Site Loader

Работа и мощность электрического тока Примеры приборов

Работа и мощность электрического тока. Работа и мощность электрического тока.

Примеры приборов, в которых совершается работа электрического тока Примеры приборов, в которых совершается работа электрического тока

Работа электрического тока При прохождении электрического тока по проводнику, электрическое поле заставляет заряженные частицы Работа электрического тока При прохождении электрического тока по проводнику, электрическое поле заставляет заряженные частицы двигаться упорядоченно, следовательно оно совершает работу. Работа электрического тока показывает какую работу совершает электрическое поле.

Работа электрического тока Единица измерения работы в СИ: Джоуль Работа электрического тока Единица измерения работы в СИ: Джоуль

Работа электрического тока

Работа электрического тока

Для измерения работы тока нужны три прибора: амперметр, вольтметр и часы. На практике работу Для измерения работы тока нужны три прибора: амперметр, вольтметр и часы. На практике работу электрического тока измеряют счетчиками.

Счетчики - приборы для измерения работы электрического тока

Счетчики — приборы для измерения работы электрического тока

Мощность электрического тока U • I • t Р= t Р = U • Мощность электрического тока U • I • t Р= t Р = U • I Единица измерения мощности в СИ: Ватт 1 Вт = 1 В • 1 А 1 к. Вт = 1000 Вт

Приборы для измерения мощности: ваттметр Вольтметр Амперметр Приборы для измерения мощности: ваттметр Вольтметр Амперметр

Единицы работы, применяемые на практике. 1 Дж = 1 Вт∙с 1 Вт • ч Единицы работы, применяемые на практике. 1 Дж = 1 Вт∙с 1 Вт • ч = 3600 Дж 1 к. Вт • ч = 1000 Вт • ч = 3 600 000 Дж

Мощность электрического тока Мощность электрического тока

Работа и мощность электрического тока.

Работа и мощность электрического тока.

Мощности некоторых электрических приборов, к. Вт Лампа карманного фонаря 0, 001 Видеомагнитофон 0, 02 Мощности некоторых электрических приборов, к. Вт Лампа карманного фонаря 0, 001 Видеомагнитофон 0, 02 Холодильник 0, 2 Телевизор 0, 3 Фен для волос 0, 4 Стиральная машина 0, 5 Электрический утюг 0, 6 Пылесос 0, 65 Лампы в звездах башен Кремля 5

ПРОВОДНИК С ТОКОМ НАГРЕВАЕТСЯ ВЫДЕЛЯЕТ КОЛИЧЕСТВО ТЕПЛОТЫ – Q ЗАКОН ДЖОУЛЯ - ЛЕНЦА 1841 ПРОВОДНИК С ТОКОМ НАГРЕВАЕТСЯ ВЫДЕЛЯЕТ КОЛИЧЕСТВО ТЕПЛОТЫ – Q ЗАКОН ДЖОУЛЯ — ЛЕНЦА 1841 г 1842 г Джоуль Джеймс Прескотт Ленц Эмилий Христианович

ЗАКОН ДЖОУЛЯ - ЛЕНЦА Количество теплоты, выделяемое проводником с током равно произведению квадрата силы

ЗАКОН ДЖОУЛЯ — ЛЕНЦА Количество теплоты, выделяемое проводником с током равно произведению квадрата силы тока, сопротивления проводника и времени.

ЗАКОН ДЖОУЛЯ - ЛЕНЦА Количество теплоты, выделяемое проводником с током равно произведению квадрата силы

Последовательное соединение Параллельное соединение U 1 = U 2

Последовательное соединение Параллельное соединение U 1 = U 2

1. Какую работу совершает электрический ток в электродвигателе за 30 мин, если сила тока 1. Какую работу совершает электрический ток в электродвигателе за 30 мин, если сила тока в цепи 0, 5 А, а напряжение на клеммах двигателя 12 В? 2. Каким сопротивлением обладает лампа мощностью 40 Вт, работающая под напряжением 220 В?

Энергосбережение и энергосберегающие технологии В современном мире вопросы энергосбережения и экономии электроэнергии стоят как Энергосбережение и энергосберегающие технологии В современном мире вопросы энергосбережения и экономии электроэнергии стоят как никогда остро. Особенно это касается нашей страны, где потери электроэнергии достигают десятки процентов. «Утечки» происходят повсеместно: в ЖКХ (на бытовом уровне), в промышленности, в топливноэнергетическом комплексе. . . Поэтому потенциал энергосбережения России очень высок. А если учесть тот факт, что спрос на энергоресурсы постоянно растёт, повышаются тарифы на них, а также происходит ухудшение экологической ситуации, стремительно сокращаются запасы полезных ископаемых (нефти, угля, газа) — в этой ситуации мероприятия по энергосбережению и энергосберегающие технологии важны как никогда!

1. Выходя из комнаты выключайте свет. 2. Не кипятите воды больше, чем нужно, и 1. Выходя из комнаты выключайте свет. 2. Не кипятите воды больше, чем нужно, и сэкономите электроэнергию, воду и время. 3. Всегда плотно закрывайте дверцу холодильника. При плохо пригнанном уплотнителе теряется много электроэнергии. 4. Выключайте телевизор из сети, не оставляйте его в режиме дистанционного включения. В масштабе страны это может привести к экономии энергии производимой одной электростанцией. 5. При покупке бытовых электроприборов обратите внимание на класс потребления энергии (А – лучший) САМЫЕ ПРОСТЫЕ ДЕЙСТВИЯ ПОМОГУТ СОХРАНИТЬ: УГОЛЬ, НЕФТЬ, ГАЗ НЕВОЗОБНОВИМЫЕ ПРИРОДНЫЕ РЕСУРСЫ.

Экономия электроэнергии Из всей потребляемой в быту энергии львиная доля — 79% идет на

Экономия электроэнергии Из всей потребляемой в быту энергии львиная доля — 79% идет на отопление помещений, 15% энергии расходуется на тепловые процессы (нагрев воды, приготовление пищи и т. д. ), 5% энергии потребляет электрическая бытовая техника и 1% энергии расходуется на освещение, радио и телевизионную технику. Вам потребуется 1 к. Втч энергии для того, чтобы: • 50 часов слушать радио • 110 часов бриться электробритвой • на 17 часов оставить гореть лампу мощностью 60 Вт • 12 часов смотреть цветной телевизор • 2 часа пылесосить • принять 5 -минутный душ • нагреть на 6 градусов полную ванну воды (150 л)

Какая лампа выгоднее? ЭНЕРГОСБЕРЕГАТЕЛЬНЫЕ ЛАМПЫ ЭКОНОМЯТ ДО 80% ЭЛЕКТРОЭНЕРГИИ. Какая лампа выгоднее? ЭНЕРГОСБЕРЕГАТЕЛЬНЫЕ ЛАМПЫ ЭКОНОМЯТ ДО 80% ЭЛЕКТРОЭНЕРГИИ.

Что такое мощность тока

Все устройства, приборы, механизмы и установки, действующие и движущиеся с помощью электричества, называются потребителями электроэнергии. Чем большее количество электроэнергии потребляется за промежуток времени, равный секунде, тем большее количество работы выполняется тем или иным потребителем. Самой главной характеристикой любой установки или машины, предназначенной для выполнения какой либо работы, называют мощность.

Мощность тока это количество электрической энергии, потребляемой за секунду. Для того, чтобы определить мощность, умножаем величину напряжения, при котором работает потребитель на силу тока, проходящего через него.

Расчет мощности

Всем известно, что подведенное к потребителю напряжение, означает количество работы, совершаемой электрическим полем, при перемещении через потребителя одного кулона электричества. Количество кулонов, прошедших за одну секунду, выражается силой тока, измеряемой в амперах. При умножении работы, совершенной всеми зарядами, на кол-во этих зарядов, которые прошли за одну секунду, мы получим в итоге всю работу электрического поля за этот промежуток времени. Фактически, это и будет потребленная мощность того или иного прибора. Измерение осуществляется в ваттах и киловаттах.

Единица измерения мощности названа в честь английского механика – изобретателя Джеймса Ватта (Уатта) (1736 – 1819), создателя универсальной паровой машины.

Один ватт – это мощность, выделяемая в проводнике, когда напряжение электрического поля на концах проводника составляет один вольт, а сила тока в проводнике – один ампер. Мощность тока в 1000 ватт называется 1 киловатт (Квт).

Существует два основных вида мощности

  • Активная электрическая – преобразуется безвозвратно в другие виды энергии (световую, тепловую, механическую и др.). Измеряется в ваттах, киловаттах, мегаваттах;
  • Реактивная электрическая – величина, характеризующаяся такой электрической нагрузкой, создаваемой потребителями колебаниями энергии электромагнитного поля. Характерна для двигателей. Единица измерения – вольт – ампер реактивный (ВАр).

Существует такое понятие, как допустимая суммарная мощность. Она определяет количество потребителей, которые могут быть одновременно подключены к сети и зависит от технических характеристик сети. Недопустимо одновременное подключение суммарной мощностью, превышающей нормативную. Это может привести к увеличению силы тока, перегрузке проводки, короткому замыканию.

Как определить мощность тока

В бытовых условиях израсходованную электроэнергию измеряют при помощи электрического счетчика. Во время прохождения тока через счетчик, внутри происходит вращение облегченного алюминиевого диска. Вращение диска происходит со скоростью, пропорциональной напряжению и силе. Число сделанных оборотов за определенное количество времени, показывает работу тока, совершенную за это время. Измерение работы тока производится в киловатт часах (кВт/ч).

Электрическая мощность. Мощность электрического тока.

 

 

 

Тема: что такое электрическая мощность, её определение и вычисление.

 

мощность электрического тока, электрическая мощностьВ этой теме хотелось бы раскрыть понятие электрической мощности в простой и понятной форме. И, пожалуй, прежде чем говорить об электрической мощности, сперва следует определиться с понятием мощности в общем смысле. Обычно, когда люди говорят о мощности, они подразумевают некую «силу», которой обладает тот или иной предмет (мощный электродвигатель) либо действие (мощный взрыв). Но как мы знаем из школьной физики, сила и мощность — это разные понятия, но зависимость у них есть.

 

Первоначально мощность (N), это характеристика, относящаяся к определённому событию (действию), а если оно привязано к некоторому предмету, то с ним также условно соотносят понятие мощности. Любое физическое действие подразумевает воздействие силы. Сила (F), с помощью которой был пройден определённый путь (S) будет равняться совершенной работе (А). Ну, а работа, проделанная за определённое время (t) и будет приравниваться к мощности.

 

формула мощности, работа делёная на времяМощность — это физическая величина, которая равна отношению совершенной работы, что выполняется за некоторый промежуток времени, к этому же промежутку времени. Поскольку работа является мерой изменения энергии, то ещё можно сказать так: мощность — это скорость преобразования энергии системы.

 

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

 

 

 

 

формула электрической мощности, напряжение умноженое на токАнализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

 

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

 

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

 

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

 

 

реактивная электрическая мощностьЭлектродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

 

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

 

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

 

ps smail

P.S. Говоря об электрической мощности электротехнических устройств мы должны помнить, что она в них ограничивается номинальными и максимальными значениями тока и напряжения, а эти ограничения уже зависят от материала, рабочих частот, технологии изготовления и прочих факторов.

Мощность электрического тока

Мощность электрического тока

Прежде чем говорить об электрической мощности, следует определиться с понятием мощности в общем смысле. Обычно, когда люди говорят о мощности, они подразумевают некую силу, которой обладает тот или иной предмет (мощный электродвигатель), либо действие (мощный взрыв).

Электрическая принципиальная схема регулятора мощности

Электрическая принципиальная схема регулятора мощности.

Но, как мы знаем из школьной физики, сила и мощность — это разные понятия, хотя зависимость у них есть.

Формула мощности

Формула мощности.

Первоначально мощность (N) – это характеристика, относящаяся к определённому событию (действию), а если оно привязано к некоторому предмету, то с ним также условно соотносят понятие мощности. Любое физическое действие подразумевает воздействие силы. Сила (F), с помощью которой был пройден определённый путь (S), будет равняться совершенной работе (А). А работа, проделанная за определённое время (t), и будет приравниваться к мощности.

Мощность — это физическая величина, которая равна отношению совершенной работы, что выполняется за некоторый промежуток времени, к этому же промежутку времени. Поскольку работа является мерой изменения энергии, то ещё можно сказать так: мощность — это скорость преобразования энергии системы.

Разобравшись с понятием механической мощности, можно перейти к рассмотрению электрической мощности (мощность электрического тока). Как вы должны знать, U — это работа, выполняемая при перемещении 1 Кл, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность, или мощность электрического тока.

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность P в одинаковой степени зависит от тока I и от напряжения U, то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (это используется при передаче электроэнергии на удалённые расстояния от электростанций к местам потребления путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

Формула электрической мощности

Формула электрической мощности.

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т. д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 В на 1 А. В быту и на производстве мощность удобнее измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, который создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U×I×sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой Q.

Активную и реактивную электрическую мощность на примере можно выразить так:  дано электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Схема работы электродвигателя

Схема работы электродвигателя.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости и индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Мощность электрического тока. Это просто

Вопрос о том, что такое мощность электрического тока, не самый простой. Если быть уж абсолютно точным, он очень непростой. Но это одно из основных понятий как физики, так и других научных дисциплин, связанных с электричеством. В повседневной жизни нам также часто приходится пользоваться этим понятием.

Не вдаваясь в подробное выяснение, что такое электрический ток и какова его природа, для понимания связанных с ним процессов воспользуемся аналогией с ручьем. Вода протекает от более высоко расположенного участка вниз. Для электрического тока ситуация примерно такая же, он протекает от точки с высоким потенциалом к точке с низким потенциалом. Величина разности потенциалов называется напряжением, обозначается буквой U и измеряется в единицах, именуемых вольт.

Вернемся опять к ручью. При протекании воды с высоты в низину происходит перенос определённого ее количества с одного места на другое. При протекании тока происходит примерно то же самое: определённое количество электричества переносится с одного места на другое. Для измерения этого процесса существует термин сила тока, определяется он как количество электричества, прошедшее в единицу времени через сечение проводника. По аналогии с ручьем это означает, какое количество воды прошло через выбранный участок за единицу времени. Обозначается сила тока символом I, для ее измерения существует специальная единица – ампер.

Вот эти два понятия — электрическое напряжение и сила тока — выступают как основные характеристики электрического тока.

Вода, протекая сверху вниз, несёт с собой определённую энергию. Попадая, например, на лопатки турбины, она будет вызывать вращение последней и совершать определенную работу. Точно так же электрический ток может совершать работу. Эта работа, выполняемая за одну секунду, и есть мощность электрического тока. Принято ее обозначать буквой P, и измеряется она в ваттах.

Работа, выполняемая водой при падении, определяется ее количеством, попадающим на лопатки турбины, и высотой, с которой она падает. Чем больше воды и чем больше высота, с которой она падает, тем большая выполняется работа. Точно так же, чем больше напряжение (разность высот для воды) и сила тока (т.е. количество воды), тем больше выполняемая работа и, значит, мощность электрического тока.

Если попытаться формализовать это понятие, то все можно выразить простой формулой:

P=I*U,

где: P – мощность электрического тока, в ваттах;

I – сила тока, в амперах;

U – напряжение, в вольтах.

Вот это и есть основная формула, по которой можно определить мощность электрического тока.

Однако электрический ток протекает не где-то в абстрактных условиях, а в реальных цепях, у которых есть свои характеристики. В частности, у проводника есть сопротивление, а напряжение U и сила тока I связаны между собой в цепи, где протекает постоянный ток через сопротивление по закону Ома. Так что мощность в цепи постоянного тока при необходимости можно выразить через сопротивление, или учесть характеристики цепи в выражении для мощности через ток и напряжение, связанные законом Ома.

Вследствие того, что цепь обладает сопротивлением, не вся энергия используется на выполнение полезной работы. Часть ее теряется при прохождении по цепи. Поэтому поступающая энергия, т.е. мощность источника энергии должна быть больше той мощности, которая необходима для выполнения определённой работы. Должен выполняться так называемый энергетический баланс – мощность, отдаваемая источником, должна быть равна мощности потребляемой нагрузки и мощности, теряемой в проводнике электрического тока.

Примерно так можно получить общее представление о том, что такое мощность электрического тока, как она определяется, от чего зависит.

ФИЗИКА: ЗАДАЧИ на Мощность электрического тока

Задачи на Мощность электрического тока с решениями

Формулы, используемые на уроках «Задачи на Мощность электрического тока»

Название величины
Обозначение
Единица измерения
Формула
Сила тока
I
А
I = U / R
Напряжение
U
В
U = IR
Время
t
с
t = A / IU
Работа тока
А
Дж
A = IUt
Мощность тока
Р
Вт
Р = IU
Мощность источника тока в замкнутой цепи
Р
Вт

1 мин = 60 с;    1 ч = 60 мин;   1 ч = 3600 с.


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.  Определить мощность тока в электрической лампе, если при напряжении 110 В сила тока в ней 200 мА.


Задача № 2.  Определить мощность тока в электрической лампе, если сопротивление нити акала лампы 400 Ом, а напряжение на нити 100 В.


Задача № 3.  Определить силу тока в лампе электрического фонарика, если напряжение на ней 6 В, а мощность 1,5 Вт.


Задача № 4. В каком из двух резисторов мощность тока больше при последовательном (см. рис. а) и параллельном (см. рис. б) соединении? Во сколько раз больше, если сопротивления резисторов R1 = 10 Ом и R2 = 100 Ом?


Задача № 5.  Ученики правильно рассчитали, что для освещения елки нужно взять 12 имеющихся у них электрических лампочек. Соединив их последовательно, можно будет включить их в городскую сеть. Почему меньшее число лампочек включать нельзя? Как изменится расход электроэнергии, если число лампочек увеличить до 14?


Задача № 6.  В горном ауле установлен ветряной двигатель, приводящий в действие электрогенератор мощностью 8 кВт. Сколько лампочек мощностью 40 Вт можно питать от этого источника тока, если 5% мощности расходуется в подводящих проводах?


Задача № 7.  Сила тока в паяльнике 4,6 А при напряжении 220 В. Определите мощность тока в паяльнике.


Задача № 8.  Одинакова ли мощность тока в проводниках ?

 


Задача № 9.  На баллоне первой лампы написано 120 В; 100 Вт, а на баллоне второй — 220 В; 100 Вт. Лампы включены в сеть с напряжением, на которое они рассчитаны. У какой лампы сила тока больше; во сколько раз?


Задача № 10. (повышенной сложности) В сеть напряжением 120 В параллельно включены две лампы: 1 — мощностью 300 Вт, рассчитанная на напряжение 120 В, и 2, последовательно соединенная с резистором,— на 12 В. Определите показания амперметров А1 и А и сопротивление резистора, если амперметр А2 показывает силу тока 2 А.


Задача № 11.   ОГЭ  При силе тока I1 = 3 А во внешней цепи выделяется мощность Р1 = 18 Вт, а при силе тока I2 = 1 А — мощность Р2 = 10 Вт. Найти ЭДС и внутреннее сопротивление источника тока.


Задача № 12.    ЕГЭ  Имеются две электрические лампочки мощностью Р1 = 40 Вт и Р2 = 60 Вт, рассчитанные на напряжение сети U = 220 В. Какую мощность будет потреблять каждая из лампочек, если их подключить к сети последовательно?


Краткая теория для решения Задачи на Мощность электрического тока.

ЗАДАЧИ на Работу электрического тока. ЗАДАЧИ на Мощность электрического тока/

 


Это конспект по теме «ЗАДАЧИ на Мощность электрического тока». Выберите дальнейшие действия:

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *