Site Loader

Параметры биполярных транзисторов — DataSheet

Буквенное обозначение Параметр
Отечественное Международное
IКБО ICBO Обратный ток коллектора — ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера.
IЭБО IEBO Обратный ток эмиттера — ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора.
IКЭO ICEO Обратный ток коллектор-эмиттер при заданном обратном напряжении коллектор-эмиттер и разомкнутом выводе базы.
IКЭR ICER Обратный ток коллектор-эмиттер при заданных обратном напряжении коллектор-эмиттер и сопротивлении в цепи база-эмиттер.
IКЭК ICES Обратный ток коллектор-эмиттер при заданном обратном напряжении коллектор-эмиттер и короткозамкнутых выводах базы и эмиттера
IКЭV ICEV Обратный ток коллектор-эмиттер при заданном обратном напряжении коллектор-эмиттер и запирающем напряжении (смещении) в цепи база-эмиттер.
IКЭX ICEX Обратный ток коллектор-эмиттер при заданных обратном напряжении коллектор-эмиттер и обратном напряжении база-эмиттер.
IK max IC max Максимально допустимый постоянный ток коллектора.
 IЭ max IE max Максимально допустимый постоянный ток эмиттера.
  IБ max   IB max Максимально допустимый постоянный ток базы.
IК , и max ICM max Максимально допустимый импульсный ток коллектора.
IЭ , и max IEM max Максимально допустимый импульсный ток эмиттера.
IКР Критический ток биполярного транзистора.
UКБО проб. U(BR) CBO Пробивное напряжение коллектор-база при заданном обратном токе коллектора и разомкнутой цепи эмиттера.
UЭБО проб. U(BR) ЕBO Пробивное напряжение эмиттер-база при заданном обратном токе эмиттера и разомкнутой цепи коллектора.
UКЭО проб. U(BR) CEO Пробивное напряжение коллектор-эмиттер при заданном токе коллектора и разомкнутой цепи базы.
UКЭR проб. U(BR) CER Пробивное напряжение коллектор-эмиттер при заданном токе коллектора и заданном (конечном) сопротивлении в цепи база-эмиттер.
UКЭK проб. U(BR) CES Пробивное напряжение коллектор-эмиттер при заданном токе коллектора и короткозамкнутых выводах базы и эмиттера.
UКЭV проб.
 U(BR) CEV Пробивное напряжение коллектор-эмиттер при запирающем напряжении в цепи база-эмиттер.
UКЭХ проб.  U(BR) CEX Пробивное напряжение коллектор-эмиттер при заданных обратном напряжении база-эмиттер и токе коллектор-эмиттер.
UКЭО гр  U(L) CEO Граничное напряжение транзистора — напряжение между коллектором и эмиттером при разомкнутой цепи базы и заданном токе эмиттера.
Uсмк Upt  Напряжение смыкания транзистора.
 UКЭ нас UCE sat
Напряжение насыщения коллектор-эмиттер при заданных токах базы и коллектора.
UБЭ нас UBE sat Напряжение насыщения база-эмиттер при заданных токах базы и эмиттера.
UЭБ пл UEBfl Плавающее напряжение эмиттер-база — напряжение между эмиттером и базой при заданном обратном напряжении коллектор-база и разомкнутой цепи эмиттера.
UКБ max UCB max Максимально допустимое постоянное напряжение коллектор-база.
UКЭ max UCE max Максимально допустимое постоянное напряжение коллектор-эмиттер.
UЭБ max  UEB max Максимально допустимое постоянное напряжение эмиттер-база.
UКЭ, и max UCEM max Максимальное допустимое импульсное напряжение коллектор-эмиттер.
UКБ, и max UCBM max Максимально допустимое импульсное напряжение коллектор-база.
UЭБ, и max UEBM max Максимально допустимое импульсное напряжение эмиттер-база.
P Ptot Постоянная рассеиваемая мощность транзистора.
 Pср  PAV Средняя рассеиваемая мощность транзистора.
Pи PM Импульсная рассеиваемая мощность транзистора.
PK  PC Постоянная рассеиваемая мощность коллектора.
PK, τ max Постоянная рассеиваемая мощность коллектора с теплоотводом.
Pвых Pout  Выходная мощность транзистора.
Pи max PM max Максимально допустимая импульсная рассеиваемая мощность.
PK max PC max Максимально допустимая постоянная рассеиваемая мощность коллектора.
PK ср max  — Максимально допустимая средняя рассеиваемая мощность коллектора.
r rbb , rb Сопротивление базы.
 rКЭ нас rCE sat Сопротивление насыщения между коллектором и эмиттером.
 с11э, с11б c11e, c11b Входная емкость транзистора для схем с общим эмиттером и общей базой соответственно.
 с22э, с22б c22e, c22b Выходная емкость транзистора для схем с общим эмиттером и общей базой соответственно.
cк cc Емкость коллекторного перехода.
cэ c Емкость эмиттерного перехода.
fгр  fT Граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером.
fmax fmax Максимальная частота генерации.
 fh31э , fh31б fh31e, fhfe ;fh31b, fhfb Предельная частота коэффициента передачи тока транзистора для схем с общим эмиттером и общей базой.
tвкл ton Время включения.
 tвыкл toff  Время выключения.
tзд td Время задержки.
 tнр tr Время нарастания.
tрас t Время рассасывания.
 tсп t Время спада.
 h11э, h11б h11e, h11b;hie, hib Входное сопротивление в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
 h21э, h21б h21e, h21b;hfe, hfb Статический коэффициент передачи тока транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
 h12э, h12б h12e, h12b;hre, hrb Коэффициент обратной связи по напряжению транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
h22э, h22б h22e, h22b;hoe, hob Выходная полная проводимость транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
|h21э| |h21e| Модуль коэффициента передачи тока транзистора на высокой частоте.
 h11Э h11E, hIE Входное сопротивление транзистора в режиме большого сигнала для схемы с общим эмиттером.
  h21Э  H11E, HFE Статический коэффициент передачи тока для схемы с общим эмиттером в режиме большого сигнала.
 Y21Э Y21E  Статическая крутизна прямой передачи в схеме с общим эмиттером.
  Y
11э
, Y11б
Y11e, Y11b;Yie, Yib Входная полная проводимость транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
 Y12э, Y12б Y12e, Y12b;Yre, Yrb Полная проводимость обратной передачи транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
Y21э, Y21б Y21e, Y21b;Yfe, Yfb Полная проводимость прямой передачи транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
Y22э, Y22б Y22e, Y22b;Yoe, Yob Выходная полная проводимость транзистора в режиме малого сигнала для схем с общим эмиттером и общей базой соответственно.
S11э, S11б, S11к S11e, S11b, S11c; Sie, Sib, Sic Коэффициент отражения входной цепи транзистора для схем с общим эмиттером, общей базой и общим коллектором соответственно.
S12э, S12б, S12к S12e, S12b, S12c; Sre, Srb, Src Коэффициент обратной передачи напряжения для схемы с общим эмиттером, общей базой и общим коллектором соответственно.
S22э, S22б, S22к S22e, S22b, S22c; Soe, Sob, Soc Коэффициент отражения выходной цепи транзистора для схемы с общим эмиттером, общей базой и общим коллектором соответственно.
S21э, S21б, S21к S21e, S21b, S21c;   Sfe, Sfb, Sfc Коэффициент прямой передачи для схем с общим эмиттером, общей базой и общим коллектором соответственно.
fse, fsb, fsc Частота, при которой коэффициент прямой передачи равен 1 (S21е = 1,
S21b = 1, S21c = 1.
 Ку, р Gp Коэффициент усиления мощности.
GA, Ga Номинальный коэффициент усиления по мощности.
Кш F Коэффициент шума транзистора.
τк (r’б Ск)  τc (r’bb Сc) Постоянная времени цепи обратной связи на высокой частоте.
Tокр TA, Tamb Температура окружающей среды.
Tк Tc , Tcase Температура корпуса.
Tп Tj Температура перехода.
Rт, п-с Rthja Тепловое сопротивление от перехода к окружающей среде.
Rт, п-к Rthjс Тепловое сопротивление от перехода к корпусу.
Rт, к-с Rthса Тепловое сопротивление от корпуса к окружающей среде.
 τт, п-с τthja Тепловая постоянная времени переход-окружающая среда.
τт, п-к τthjс Тепловая постоянная времени переход-корпус.
τт, к-с τthса Тепловая постоянная времени корпус-окружающая среда.

Эквивалентная схема биполярного транзистора

Итак, как же нам распознать биполярный транзистор среди кучи радиоэлементов, имеющих схожий корпус? Давайте рассмотрим еще раз его внутреннюю структуру. Для транзистора прямой проводимости она будет выглядеть так:

а для транзистора обратной проводимости вот так:

А знаете что? Давайте-ка резанём серединный слой пополам… Предположим, мы взяли тонкий-тонкий ножик и разделили полупроводник базы на две части.

Итак, рисуночки у нас становятся такими:

для транзистора прямой проводимости

для транзистора обратной проводимости

Вот этот или вот этот участок транзистора вам ничего не напоминает? 

Едрить-колотить! Так ведь это же  диод!

Так что тогда  получается? Что транзистор тупо состоит из двух диодов??? Грубо говоря, дорогие читатели, так оно и есть ;-).

Значит, схематически мы можем транзистор нарисовать как два диода. Итак, что у нас тогда получиться? Для транзистора прямой проводимости:

 

схема будет выглядеть вот так:

а для транзистора обратной проводимости

вот так:

Все элементарно и просто, господа! Итак, мы с вами узнали, что схематически транзистор можно заменить как два диода, которые соединены катодами или анодами. А проверять диоды мы с вами умеем без проблем, не так ли? Кто подзабыл, читаем статью как проверить диод мультиметром.

Приступаем к “практической электронике” 😉

У нас имеются два транзистора. Стоп! А с чего мы взяли что это вообще транзисторы? 

Внимательно смотрим на них и видим какие то буквы и цифры. КТ815Б и КТ814Б. Блин, снизу еще какие-то цифры. Во дела! Ладно, ничего страшного. Для этого открываем яндекс или гугл и вбиваем первую строчку названия транзистора. Получается вбиваем “КТ815Б” и рядышком пишем незамысловатое слово “даташит” или на буржуйский манер “datasheet”. Качаем документацию на этот радиоэлемент и узнаем что это такое и что он из себя представляет. А вот я и даташит на него нашел ——> вот он. Теперь я знаю, что это транзистор N-P-N структуры, а также знаю расположение его выводов 😉  И еще знаю, что вам лень его качать, поэтому вот вам скрины:

Эквивалентная схема биполярного транзистора

Вон сколько сразу можно узнать!

А вот и вторая страничка даташита:

Эквивалентная схема биполярного транзистора

Здесь мы видим уже тот же самый транзистор, но в другом корпусе.  У нас же на фото транзистор в корпусе КТ-27. Видите цифры на выводах транзистора? Смотрим в  табличку и узнаем где какой вывод ;-). Значит на фото у нас выводы идут таким образом:

Теперь рассмотрим другой транзистор:

Из даташита транзистора КТ815Б мы узнали, что у него есть комплиментарная пара: транзистор КТ814

Эквивалентная схема биполярного транзистора

Комплиментарная пара для кого-либо транзистора – это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть N-P-N, а КТ814 прямой проводимости, то есть P-N-P 😉 Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815 ! Короче говоря, зеркальные братья-близнецы. Также самой популярной комплиментарной парой транзисторов в Советском Союзе были транзисторы КТ315 и КТ361.

Обратите внимание на даташит транзистора КТ814:

Эквивалентная схема биполярного транзистора

Берем наш знаменитый мультиметр, цепляем щупы-крокодилы  и ставим на значок “прозвонка”

Будем проверять транзистор КТ815. Так как он структуры N-P-N, следовательно, его можно схемотехнически заменить вот на такую диодную схему:

Вспоминаем распиновку нашего транзистора:

Как мы помним, диод пропускает постоянный ток только в одном направлении. Проверяем первый диод транзистора. Для этого ставим на базу плюс, на эмиттер минус:

Видим падение напряжения при прямом включении на P-N переходе в милливольтах.

Меняем щупы местами. То есть на базу подаем минус, а на эмиттер – плюс:

Единичка, значит первый диод транзистора исправен.

Проверяем второй диод транзистора. Ставим на базу плюс, а на коллектор – минус:

Видим падение напряжения на P-N переходе. Все гуд.

Меняем щупы местами:

Мультик показывает единичку. Все ОК. Второй диод тоже в полном здравии. Значит транзистор в полной боевой готовности!

Ну что, теперь проверим комплиментарный транзистор – КТ814 ;-).Его диодная схема будет выглядеть уже по другому, так как он у нас прямой проводимости:

Здесь так же проверяем два диода. Для этого ставим минус на базу, а на эмиттер – плюс:

Ишь ты какое число). Падение напряжения на PN-переходе. Все ОК.

Меняем так же местами щупы:

Единичка – все ОК.

Проверяем второй диод транзистора точно так же. Для этого на базу также ставим минус, а на коллектор – плюс:

Опять видим падение напряжения при прямом включении на PN-переходе.

Меняем щупы местами:

Единичка – гуд!

КТ814 у нас тоже полностью жив и здоров! Все те же самые операции я ещё описал в статье Как проверить биполярный транзистор мультиметром.

Но постойте-ка…  Так что же это получается? Соединив простые диоды, как на рисунках выше, мы можем получить транзистор? А вот кукиш! 🙂 Весь прикол заключается в том, что в транзисторах оба P-N перехода расположены очень близко к друг другу, поэтому между ними возникает взаимодействие. Взаимодействие эти двух P-N переходов называют транзисторным эффектом. Именно поэтому биполярный транзистор обладает усилительными свойствами.

Итак, сделаем глубокомысленные выводы.

Транзистор схематически можно заменить двумя диодами, но если спаять два диода и “сделать” из них транзистора, то ничего не получится. Почему? Читаем здесь. Для того, чтобы узнать, живой ли у нас транзистор и можно ли его паять в схему, достаточно проверить целостность этих двух диодов. Ну и для определения эмиттера, базы и коллектора надо скачать даташит на исследуемый транзистор или копаться в бумажных справочниках (с появлением интернета, не помню, когда в последний раз открывал справочник).

P.S. Во я удод! Слово “эмиттер” пишется не с двумя “мм” , а с двумя “тт”. Косяк за мной…  Рисунки переправлять лень).

Продолжение——->

 

<——-Предыдущая статья

 

IRFZ44N — Мощный MOSFET транзистор — DataSheet

Параметр  Мин. Тип. Макс. Ед. изм. Условия
 V(BR)DSS  Напряжение пробоя сток-исток  55  —  В VGS = 0 В, ID = 250 мкA
 ∆V(BR)DSS/∆TJ Температурный коэффициент напряжения пробоя  — 0.058 В/°C До 25°C, ID = 1 мA
RDS(on) Статическое сопротивление сток-исток в открытом состоянии  — 17.5 мОм VGS = 10 В, ID = 25 A (4)
 VGS(th) Пороговое напряжение на  затворе  2.0  — 4.0 В VDS = VGS, ID = 250 мкA
 gfs Крутизна характеристики 19  —  — S VDS = 25 В, ID = 25 A (4)
 IDSS Ток утечки сток-исток  —  —  25 мкА VDS = 55 В, VGS = 0 В
 — 250 VDS = 44 В, VGS = 0 В, TJ = 150°C
  IGSS Ток утечки в прямом направлении  —  100 нА VGS = 20 В
 Ток утечки в обратном направлении  — -100 VGS = -20 В
Qg Суммарный заряд затвора 63 нКл ID = 25 A, VDS = 44 В, VGS = 10 В
Qgs Заряд между затвором и истоком 14
Qgd Заряд между затвором и стоком 23
 td(on) Время задержки включения  — 12 нс VDD = 28 В,  ID = 25, ARG = 12 Ом,  VGS = 10 В (4)
tr Время нарастания 60  —
 td(off) Время задержки выключения  — 44  —
 tf  Время спада 45
LD Внутренняя индуктивность стока 4.5 нГн Внутренняя индуктивность
LS Внутренняя индуктивность истока 7.5
Ciss Входная емкость 1470 пФ VGS = 0 В, VDS = 25 В, ƒ = 1.0 MГц
Coss Выходная емкость 360
Crss Обратная переходная емкость 88
EAS Энергия единичного лавинного импульса (2) 530 (5) 150 (6) мДж IAS = 25 A, L = 0.47 мГн

S8550 — Биполярный транзистор(P-N-P) — DataSheet

Цоколевка транзистора s8550Цоколевка транзистора s8550

Особенности

  • Рассеиваемая мощность PCM : 0.625 Вт ( Температура окружающей среды Tamb=25℃)
  • Ток коллектора ICM : 0.5 А
  • Напряжение коллектор-база V(BR)CBO : 40 В

 

Электрические характеристики (Tamb=25℃, если не указано иное)
Параметр Обозначение Условия испытаний Мин. Тип. Макс. Ед. изм.
Максимально допустимое напряжение коллектор-база V(BR)CBO Ic= 100 мкА, IE=0 40 В
Максимально допустимое напряжение коллектор-эмиттер V(BR)CEO Ic= 100 мкА, IB=0 25 В
Максимально допустимое напряжение эмиттер-база V(BR)EBO IE= 100 мкА, IC=0 5 В
Обратный ток коллектора  ICBO VCB= 40 В , IE=0  0.1  мкА
 Обратный ток коллектор-эмиттер  ICEO VCE= 20 В , IB=0  0.2 мкА
Обратный ток эмиттера  IEBO VEB= 3 В, IC=0 0.1  мкА
Коэффициент усиления по току HFE(1) VCE= 1 В, IC= 50 мА 85  300
 HFE(1)  VCE= 1 В, IC= 500 мА  50
Напряжение насыщения коллектор-эмиттер VCE(sat) IC= 500 мА, IB= 50 мА  0.6 В
Напряжение насыщения база-эмиттер VBE(sat) IC= 500 мА, IB= 50 мА 1.2 В
Напряжение база-эмиттер VBE IE= 100 мА 1.4 В
Граничная частота коэффициента передачи тока в схеме с общим эмиттером fT VCE= 6 В, IC= 20 мА, f = 30 мГц  150 мГц

 

Классификация по HFE(1)
Класс B C D
Диапазон 85-160 120-200 160-300

 

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

S2000N — кремниевый NPN диффузионный транзистор — DataSheet

Корпус транзистора S2000N и его обозначение на схемеКорпус транзистора S2000N и его обозначение на схеме

Описание

Кремниевый NPN диффузионный транзистор для выходных каскадов строчной развертки телевизионных приемников.

Особенности:

  • Третье поколение мощных высоковольтных транзисторов с высокой скоростью переключения.
  • Низкое напряжение насыщения.
  • Изолированный корпус.
 
Предельно допустимые и основные электрические параметры
Символы Параметр Условия Мин. значение Тип. значение Макс. значение Единицы
Vcbo Напряжение коллектор-база 1500 В
Vceo Напряжение коллектор-эмиттер 600 В
Vebo Напряжение эмиттер-база 5 В
Ic Ток коллектора постоянный/импульсный 8,0/16 А
Pc Мощность, рассеиваемая на коллекторе T = 25 °C 50 Вт
hFE Коэффициент передачи тока в схеме ОЭ Vce = 5 В, Ic = 4,5 А 4,5 9
Vce_sat Напряжение насыщения К-Э Ic = 4,5 A, Ib = 1,0 А 5,0 В
FT Граничная частота эффективного усиления  Vce = 10 В,Ic = 0,1 А 3,0 МГц
Ib Ток базы 1,0 А
Tf Время спада импульса F = 15,75 кГц 0,4 мкс

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

2SC4927 — кремниевый NPN диффузионный транзистор — DataSheet

Корпус транзистора 2SC4927 и его обозначение на схемеКорпус транзистора 2SC4927 и его обозначение на схеме

Описание

Кремниевый NPN диффузионный транзистор для выходных каскадов строчной развертки телевизионных приемников и мониторов.

Особенности:

  • Мощный высоковольтный транзистор с высокой скорость переключения.
  • Высокое напряжение пробоя Vcbo = 1500 В.
  • Встроенный демпферный диод.
 
Предельно допустимые и основные электрические параметры
Символы Параметр Условия Мин. значение Тип. значение Макс. значение Единицы
Vcbo Напряжение коллектор-база 1500 В
Vceo Напряжение коллектор-эмиттер 800 В
Vebo Напряжение эмиттера-база 6 В
Ic Ток коллектора постоянный 8,0 А
Ip Ток коллектора импульсный 18 А
Pc Мощность, рассеиваемая на коллекторе T = 25 °C 50 Вт
V(br)ceo Напряжение пробоя коллектор-эмиттер Ic = 10,0 мА, Rbe = ∞ 800 В
V(br)ebo Напряжение пробоя эмиттер-база Ie = 500 мА, Ic = 0 6 В
Ices Обратный ток коллектора Vcb = 1500 В, Rbe = 0 В 500 мкА
hFE Коэффициент передачи тока в схеме ОЭ Vce = 5 В, Ic = 1,0 А 25
Vce_sat Напряжение насыщения К-Э Ic = 6,0 А, Ib = 1,2 А 5 В
Vbe_sat Напряжение насыщения Б-Э Ic = 6,0 А, Ib = 1,2 А 1,5 В
Vf Падение напряжения на прямосмещенном диоде IF = 8 А 2 В
Tf Время спада импульса  Ic = 6,0 А, Ib = 1,2 А, F = 31,5 кГц 0,5 мкс

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.