МОЩНЫЙ УСИЛИТЕЛЬ НА ТРАНЗИСТОРАХ
После изготовления и прослушивания собранного ранее небольшого УНЧ появилось желание собрать более мощный усилитель «А» класса. Прочитав достаточное количество соответствующей литературы и выбрал из предлагавшегося самую последнюю версию. Это был усилитель мощностью 30 Вт соответствующий по своим параметрам усилителям высокого класса.
В имеющеюся трассировку оригинальных печатных плат никаких изменений вносить не предполагал, однако, ввиду отсутствия первоначальных силовых транзисторов, был выбран более надежный выходной каскад с использованием транзисторов 2SA1943 и 2SC5200. Применение этих транзисторов в итоге позволило обеспечить большую выходную мощность усилителя. Принципиальная схема моей версии усилителя далее.
Это изображение плат собранных по этой схеме с транзисторами Toshiba 2SA1943 и 2SC5200.
Если присмотреться, то сможете увидеть на печатной плате вместе со всеми компонентами стоят резисторы смещения, они мощность 1 Вт углеродного типа. Оказалось, что они более термостабильны. При работе любого усилителя большой мощности выделяется огромное количества тепла, поэтому соблюдение постоянства номинала электронного компонента при его нагреве является важным условием качественной работы устройства.
Собранная версия усилителя работает при токе около 1,6 А и напряжении 35 В. В результате чего 60 Вт мощности непрерывного рассеивается на транзисторах в выходном каскаде. Должен заметить, что это только треть мощности, которую они способны выдержать. Постарайтесь представить, сколько тепла выделяется на радиаторах при их нагреве до 40 градусов.
Корпус усилителя сделан своими руками из алюминия. Верхняя плита и монтажная плита толщиной 3 мм. Радиатор состоит из двух частей, его габаритные размеры составляют 420 x 180 x 35 мм. Крепеж — винты, в основном с потайной головкой из нержавеющей стали и резьбой М5 или М3. Количество конденсаторов было увеличено до шести, их общая ёмкость 220000 мкФ. Для питания был использован тороидальный трансформатор мощностью 500 Вт.
Блок питания усилителя
Хорошо видно устройство усилителя, которое имеет медные шины соответствующего дизайна. Добавлен небольшой тороид, для регулируемой подачи под управлением схемы защиты от постоянного тока. Так же имеется ВЧ фильтр в цепи питания. При всей своей простоте, надо сказать обманчивой простоте, топологии платы этого усилителя и звук им производится как бы без всякого усилия, подразумевающего в свою очередь возможность его бесконечного усиления.
Осциллограммы работы усилителя
Спад 3 дБ на 208 кГц
Синусоида 10 Гц и 100 Гц
Синусоида 1 кГц и 10 кГц
Сигналы 100 кГц и 1 МГц
Меандр 10 Гц и 100 Гц
Меандр 1 кГц и 10 кГц
Полная мощность 60 Вт отсечение симметрии на частоте 1 кГц
Таким образом становится понятно, что простая и качественная конструкция УМЗЧ не обязательно делается с применением интегральных микросхем — всего 8 транзисторов позволяют добиться приличного звучания со схемой, собрать которую можно за пол дня.
Мощный усилитель на транзисторах
Хочу представить конструкцию простого, но мощного усилителя низкой частоты, выполненного на современных недорогих транзисторах. Основные достоинства этого усилителя — простота сборки, доступные и дешевые радиодетали, также готовый усилитель в наладке не нуждается и работает сразу. Усилитель развивает очень высокую мощность по сравнению с аналогичными схемами. Из электрических параметров хочется отметить очень высокую линейность в рабочем диапазоне частот от 20Гц до 20кГц. Правда без недостатков тоже не обошлось. У данной схемы есть повышенный уровень шумов при большой громкости, но если учесть простоту и доступность, то все же собрать усилитель стоит, особенно советую автолюбителям для мощного сабвуфера, поскольку мощность такой схемы вполне позволяет раскачать импортные головки большой мощности. Из схемы видно, что проще некуда. В схеме использованы всего 5 транзисторов и несколько дополнительных радиодеталей.
Для уменьшения уровня шума усилителя, на вход нужно будет поставить переменный резистор, сопротивлением от 20 до 100 кОм, им также регулируют громкость. В таком случае, при малой громкости шума практически не будет, а при большой громкости шум почти не слышим, а если усилитель работает с нч фильтром на входе (под сабвуфер), то никаких шумов не будет вообще.
Усилитель способен выдать окало 100 Ватт на нагрузку 8 Ом ! если же используется головка с сопротивлением 4 ом, то мощность возрастает до 150 ватт! Параметры УМЗЧ:
Коэффициент усиления по напряжению ………………………………………………20
Номинальная мощность P при Uпит = +-30В на 4Ом…………………………………….100Вт
Максимальная мощность Pmax Uпит=+-45В на 4Ом……………………………………150Вт
Чувствительность по входу Uвх……………………………………………………………..1В
Ток покоя усилителя Ixx……………………………………………………………………….20-25мА
Ток покоя выходного каскада………………………………………………………………..0мА
Полоса воспроизводимых частот по уровню –3дБ, Гц,……………………….5-100 000
Параметры достаточно хороши, единственная преграда для использования схемы в качестве автомобильного усилителя — это повышенное двухполярное питание, но это не так уж и большая помеха, поскольку сегодня известно можество схем преобразователей напряжения, одна из таких схем выполняется на микросхеме TL494. Схема стандартная и позволяет получить на выходе трансформатора до 200 ватт мощности, что вполне хватает для полноценной работы данного самодельного усилителя. Схему преобразователя не привожу, поскольку это уже совсем другая тема.
Понравилась схема — лайкни!
ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ
Смотреть ещё схемы усилителей
УСИЛИТЕЛИ НА ЛАМПАХ УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ
УСИЛИТЕЛИ НА МИКРОСХЕМАХ СТАТЬИ ОБ УСИЛИТЕЛЯХ
Мощный унч на транзисторах. Простой германиевый усилитель мощности. Для сборки простого усилителя потребуется ряд деталей
Высокое входное сопротивление и неглубокая ОС — основной секрет теплого лампового звучания. Ни для кого не секрет, что именно на лампах реализуются самые высококачественные и дорогие усилители, которые относятся к разряду HI-End. Давайте поймем, что такое качественный усилитель? Качественным имеет право называться тот усилитель мощности НЧ, который полностью повторяет форму входного сигнала на выходе, не искажая его, разумеется выходной сигнал уже усиленный. В сети можно встретить несколько схем действительно высококачественных усилителей, которые имеют право относится к разряду HI-End и совсем не обязательна ламповая схематика. Для получения максимального качества, нужен усилитель, выходной каскад которого работает в чистом классе А. Максимальная линейность схемы дает минимальное кол-во искажений на выходе, поэтому в строении высококачественных усилителей особое внимание уделяется именно этому фактору. Ламповые схемы хороши, но не всегда доступны даже для самостоятельной сборки, а промышленные ламповые УМЗЧ от брендовых производителей стоят от нескольких тысяч, до нескольких десятков тысяч долларов США — такая цена уж точно не по карману многим.
Возникает вопрос — можно ли аналогичных результатов добиться от транзисторных схем? ответ будет в конце статьи.
Линейных и сверхлинейных схем усилителей мощности НЧ достаточно много, но схему, которая будет сегодня рассмотрена является ультралинейной схемой высокого качества, которая реализована всего на 4-х транзисторах. Схема была создана в далеком 1969 году, британским инженером-звуковиком Джоном Линсли-Худом (John Linsley-Hood). Автор является создателем еще нескольких высококачественных схем, в частности класса А. Некоторые знатоки называют этот усилитель самым качественным среди транзисторных УНЧ и я в этом убедился еще год назад.
Первая версия такого усилителя была представлена на . Удачная попытка реализации схемы заставила создать двухканальный УНЧ по этой же схеме, собрать все в корпусе и использовать для личных нужд.
Особенности схемы
Не смотря на простоту, схема имеет несколько особенностей. Правильный режим работы может нарушиться из-за неправильной разводки платы, неудачного расположения компонентов, неправильное питание и т.п..
Именно питание — особо важный фактор — крайне не советую питать данный усилитель от всевозможных блоков питания, оптимальный вариант аккумулятор или блок питания с параллельно включенным аккумулятором.
Мощность усилителя составляет 10 ватт с питанием 16 Вольт на нагрузку 4 Ом. Саму схему можно приспособить для головок 4, 8 и 16 Ом.
Мною была создана стереофоническая версия усилителя, оба канала расположены на одной плате.
Поскольку оригинальных транзисторов схемы не удалось найти, пришлось использовать аналоги. Вся база — отечественная. Первый транзистор (где собственно формируется звук) поставил германиевый, на слух он звучит лучше. Можно использовать любые П-Н-П германиевые транзисторы малой мощности МП25 и ему подобные. Транзистор при желании можно заменить на КТ361 или не менее шумные.
Второй — предназначен для раскачки выходного каскада, поставил КТ801 (раздобыл достаточно трудно.
В самом выходном каскаде поставил мощные биполярные ключи обратной проводимости — КТ803 именно с ними получил несомненно высокое качество звучание, хотя экспериментировал со многими транзисторами — КТ805, 819 , 808, даже поставил мощные составные — КТ827, с ним мощность на много выше, но звук не сравниться с КТ803, хотя это лишь мое субъективное мнение.
Входной конденсатор с емкостью 0,1-0,33мкФ, нужно использовать пленочные конденсаторы с минимальной утечкой, желательно от известных производителей, тоже самое и с выходным электролитическим конденсатором.
Если схема рассчитана под нагрузку 4 Ом, то не стоит повышать напряжение питания выше 16-18 Вольт.
Звуковой регулятор решил не поставить, он в свою очередь тоже оказывает влияние на звук, но параллельно входу и минусу желательно поставить резистор 47к.
Сама плата — макетная. С платой пришлось долго повозиться, поскольку линии дорожек тоже оказывали некое влияние на качество звука в целом. Этот усилитель имеет очень широкий диапазон воспроизводимых частот, от 30 Гц до 1мГц.
Настройка — проще простого. Для этого нужно переменным резистором добиться половины питающего напряжения на выходе. Для более точной настройки стоит использовать многооборотный переменный резистор. Один шуп мультиметра присоединяем с минусом питания, другой ставим к линии выхода, т.е к плюсу электролита на выходе, таким образом, медленно вращая переменник добиваемся половины питания на выходе.
Ток покоя усилителя составляет 0,5-0,7А и это вполне нормально для класса А. КПД схемы — не более 25%, вся основная мощность источника питания превращается в ненужное тепло, которое выделяется транзисторами выходного каскада, поэтому им нужно интенсивное охлаждение, возможно понадобиться и кулер.
Николай Трошин
В последнее время заметно вырос интерес к усилителям мощности на германиевых транзисторах. Есть мнение, что звучание таких усилителей более мягкое, напоминает «ламповый звук».
Предлагаю вашему вниманию две простые схемы усилителей мощности НЧ на германиевых транзисторах, опробованные мной некоторое время назад.
Здесь использованы более современные схемные решения, чем те, которые использовались в 70-е годы, когда «германий» был в ходу. Это позволило получить приличную мощность при хорошем качестве звучания.
Схема на рисунке ниже, является переработанным под «германий» вариантом усилителя НЧ из моей статьи в журнале Радио №8 за 1989г (стр. 51-55).
Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Несколько слов о деталях:
При сборке усилителя, в качестве конденсаторов постоянной ёмкости (помимо электролитических), желательно применять слюдяные конденсаторы. Например типа КСО, такие, как ниже на рисунке.
Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г — на ГТ402В; ГТ404Г — на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.
Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.
Пластина разрезается по линиям, потом этой заготовке придают форму трубки, используя для этой цели любую подходящую цилиндрическую оправку (например сверло).
После этого заготовку (1) плотно надевают на корпус транзистора (2) и прижимают пружинящим кольцом (3), предварительно отогнув боковые крепёжные ушки.
Кольцо изготовляется из стальной проволоки диаметром 0,5-1,0 мм. Вместо кольца можно использовать бандаж из медной проволоки.
Теперь осталось загнуть снизу боковые ушки для крепления радиатора за корпус транзистора и отогнуть на нужный угол надрезанные перья.
Подобный радиатор можно также изготовить и из медной трубки, диаметром 8мм. Отрезаем кусок 6…7см, разрезаем трубку вдоль по всей длине с одной стороны. Далее на половину длины разрезаем трубку на 4 части и отгибаем эти части в виде лепестков и плотно надеваем на транзистор.
Так как диаметр корпуса транзистора где-то 8,2 мм, то за счёт прорези по всей длине трубки, она плотно оденется на транзистор и будет удерживаться на его корпусе за счёт пружинящих свойств.
Резисторы в эмиттерах выходного каскада — либо проволочные мощностью 5 Вт, либо типа МЛТ-2 3 Ом по 3шт параллельно. Импортные пленочные использовать не советую — выгорают мгновенно и незаметно, что ведет к выходу из строя сразу нескольких транзисторов.
Настройка:
Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом — напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.
Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный.
Самая дефицитная деталь для сборки усилителя по вышеприведённой схеме — это выходные германиевые транзисторы ГТ806. Их и в светлое советское время было не так легко приобрести, а сейчас наверно и того труднее. Гораздо проще найти германиевые транзисторы типов П213-П217, П210.
Если Вы не сможете по каким либо причинам приобрести транзисторы ГТ806, то Вашему вниманию предлагается ещё одна схема усилителя, где в качестве выходных транзисторов, можно использовать как раз вышеупомянутые П213-П217, П210.
Схема эта — модернизация первой схемы. Выходная мощность этого усилителя составляет 50Вт при сопротивлении нагрузки 4 Ом и 30Вт при 8-Омной нагрузке.
Напряжение питания этого усилителя (U пит) так же двухполярное и составляет ±27 В;
Диапазон рабочих частот 20Гц…20кГц:
Какие же изменения внесены в эту схему;
Добавлены два источника тока в «усилитель напряжения» и еще один каскад в «усилитель тока».
Применение еще одного каскада усиления на довольно высокочастотных транзисторах П605, позволило несколько разгрузить транзисторы ГТ402-ГТ404 и расшевелить совсем уж медленные П210.
Получилось довольно не плохо. При входном сигнале 20кГц, и при выходной мощности 50Вт — на нагрузке искажений практически не заметно (на экране осциллографа).
Минимальные, мало заметные искажения формы выходного сигнала с транзисторами типа П210, возникают только на частотах около 20 кгц при мощности 50 вт. На частотах ниже 20 кгц и мощностях менее 50 вт искажений не заметно.
В реальном музыкальном сигнале таких мощностей на столь высоких частотах обычно не бывает, по этому отличий в звучании (на слух) усилителя на транзисторах ГТ806 и на транзисторах П210 я не заметил.
Впрочем, на транзисторах типа ГТ806, если смотреть осциллографом, усилитель работает все-таки лучше.
При нагрузке 8 Ом в этом усилителе, также возможно применение выходных транзисторов П216…П217, и даже П213…П215. В последнем случае напряжение питания усилителя нужно будет снизить до ±23В. Выходная мощность при этом, разумеется, тоже упадет.
Повышение же питания — ведет к увеличению выходной мощности, и я думаю, что схема усилителя по второму варианту имеет такой потенциал (запас), однако, я не стал экспериментами искушать судьбу.
Радиаторы для этого усилителя обязательны следующие — на выходные транзисторы площадью рассеивания не менее 300см2, на предвыходные П605 — не менее 30см2 и даже на ГТ402, ГТ404 (при сопротивлении нагрузки 4 Ом) тоже нужны.
Для транзисторов ГТ402-404 можно поступить проще;
Взять медную проволоку (без изоляции) диаметром 0,5-0,8, намотать на круглую оправку (диаметром 4-6 мм) проволоку виток к витку, согнуть в кольцо полученную обмотку (с внутренним диаметром меньше диаметра корпуса транзистора), соединить концы пайкой и надеть полученный «бублик» на корпус транзистора.
Эффективней будет наматывать проволоку не на круглую, а на прямоугольную оправку, так как при этом увеличивается площадь соприкосновения проволоки с корпусом транзистора и соответственно повышается эффективность отвода тепла.
Также для повышения эффективности отвода тепла для всего усилителя, можно уменьшить площадь радиаторов и применить для охлаждения 12В куллер от компьютера, запитав его напряжением 7…8В.
Транзисторы П605 можно заменить на П601…П609.
Настройка второго усилителя аналогична описанной для первой схемы.
Несколько слов об акустических системах. Понятно, что для получения хорошего звучания они должны иметь соответствующую мощность. Желательно также, используя звуковой генератор — пройтись на разных мощностях по всему диапазону частот. Звучание должно быть чистым, без хрипов и дребезга. Особенно, как показал мой опыт, этим грешат высокочастотные динамики колонок типа S-90.
Если у кого возникнут какие либо вопросы по конструкции и сборке усилителей — задавайте, по возможности постараюсь ответить.
Удачи всем Вам в Вашем творчестве и всего наилучшего!
Время чтения ≈ 6 минут
Усилители – наверное, одни из первых устройств, которые начинают конструировать радиолюбители-новички. Собирая УНЧ на транзисторах своими руками при помощи готовой схемы, многие используют микросхемы.
Транзисторные усилители хоть и отличаются огромным числом , но каждый радиоэлектронщик постоянно стремится сделать что-то новое, более мощное, более сложное, интересное.
Более того, если вам нужен качественный, надежный усилитель, то стоит смотреть в сторону именно транзисторных моделей. Ведь, именно они наиболее дешевые, способны выдавать чистый звук, и их легко сконструирует любой новичок.
Поэтому, давайте разберемся, как сделать самодельный усилитель НЧ класса B.
Примечание! Да-да, усилители класса B тоже могут быть хорошими. Многие говорят, что качественный звук могут выдавать лишь ламповые устройства. Отчасти это правда. Но, взгляните на их стоимость.
Более того, собрать такое устройство дома – задача далеко не из легких. Ведь вам придется долго искать нужные радиолампы, после чего покупать их по довольно высокой цене. Да и сам процесс сборки и пайки требует какого-то опыта.
Поэтому, рассмотрим схему простого, и в то же время качественного усилителя низкой частоты, способного выдавать звук мощность 50 Вт.
Старая, но проверенная годами схема из 90-х
Схема УНЧ, который мы будем собирать, впервые была опубликована в журнала «Радио» за 1991 год. Ее успешно собрали сотни тысяч радиолюбителей. Причем, не только для и улучшения мастерства, но и для использования в своих аудиосистемах.
Итак, знаменитый усилитель низкой частоты Дорофеева:
Уникальность и гениальность этой схемы кроется в ее простоте. В этом УНЧ применяется минимальное количество радиоэлементов, и предельно простой источник питания. Но, устройство способно «брать» нагрузку в 4 Ома, и обеспечивать выходную мощность в 50 Вт, чего вполне достаточно для домашней или автомобильной акустической системы.
Многие электротехники совершенствовали, дорабатывали эту схему. И. для удобства мы взяли самый современный ее вариант, заменив старые компоненты на новые, чтобы вам было проще конструировать УНЧ:
Описание схемы усилителя низких частот
В этом «переработанном» Доровеевском УНЧ были использованы уникальные и наиболее эффективные схематические решения. К примеру, сопротивление R12. Этот резистор ограничивает ток на коллекторе выходного транзистора, тем самым ограничивая максимальную мощность усилителя.
Важно! Не стоит менять номинал R12, чтобы увеличить выходную мощность, так как он подобран именно под те компоненты, что применяются в схеме. Этот резистор защищает всю схему от коротких замыканий .
Выходной каскад транзисторов:
Тот самый R12 «вживую»:
Резистор R12 должен иметь мощность на 1 Вт, если под рукой такого нет – берите на полватта. Он имеет параметры, обеспечивающие коэффициент нелинейных искажений до 0,1% на частоте в 1 кГц, и не более 0,2% при 20 кГц. То есть, на слух никаких изменений вы не заметите. Даже при работе на максимальной мощности.
Блок питания нашего усилителя нужно подобрать двухполярный, с выходными напряжениями в пределах 15-25 В (+- 1 %):
Чтобы «поднять» мощность звука, можно увеличить напряжение. Но, тогда придется параллельно произвести замену транзисторов в оконечном каскаде схемы. Заменить их нужно на более мощные, после чего провести перерасчет нескольких сопротивлений.
Компоненты R9 и R10 должны иметь номинал, в соответствии с подающимся напряжением:
Они, с помощью стабилитрона, ограничивают проходящий ток. В этой же части цепи собирается параметрический стабилизатор, который нужен для стабилизации напряжения и тока перед операционным усилителем:
Пара слов о микросхеме TL071 – «сердце» нашего УНЧ. Ее считают отличным операционным усилителем, которые встречается как в любительских конструкциях, так и в профессиональной аудиоаппаратуре. Если нет подходящего операционника, его можно заменить на TL081:
Вид «в реальности» на плате:
Важно! Если вы решите применять в этой схеме какие-либо другие операционные усилители, внимательно изучайте их распиновку, ведь «ножки» могут иметь другие значения .
Для удобства микросхему TL071 стоит монтировать на предварительно впаянную в плату пластиковую панельку. Так можно будет быстро заменить компонент на другой в случае необходимости.
Полезно знать! Для ознакомления представим вам еще одну схему этого УНЧ, но без усиливающей микросхемы. Устройство состоит исключительно из транзисторов, но собирается крайне редко ввиду устаревания и неактуальности.
Чтобы было удобнее, мы постарались сделать печатную плату минимальной по размерам – для компактности и простоты монтажа в аудиосистему:
Все перемычки на плате нужно запаивать сразу же после травления.
Транзисторные блоки (входного и выходного каскада) нужно монтировать на общий радиатор. Разумеется, они тщательно изолируются от теплоотвода.
На схеме они здесь:
А тут на печатной плате:
Если в наличии нет готовых, радиаторы можно изготовить из алюминиевых или медных пластин:
Транзисторы выходного каскада должны иметь рассеиваемую мощность как минимум в 55 Вт, а еще лучше – 70 или целых 100 Вт. Но, этот параметр зависит от подающегося на плату напряжения питания.
Из схемы понятно, что на входном и выходном каскаде применяется по 2 комплементарных транзистора. Нам важно подобрать их по усиливающему коэффициенту. Чтобы определить этот параметр, можно взять любой мультиметр с функцией проверки транзисторов:
Если такого устройства у вас нет, тогда придется одолжить у какого-то мастерам транзисторный тестер:
Стабилитроны стоит подбирать по мощности на полватта. Напряжение стабилизации у них должно составлять 15-20 В:
Блок питания. Если вы планируете смонтировать на свой УНЧ трансформаторный БП, тогда подберите конденсаторы-фильтры с емкостью как минимум 5 000 мкФ. Тут чем больше – тем лучше.
Собранный нами усилитель низких частот относится к B-классу. Работает он стабильно, обеспечивая почти кристально-чистое звучание. Но, БН лучше всего подбирать так, чтобы он мог работать не на всю мощность. Оптимальный вариант – трансформатор габаритной мощностью минимум в 80 Вт.
Вот и все. Мы разобрались, как собрать УНЧ на транзисторах своими руками с помощью простой схемы, и как его в будущем можно усовершенствовать. Все компоненты устройства найдутся , а если их нет – стоит разобрать пару-тройку старых магнитофонов или заказать радиодетали в интернете (стоят они практически копейки).
После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.
Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.
Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.
Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.
Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.
Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.
Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.
Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.
Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.
И наконец — третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.
Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.
Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.
Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот | |
---|---|---|---|---|---|---|---|
Усилитель на микросхеме TDA2003 | |||||||
Аудио усилитель | TDA2003 | 1 | В блокнот | ||||
С1 | 47 мкФ х 25В | 1 | В блокнот | ||||
С2 | Конденсатор | 100 нФ | 1 | Пленочный | В блокнот | ||
С3 | Электролитический конденсатор | 1 мкФ х 25В | 1 | В блокнот | |||
С5 | Электролитический конденсатор | 470 мкФ х 16В | 1 | В блокнот | |||
R1 | Резистор | 100 Ом | 1 | В блокнот | |||
R2 | Переменный резистор | 50 кОм | 1 | От 10 кОм до 50 кОм | В блокнот | ||
Ls1 | Динамическая головка | 2-4 Ом | 1 | В блокнот | |||
Усилитель на транзисторах схема №2 | |||||||
VT1-VT3 | Биполярный транзистор | КТ315А | 3 | В блокнот | |||
С1 | Электролитический конденсатор | 1 мкФ х 16В | 1 | В блокнот | |||
С2, С3 | Электролитический конденсатор | 1000 мкФ х 16В | 2 | В блокнот | |||
R1, R2 | Резистор | 100 кОм | 2 | В блокнот | |||
R3 | Резистор | 47 кОм | 1 | В блокнот | |||
R4 | Резистор | 1 кОм | 1 | В блокнот | |||
R5 | Переменный резистор | 50 кОм | 1 | В блокнот | |||
R6 | Резистор | 3 кОм | 1 | В блокнот | |||
Динамическая головка | 2-4 Ом | 1 | В блокнот | ||||
Усилитель на транзисторах схема №3 | |||||||
VT2 | Биполярный транзистор | КТ315А | 1 | В блокнот | |||
VT3 | Биполярный транзистор | КТ361А | 1 | В блокнот | |||
VT4 | Биполярный транзистор | КТ815А | 1 | В блокнот | |||
VT5 | Биполярный транзистор | КТ816А | 1 | В блокнот | |||
VD1 | Диод | Д18 | 1 | Или любой маломощный | В блокнот | ||
С1, С2, С5 | Электролитический конденсатор | 10 мкФ х 16В | 3 |
Усилитель на одном транзисторе — здесь представлена конструкция простого УНЧ на одном транзисторе. Именно с подобных схем многие радиолюбители начинали свой путь. Однажды собрав несложный усилитель мы всегда стремимся изготовить более мощное и качественное устройство. И так все идет по нарастающей, всегда присутствует желание изготовить безупречный усилитель мощности.
Показанная ниже простейшая схема усилителя выполнена на одном биполярном транзисторе и шести электронных компонентах, включая динамик. Эта конструкция прибора усиливающего звук низкой частоты, создана как раз для начинающих радиолюбителей. Основная ее цель, это дать понять простой принцип работы усилителя, поэтому она собрана с использованием минимального количества радиоэлектронных элементов.
Этот усилитель естественно обладает небольшой мощностью, для начала она большая и не нужна. Однако, если установить более мощный транзистор и поднять немного напряжение питания, то на выходе можно получить примерно 0,5 Вт. А это уже считается довольно приличной мощностью для усилителя имеющего такую конструкцию. На схеме, для наглядности применен биполярный транзистор c проводимостью n-p-n, вы же можете использовать любые и с любой проводимостью.
Чтобы получить 0,5 Вт на выходе, то лучше всего применить мощные биполярные транзисторы типа КТ819 либо их зарубежные аналоги, например 2N6288, 2N5490. Также можно использовать кремневые транзисторы типа КТ805 их зарубежный аналог — BD148, BD149. Конденсатор в цепи выходного тракта можно установить 0,1mF, хотя его номинальное значение не играет большой роли. Тем не менее он формирует чувствительность прибора относительно частоты звукового сигнала.
Если поставить конденсатор имеющий большую емкость, то тогда на выходе будут преимущественно низкие частоты, а высокие будут срезаться. И наоборот, если емкость будет маленькая, то будут резаться низкие частоты, а высокие пропускаться. Поэтому, этот выходной конденсатор подбирается и устанавливается исходя из ваших предпочтений относительно звукового диапазона. Напряжение питания для схемы нужно выбирать в пределах от 3v — до 12v.
Хотелось бы еще пояснить — данный усилитель мощности представлен вам только в демонстрационных целях, показать принцип работы такого устройства. Звучание этого аппарата конечно будет на низком уровне и не идет ни в какое сравнение с высококачественными устройствами. При усилении громкости воспроизведения, в динамике будут возникать искажения в виде хрипов.
Мощный усилитель на одном транзисторе. Работа в промежуточных классах
Источник питания должен выдавать стабильное или нестабильное двуполярное напряжение питания ±45V и ток 5А. Эта схема УНЧ на транзисторах весьма проста, так как в выходном каскаде используется пара мощных комплементарных транзисторов Дарлингтона . В соответствии с справочными характеристиками эти транзисторы могут коммутировать ток до 5А при напряжении эмиттерном-коллекторном переходе до 100V.
Схема УНЧ представлена на рисунке чуть ниже.
Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных транзисторах VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6. ОС по переменной состовляющей осуществляется через резистор R6, но её величина зависит от номиналов цепочки R7-C3. Но следует учитовать, что слишком сильное увеличение сопротивления R7 приводет к возбуждению.
Режим работы по постоянному току обеспечивается подбором резистора R6. Выходной каскад на транзисторах Дарлингтона VT3 и VT4 работает в классе АВ. Диоды VD1 и VD2 нужны для стабилизации рабочей точки выходного каскада.
Транзистор VT5 ппредназначен для раскачки выходного каскада, на его базу поступает сигнал с выхода дифференциального предварительного усилителя, а так же постоянное напряжение смещения, которое определяет режим работы выходного каскада по постоянному току.
Все конденсаторы схемы должны быть рассчитаны на максимальное постоянное напряжение не ниже 100V. Транзисторы выходного каскада рекомендуется закрепить на радиаторы площадью не меньше 200 см в квадрате
Рассмотренная схема простого двухкаскадного усилителя разработана для работы с наушниками или для использования в простых устройствах с функцией предварительного усилителя.
Первый транзистор усилителя подсоединен по схеме с общим эмиттером, а второй транзистор с общим коллектором. Первый каскад предназначен для базового усиления сигнала по напряжению, а второй каскада усиливает уже по мощности.
Малое выходное сопротивление второго каскада двухкаскадного усилителя, называемого эмиттерным повторителем, позволяет подсоединять не только наушники с большим сопротивлением, но и другие виды преобразователей акустического сигнала.
Эта тоже двухкаскадная схема УНЧ выполненная на двух транзисторах, но уже противоположной проводимости. Ее главная особенность в том, что связь между каскадами непосредственная. Охваченная ООС через сопротивление R3 напряжение смещения со второго каскада проходит на базу первого транзистора.
Конденсатор СЗ, шунтирует резистор R4, уменьшает ООС по переменному току, тем самым уменьшающая усиление VT2. Путем подбора номинала резистора R3 задают режим работы транзисторов.
УМЗЧ на двух транзисторах |
Этот достаточно легкий усилитель мощности звуковой частоты (УМЗЧ) можно спаять всего на двух транзисторах. При напряжении питания 42В постоянного тока выходная мощность усилителя достигает 0,25 Вт при нагрузке 4 Ом. Потребляемый ток всего 23 mA. Усилитель работает в однотактном режиме «А».
Напряжение низкой частоты от источника сигнала подходит к регулятору громкости R1. Далее через защитный резистор R3 и конденсатор C1 сигнал оказывается на базе биполярного транзистора VT1 включенного по схеме с общим эмиттером. Усиленный сигнал через R8 подается на затвор мощного полевого транзистора VT2 включенный по схеме с общим истоком и его нагрузкой служит первичная обмотка понижающего трансформатора К вторичной обмотке трансформатора можно подключить динамическую головку или акустическую систему.
В обоих транзисторных каскадах присутствует местная отрицательная обратная связь по постоянному и переменному току, так и общей цепью ООС.
В случае увеличения напряжения на затворе полевого транзистора сопротивление сток исток его канала уменьшается и напряжение на его стоке уменьшается. Это влияет и на уровень сигнала поступающий на биполярный транзистор, что снижает напряжения затвор-исток.
Совместно с цепями местной отрицательной обратной связи, таким образом, стабилизируются режимы работы обоих транзисторов даже в случае незначительного изменения питающего напряжения. Коэффициент усиления зависит от соотношения сопротивлений резисторов R10 и R7. Стабилитрон VD1 предназначен для предотвращения выхода полевого транзистора из строя. Питание усилительного каскада на VT1 производится через RC фильтр R12C4. Конденсатор C5 блокировочный по цепи питания.
Усилитель может быть собран на печатной плате размерами 80×50 мм,на ней расположены все элементы кроме понижающего трансформатора и динамической головки
Наладку схемы усилителя осуществляют при том напряжении питания, при котором он будет работать. Для тонкой настройки рекомендуется использовать осциллограф, щуп которого подключают к выводу стока полевого транзистора. Подав на вход усилителя синусоидальный сигнал частотой 100 … 4000 Гц, с помощью регулировки подстроечного резистора R5 добиваются того, чтобы отсутствовали заметные искажения синусоиды при как можно большем размахе амплитуды сигнала на выводе стока транзистора.
Выходная мощность усилителя на полевом транзисторе небольшая, всего 0,25Вт, напряжение питания от 42В до 60В. Сопротивление динамической головки 4 Ома.
Аудио сигнал через переменное сопротивление R1, затем R3 и разделительную емкость C1 поступает на усилительный каскад на биполярном транзисторе по схеме с общим эмиттером. Далее с этого транзистора усиленный сигнал через сопротивление R10 проходит на полевой транзистор.
Первичная обмотка трансформатора является нагрузкой для полевого транзистора, а к вторичной обмотки подключен четырех омная динамическая головка. Соотношением сопротивлений R10 и R7 задаем степень усиления по напряжению. С целью защиты униполярного транзистора в схему добавлен стабилитрон VD1.
Все номиналы деталей имеются на схеме. Трансформатор можно использовать типа ТВК110ЛМ или ТВК110Л2, от блока кадровой развертки старого телевизора или аналогичный.
УМЗЧ по схеме Агеева |
Наткнулся на эту схему в старом выпуске журнала радио, впечатления от нее остались самыми приятными,во первых схема настолько проста, что ее сможет собрать и начинающий радиолюбитель,во вторых при условии рабочих компонентов и правильной сборки наладки она не требует.
Если вас заинтересовала эта схема, то остальные подробности по ее сборке вы сможете найти в журнале радио №8 за 1982 год.
Высококачественные транзисторные УНЧ |
Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .
Первый вариант УНЧ на транзисторах
В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.
Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.
В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.
В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.
Появилось желание собрать более мощный усилитель «А» класса. Прочитав достаточное количество соответствующей литературы и выбрал из предлагавшегося самую последнюю версию. Это был усилитель мощностью 30 Вт соответствующий по своим параметрам усилителям высокого класса.
В имеющеюся трассировку оригинальных печатных плат никаких изменений вносить не предполагал, однако, ввиду отсутствия первоначальных силовых транзисторов, был выбран более надежный выходной каскад с использованием транзисторов 2SA1943 и 2SC5200. Применение этих транзисторов в итоге позволило обеспечить большую выходную мощность усилителя. Принципиальная схема моей версии усилителя далее.
Это изображение плат собранных по этой схеме с транзисторами Toshiba 2SA1943 и 2SC5200.
Если присмотреться, то сможете увидеть на печатной плате вместе со всеми компонентами стоят резисторы смещения, они мощность 1 Вт углеродного типа. Оказалось, что они более термостабильны. При работе любого усилителя большой мощности выделяется огромное количества тепла, поэтому соблюдение постоянства номинала электронного компонента при его нагреве является важным условием качественной работы устройства.
Собранная версия усилителя работает при токе около 1,6 А и напряжении 35 В. В результате чего 60 Вт мощности непрерывного рассеивается на транзисторах в выходном каскаде. Должен заметить, что это только треть мощности, которую они способны выдержать. Постарайтесь представить, сколько тепла выделяется на радиаторах при их нагреве до 40 градусов.
Корпус усилителя сделан своими руками из алюминия. Верхняя плита и монтажная плита толщиной 3 мм. Радиатор состоит из двух частей, его габаритные размеры составляют 420 x 180 x 35 мм. Крепеж — винты, в основном с потайной головкой из нержавеющей стали и резьбой М5 или М3. Количество конденсаторов было увеличено до шести, их общая ёмкость 220000 мкФ. Для питания был использован тороидальный трансформатор мощностью 500 Вт.
Блок питания усилителя
Хорошо видно устройство усилителя, которое имеет медные шины соответствующего дизайна. Добавлен небольшой тороид, для регулируемой подачи под управлением схемы защиты от постоянного тока. Так же имеется ВЧ фильтр в цепи питания. При всей своей простоте, надо сказать обманчивой простоте, топологии платы этого усилителя и звук им производится как бы без всякого усилия, подразумевающего в свою очередь возможность его бесконечного усиления.
Осциллограммы работы усилителя
Спад 3 дБ на 208 кГц
Синусоида 10 Гц и 100 Гц
Синусоида 1 кГц и 10 кГц
Сигналы 100 кГц и 1 МГц
Меандр 10 Гц и 100 Гц
Меандр 1 кГц и 10 кГц
Полная мощность 60 Вт отсечение симметрии на частоте 1 кГц
Таким образом становится понятно, что простая и качественная конструкция УМЗЧ не обязательно делается с применением интегральных микросхем — всего 8 транзисторов позволяют добиться приличного звучания со схемой, собрать которую можно за пол дня.
Читатели! Запомните ник этого автора и никогда не повторяйте его схемы.
Модераторы! Прежде чем меня забанить за оскорбления, подумайте, что Вы «подпустили к микрофону» обыкновенного гопника, которого даже близко нельзя подпускать к радиотехнике и, тем более, к обучению начинающих.
Во-первых, при такой схеме включения, через транзистор и динамик пойдет большой постоянный ток, даже если переменный резистор будет в нужном положении, то есть будет слышно музыку. А при большом токе повреждается динамик, то есть, рано или поздно, он сгорит.
Во-вторых, в этой схеме обязательно должен быть ограничитель тока, то есть постоянный резистор, хотя бы на 1 КОм, включенный последовательно с переменным. Любой самоделкин повернет регулятор переменного резистора до упора, у него станет нулевое сопротивление и на базу транзистора пойдет большой ток. В результате сгорит транзистор или динамик.
Переменный конденсатор на входе нужен для защиты источника звука (это должен обьяснить автор, ибо сразу же нашелся читатель, который убрал его просто так, считая себя умнее автора). Без него будут нормально работать только те плееры, в которых на выходе уже стоит подобная защита. А если ее там нет, то выход плеера может повредиться, особенно, как я сказал выше, если выкрутить переменный резистор «в ноль». При этом на выход дорогого ноутбука подастся напряжение с источника питания этой копеечной безделушки и он может сгореть. Самоделкины, очень любят убирать защитные резисторы и конденсаторы, потому-что «работает же!» В результате, с одним источником звука схема может работать, а с другим нет, да еще и может повредиться дорогой телефон или ноутбук.
Переменный резистор, в данной схеме должен быть только подстроечным, то есть регулироваться один раз и закрываться в корпусе, а не выводиться наружу с удобной ручкой. Это не регулятор громкости, а регулятор искажений, то есть им подбирается режим работы транзистора, чтобы были минимальные искажения и чтобы из динамика не шел дым. Поэтому он ни в коем случае не должен быть доступен снаружи. Регулировать громкость, путем изменения режима НЕЛЬЗЯ. За это нужно «убивать». Если очень хочется регулировать громкость, проще включить еще один переменный резистор последовательно с конденсатором и вот его уже можно выводить на корпус усилителя.
Вообще, для простейших схем — и чтобы заработало сразу и чтобы ничего не повредить, нужно покупать микросхему типа TDA (например TDA7052, TDA7056… примеров в интернете множество) , а автор взял случайный транзистор, который завалялся у него в столе. В результате доверчивые любители будут искать именно такой транзистор, хотя коэффициент усиления у него всего 15, а допустимый ток аж 8 ампер (сожгет любой динамик даже не заметив).
Страница 1 из 2
Принцип работы транзисторного усилителя основан на том, что с помощью небольших изменений напряжения или тока во входной цепи транзистора можно получить значительно большие изменения напряжения или тока в его выходной цепи.
Изменение напряжения эмиттерного перехода вызывает изменение токов транзистора. Это свойство транзистора используется для усиления электрических сигналов.
Для преобразования изменений коллекторного тока, возникающих под действием входных сигналов, в изменяющееся напряжение в коллекторную цепь транзистора включают нагрузку. Нагрузкой чаще всего служит резистор или колебательный контур. Кроме того, при усилении переменных электрических сигналов между базой и эмиттером транзистора нужно включить источник постоянного напряжения, называемый обычно источником смещения, с помощью которого устанавливается режим работы транзистора. Этот режим характеризуется протеканием через его электроды при отсутствии входного электрического сигнала некоторых постоянных токов эмиттера, коллектора и базы. С применением дополнительного источника увеличиваются размеры всего устройства, его масса, усложняется конструкция, да и стоят два источника дороже, чем один. В то же время можно обойтись одним источником, употребляемым для питания коллекторной цепи транзистора. Одна из таких схем усилителя показана на рисунке.
В этой схеме нагрузкой усилителя является резистор R K , а используя резистор R б, задают необходимый ток базы транзистора. Если режим работы транзистора задан (при этом часто говорят, что задана рабочая точка на характеристиках транзистора), становятся известными ток базы и напряжение U БЭ, а сопротивление резистора R б, обеспечивающего этот ток, можно определить по формуле:
R б =(G K -U БЭ)/I Б.
Так как U БЭ обычно составляет не более 0,2…0,3В для германиевых транзисторов и 0,6…0,8 В — для кремниевых, а напряжение G K измеряется единицами или даже десятками вольт, то U БЭ
и можно записать:
R б ≈G K /I Б.
Из выражений следует, что независимо от типа транзистора VT ток его базы будет постоянным: I Б = G K /R б. Поэтому такая схема получила название схемы с общим эмиттером (ОЭ) и фиксированным током базы.
Режим работы транзистора в усилительном каскаде при постоянных токах и напряжениях его электродов называют исходным, или режимом покоя.
Включение нагрузки в коллекторную цепь транзистора приводит к падению напряжения на сопротивлении нагрузки, равному произведению I K R K .
В результате напряжение, действующее между коллектором и эмиттером Uкэ транзистора, оказывается меньше, чем напряжение G K источника питания на величину падения напряжения на сопротивлении нагрузки, т. е.:
U КЭ =G K -I K R K .
Если эту зависимость отобразить графически на семействе статических выходных характеристик транзистора, то она будет иметь вид прямой линии. Для ее построения достаточно определить всего две принадлежащие ей точки (так как через две точки можно провести только одну прямую). Каждая точка должна быть задана двумя координатами: I K и U КЭ.
Задавшись конкретным значением одной из координат, определяют вторую координату, решая уравнение U КЭ =G K -I K R K .3-200=10—6=4 В.
Если в исходном режиме (режиме покоя) ток базы равен 2 мА, этот режим будет определяться точкой A, лежащей на нагрузочной прямой в месте пересечения ее со статической выходной характеристикой, полученной при I БО =2 мА. При этом I КО =20 мА; U КЭO =5,8 В. Если перенести точку A на семейство входных характеристик (рис., б), можно найти U БЭО. Оно равно 0,25 В.
При подаче на вход усилителя переменного напряжения с амплитудой 50 мВ (0,05 В) на оси напряжений входных характеристик относительно напряжения U БЭО =0,25 В откладывают по обе стороны отрезки, соответствующие напряжению 0,05 В, и из их концов восстанавливают перпендикуляры к оси U БЭ до пересечения со статической характеристикой, на которой расположена точка А, обозначающая режим покоя усилителя. В точках пересечения перпендикуляров с характеристикой проставляют буквы В и С. Таким образом, при поступлении на вход переменного напряжения режим работы будет уже определяться не точкой А, а ее перемещениями между точками В и С. При этом ток базы изменяется от 1 до 3 мА. Другими словами, переменное напряжение на входе усилителя приводит к появлению переменной составляющей в его входном токе — токе базы. В данном примере амплитуда переменной составляющей тока базы, как видно из рисунка, равна 1 мА.
Точки B и С можно перенести на семейство выходных характеристик. Они будут находиться в местах пересечения нагрузочной характеристики со статическими, полученными при токах базы, равных 1 и 3 мА. Из этого рисунка, видно, что в режиме с нагрузкой появилась переменная составляющая коллекторного напряжения. Иначе, коллекторное напряжение теперь не остается постоянным, а изменяется синхронно
с изменениями входного напряжения. Причем изменение коллекторного напряжения ΔU КЭ =7,5—4,3=3,2В оказывается больше изменения входного напряжения ΔU БЭ =0,3—0,2=0,1В в 32 раза; т. е. получено усиление входного напряжения в 32 раза.
Поскольку напряжение источника питания G K постоянное, изменение коллекторного напряжения равно изменению напряжения на резисторе коллекторной нагрузки, т. е.ΔU КЭ = ΔI К R К. Из этого выражения видно, что чем больше сопротивление резистора R К, тем сильнее изменяется на нем напряжение и тем больше будет усиление. Однако увеличивать сопротивление резистора R K можно лишь до некоторого предела, превышение которого может привести даже к снижению усиления и появлению больших искажений усиливаемого сигнала.
В усилителе, схема которого приведена на верхнем рисунке, режим работы транзистора определяется током базы, который устанавливается резистором R б. Режим работы транзистора можно также установить, подав на его эмиттерный переход напряжение с делителя R1R2.
Ток делителя I Д, протекающий через резисторы R1 и R2, вызывает на сопротивлении резистора R2 падение напряжения, которое подается на эмиттерный переход транзистора и смещает его в прямом направлении. Это напряжение определяется в основном соотношением сопротивлений резисторов R1,R2 и протекающим через них током I Д и почти не зависит от типа транзистора. Поэтому такую схему иногда называют схемой с фиксированным напряжением смещения.
Усилитель звука на транзисторах #1 ⋆ diodov.net
Усилитель звука относится к одному из наиболее интересных электронных устройств для начинающих электронщиков или радиолюбителей. И это не удивительно, ведь если устройство собрано правильно, то достаточно подключить динамик и сразу же раздастся звук, оповещающий о том, что усилитель мощности работает. Наличие звука приносить радость успешного завершения сборки усилителя звука своими руками, а его отсутствие – разочарование. Поэтому цель данной статьи – принести радость начинающему электронщику. Но сначала все по порядку…
Усилитель мощности на транзисторах. Базовые положенияУсилитель мощности на транзисторах присутствует в том или ином виде во многих электронных устройствах. Особенно ярко выделено его применение в звуковой технике.
Современный мир электроники полностью опутан различными запоминающими устройствами: флешки, жесткие диски и т.п. Для воспроизведения информации, хранящейся в памяти накопителей, нужно, прежде всего, преобразовать и усилить ее сигналы.
Главное назначение любого усилителя состоит в преобразовании маломощного сигнала в более мощный. При этом форма его должна сохраняться и не искажаться в процессе преобразования. Иначе произойдет частичная или полная утеря информации.
Начинающим электронщикам следует помнить очень важный момент. Усиление происходит не за счет каких-либо магических свойств транзистора, а за счет энергии блока питания. Транзистор лишь управляет потоком мощности от источника питания к нагрузке. Причем он выполняет свою работу в нужные моменты времени. Отсюда становится понятно, что мощность на нагрузке ограничена лишь мощностью блока питания. Если нагрузка, например динамик, имеет мощность 10 Вт, а источник тока способен выдать только 5 Вт, то нагрузка будет способна развить только 5 Вт.
Структура усилителя состоит из источника и узла, согласующего входной сигнал с источником тока. Такое согласование позволяет получить выходной сигнал.
Устройство транзистораПоскольку главным элементом усилителя является транзистор, то рассмотрим вкратце устройство и принцип работы это полупроводникового прибора.
Среди довольно обширного выбора полупроводниковых приборов, как по характеристикам, так и по принципу действия, в данной статье мы рассмотрим, и будем применять исключительно биполярные транзисторы (БТ).
Такой электронный прибор состоит из полупроводникового кристалла и трех, подсоединенных к нему электродов. Вся конструкция помещается в корпус, который защищает прибор от разных внешних воздействий (пыль, влага и т.п.). От корпуса отходят три вывода: база (Б), коллектор (К) и эмиттер (Э).
Существуют принципиально два типа БТ n-p-n и p-n-p структуры. Принцип работы их аналогичен, а отличие состоит лишь в полярности подключения к их выводам источника питания и радиоэлектронных элементов, имеющих полярность, например электролитических конденсаторов.
Биполярный транзистор имеет два pn-перехода, поэтому конструктивно его можно рассматривать, как два последовательно встречно соединенных диода. Точка соединения диодов аналогична базе. Но если взять два любых диода и соединить их соответствующим образом, то в такой конструкции не будут проявляться усилительные свойства. Причина в том, что у «настоящего» транзистора слишком малое расстояние между различными полупроводниковыми структурами (база-эмиттер, база-коллектор). Расстояние равно единицам микрометра, то есть несколько тысячных миллиметра (1мкм = 0,001 мм = 0,000001 м). Именно за счет малого расстояния получается транзисторный эффект.
Как работает биполярный транзистор (БТ)Принцип работы БТ упрощенно рассмотрим на примере ниже приведенной схемы.
Базу оставим не подключенной либо соединим ее с минусом источника питания. Последний вариант более предпочтительный, поскольку исключает появление наводок на выводе.
Чтобы исключить короткое замыкание в цепь коллектора следует установить резистор Rн, он же будет служить нагрузкой. Однако при подключении источника питания Uип, ток в цепи VT и Rн протекать не будет (обратный ток мы не берем в счет, поскольку его значение слишком мало и не превышает единиц микроампер). Отсутствие тока в цепи поясняется тем, что транзистор закрыт. И если вернуться к аналогии с диодом, то мы заметим, что один из них находится под обратным напряжением, поэтому он заперт.
Открыть БТ не составит большого труда. Следует на базу относительно эмиттера (для n-p-n структуры) приложить положительный потенциал, то есть подать напряжение, например от другого источника питания – батарейки. Величина напряжения должна быть порядка 0,6 В, чтобы скомпенсировать падение напряжения на эмиттерном переходе. Резистор Rб служит для ограничения тока, протекающего в цепи базы.
Таким образом, если подать небольшое напряжение на базу, то в цепи нагрузки Rн будет протекать ток коллектора Iк. При смене полярности блока питания VT закроется. Чтобы не запутаться и правильно подключать источник питания следует обратить внимание на направление стрелки эмиттера. Она указывает на направление протекания токов Iк и Iб. Для БТ n-p-n типа Iк и Iб входят в эмиттер, а для p-n-p – выходят.
Коэффициент усиления транзистораТоки базы Iб и коллектора Iк находятся в тесной взаимосвязи. Более того, величина тока, протекающего в цепи коллектора помимо параметров Uип и Rн определяются величиной Iб в прямопропорциональной зависимости. Отношение Iк к Iб называется коэффициентом усиления транзистора по току и обозначается буквой β («бета»):
Коэффициент усиления является одним из важнейших параметров БТ и всегда приводится в справочниках. Для большинства маломощных БТ он находится в диапазоне 50…550 единиц. В общем, β показывает во сколько раз ток коллектора больше тока базы.
Усилитель звука на транзисторахУсилитель звука на транзисторах предназначен для повышения мощности сигнала звуковой частоты, поэтому его еще называют усилитель мощности звуковой частоты или сокращенно УМЗЧ. Источником звука, подлежащего усилению, чаще всего служит микрофон или выход звуковой карты компьютера, ноутбука, смартфона и т.п. Мощность таких источников довольно низкая и составляет микроватты, а для нормальной работы динамика (громкоговорителя) необходимо обеспечить мощность единицы и десятки ватт, а то и сотни ватт. Поэтому главной задачей УМЗЧ является повышение мощности слабого входного сигнала в тысячи и десятки тысяч раз.
Звуки раздающейся мелодии или речи имеют сложный характер. Однако любой из них, даже самой сложной формы можно разложить в ряд сигналов синусоидальной формы, отличающихся как по частоте, так и по амплитуде.
Поэтому с целью упростить пояснение принципа работы схемы УМЗЧ будем применять входной сигнал синусоидальной формы uc. Нагрузкой на первых порах вместо динамика буде служить резистор Rн.
Однако приведенная выше схема применяется лишь для работы БТ в ключевом режиме, то есть когда полупроводниковый прибор VT находится в двух фиксированных состояниях – открытом и закрытом. Для усиления переменного сигнала данная схема непригодна, поскольку будет усиливаться только положительная полуволна входного сигнала. Для отрицательной полуволны транзистор будет закрыт. Кроме того, амплитуда входного сигнала должна быть не меньше 0,6 В, иначе просто останется незамеченным, поскольку не откроется эмиттерный переход.
Базовая схема входного каскада УМЗЧЧтобы схема УМЗЧ работала правильно, а это означает, усиливала без искажений положительные и отрицательные полуволны, изначально следует приоткрыть VT наполовину. Тогда положительная полуволна будет еще больше открывать БТ, а отрицательная – призакрывать его.
Приоткрыть БТ можно небольшим напряжением, поданным на базу, оно же называется напряжением смещения. Сам процесс называют установкой рабочей точки транзистора по постоянному току. Напряжение смещения зачастую подается от общего источника питания через токоограничивающий резистор Rб, согласно схемы, приведенной ниже.
Чтобы постоянное напряжение не воздействовало на источник переменного сигнала, а также не нарушался режим работы схемы по постоянному току, переменная составляющая отделяется конденсатором С1, а нагрузка подключается к коллектору через разделительный конденсатор C2 к клеммам uвых.
Правильная установка или настройка рабочей точки транзисторного усилителя звука имеет ключевое значение, поскольку если ее установить неверно, то выходной сигнал будет иметь искажения либо вовсе отсутствовать. Чтобы установить рабочую точку пользуются выходной статической характеристикой биполярного транзистора. Она характеризует зависимость тока в цепи коллектора от приложенного напряжения между выводами коллектор-эмиттер при разных значениях тока базы. На данной характеристике располагается нагрузочная прямая, на которой выделяют три участка: 1-2, 2-3 и 3-4. Участок 1-2 называется областью отсечки – здесь БТ полностью закрыт; 3-4 – область насыщения – БТ полностью открыт; 2-3 – активная область – здесь БТ находится в приоткрытом состоянии. Участки 1-2 и 3-4 используются для работы транзистора в ключевом режиме. Активный участок 2-3 соответствует работе БТ в режиме усиления. Именного на него ориентируются при настройке рабочей точки.
Расчет параметров элементов усилителя мощностиРасчет основных параметров усилителя мощности начинается с определения сопротивления резистора, который находится в цепи коллектора Rк. Чтобы его посчитать, согласно закону Ома понадобится прежде определить падение напряжения на нем URк и ток Iк:
Напряжение URк принимают из таких соображений, чтобы на полуоткрытом транзисторе оно было, равное половине напряжения источника питания Uип. Это соответствует половине нагрузочной прямой на выходной статической характеристике – точке А.
Если рабочая точка будет находится значительно выше или ниже точки А, например А1 или А2, то выходной сигнал с усилителя будет искажаться. Произойдет срез его нижних или верхних полуволн, что отразится на ухудшении качества звука. Поэтому стоит придерживаться средней точки – т. А. Однако это не всегда оправдано, особенно для сигналов очень низкой мощности. В таком случае рабочую точку принимают насколько ниже т. А, что позволяет снизить потребление электроэнергии без искажения формы выходного сигнала.
В нашем случае будем опираться на точку А. Примем напряжение источника питания Uип = 9 В (батарейка «крона»). Тогда напряжение на резисторе Rк равно:
Коллекторный ток, называемый током покоя коллектора, принимают для расчетов 0,8…1,2 мА. Возьмем среднее значение 1 мА = 0,001 А.
Сопротивление Rк равно:
Примем ближайший стандартный номинал резистора 4,7 кОм.
Теперь определит сопротивление в цепи базы Rб:
Коэффициент усиления БТ легко и с достаточной точность можно определить мультиметром. Для pn2222 я определил значение 170 единиц.
Более точную установку тока покоя коллектора устанавливают переменным резистором, включенным в цепь базы и изменяют его до тех пока, пока значение Iк станет равным 1мА. При этом ориентируются на показания миллиамперметра, установленного в цепь коллектора.
Ниже приведены схемы входных каскадов усилителей с полупроводниковыми приборами разной структуры.
Расчет емкости конденсаторов усилителя мощности звуковой частоты (УМЗЧ)При расчете УМЗЧ следует обратить внимание на емкость развязывающих конденсаторов С1 и С2. Если их принять слишком малыми, то плохо будут проходить токи низкой частоты. Поэтому емкость можно определить по следующему выражению:
где fн – нижняя граница частоты сигнала, Гц. Для УНЧ как правило принимают 20 Гц – нижний порог слышимости человеческого уха;
Rвх – входное сопротивление следующего каскада или нагрузки. Для усилителей, в которых применяется БТ, включенный по схеме с общим эмиттером это сопротивление равняется нескольким килоом. Примем Rвх = 4,7 кОм = 4700 Ом.
Таким образом емкости конденсаторов С1 и С2 следует принимать не менее 10 мкФ.
Однако рассмотренная выше схема усилителя звука имеет недостаток, который исключает применение ее в таком виде в электронных устройствах. В схеме отсутствует температурная стабилизация, поэтому любые изменение температуры могут привести к искажению формы выходного сигнала. Устранение данного недостатка и причины его возникновения подробно рассмотрено в следующей статье.
Еще статьи по данной теме
Очень Простой и Мощный Усилитель на Одном Транзисторе П210А | Дмитрий Компанец
Схема усилителя на одном П210А транзистореСхема усилителя на одном П210А транзисторе
Однотранзисторные схемы не так убоги как может показаться на первый взгляд.
Одного мощного транзистора П210А достаточно чтобы собрать простой и эффективный усилитель звуковой частоты используя минимум деталей.
Транзистор П210А
Уникальные свойства такого транзистора заключаются в том, что он прекрасно работает на малых напряжениях питания без смещения.
Роль смещений при малых токах выполняет малое сопротивление перехода база- коллектор, которое заставляет пропускать ток «закрытый» транзистор.
Классическая схема усилителя с защитой динамика от постоянного тока
Именно эта особенность позволяет строить усилительные и генераторные схемы не используя дополнительные резисторы.
Усилитель на одном транзистореУсилитель на одном транзисторе
Хотя ток потребления этой схемы, при питании от батареи в 9 вольт, достигает 60 мА, этот усилитель способен работать и звучать достаточно громко при питании от одной батарейки в 1,5 вольта и даже от севших батарей питания с уровнем разряда до 0,3 вольт.
Защита динамика от постоянного тока с помощью конденсатораЗащита динамика от постоянного тока с помощью конденсатора
Ток покоя такого одно-транзисторного усилителя при напряжении питания 1,5 вольт составляет всего 10мА, что соответствует току покоя многокаскадных усилителей и усилителей по схеме Д класса.
По качеству звучания такие усилители превосходят как Д класс так и многокаскадные усилители за счет уменьшения искажений из за минимума используемых деталей и узлов.
Габариты транзистора играют положительную роль, так как не требуется установка дополнительного радиатора роль которого играет медный корпус транзистора.
Именно такую схему усилителя с крупными деталями я бы рекомендовал для сборки детям увлекающимся электроникой и желающим узнать больше об устройстве сложных электрических аппаратов.
#МощныйЗвукНаОдномТранзисторе #П210УникальныйТранзистор #ПростейшаяСхемаМощногоУсилителя
Хочу представить конструкцию простого, но мощного усилителя низкой частоты, выполненного на современных недорогих транзисторах. Основные достоинства этого усилителя — простота сборки, доступные и дешевые радиодетали, также готовый усилитель в наладке не нуждается и работает сразу. Усилитель развивает очень высокую мощность по сравнению с аналогичными схемами. Из электрических параметров хочется отметить очень высокую линейность в рабочем диапазоне частот от 20Гц до 20кГц. Правда без недостатков тоже не обошлось. У данной схемы есть повышенный уровень шумов при большой громкости, но если учесть простоту и доступность, то все же собрать усилитель стоит, особенно советую автолюбителям для мощного сабвуфера, поскольку мощность такой схемы вполне позволяет раскачать импортные головки большой мощности. Из схемы видно, что проще некуда. В схеме использованы всего 5 транзисторов и несколько дополнительных радиодеталей. Для уменьшения уровня шума усилителя, на вход нужно будет поставить переменный резистор, сопротивлением от 20 до 100 кОм, им также регулируют громкость. В таком случае, при малой громкости шума практически не будет, а при большой громкости шум почти не слышим, а если усилитель работает с нч фильтром на входе (под сабвуфер), то никаких шумов не будет вообще. Усилитель способен выдать окало 100 Ватт на нагрузку 8 Ом ! если же используется головка с сопротивлением 4 ом, то мощность возрастает до 150 ватт! Параметры УМЗЧ: Коэффициент усиления по напряжению ………………………………………………20 Напряжение питания Uпит…………………………………………………………………….+-15…+-50В Номинальная мощность P при Uпит = +-30В на 4Ом…………………………………….100Вт Максимальная мощность Pmax Uпит=+-45В на 4Ом……………………………………150Вт Чувствительность по входу Uвх……………………………………………………………..1В Суммарный коэф-т всех видов искажений при P=60Вт 4Ома, Kd……………………0,005% Ток покоя усилителя Ixx……………………………………………………………………….20-25мА Ток покоя выходного каскада………………………………………………………………..0мА Полоса воспроизводимых частот по уровню –3дБ, Гц,……………………….5-100 000Параметры достаточно хороши, единственная преграда для использования схемы в качестве автомобильного усилителя — это повышенное двухполярное питание, но это не так уж и большая помеха, поскольку сегодня известно можество схем преобразователей напряжения, одна из таких схем выполняется на микросхеме TL494. Схема стандартная и позволяет получить на выходе трансформатора до 200 ватт мощности, что вполне хватает для полноценной работы данного самодельного усилителя. Схему преобразователя не привожу, поскольку это уже совсем другая тема. Понравилась схема — лайкни!ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ Смотреть ещё схемы усилителей УСИЛИТЕЛИ НА ЛАМПАХ УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ
УСИЛИТЕЛИ НА МИКРОСХЕМАХ СТАТЬИ ОБ УСИЛИТЕЛЯХ
|
транзисторов — learn.sparkfun.com
Добавлено в избранное Любимый 80Приложения II: Усилители
Некоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности. Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины.Существуют даже усилители, которые принимают ток и производят более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).
Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем. Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете разобраться в более сложных усилителях.
Общие конфигурации
Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.
Общий эмиттер
Общий эмиттер — одна из наиболее популярных схем транзисторов. В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления).База становится входом сигнала, а коллектор — выходом.
Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:
Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).
Общий коллектор (эмиттерный повторитель)
Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .
Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .
Эта схема действительно имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею.
Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.
По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «загрузить» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.
Общая база
Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор — выходом. База общая для обоих.
Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе).
Схема с общей базой лучше всего работает как токовый буфер . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.
Вкратце
Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.
Общий эмиттер | Общий коллектор | Общая база | |
---|---|---|---|
Коэффициент усиления по напряжению | Средний | Низкий | Высокий |
Коэффициент усиления по току | Средний | Высокий | Низкий |
Входное сопротивление | Средний | Высокий | Низкий |
Выходной импеданс | Средний | Низкий | Высокий |
Многокаскадные усилители
Мы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:
Дарлингтон
Усилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току .
Напряжение на выходе составляет , что примерно соответствует входному напряжению (минус 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзистора . Это β 2 — более 10 000!
Пара Дарлингтона — отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.
Дифференциальный усилитель
Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.
Вот основа дифференциального усилителя:
Эта схема также называется длиннохвостой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.
Двухтактный усилитель
Двухтактный усилитель — полезный «заключительный каскад» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.
Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:
Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных цепях (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания.
Если у вас есть биполярный источник питания (или даже если у вас его нет), двухтактный — отличный конечный каскад для усилителя, действующий как буфер для нагрузки.
Собираем их вместе (операционный усилитель)
Давайте рассмотрим классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:
Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?
Здесь, безусловно, больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:
- Q1, Q2, Q3 и Q4 образуют входной каскад. Очень похоже на общий коллектор (Q1 и Q4) на дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
- Q11 и Q12 являются частью второго этапа. Q11 — это общий коллектор, а Q12 — это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на конечный каскад.
- Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) — это push-pull ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
- Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.
После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие транзисторные схемы, вы на правильном пути!
← Предыдущая страница
Приложения I: Коммутаторы Транзисторные усилители
— обзор
Каскады усиления напряжения усилителя мощности
Общие конструктивные системы, используемые в транзисторных каскадах усиления, были рассмотрены в главе 4.Однако для высококачественных усилителей мощности звука потребуются более высокие коэффициенты усиления каскада с разомкнутым контуром и более низкие характеристики фазового сдвига — чтобы облегчить использование большого количества общего NFB для линеаризации неоднородностей выходного каскада — чем это необходимо для предыдущего слабого сигнала. этапы усиления.
Действительно, с очень многими современными конструкциями аудиоусилителей вся схема предварительного усилителя малых сигналов основана на использовании операционных усилителей на интегральных схемах хорошего качества, число которых постоянно растет, и они совместимы по выводам с популярными TL071 и TL072 с одним и двумя входами на полевых транзисторах op.усилители. Для каскадов напряжения усилителя мощности, ни выходное напряжение, ни фазовый сдвиг, ни переходные характеристики большого сигнала такого op. Для каскадов усилителей мощности «Класса А» основными требованиями к конструкции были хорошая симметрия, высокое произведение коэффициента усиления / ширины полосы, хорошая переходная характеристика, и низкие значения фазового сдвига в пределах звукового диапазона.
Для этой цели использовался широкий спектр схемных устройств, таких как источники постоянного тока, токовые зеркала, активные нагрузки и «пары с длинными хвостовиками» во многих оригинальных схемах.В качестве типичного примера схема схемы, показанная на рис. 5.20, первоначально использованная National Semi-wirectors Inc. в ее операционном усилителе LH0001 и принятая Hitachi в схеме, рекомендованной для использования с ее силовыми полевыми МОП-транзисторами, обеспечивает высокую степень симметрии. , поскольку Q 3 / Q 4 , действуя как токовое зеркало, обеспечивают активную нагрузку, эквивалентную симметрично работающему транзисторному усилителю, для транзистора оконечного усилителя, Q 6.
Рис. 5.20. Симметричный каскад с высоким коэффициентом усиления.
Эта схема обеспечивает усиление по напряжению около 200 000 на низких частотах, со стабильной фазовой характеристикой и высокой степенью симметрии. Происхождение и развитие этой схемы было проанализировано автором в работе Wireless World (июль 1982 г.).
Альтернативная компоновка схемы, разработанная Хафлером, была описана Э. Борбели ( Wireless World , март 1983 г.) и показана на рис. 5.21. Он намеренно выбран полностью симметричным, настолько быстрым, насколько позволяют характеристики транзистора, чтобы свести к минимуму любую тенденцию к ограничению скорости нарастания напряжения, возникающую в результате зарядки или разрядки паразитных емкостей через источники постоянного тока.Однако коэффициент усиления разомкнутого контура / контура несколько ниже, чем у схемы NS / Hitachi на рис. 5.20.
Рис. 5.21. Симметричный пуш-пул-сцена от Borbely.
В конструкции Borbely свободно использовались как эмиттерные резисторы без обхода, так и резисторы с подавлением полного сопротивления базовой цепи для линеаризации передачи и улучшения фазовых характеристик биполярных транзисторов, используемых в этой конструкции, и дальнейшего улучшения линейности выходного сигнала. Вытягивание пар Дарлингтона (Q 5 / Q 6 / Q 8 / Q 9 ) получается за счет использования каскодно подключенных буферных транзисторов Q 7 и Q l0 .
Особое достоинство каскодной схемы в аудиосистеме состоит в том, что ток, протекающий через каскодный транзистор, почти полностью управляется транзистором драйвера, последовательно соединенным с его эмиттером. Напротив, коллекторный потенциал транзистора драйвера остается практически постоянным, что устраняет вредное влияние нелинейных внутренних сопротивлений утечки, зависящих от напряжения, или емкостей коллектор-база от устройства драйвера.
Очень высокая степень проработки, используемая в последних высококачественных японских усилителях с целью улучшения характеристик усилителя, показана в схеме каскада усиления напряжения Technics SE — A100, показанной в несколько упрощенной форме на рис.5.22.
Рис. 5.22. Каскад усиления напряжения Technics.
В этой конфигурации входная пара с длинным хвостом, основанная на транзисторных полевых транзисторах (Q 1 , Q 4 с CC 1 ), чтобы воспользоваться преимуществом высокой линейности этих устройств, изолирована каскодом ( Q 2 , Q 3 ) от схемы токового зеркала (CM 1 ), которая объединяет выходные сигналы входных устройств, чтобы максимизировать усиление и симметрию этого каскада, и управляет парным усилителем PNP Дарлингтона. стадия (Q 5 , Q 6 ).
Выходной транзистор Q 6 управляет токовым зеркалом (CM 2 ) через каскодный изолирующий транзистор (Q 7 ) от коллектора Q 6 и еще один каскод изолированного каскада усилителя (Q 8 , Q 9 ) от своего эмиттера, для которого токовое зеркало CM 2 служит активной нагрузкой. Транзистор с усиленным диодом, Q 10 , служит для создания потенциала смещения постоянного тока, стабилизированного термистором (TH 1 ), для прямого смещения последующей двухтактной пары эмиттерных повторителей.
В качестве меры эффективности данной схемы приведенные значения гармонических искажений для всего усилителя обычно составляют порядка 0,0002%.
Транзистор усилителя мощности Ampleon мощностью 500 Вт обеспечивает «лучший в своем классе» КПД на уровне 75%
Компания Ampleon недавно анонсировала BLP05H9S500P, транзистор усилителя мощности, предназначенный для работы в диапазоне частот от 423 МГц до 443 МГц, соответствующем признанному диапазону ISM.
Силовой транзистор Ampleon BLP05H9S500P мощностью 500 Вт для диапазона 433 МГц.Изображение предоставлено AmpleonЧто такое диапазон ISM?
Диапазон ISM относится к промышленному, научному и медицинскому диапазону. Правила различаются в разных юрисдикциях, но частоты в диапазоне ISM варьируются от 423 МГц до 443 МГц. Эти частоты часто используются в промышленных приложениях, таких как приготовление пищи, размораживание, здравоохранение, промышленное отопление и плазменное ВЧ-освещение.
Основные характеристики силового транзистора
Ampleon утверждает, что BLP05H9S500P обеспечивает выходную мощность 500 Вт как в импульсном, так и в непрерывном (CW) режимах.Эффективность слива устройств составляет 75% (тип.), Что, по утверждению компании, является лучшим в своем классе.
Компания также утверждает, что такой уровень эффективности позволит минимизировать необходимую холодопроизводительность, что, в свою очередь, сэкономит место и снизит эксплуатационные расходы.
Внутренняя схема BLP05H9S500P. Изображение любезно предоставлено (PDF) Ampleon(PDF) BLP05H9S500P представляет собой металл-оксид-полупроводник с латеральной диффузией (LDMOS).В этой технологии часто используются усилители мощности ВЧ и СВЧ.
Как полноценный двухтактный транзисторный усилитель, устройство выдерживает коэффициент стоячей волны по напряжению (КСВН) 10: 1 при 50 В на всех фазах без ухудшения характеристик или повреждений. Это поможет упростить конструкцию системы, включая необходимые схемы защиты.
Выходная мощность
BLP05H9S500P был протестирован на частоте 433 МГц и дал следующие результаты:
- Как в непрерывном, так и в импульсном режимах максимальная выходная мощность составляет 500 Вт, а максимальное напряжение сток-исток составляет 50 В.
- В импульсном режиме коэффициент усиления по мощности составляет 25,3 дБ, а эффективность стока составляет 75%. В режиме непрерывной волны соответствующие значения составляют 26,6 дБ и 75,8%.
Также следует отметить, что сопротивление сток-исток в открытом состоянии (R DS (on) ) имеет типичное значение 0,12 Ом.
Входное и выходное сопротивление
Эти значения указаны для каждой секции при частоте 433 МГц. Также предполагается, что I Dq для каждой секции составляет 25 мА, а V DS — 50 В.
Источник Z : 1.3 — 2.1j
Z нагрузка : 2,8 + 2,4j
Прирост мощности и КПД в зависимости от выходной мощности
Прирост мощности и КПД. Изображение любезно предоставлено (PDF) AmpleonКак показано на правой вертикальной оси, максимальная эффективность на всех частотах составляет 550 Вт. Максимальное усиление составляет около 350 Вт.
Абсолютные пределы
Максимальное напряжение сток-исток, с которым может работать устройство, составляет 108 В.Предел между затвором и истоком составляет 11 В.
Максимальная температура перехода, которую может выдерживать устройство, составляет 225 ° C, а диапазон температур хранения составляет от -65 ° C до + 150 ℃.
Размер упаковки
Максимальные размеры BLP05H9S500P составляют 20,75 мм x 9,96 мм x 4 мм.
Упрощенная схема BLP05H9S500P. Изображение предоставлено AmpleonВ промышленности
В то время как немногие устройства предназначены для работы в таком небольшом диапазоне частот, область мощных высокочастотных транзисторов является весьма конкурентоспособной.
NXP MRF1K50H рассчитан на выходную мощность 1500 Вт и работу в диапазоне от 1,8 до 500 МГц. Устройство LDMOS, соответствующее RoHS, предназначено для таких задач, как генерация лазера, плазменное травление, МРТ, диатермия и другие приложения, связанные с ISM.
Wolfspeed PTVA035002EV-V1 — это полевой транзистор на основе LDMOS, способный обеспечить мощность 450 Вт в диапазоне частот от 390 до 450 МГц.
Усилитель— Почему транзисторы одного канала в усилителе мощности становятся намного горячее, чем транзисторы другого?
(Контекст: у меня нет опыта работы с e.е., но становлюсь лучше в базовой скамейке.) Я ремонтирую / переделываю немецкую интегрированную стереосистему начала 70-х. Выходная секция усилителя мощности имеет четыре больших радиатора для своих транзисторов, по два каждого из которых соответствуют левому и правому стереоканалам. Спустя очень короткий промежуток времени, даже пару минут, раковины левого канала становятся чрезвычайно горячими на ощупь, а правый канал остается холодным.
Аудиовыход правильный и ожидаемый, типичный радиосигнал или дополнительный музыкальный сигнал усилен в стерео.Звук на обоих каналах выходит из динамиков совершенно нормально. Асимметрию нагрева заметил только случайно.
Я не знаю, нужно ли решать эту проблему, но высокая температура в этой области, вероятно, несколько сократит срок службы новых заглушек левого канала.
Я хотел бы понять, если (1) это указывает на проблему и (2) что может ее объяснить? Могут ли эти силовые транзисторы изнашиваться с возрастом неравномерно? Могло ли что-то еще, что их кормит, вести себя странно? (Я заменил на этой плате все электролитические элементы и пару сомнительно выглядящих пленочных заглушек, чего бы это ни стоило.)
Любые идеи или теории / указатели / помощь очень приветствуются. У меня есть настольный осциллограф, и я могу измерять сигналы начальным способом, если это полезно, но я не уверен, что я буду искать в этом случае, поскольку результат кажется нормальным.
Стоит отметить, что разница в тепле сохраняется в течение длительного времени — правый канал со временем (через час?) Становится ощутимо немного теплым на ощупь, но левый канал становится горячим очень быстро и остается таким. (Это также верно, если левый динамик даже не подключен, fwiw)
Фотография платы и изображение схемы этой платы ниже.Левый канал — это левая половина платы и две левые секции радиатора.
Схема. Вход предусилителя слева, выход на динамики справа. Левый канал — это верхняя половина диаграммы. T708 (и, может быть, T709? Может, T705?), Похоже, очень горячие транзисторы.
Силовые транзисторы и радиаторы
- Изучив этот раздел, вы сможете:
- Узнайте о конструкции силовых транзисторов.
- • Понять необходимость соединения коллектора и металлического корпуса.
- Понять взаимосвязь между мощностью и температурой в силовых цепях.
- • Понижение мощности.
- Понять необходимость радиаторов.
- • Способы выбора радиаторов.
- • Способы установки радиаторов.
- Рассчитайте требования к тепловому сопротивлению радиаторов.
- • Узнайте о методах преодоления ограничений в радиаторах.
Силовые транзисторы
Нет четкой разницы между «обычными» транзисторами, используемыми в усилителях напряжения и силовых транзисторах, но в целом силовые транзисторы можно отнести к категории таких, которые могут выдерживать ток коллектора (или сток в случае полевых транзисторов) более 1 Ампер.
Поскольку силовые транзисторы, такие как показанные на рис.5.1.1 работают с большими токами и более высокими напряжениями, они имеют конструкцию, отличную от небольших сигнальных устройств. Они должны иметь низкое выходное сопротивление, чтобы они могли передавать большие токи в нагрузку, и хорошую изоляцию перехода, чтобы выдерживать высокие напряжения. Они также должны очень быстро рассеивать тепло, чтобы не перегреваться. Поскольку большая часть тепла генерируется в соединении коллектор / база, площадь этого соединения делается как можно большей.
Мощность и температура
Максимальная номинальная мощность транзистора в значительной степени определяется температурой перехода коллектор / база, как видно из графика снижения мощности на рис.5.1.2. Если рассеивается слишком много мощности, этот переход становится слишком горячим и транзистор будет разрушен, типичная максимальная температура составляет от 100 ° C до 150 ° C, хотя некоторые устройства могут выдерживать более высокие максимальные температуры перехода. Максимальная выходная мощность силового транзистора тесно связана с температурой, и при температуре выше 25 ° C она линейно падает до нулевой выходной мощности при достижении максимально допустимой температуры.
Понижение мощности
Рис 5.1.2 График снижения мощности TIP31
Например, транзистор, такой как TIP31, с заявленной максимальной выходной мощностью P TOT 40 Вт, может работать только с мощностью 40 Вт. IF температура корпуса (немного ниже температуры перехода) поддерживается ниже 25 ° C. Характеристики силового транзистора во многом зависят от его способности рассеивать тепло, выделяемое на переходе коллектор-база.
Минимизация проблемы нагрева решается двумя основными способами:
- 1.Работая с транзистором наиболее эффективным способом, то есть выбирая класс смещения, обеспечивающий высокий КПД и наименее расточительный по мощности.
- 2. Обеспечивая, чтобы тепло, выделяемое транзистором, могло отводиться и эффективно передаваться в окружающий воздух как можно быстрее.
Метод 2, описанный выше, подчеркивает важность взаимосвязи между силовым транзистором и его радиатором, устройством, прикрепленным к транзистору с целью отвода тепла.Таким образом, физическая конструкция силовых транзисторов рассчитана на максимальную передачу тепла к радиатору. Помимо обычного выводного провода коллектора, коллектор силового транзистора, который имеет гораздо большую площадь, чем у малого сигнального транзистора, обычно находится в прямом контакте с металлическим корпусом транзистора или металлической монтажной площадкой. , который затем может быть прикручен или прикреплен непосредственно к радиатору. Типичные силовые транзисторы в металлическом корпусе и металлическом корпусе показаны на рис.5.1.1
Поскольку усилители мощности выделяют значительное количество тепла, которое является потраченной впустую мощностью, они сделаны максимально эффективными. Для усилителей напряжения низкие искажения имеют большее значение, чем эффективность, но с усилителями мощности, хотя искажения нельзя игнорировать, эффективность жизненно важна.
Радиаторы
Рис. 5.1.3 Радиаторы
Радиатор предназначен для отвода тепла от транзистора и его максимально эффективного рассеивания в окружающий воздух.Радиаторы бывают разных форм, например, из оребренных алюминиевых или медных листов или блоков, часто окрашенных или анодированных в черный матовый цвет, чтобы помочь быстрее отводить тепло. Выбор радиаторов показан на рис. 5.1.3.
Очень важен хороший физический контакт между транзистором и радиатором, а перед тем, как закрепить транзистор на радиаторе, на контактную поверхность наносится теплопередающая смазка (радиатор).
Если необходимо обеспечить электрическую изоляцию между транзистором и радиатором, между радиатором и транзистором используется слой слюды.Слюда имеет отличную изоляцию и очень хорошие теплопроводные свойства.
Выбор подходящего радиатора
Рис. 5.1.4 Установка радиатора TO220
Доступно множество радиаторов, подходящих для конкретных типов корпусов транзисторов («корпус» относится к форме и размерам транзистора). На рис. 5.1.4 показаны различные этапы установки типичного зажима на радиатор.
(а) показывает трубку с теплоотводящим компаундом.
(b) показывает зажим TO220 на радиаторе.
(c) показывает транзистор TIP31, который имеет корпус типа TO220, готовый к установке.
(d) показывает металлический корпус транзистора, залитый радиаторным компаундом. Это важно для создания эффективного теплообмена между транзистором и радиатором.
(e) показывает транзистор, установленный на радиаторе.
(f) показывает альтернативный метод монтажа, используемый, когда металлический корпус транзистора (который обычно также является выводом коллектора) должен быть изолирован от радиатора.В этом примере используется слюдяная шайба TO220, а транзистор прикреплен к радиатору болтом, вставленным через небольшую изолирующую втулку.
Типичный R
th Расчет для:- Транзистор TIP31 (корпус TO220), необходимый для рассеивания 5 Вт.
- Максимальная температура перехода = 150 ° C
- Температура окружающей среды (воздуха) = 25 ° C.
- Тепловое сопротивление между переходом и корпусом, рассчитанное по графику снижения мощности Рис.5.1.2.
- R th j-c = (150 ° C — 25 ° C) / 40 Вт = 3,125 ° C / Вт .
- Макс. температура корпуса при рассеивании 5 Вт = 150 — (5 x 3,125) = 134 ° C (прибл.).
- Тепловое сопротивление R th c-hs между корпусом и радиатором (с учетом слюдяной шайбы) = 2 ° C / Вт.
- Макс. температура радиатора = 134 — (5 x 2) = 124 ° C .
- Для достижения температуры окружающего воздуха = 25 ° C Термическое сопротивление радиатора должно быть лучше (124-25) / 5 = 19.8 ° C / Вт
- Лучшим выбором, чтобы избежать работы транзистора при максимально допустимой температуре , было бы выбрать радиатор с тепловым сопротивлением примерно от 10 до 15 ° C / Вт.
Расчет необходимого теплового сопротивления R
th для радиатораВыбранный радиатор должен отводить тепло от транзистора в окружающий воздух достаточно быстро, чтобы температура перехода транзистора не превышала максимально допустимое значение (обычно указывается в паспорте транзистора), обычно от 100 до 150 ° С.
Каждый радиатор имеет параметр термического сопротивления (R th ), измеряемый в ° C / Вт, и чем ниже значение R th , тем быстрее рассеивается тепло. Другие факторы, влияющие на рассеивание тепла, включают мощность (в ваттах), рассеиваемую транзистором, эффективность передачи тепла между внутренним переходом транзистора и корпусом транзистора, а также корпусом к радиатору.
Также необходимо учитывать разницу между температурой радиатора и температурой воздуха вокруг него (температура окружающей среды).Главный критерий — радиатор должен быть достаточно эффективным, слишком эффективный — не проблема.
Следовательно, любой радиатор с тепловым сопротивлением ниже или равным расчетному значению должен быть в порядке, но во избежание постоянной работы транзистора при максимально допустимой температуре или близкой к ней, что почти гарантированно сокращает срок службы транзистора, По возможности рекомендуется использовать радиатор с более низким тепловым сопротивлением.
График снижения мощности транзистора TIP31, показанный на рис.5.1.2 иллюстрирует взаимосвязь между мощностью, рассеиваемой транзистором, и температурой корпуса. Когда транзистор рассеивает 5 Вт, по графику можно оценить, что максимальная температура безопасного корпуса для температуры перехода 150 ° C будет примерно от 134 до 135 ° C, что подтверждает приведенный выше расчет макс. температура корпуса.
Транзистор TIP31 имеет максимальную рассеиваемую мощность P TOT 40 Вт, но из графика на рис. 5.1.2 видно, что это достижимо, только если температура корпуса транзистора может поддерживаться на уровне 25 ° C.Температура корпуса может подниматься только до 150 ° C (такой же, как максимальная температура перехода), если рассеиваемая мощность равна нулю.
Параллельные транзисторы для приложений большой мощности
Рис. 5.1.5 Силовые транзисторы, подключенные параллельно
В приложениях с высокой мощностью может оказаться невозможным найти подходящий радиатор для конкретного транзистора, тогда одним из решений может быть использование другого силового транзистора или другого типа корпуса (корпуса), если таковой имеется.Другой альтернативой является использование двух или более транзисторов, соединенных параллельно, с разделением общей мощности между ними. Это может быть более дешевый вариант, чем один очень дорогой радиатор.
Термический побег
Во многих современных схемах силовые MOSFET предпочтительнее BJT из-за проблемы теплового разгона BJT. Это процесс, при котором ток увеличивается как естественный эффект в полупроводниках при повышении температуры устройства. Это повышение температуры затем приводит к дальнейшему увеличению тока и последующему дальнейшему повышению температуры, пока повышение температуры и тока не выйдет из-под контроля и устройство не будет разрушено.
При параллельном подключении нескольких плохо согласованных транзисторов транзистор, который вначале пропускает наибольший ток, нагревается, в то время как другие транзисторы, пропускающие меньший ток, становятся холоднее. Следовательно, более горячий транзистор может подвергаться опасности теплового разгона, однако тщательно подобранные BJT все же могут быть предпочтительнее полевых МОП-транзисторов для некоторых приложений с высоким напряжением.
Начало страницы
Базовый транзисторный усилитель — биполярные транзисторы
БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ
Прежде чем переходить к базовому транзисторному усилителю, вам следует ознакомиться с двумя терминами: УСИЛИТЕЛЬ и УСИЛИТЕЛЬ.Усиление — это процесс увеличения силы СИГНАЛА. Сигнал — это просто общий термин, используемый для обозначения любого конкретного тока, напряжения или мощности в цепи. Усилитель — это устройство, которое обеспечивает усиление (увеличение тока, напряжения или мощности сигнала) без существенного изменения исходного сигнала.
Транзисторы часто используются как усилители. Некоторые транзисторные схемы представляют собой усилители ТОКА с малым сопротивлением нагрузки; остальные схемы рассчитаны на усиление НАПРЯЖЕНИЯ и имеют высокое нагрузочное сопротивление; другие усиливают СИЛУ.
Базовый транзисторный усилитель (версия NPN)
Теперь взглянем на NPN-версию базового транзисторного усилителя на рисунке выше и посмотрим, как он работает.
Путем вставки одного или нескольких резисторов в схему могут быть достигнуты различные методы смещения, и эмиттер-база аккумулятор устранен. Помимо устранения батареи, некоторые из этих методов смещения компенсируют незначительное изменения характеристик транзистора и изменения проводимости транзистора в результате температурных отклонений.Обратите внимание на рисунок выше, что батарея эмиттер-база была удалена, а резистор смещения Rb был вставлен. между коллектором и цоколем. Резистор Rb обеспечивает необходимое прямое смещение для перехода эмиттер-база. Ток течет в цепи смещения эмиттер-база от земли к эмиттеру, через вывод базы и через Rb к Vcc. Поскольку ток в базовой цепи очень мал (несколько десятков микроампер) и прямое сопротивление цепи транзистор имеет низкий уровень, только несколько десятых вольт положительного смещения будут ощущаться на базе транзистора.Однако, этого достаточно напряжения на базе, вместе с землей на эмиттере и большим положительным напряжением на коллекторе, правильно смещать транзистор.
При правильном смещении Q1 постоянный ток течет непрерывно, с входным сигналом или без него, на всем протяжении схема. Постоянный ток, протекающий по цепи, вызывает не только базовое смещение; он также развивает напряжение коллектора (Vc), протекающее через Q1 и Rl. Обратите внимание на напряжение коллектора на графике выхода.Поскольку он присутствует в схеме без входного сигнала, то выходной сигнал начинается с уровня Vc и либо увеличивается, либо уменьшается. Эти постоянные напряжения и токи, которые существуют в цепи до применения сигнала известны как напряжения и токи в состоянии покоя (состояние покоя схемы).
Резистор Rl, резистор нагрузки коллектора, помещен в схему, чтобы сохранить полный эффект коллектора. напряжение питания от коллектора. Это позволяет напряжению коллектора (Vc) изменяться в зависимости от входного сигнала, что, в свою очередь, позволяет транзистору усиливать напряжение.Без Rl в цепи напряжение на коллекторе всегда будет равно Vcc.
Конденсатор связи (Cc) — еще одно новое дополнение к схеме транзистора. Он используется для передачи входного сигнала переменного тока и заблокируйте постоянное напряжение от предыдущей схемы. Это предотвращает появление постоянного тока в схеме слева от муфты. конденсатор от воздействия смещения на Q1. Конденсатор связи также блокирует смещение Q1 от попадания на вход. источник сигнала.
На вход усилителя подается синусоидальная волна, которая колеблется на десятки милливольт выше и ниже нуля.Он вводится в цепь за счет конденсатора связи и применяется между базой и эмиттером. Когда входной сигнал становится положительным, напряжение на переходе эмиттер-база становится более положительным. Фактически это увеличивает прямое смещение, которое вызывает базовый ток увеличивается с той же скоростью, что и входной синусоидальный сигнал. Также увеличиваются токи эмиттера и коллектора. но намного больше, чем базовый ток. С увеличением тока коллектора на R1 возникает большее напряжение. С напряжение на Rl и напряжение на Q1 (коллектор-эмиттер) должны в сумме равняться Vcc, т.е. увеличение напряжения на Rl приводит к одинаковому снижению напряжения на Q1.Следовательно, выходное напряжение усилителя, снятое на коллектор Q1 по отношению к эмиттеру представляет собой отрицательное изменение напряжения, которое больше, чем входное, но имеет одинаковые характеристики синусоидальной волны.
Во время отрицательного изменения входа входной сигнал противодействует прямому смещению. Это действие уменьшает базу ток, что приводит к уменьшению как эмиттерных, так и коллекторных токов. Уменьшение тока через Rl уменьшается его падение напряжения и заставляет напряжение на транзисторе расти вместе с выходным напряжением.Следовательно, на выходе для отрицательного чередования входа — положительное чередование напряжения, которое больше, чем входное, но имеет те же характеристики синусоидальной волны.
Изучая как входные, так и выходные сигналы для одного полного чередования входа, мы можем видеть, что выход усилитель является точным воспроизведением входного сигнала, за исключением обратной полярности и увеличенной амплитуды. (десятки милливольт по сравнению с несколькими вольт).
Базовый транзисторный усилитель (версия PNP)
Версия PNP этого усилителя показана выше.Основное отличие NPN а усилитель PNP — полярность источника напряжения. При отрицательном Vcc базовое напряжение PNP немного отрицательное. относительно земли, что обеспечивает необходимое условие прямого смещения между эмиттером и базой.
Когда входной сигнал PNP становится положительным, он противодействует прямому смещению транзистора. Это действие отменяет некоторые из отрицательное напряжение на переходе эмиттер-база, которое снижает ток через транзистор.Следовательно напряжение на нагрузочном резисторе уменьшается, а напряжение на транзисторе увеличивается. Поскольку Vcc отрицательно, напряжение на коллекторе (Vc) идет в отрицательном направлении (как показано на выходном графике) в сторону -Vcc (например, от -5 вольт до -7 вольт). Таким образом, выходной сигнал представляет собой отрицательное изменение напряжения, которое изменяется с той же скоростью, что и выходное напряжение. входной синусоидальной волны, но имеет противоположную полярность и гораздо большую амплитуду.
Во время отрицательного изменения входного сигнала ток транзистора увеличивается, потому что входное напряжение помогает прямой уклон.Следовательно, напряжение на R1 увеличивается, и, следовательно, напряжение на транзисторе уменьшается или идет в положительном направлении (например: с -5 вольт до -3 вольт). Это действие приводит к положительному выходное напряжение, которое имеет те же характеристики, что и входное, за исключением того, что оно усилено и полярность наоборот.
Таким образом, входные сигналы в предыдущих схемах были усилены из-за небольшого изменения тока базы вызвало большое изменение тока коллектора.И, поместив резистор Rl последовательно с коллектором, напряжение усиление было достигнуто.
Дом
Охват несчетных приложений
Наш инновационный, но стабильный портфель предлагает продукты и решения для широкого спектра приложений, таких как инфраструктура мобильного широкополосного доступа, радио- и телевещание, CO2-лазеры и плазма, МРТ, ускорители частиц, радары и управление воздушным движением, несотовая связь, ВЧ приготовление и размораживание, ВЧ нагрев и плазменное освещение.Глобальная команда экспертов обеспечивает превосходную поддержку приложений для удовлетворения сложных требований наших клиентов.
Прочитайте большеСпециальные устройства для широкого применения
Мы специализируемся на ВЧ мощности и предлагаем широкий спектр транзисторов в виде дискретных устройств, MMIC, поддонов и модулей на LDMOS, а также на технологии GaN. Наши продукты предназначены для работы в различных частотных диапазонах и поставляются с комплексной линейкой пакетов. Уже более 50 лет наши клиенты доверяют нашей надежной и проверенной единообразию продукции с высокой производительностью.
Прочитайте большеРасширяя возможности мобильной связи нового поколения
Более чем 50-летний практический опыт и высококачественные конструкции позволяют нам адаптировать наше портфолио ВЧ-устройств к широкому спектру приложений с высокой и малой мощностью. Наши первоклассные и удобные в использовании радиочастотные решения предлагают наилучший компромисс между размером и производительностью на системном уровне, в то время как бескомпромиссная прочность вместе с отличными тепловыми характеристиками позволяет нашим продуктам работать в самых сложных условиях. Нужна помощь в выборе решения? Мы предлагаем вам лучшую в своем классе поддержку приложений и моделей.
Прочитайте большеМакрос
РешенияAmpleon Macro, состоящие из многодиапазонных драйверов высокой мощности и конечных усилителей мощности, без проблем работают вместе, охватывая широкий спектр мобильных стандартов, включая LTE и 5G. Чтобы обеспечить лучшие качества продуктов Macro, Ampleon использует лучшие в своем классе, надежные и безопасные технологии RF Power, недорогую упаковку с превосходными тепловыми характеристиками, передовые методологии проектирования и возможности высокоавтоматизированного масштабирования.
Прочитайте большеМассивный MIMO
Портфель Massive MIMOAmpleon, основанный на интегрированных LDMOS-решениях Doherty, обеспечивает высокую стабильную производительность при компактных размерах.Обеспечение экономической эффективности и простоты использования в 4G и 5G mMIMO PA.
Прочитайте большеМаленькая ячейка
Прорыв в технологии LDMOS на рынке GaAs доминировал на рынке малых сот, предлагая мгновенную полосу пропускания до 300 МГц, более высокую выходную мощность для увеличения покрытия, более высокую линеаризуемую эффективность, превосходную линеаризацию DPD и очень компактное семейство продуктов в стандартизированном корпусе для простоты развертывания.
Прочитайте большеДелаем мир более предсказуемым
Ampleon имеет более чем 50-летний опыт работы на рынке аэрокосмической и оборонной промышленности (A&D) и сочетает в себе уникальные решения ITAR, не содержащие GaN и LDMOS, с отличными прикладными компетенциями для решения проблем проектирования радаров, электронного противодействия и связи.Приверженность Ampleon долгосрочной поддержке рынка A&D с помощью специальных программ долговечности гарантирует бесперебойную поставку на протяжении всего срока службы вашего оборудования.
Прочитайте большеРадар
Ampleon имеет более чем 50-летний опыт работы на рынке аэрокосмической и оборонной промышленности (A&D) и сочетает в себе уникальные решения ITAR без GaN и LDMOS с превосходными прикладными компетенциями для решения проблем проектирования радаров. Приверженность Ampleon долгосрочной поддержке рынка A&D с помощью специальных программ долговечности гарантирует бесперебойную поставку на протяжении всего срока службы вашего оборудования.
Прочитайте большеЭлектронное противодействие
Ampleon имеет более чем 50-летний опыт работы на рынке аэрокосмической и оборонной промышленности (A&D) и сочетает в себе уникальные решения, не содержащие GaN и LDMOS ITAR, с превосходными прикладными компетенциями для решения проблем проектирования средств противодействия. Для этого приложения важна высокая мощность наряду с высокой эффективностью. Приверженность Ampleon долгосрочной поддержке рынка A&D с помощью специальных программ долговечности гарантирует бесперебойную поставку на протяжении всего срока службы вашего оборудования.
Прочитайте большеВоенная связь
Ampleon имеет более чем 50-летний опыт работы на рынке аэрокосмической и оборонной промышленности (A&D) и сочетает в себе уникальные решения, не содержащие GaN и LDMOS ITAR, с отличными прикладными компетенциями для решения проблем проектирования коммуникаций. Приверженность Ampleon долгосрочной поддержке рынка A&D с помощью специальных программ долговечности гарантирует бесперебойную поставку на протяжении всего срока службы вашего оборудования.
Прочитайте большеРасширяя будущее телевидения и радиовещания
Ampleon — главный мировой поставщик транзисторов для радиовещания, рассчитанных на номинальное напряжение 50 и 65 В во всех диапазонах частот FM, VHF и UHF.Основываясь на последовательных поколениях как симметричных, так и асимметричных LDMOS-транзисторов, компания ampleon постоянно обновляет свой портфель, чтобы обеспечить создание наиболее эффективных в отрасли узкополосных и сверхширокополосных архитектур Doherty (UWD).
Прочитайте большеUHF / D-TV
Ampleon — главный мировой поставщик транзисторов для телевещания, рассчитанных на номинальное напряжение 50 В во всем диапазоне частот УВЧ от 470 до 860 МГц. Основываясь на последовательных поколениях как симметричных, так и асимметричных LDMOS-транзисторов, компания ampleon постоянно обновляет свой портфель, чтобы обеспечить создание наиболее эффективных в отрасли узкополосных и сверхширокополосных архитектур Doherty (UWD).
Прочитайте большеFM / HDR / DAB Радио
Ampleon предлагает обширный портфель чрезвычайно надежных транзисторов на 50 В и 65 В для приложений FM-радиовещания на основе своей новой передовой технологии повышенной прочности (ART) и хорошо зарекомендовавшей себя линейки транзисторов XR. Эти устройства тщательно спроектированы для работы во всем частотном диапазоне FM / HDR и DAB и обеспечивают высокую мощность в сочетании с лучшими показателями эффективности, превышающими 85%.
Прочитайте большеVHF / D-TV
Ampleon предлагает полный ассортимент сверхнадежных транзисторов на 50 и 65 В для приложений УКВ вещания.Эти устройства тщательно спроектированы для работы во всем диапазоне частот VHF и обеспечивают высокую мощность в сочетании с лучшими показателями эффективности, превышающими 85%.
Прочитайте большеНадежные решения для работы в суровых и опасных условиях
Ampleon возглавляет преобразование промышленных, научных и медицинских систем (ISM) в широкополосные, надежные и интеллектуальные твердотельные системы, работающие на частотах до 2,4 ГГц. Мы предлагаем полные линейки, основанные на обширном портфеле чрезвычайно надежных транзисторов на 50 В и 65 В и паллетных модулей, которые обеспечивают лучшие в своем классе профили мощности и эффективности во всем частотном диапазоне, выдерживая при этом самые жесткие условия несоответствия.
Прочитайте большеCO2-лазеры и плазма
Ampleon возглавляет трансформацию систем генерации ВЧ плазмы и лазеров на углекислом газе из традиционных систем на основе трубок в широкополосные, надежные и интеллектуальные твердотельные системы, работающие на частотах до 2,4 ГГц. Мы предлагаем полные линейки, основанные на обширном портфеле чрезвычайно надежных транзисторов на 50 В и 65 В и паллетных модулей, которые обеспечивают лучшие в своем классе профили мощности и эффективности во всем частотном диапазоне, выдерживая при этом самые жесткие условия несоответствия.
Прочитайте большеЗдравоохранение / МРТ
Ampleon возглавляет преобразование систем магнитно-резонансной томографии (МРТ) в надежные и интеллектуальные твердотельные системы, работающие на частотах до 256 МГц. Мы предлагаем полные линейки, основанные на обширном портфеле чрезвычайно прочных пластиковых транзисторов на 65 В и модулей для поддонов, которые обеспечивают лучшие в своем классе профили мощности и эффективности во всем диапазоне частот, выдерживая при этом самые жесткие условия несоответствия.
Прочитайте большеУскорители частиц
Ampleon предлагает лучшие в своем классе ВЧ усилители мощности с ускорением частиц, работающие на 1.3 ГГц и мощность 750 Вт непрерывной волны (CW). Мы предлагаем полные линейки, основанные на обширном портфеле устройств LDMOS и вскоре GaN, которые обеспечивают лучшие в своем классе профили мощности и эффективности, выдерживая условия несоответствия.
Прочитайте большеПромышленное отопление
Ampleon возглавляет преобразование промышленных систем отопления в надежные и интеллектуальные твердотельные системы, работающие на частотах до 2,4 ГГц. Мы предлагаем полные линейки, основанные на обширном портфеле надежных транзисторов и паллетных модулей, которые обеспечивают лучшие в своем классе профили мощности и эффективности во всем диапазоне частот, выдерживая при этом самые жесткие условия несоответствия.
Прочитайте большеРеволюция в кулинарии
Ampleon революционизирует традиционные методы приготовления и разморозки, представив обширную карту мощных решений RF Si LDMOS и GaN. Мы тесно сотрудничаем с нашими клиентами и партнерами и предоставляем им превосходную техническую поддержку и интеллектуальное лидерство, чтобы создать более быстрые и умные твердотельные микроволновые печи.
Прочитайте большеПрофессиональная кулинария (B2B)
Ampleon поддерживает 433 МГц через 2.Профессиональные приложения для приготовления пищи с частотой 4 ГГц с полным набором самых современных мощных согласованных высокочастотных силовых транзисторов и встроенных модулей.
Прочитайте большеДомашняя кулинария (B2C)
Ampleon поддерживает профессиональные кулинарные приложения с диапазоном частот от 433 МГц до 2,4 ГГц с полным набором самых передовых высокопроизводительных согласованных силовых ВЧ-транзисторов и встроенных модулей.
Прочитайте большеРазмораживание
Ampleon поддерживает приложения для размораживания от 433 МГц до 915 МГц с полным набором самых современных мощных предварительно согласованных силовых ВЧ-транзисторов и встроенных модулей.
Прочитайте большеОсвещение радиочастотной энергии
Ampleon — технологический новатор, предлагающий мощные решения RF Si LDMOS, которые используются для разработки новой революции в источниках света, то есть плазменного ВЧ освещения. Эти инновационные источники света питаются направленным радиочастотным излучением, которое воспламеняет газовые смеси и создает очень яркую плазму со спектром излучения, подобным солнечному свету. Решения Ampleon направлены на решение серьезных проблем эффективности и прочности, необходимых для подачи энергии к этому новому источнику света.
Прочитайте большеРасширяя возможности мобильной связи нового поколения
Наши решения RF Power и 50-летний опыт работы с LDMOS заложили прочную основу для мобильных широкополосных приложений. Мы предлагаем вам полный и надежный портфель RF Power, охватывающий все стандарты сотовой связи, включая LTE Advanced и 5G. Выберите подходящий вариант из всей линейки силовых ВЧ-транзисторов, работающих от 400 МГц до 4,2 ГГц.
Прочитайте больше0,4-1,0 ГГц Транзисторы
Высоковольтные, мощные, надежные транзисторы с бескомпромиссным КПД и отличными тепловыми характеристиками.Ищете бесспорное и надежное радиопокрытие? Выберите свое решение из нашего полного портфолио мобильного широкополосного LDMOS, разработанного для работы в диапазоне 0,4–1 ГГц.
Прочитайте больше1.4-2.2 ГГц Транзисторы
Наш постоянно развивающийся портфель ВЧ-источников питания 1,4–2,2 ГГц поднимает эффективность системы до высочайшего уровня без каких-либо компромиссов по размеру и надежности. Мы поддержим вас широким спектром мощностей широкополосных радиочастотных транзисторов с оптимальной линейностью, подходящих для всех стандартов сотовой связи и мобильных приложений.
Прочитайте больше2.3–2.7 ГГц Транзисторы
Наш постоянно развивающийся портфель ВЧ-источников питания 2,3–2,7 ГГц выводит эффективность системы на высочайший уровень без каких-либо компромиссов по размеру и надежности. Ищете исключительное широкополосное усиление и эффективность на небольшой площади? Мы поддержим вас широким спектром мощностей широкополосных радиочастотных транзисторов с оптимальной линейностью, подходящих для всех стандартов сотовой связи и мобильных приложений.
Прочитайте большеТранзисторы 3,3-4,2 ГГц
Наш широкополосный и эффективный 3.Решения на частоте 3-4,2 ГГц помогут вам повысить производительность вашей системы. Выберите свое идеальное радио-решение из широкого спектра компактных РЧ-устройств, подходящих для всех приложений 5G.
Прочитайте большеИмпульсные радары
Ampleon основывается на своем многолетнем опыте в области ВЧ-мощности и предлагает широкий спектр линейок усилителей мощности для аэрокосмической и оборонной промышленности с лучшей в отрасли надежностью в течение срока службы и характеристиками продукта при хорошо оптимизированной структуре затрат.
Прочитайте большеАвионика
Ampleon предлагает силовые транзисторы, предназначенные для импульсной работы во всем диапазоне частот авионики от 1030 до 1090 МГц и от 960 до 1215 МГц, предназначенные для таких приложений авионики, как IFF, DME, Mode-S, ELM и ADS-B.Новейшие продукты основаны на технологиях последних поколений Ampleon, которые расширяют границы, обеспечивая превосходные форм-факторы и показатели эффективности.
Прочитайте большеКВ, УКВ, УВЧ
Ampleon предлагает силовые транзисторы, предназначенные для импульсной работы во всех диапазонах частот ВЧ, УКВ и УВЧ до 800 МГц. Последние продукты основаны на технологии LDMOS 9-го поколения компании Ampleon, которая расширяет пределы плотности мощности LDMOS и обеспечивает самые высокие в отрасли показатели эффективности.
Прочитайте большеДиапазон L, диапазон S, диапазон C
Ampleon предлагает линейки усилителей, разработанные для импульсной работы во всем диапазоне частот от 900 до 3500 МГц, чтобы удовлетворить очень высокие требования современных импульсных радаров, основанных на технологиях GaN и LDMOS следующего поколения с долгосрочными обязательствами.
Прочитайте большеMatched-ISM, Приготовление и размораживание
Ampleon зарекомендовал себя в области производства усилителей мощности, адаптированных к определенной частоте и уровням мощности, для промышленных, научных целей, а также для приготовления пищи и размораживания.Дорожная карта интеграции Ampleon будет по-прежнему позволять заказчикам улучшать результаты по размеру, весу и мощности, одновременно обеспечивая переход к системам следующего поколения.
Прочитайте больше433 МГц
Ampleon предлагает полную линейку согласованных усилителей мощности, разработанных для удовлетворения жестких требований промышленных приложений и систем размораживания в полосе частот 433 МГц. Наши последние технологические достижения позволили получить самые исключительные в отрасли результаты в области мощности, эффективности и прочности при хорошо оптимизированной структуре затрат.
Прочитайте больше915 МГц
Ampleon предлагает полную линейку согласованных усилителей мощности, разработанных для удовлетворения жестких требований промышленных и кухонных приложений в диапазоне частот ISM 915 МГц. Наши последние технологические достижения позволили получить самые исключительные в отрасли результаты в области мощности, эффективности и прочности при хорошо оптимизированной структуре затрат.
Прочитайте больше1300 МГц
Ampleon предлагает лучшие в своем классе предварительно согласованные усилители мощности, разработанные для удовлетворения жестких требований промышленных и научных приложений в области 1.Полоса частот 3 ГГц. Наши последние технологические достижения как в LDMOS, так и в GaN позволили достичь высочайшего уровня эффективности и надежности в отрасли при хорошо оптимизированной структуре затрат.
Прочитайте больше2450 МГц
Ampleons предлагает сегодня самый полный и последовательный в мире портфель согласованных драйверов, оконечных усилителей и эталонных схем киловаттных систем, специально разработанных для промышленных и бытовых, а также профессиональных приложений для приготовления пищи в диапазоне частот 2,4 ГГц.Мы предлагаем лучшие в своем классе мощность, эффективность и тепловые характеристики в различных керамических и пластиковых корпусах с долгим сроком службы.
Прочитайте большеПоддоны и модули
Ampleon предлагает самый привлекательный в отрасли портфель простых в использовании, предварительно согласованных наборов усилителей мощности, чтобы обеспечить максимально быстрое время вывода на рынок и ориентироваться на определенные диапазоны частот 433 МГц, 915 МГц и 2,4 ГГц при различных уровнях мощности. Поддоны могут включать 1 или 2 ступени с циркуляционными насосами или без них.Они гарантируют максимальную производительность транзисторов с высочайшей стабильностью и встраивают медные монеты для лучшего распределения и передачи тепла. Кроме того, поддоны Ampleon проходят обширные испытания на надежность (TMCL, BTMCL, HTSL, THB, THNB) перед выпуском и проходят полную проверку на радиочастотные характеристики, просвечиваются рентгеновскими лучами и устанавливаются только высококачественные SMD.
Прочитайте большеUHF вещание
Являясь мировым лидером в области решений с высокой мощностью для радиовещания, Ampleon внедряет инновации, позволяющие использовать самые передовые в отрасли узкополосные и сверхширокополосные архитектуры Doherty (UWD) для радиовещательных РЧ-передатчиков.
Прочитайте больше470-860 МГц
Ampleon — главный мировой поставщик транзисторов для телевещания, рассчитанных на номинальное напряжение 50 В во всем диапазоне частот УВЧ от 470 до 860 МГц. Основываясь на последовательных поколениях как симметричных, так и асимметричных LDMOS-транзисторов, компания ampleon постоянно обновляет свой портфель, чтобы обеспечить создание наиболее эффективных в отрасли узкополосных и сверхширокополосных архитектур Doherty (UWD).
Прочитайте большеЧрезвычайно прочный
Ampleon предлагает широчайший в отрасли портфель сверхпрочных транзисторов, предназначенных для работы при напряжениях 50 и 65 В, на основе новой передовой технологии повышенной прочности (ART) и хорошо зарекомендовавшей себя линейки транзисторов XR.Эти устройства тщательно спроектированы для работы во всем диапазоне частот от ВЧ до 650 МГц и могут выдерживать самые суровые условия с коэффициентом стоячей волны 65: 1 (КСВН). Чрезвычайно надежные решения Ampleon сегодня можно найти повсюду в приложениях для генерации плазмы, драйверов CO2-лазеров и магнитно-резонансной томографии (МРТ).
Прочитайте больше50 В
Ampleon является мировым лидером, предлагающим полный ассортимент сверхнадежных транзисторов на 50 В на основе новой передовой технологии защиты (ART) и хорошо зарекомендовавшей себя линейки транзисторов XR.Новая линейка транзисторов ART на 50 В от Ampleon обеспечивает более высокое напряжение пробоя и лучший уровень эффективности по сравнению с предшествующим семейством тансисторов 50 В XR. Новые устройства ART на 50 В могут обеспечивать мощность от 30 до 1500 Вт во всем диапазоне частот от ВЧ до 650 МГц и поставляются в различных керамических и пластиковых корпусах с долгосрочным сроком службы.
Прочитайте больше65 В
Ampleon поставляет передовые высокопрочные транзисторы на 65 В, основанные на своей новой усовершенствованной защищенной технологии (ART), которая открывает еще не использованные в отрасли уровни чрезвычайной прочности и сверхвысокого напряжения пробоя.Новые транзисторы на 65 В могут обеспечивать мощность от 30 до 2000 Вт во всем диапазоне частот от ВЧ до 650 МГц и поставляются в различных керамических и пластиковых корпусах с долгосрочным сроком службы. Чрезвычайно надежные решения Ampleon на 65 В сегодня используются повсюду в приложениях для генерации плазмы, драйверов CO2-лазеров и магнитно-резонансной томографии (МРТ).
Прочитайте большеУниверсальный широкополосный канал
Ampleon предлагает самый полный в отрасли ассортимент широкополосных усилителей на 12 В, 32 В и 50 В, способных работать с непрерывными (CW) и импульсными сигналами во всем диапазоне частот от ВЧ до 1500 МГц.Эти широкополосные устройства размещены в различных керамических и пластиковых корпусах, предназначенных для различных приложений, таких как промышленные, научные, импульсные радары, электронные средства противодействия и несотовая связь. Новейшие продукты поставляются с долгосрочными обязательствами, основанными на технологиях LDMOS и GaN следующего поколения.
Прочитайте больше50 В
Ampleon — надежный поставщик широкополосных усилителей на 50 В, способных работать с непрерывными (CW) и импульсными сигналами во всем диапазоне частот от HF до 1500 МГц.Эти широкополосные устройства на 50 В обеспечивают мощность от 10 до 1900 Вт в различных керамических и пластиковых корпусах, предназначенных для различных приложений, таких как промышленные, научные, импульсные радары, электронное противодействие и несотовая связь. Новейшие продукты на 50 В поставляются с долгосрочными обязательствами, основанными на технологиях LDMOS и GaN следующего поколения.
Прочитайте больше32 В
Ampleon предлагает обширный портфель широкополосных усилителей на 32 В, способных работать с непрерывными (CW) и импульсными сигналами во всем диапазоне частот от HF до 1500 МГц.Эти широкополосные устройства обеспечивают мощность от 10 до сотен ватт в различных керамических и пластиковых корпусах. Новейшие продукты на 32 В поставляются с долгосрочными обязательствами, основанными на технологиях LDMOS и GaN следующего поколения.
Прочитайте больше12,5-14 В
Ampleon предлагает самые надежные в отрасли транзисторы LDMOS 12–14 В, предназначенные для приложений мобильной радиосвязи в коммерческой сфере, в сфере общественной безопасности и обороны. Эти устройства сочетают в себе простоту использования и исключительную надежность, а также выдерживают экстремальные уровни несоответствия, превышающие коэффициент стоячей волны напряжения (КСВН) 65: 1, без ущерба для производительности.