраны специально для уменьшения габаритов всей схемы. Чем выше частота – тем меньше индуктивность нужна. В общих чертах.
Производители контроллеров полевиков рекомендуют сопротивление RG 4.7 Ом. Даже видел гдето видео ролик с презентацией сравнения потерь при различных резисторах. На практике же RG может доходить до 200 Ом, т.к. драйвера разные – токи которые они могут выдержать тоже разные. И частоты тоже разные. Короче глупо говорить что ставьте везде 4.7 Ома и будет счастье. Поэтому данный резистор должен подбираться индивидуально под способности драйвера и емкость Gate полевика (в даташитах этот параметр обозначается как Ciss – Input Capacitance).
Двухтактный биполярный драйвер
Одна из самых эффективных схем управления:
В идеале управляющие транзисторы надо распологать как можно ближе к MOSFET-у, для уменьшения пути протекания тока. Важно добавить шунтирующий конденсатор между VGate и землей (в схеме не указан).
Хорошо если N-канальный полевик Source-ом подключен к общей шине – земле – что и контроллер. Такое бывает в Step-Up конвертерах, однако ими мир не ограничивается. В Step-Down конвертерах полевик подключается Drain-ом напрямую к +, а Source идет дальше на дроссель. Если вы (не дай бог как я, по своей неопытности, когда в первой пришлось собрать понижающий преобразователь) попробуете заставить работать такую схему:
То обнаружите что полевик уже дымиться и припой капает коту на хвост расплавился. Как я сказал в начале статьи, N канальный полевик открывается полностью если на Gate подать + относительно Source. Но в данном случае получается когда мы подаем + на Gate, он начинает открываться и Source поднимается к + тоже! В итоге полевик не открыт и не закрыт. Висит посередине и дико греется. Но тут существует простое решение, Bootstrap-драйвер:
Схема немного усложнилась. Как видите силовым полевиком (справа) управляет по прежднему двухтактный биполярный драйвер. Однако он заведен относительно Source полевика. Левый полевой транзистор – маломощный, используется для сдвига уровня. Сигнал подается инвертированный. Резистор Pull-Down (подтягивающий) лучше поставить, в случае чего чтобы схема не “летала в воздухе”. Вот как оно работает: изначально конденсатор CBOOT заряжается через диод DBOOT управляющим напряжением, т.к. транзистор закрыт, на выводе Source земля (после дросселя L идет нагрузка которая как бы “заземляет” на время выключения полевика вывод Source). Полевик сдвига уровня наоборот (слева), открыт, чтобы силовой полевик был закрыт. Собственно в этом и заключается инверсия. Когда полевик сдвига уровня закрывается через резистор RLEVEL подается положительное напряжение на драйвер, а далее драйвер усиливает сигнал и подает + на Gate силового транзистора. Он начинает открываться и… и открывается полностью! Так как конденсатор CBOOT заряжен и привязан к Source силового полевика, то когда Source выравнялся по напряжению с напряжением притания, то CBOOT поднялся еще выше и оттуда, сверху, рулит через драйвер полевиком! Получается напряжение в момент открытия силового полевика относительно земли таково: UCBOOT+UPOWER. А диод не позволяет этому напряжению уходить обратно. Поэтому важно рассчитать какая разница напряжений у Вас получиться и использовать диод с запасом на данное напряжение. Когда триумф нашего CBOOT подходит к концу левый полевик открывается, на драйвере напряжение падает и одновременно с этим Source силового полевика также возвращается на “землю”. Я бы рекомендовал добавить небольшой резистор после Drain управляющего полевика, чтобы, когда драйвер открыт и “земля” драйвера выше реальной земли, не убить маломощный управляющий полевик. На своей практике я использовал 12 Ом резистор. Такая схема, с КПД 85% управляла понижающим конвертером на 300 ватт…. только недолго, нагрузка на выходе в виде резисторов плавилась на глазах 🙂 Еще большего КПД можно достичь применяя синхронный выпрямитель, это когда вместо диода снизу ставится тоже полевой транзистор и открывается, когда верхний уже закрыт. Т.к. схема синхронизации двух полевиков заметно усложняется, то советую использовать спецальные синхронные драйвера. Там уже все задержки между открытием и закрытием есть, чтобы исключить протекание сквозных токов.
Схема ускоренного выключения на PNP
Самая простая и, возможно, самая популярная схема на одном PNP транзисторе:
В данном случае подразумевается что контроллер достаточно мощный, чтобы быстро зарядить полевик, но например, как у TL494, выход состоит всего лишь из одного npn транзистора. Обьеденив два имеющихся выхода TL494 и подцепив коллектором на + питания, эмитторы идут на вход этого полудрайвера. Главное эммитеры подтянуть на землю резистором. В случае напрямую выход TL494 подключить к полевику, то он будет очень долго закрываться, если подтягивающий резистор на килоом и больше. Если сдеать его на 100-200 ом, то тогда возрастает нагрузка на выходной каскад TL-ки, что тоже не хорошо:
В таком случае и применяется закрывающий драйвер:
В таком случае подтягивающий резистор делается на несколько килоом а RG рассчитывается также как раньше. При подаче положительного импульса, он проходит напрямую через диод D_ON и заряжает Gate полевика. Когда выходной каскад на TL-ке закрывается, то через подтягивающий резистор PULL_DOWN открывается Q_OFF и мгновенно разряжает через себя заряд Gate, что и приводит к моментальному закрытию полевика!
Почему N-канальный полевик лучше P-канального?
Возможно вы уже заметили что на всех схемах фигурирует N-канальный MOSFET. Этому есть несколько причин:
- У N-канала при одинаковой серии меньшее сопротивление открытого канала.
- N-канальные дешевле. 20A N-ch 1$ условно, то 20A P-ch 1.5$
- В парных сборках N-ch и P-ch (в SO8 корпусе например) P-ch обладает как бОльшим сопротивлением так и меньшим максимальным током.
- Сложно достать мощные P-ch полевики в какойнить деревне 🙂
- Драйвер на рассыпухе для High-side N-ch может выйти дешевле чем разность стоимости P-ch – N-ch полевиков.
Так что если уже запаслись N-канальными полевиками, то вперед собирать к ним драйвера! Это не сложнее чем купить/найти P-ch.
Конец первой части 🙂
Like this:
Like Loading…