Полевой транзистор с управляющим p-n переходом: принцип работы и применение
Александр Кораблев
В статье кратко описано устройство полевых транзисторов с управляемым p—n-переходом и приведены схемы их использования. Статья предназначена для ознакомления с транзисторами, а не для подробного изучения их особенностей и схемотехники.
Введение
Идея создания полевых транзисторов с управляющим p-n-переходом (JFET) принадлежит американским инженерам Джорджу Дейси (George Clement Dacey) и Йену Россу (Ian Munro Ross). В 1953 г. они создали лабораторный образец такого транзистора, однако технологические проблемы производства смогли преодолеть только в 1960 г. — наверное, с этой даты и следует отсчитывать начало внедрения в практику полевых транзисторов с p-n-переходом.
Рис. 1. Схематическое изображение транзисторов с управляющим p-n-переходом
Существуют два типа транзисторов с управляющим p-n-переходом: с p-каналом и n-каналом. Их схематическое изображение показано на рис. 1, а на рис. 2 представлено упрощенное изображение конструкции n-канального транзистора. В областях, прилегающих к стоку и истоку транзистора, посредством дополнительного легирования созданы повышенные концентрации электронов, что уменьшает сопротивление канала в открытом состоянии.
Рис. 2. Упрощенная конструкция транзистора с управляющим p-n-переходом
Принцип работы полевого транзистора с управляющим p-n-переходом (JFET)
Рис. 3. Принцип работы полевого транзистора на примере n-канального транзистора
Принцип работы полевого транзистора на примере n-канального транзистора иллюстрируется рис. 3. При управляющем напряжении затвор-исток UЗИ = 0 канал находится в проводящем состоянии, основные носители (электроны) обозначены на рис. 3 точками. По мере увеличения напряжения сток-исток UСИ будет возрастать и ток стока I C через канал, транзистор работает в омической области.
Дальнейшее увеличение напряжения сток-исток UСИ приводит к уменьшению свободных электронов, возникает обедненный слой. Область обедненного слоя наиболее велика вблизи стока, поскольку к стоку подключено питающее напряжение и напряженность поля там наиболее высока. Появление обедненного слоя приводит к сужению проводящего канала, поэтому при дальнейшем возрастании напряжения ток увеличивается незначительно, транзистор переходит в область насыщения. Обе области, насыщения и омическая, показаны на вольт-амперной характеристике слева на рис. 3.
Если прикладывать к затвору отрицательное напряжение UЗИ, область p-n-перехода расширяется в сторону канала, что приводит к сужению проводящего канала и уменьшению тока через него. При дальнейшем увеличении абсолютного значения напряжения затвора канал полностью перекрывается, проводимость прекращается, транзистор переходит в режим отсечки. Напряжение UЗИ, при котором наступает режим отсечки, называется напряжением отсечки UОТС.
Рис. 4. Вольт-амперные характеристики полевого транзистора с p-n-переходом при различных управляющих напряжениях UЗИ
На рис. 4 показаны вольт-амперные характеристики полевого транзистора с p-n-переходом при различных управляющих напряжениях UЗИ и соблюдении соотношений:
|UЗИ4| > |UЗИ3| > |UЗИ2| >|UЗИ1| > 0 В. (1)
Ток стока при управляющем напряжении затвор-исток UЗИ = 0 называется начальным током стока IC0. В большинстве случаев вольт-амперная характеристика полевого транзистора с p-n-переходом хорошо описывается выражением:
IC = IC0 ∙ [1 – (UЗИ/UОТС)]2. (2)
Усиление полевого транзистора характеризуется крутизной GM, которая определяется из формулы (3) с учетом соотношения (2):
GM = dIC/dUЗИ = –2IC0 ∙ [(UОТС – ( U ЗИ)/ UОТС2]. (3)
В справочных данных обычно значение крутизны полевого транзистора указывают при UЗИ = 0. В этом случае выражение (3) принимает следующий вид:
GM = –2IC0 / UОТС. (4)
Преимуществом полевых транзисторов с управляющим p-n-переходом является высокое входное сопротивление, ток обратно смещенного p-n-перехода очень мал и не превышает нескольких микроампер, но следует учитывать, что при возрастании температуры на 10 °С ток затвора удваивается.
К достоинствам полевого транзистора с управляющим p-n-переходом также относятся отличные частотные свойства. Полевые транзисторы униполярны, в них отсутствуют неосновные носители, а следовательно, и процесс рассасывания неосновных носителей, который заметно ухудшает частотные свойства биполярных транзисторов.
Рис. 5. Схемы включения полевых транзисторов с p-n-переходом: а) с общим истоком; б) с общим затвором; в) с общим стоком
Существуют три схемы включения полевых транзисторов. Все они изображены на рис. 5. Часто используется схема с общим истоком (рис. 5а), которая позволяет усилить мощность сигнала. Схема с общим затвором (рис. 5б) имеет низкое входное сопротивление и не усиливает сигнал, поэтому она применяется редко. Схема с общим стоком или истоковый повторитель (рис. 5в) имеет большое входное сопротивление, но коэффициент усиления напряжения практически равен 1.
Применение полевых транзисторов с p-n-переходом (JFET)
В инженерной практике полевые транзисторы с управляющим p-n-переходом чаще всего применяют в аналоговых трактах совместно с операционными усилителями или в силовых схемах в качестве ключей. Вкратце рассмотрим несколько примеров применения полевых транзисторов с p-n-переходом в практических схемах.
На рис. 6 показана схема фотодиодного усилителя. Полевой транзистор с p-n-переходом используется здесь в качестве повторителя: он изолирует фотодиод от транзистора, поэтому емкость фотодиода приблизительно равная 3000 пФ «отрезается» от инвертирующего входа операционного усилителя, за счет чего заметно возрастает полоса пропускания.
Коэффициент передачи шума в рассматриваемой схеме определяется выражением:
КШ = 1 + СВХ/СВЫХ. (5)
За счет уменьшения входной емкости использование полевого транзистора позволяет также снизить шум схемы. Кроме того, полевой транзистор увеличивает входное сопротивление схемы, следовательно, уменьшает коэффициент усиления входного смещения, который определяется выражением:
КУСМ = 1 + RОС/RВХ. (6)
Рис. 6. Схема фотодиодного усилителя
Недостаток схемы (рис. 6) заключается в том, что к фотодиоду прикладывается отрицательное напряжение, из-за чего возрастает его темновой ток, который к тому же зависит от температуры. Если пользователей интересует только переменная составляющая сигнала фотодиода, указанным недостатком можно пренебречь. Если же важна и постоянная составляющая сигнала, следует воспользоваться улучшенной схемой фотодиодного усилителя (рис. 7). В этой схеме используются два согласованных полевых транзистора в одном корпусе. Нижний транзистор является источником тока, величина тока задается сопротивлением R2 в цепи истока и выбирается таким образом, чтобы потенциал катода фотодиода был близок к нулю. Для более точной подстройки нулевого смещения можно добавить потенциометры R4 и R6.
Рис. 7. Улучшенная схема фотодиодного усилителя
Полевые транзисторы с p-n-переходом удобно использовать в качестве переменных сопротивлений, управляемых напряжением в схемах усилителя с управляемым коэффициентом усиления, или аттенюаторов. Последний вариант изображен на рис. 8. В этой схеме использован n-канальный полевой транзистор, на его затвор подается напряжение с потенциометра VR1, таким образом задается коэффициент ослабления. Возможно и иное решение, например, в качестве управляющего напряжения вместо потенциометра VR1 можно использовать пульсирующее напряжение, в этом случае мы получим простой и экономичный модулятор.
Рис. 8. Схема аттенюатора
Благодаря использованию карбида кремния (SiC) удалось получить полупроводниковые приборы с широкой запрещенной зоной, а следовательно, с повышенным нормируемым рабочим напряжением, что позволило применять их в силовых преобразователях. Сегодня производятся полевые транзисторы с нормируемым напряжением вплоть до 1700 В.
Рис. 9. Каскод c SiC полевыми транзисторами с p-n-переходом
В силовых преобразователях с полевыми SiC-транзисторами с управляемым p-n-переходом последние строятся по хорошо известной еще с ламповых времен схеме каскода (рис. 9). В этой схеме к относительно дорогостоящему высоковольтному SiC-транзистору добавлен обычный низковольтный недорогой кремниевый MOSFET стоимостью «пятачок на пучок». На этом же рисунке можно видеть описание режимов работы каскода.
Рис. 10. Схема суперкаскода с SiC полевыми транзисторами с p-n-переходом
Увеличения нормируемого рабочего напряжения можно достичь с помощью последовательного включения нескольких полевых SiC-транзисторов с p-n-переходом. На рис. 10 показана образованная таким методом схема суперкаскода с нормируемым напряжением 6500 В. В схеме суперкаскода последовательно соединены пять полевых SiC транзисторов с управляемым p-n-переходом с рабочим напряжением 1700 В.
Полевые транзисторы
Полевые транзисторыПолевые транзисторы
К другим устройствам с тремя слоями п- и р-типа относятся полевые транзисторы.
Полевые транзисторы с р-п переходом
Констукция этих транзисторов представлена на рис.:
Как видно, здесь тоже три слоя: п-, р-, и п-типа (может быть и наоборот: р-, п-, и р-тип). Между стоком (на рис. обозначен как С) и истоком (И) прикладывается напряжение, такое, что заряды (в данном случае дырки) вытекают из истока и втекают в сток. Значит, к стоку прикладывается отрицательное напряжение, исток заземляется. Из-за наличия р-п переходов область канала сужается, причём на самом деле даже больше, так как р-п переход толстый, у него есть область объёмного заряда (ООЗ), отмеченная на рис. пунктирной линией. К затвору (З) прикладывается положительное напряжение, так что р-п переходы смещены в обратном направлении, и ООЗ расширяется, а ширина канала сужается.
Это транзистор с каналом р-типа. При обратных типах слоёв получится транзистор с каналом п-типа. У него всё также, только в канале протекают электроны, к стоку прикладывается плюс, а к затвору – минус.
Вернёмся к транзистору с каналом р-типа. Так как на затвор подаётся обратное напряжение, то он плохо пропускает ток (это обратный ток р-п перехода), т.е. входное сопротивление полевого транзистора очень велико. Полевой транзистор управляется напряжением, или полем. В этом он в каком-то смысле похож на радиолампу. Причём так же, как в радиолампе, при увеличении на затворе напряжения (по модулю) проходящий от истока к стоку ток падает. При некотором напряжении U
Выходная и переходная характеристики представлены на рис. :
Как кажется при простом рассмотрении, характеристики ток стока – напряжение сток-исток должны быть прямыми, и лишь наклон их станет тем меньше, чем больше напряжение затвор-исток. Это потому, что при увеличении напряжения на затворе сопротивление канала увеличивается. Однако кривые быстро начинают насыщаться, выходят почти на горизонтальный участок. Объясниется это тем, что напряжение, падающее в канале, меняется от 0 до –U
В каком-то смысле это очень похоже на случай с биполярными транзисторами: там тоже носители заряда диффундируют к коллектору, а затем очень сильным электрическим полем коллекторного р-п перехода вытаскиваются в коллектор.
В данном случае поле ООЗ гораздо больше, чем поле р-канала. Поэтому после того, как ООЗ сольются, дальнейший рост
Uси обеспечивается ростом поля в ООЗ. А левая часть р-канала остаётся неизменной. Но именно она определяет ток через канал. Поэтому ток через полевой транзистор больше не меняется. (Ток немного увеличивается, но в первом приближении можно считать, что он неизменен.)Это и есть рабочий участок выходной характеристики – ток определяется напряжением на затворе, но не зависит от напряжения на стоке, т.
Напряжение, с которого начинается пологий участок, называется напряжением насыщения:
Кроме того:
где
Icmax – максимальный ток стока, имеющий место при Uзи =0.Для определения коэффициента усиления усилителя на основе полевого транзистора важно знать его крутизну (аналогично коэффициенту b в биполярных транзисторах):
где
smax – максимальная крутизна, имеющая место при Uзи =0. Она определяется как:Крутизна измеряется в мA/В, и составляет обычно от 1 до 100. Входное сопротивление – 10
9. ..1012 Ом. На схемах полевые транзисторы изображаются так:Неудобство полевых транзисторов заключается в том, что питание цепи затвора (входной) и стока (выходной) разнополярное, т.е. требуются две разных батарейки. Но с помощью конденсатора этого легко избежать, как показано на схеме. Это транзистор с п-каналом, поэтому к стоку приложено положительное напряжение, а к затвору – отрицательное. Оно образуется за счёт смещения, появившегося на сопротивлении истока. По переменному сигналу его величина полностью компенсируется за счёт включения параллельно с сопротивлением ещё и конденсатора.
Обычно полная схема содержит ещё и сопротивления во входной цепи, которые и определяют входное сопротивление схемы. Выходное сопротивление определяется сопротивлением стока Rc и дифференциальным сопротивлением стока транзистора, т.е. наклоном выходной характеристики транзистора.
Коэффициент усиления этой схемы:
и может достигать нескольких сотен.
Это – схема с общим истоком (ОИ). Аналогично биполярным транзисторам, есть схемы и с общим стоком (ОС):
Кажется, что это существенно более простая схема, но практически она такая же, что и ОИ, но нет конденсатора Си . Поэтому влияние отрицательной обратной связи не исключено, и вследствие этого коэффициент усиления по напряжению практически равен 1, но на самом деле несколько меньше. Коэффициент усиления по току больше 1, и выходное сопротивление существенно меньше, чем у схемы с ОИ.
Можно бы построить схему с общим затвором, аналогично схеме с общей базой у биполярных транзисторов. Однако кроме технических сложностей (трудно сделать общий затвор, когда нет тока затвора) нет и такой необходимости, так как входные сопротивления у полевых транзисторов очень велики, и не надо устранять эффект закорачивания выходного сигнала во многокаскадных схемах.
Полевые транзисторы МДП
Рассмотрим, например, полупроводник (кремний, германий) р-типа электропроводности. Будем считать, что на него нанесён тонкий слой диэлектрика (чаще других выращивается оксид кремния на кремнии). Толщина диэлектрика должна быть очень малой. Если в технологии полупроводников используются защитные слои оксида толщиной от 1 до 2…3 мкм, то мы будем считать, что толщина диэлектрика лежит в пределах 0,1…0,3 мкм.
А сверху на диэлектрике нанесён слой металла. Между металлом и полупроводником приложено электрическое поле.
В случае тонкого диэлектрика электрическое поле легко проникает в полупроводник. Что внесёт это поле в полупроводник, легко понять из исследования зонных диаграмм:
На рис. изображены три зависимости энергии электрона от координаты. Слева представлен случай, когда к металлу (обозначен буквой М) приложено отрицательное по отношению к полупроводнику напряжение.
На среднем рисунке изображена диаграмма в случае, когда к металлу относительно полупроводника приложено положительное напряжение, зоны изогнуты вниз. Дырок у поверхности стало меньше, чем в глубине, а электронов – больше. Но пока дырок у поверхности больше, чем электронов.
На правом рис. ситуация кардинально изменилась: напряжение снова положительное, но уже достаточно большое, чтобы электронов у поверхности стало больше, чем дырок. Полупроводник разделился на две области: в глубине это по-прежнему р-тип, а вблизи поверхности – п-тип (произошла инверсия типа электропроводности).
Теперь рассмотрим конструкцию, изображённую на рис. слева. Это полупроводник (например кремний) р-типа, в котором сделаны две области п-типа. Сверху кроме защитного слоя диоксида кремния нанесён ещё тонкий слой диоксида кремния между п-областями. Если теперь подать напряжение между стоком и истоком, то ничего не произойдёт: ток не появится, так как при любом знаке напряжения хоть один из р-п переходов смещён в обратном направлении (это как в биполярном транзисторе при очень толстой базе – два р-п перехода отдельно).
А теперь давайте подадим положительное напряжение на затвор относительно подложки (справа). Если это напряжение больше некоторого, так называемого порогового (Uп ), то дырки оттолкнутся от поверхности вглубь полупроводника, а электроны притянутся к поверхности, и их станет больше, чем дырок – вблизи поверхности появится наведённый (индуцированный) слой п-типа. Этот слой соединит две исходные области п-типа, и между стоком и истоком появится ток. Говорят, что образовался канал п-типа.
Конечно, можно взять структуру с р-п-р областями. Все рассуждения для неё будут те же, но на затвор надо подавать отрицательное напряжение, и канал будет р-типа. Далее мы рассматриваем только п-канальный МДП транзистор.
Очевидно, эта структура имеет 4 контакта. Иногда их все используют. Однако чаще исток соединяют с подложкой, и остаётся только три контакта. Для простоты мы рассмотрим только этот случай.
На рис. представлены переходная и выходная характеристики полевого транзистора МДП со встроенным п-каналом. Видно, что в этом случае все потенциалы положительны. Переходная характеристика ведёт себя как часть параболы. Зависимость
тока стока от напряжения сток-исток представлена на правом рис. Эти кривые очень похожи на выходные характеристики полевого транзистора с р-п переходом, но только здесь знак тока стока и напряжения на стоке совпадают.
И здесь также, как и в предыдущем случае, возникает вопрос, почему характеристики не прямые – кажется, что только от напряжения
Uзп зависит проводимость канала, и, следовательно, должен соблюдаться закон Ома, т. е. ток стока должен быть пропорционален напряжению сток-исток. Однако из рис. видно, что чем больше напряжение сток-исток, тем больше сопротивление канала. Объясняется это тем, что в канале есть падение напряжения, а так как в затворе нет никаких токов, то напряжение во всех точках затвора одинаковое. Если исток и подложка соединены, то в канале близ истока напряжение равно 0, а вблизи стока равно Uси , значит разность потенциалов между затвором и подложкой будет уменьшаться от истока к стоку, канал будет иметь разную толщину и электропроводность, как показано на рис. слева.Как получается из теории, зависимость тока стока от напряжения на затворе и стоке имеет вид:
где К – коэффициент, зависящий от конструкции и технологии изготовления транзистора, имеет размерность А/В
2 . Это парабола в координатах Uси – Ic , причём перевёрнутая и проходящая через начало координат. Максимум лежит в точкеи составляет
а дальше должен быть спад. Но на графике этого спада не видно. В чём же дело? Оказывается, причина в том, что в р-п переходе есть ООЗ, а в ней – электрическое поле, указанное стрелками на рис.:
Все стрелки имеют разное направление, но в конце канала направление всегда одинаковое: поле направлено так, что электроны вытягиваются из канала и втягиваются в область стока. Это поле очень большое, поэтому вытягивание электронов очень сильное. Это так же, как и у полевых транзисторов с р-п переходом и биполярных транзисторов. По этой причине с дальнейшим ростом напряжения на стоке всё избыточное напряжение падает на ООЗ стока и только приводит к вытягиванию электронов из канала в сток, а на канале падает одинаковое напряжение, и ток канала дальше не меняется. Поэтому спада тока нет, а есть постоянство (на самом деле очень медленный рост). Как раз эта область и является рабочим участком выходной характеристики полевого транзистора, т.е. транзистор всегда работает с закрытым каналом. Ток стока равен
Крутизна определяется производной тока по напряжению на затворе:
Чем больше напряжение на затворе, тем больше крутизна. Но реально затвор очень быстро пробивается, так как это очень тонкий слой оксида кремния, поэтому крутизна ненамного больше, чем у полевых транзисторов с р-п переходом. Кроме того, МОП полевые транзисторы очень часто пробиваются статическим напряжением, поэтому их надо припаивать к схемам с большой осторожностью. Обычно все контакты полевых транзисторов соединены между собой и рассоединяются только перед самой пайкой, паяльник должен быть заземлён, и тот, кто паяет, должен иметь на руке заземлённый браслет.
Ниже показаны схематичные изображения МОП полевого транзистора с п-каналом (слева) и с р-каналом (справа).
Такие транзисторы называются МОП транзисторы с индуцированным каналом. Можно, однако, перед тем, как делать подзатворный диэлектрик, провести ещё одну диффузию доноров для п-канальных транзисторов или акцепторов для р-канальных транзисторов, чтобы создать встроенный канал. тогда характеристики будут выглядеть так:
Теперь у транзистора есть ток даже при нулевом напряжении на затворе, и есть возможность управлять им, т.е получать усиление. Обозначаются такие транзисторы почти также, как и транзисторы с индуцированным каналом:
Схемные решения МОП транзисторов с индуцированным и встроенным каналом практически мало отличаются от схем полевых транзисторов с р-п переходом, поэтому мы их не рассматриваем.
Сайт управляется системой uCoz
Полевые транзисторы-Dummies
BY: Cathleen Shamieh и
Обновлены: 03-26-2016
Из книги: Electronics для Dummies
Electronics для Dummies
.
Полевой транзистор (FET) состоит из канала из полупроводникового материала N- или P-типа, через который может протекать ток, с другим материалом (наложенным поперек участка канала), контролирующим проводимость канала .
В полевом транзисторе (FET) напряжение, подаваемое на затвор, управляет протеканием тока по каналу от истока к стоку.
Один конец канала известен как исток, другой конец канала называется стоком, , а механизм управления называется вентилем. Подавая напряжение на затвор, вы управляете потоком тока от истока к стоку. Выводы присоединяются к истоку, стоку и затвору. Некоторые полевые транзисторы имеют четвертый вывод, поэтому вы можете заземлить часть полевого транзистора на шасси схемы. (Но не путайте этих четвероногих существ с МОП-транзисторы с двойным затвором, , которые также имеют четыре вывода.)
Полевые транзисторы(произносится как «fetts») бывают двух видов — N-канальные и P-канальные — в зависимости от типа полупроводникового материала (N-типа или P-типа соответственно), через который протекает ток. Существует два основных подтипа полевых транзисторов: MOSFET (полевой транзистор металл-оксид-полупроводник) и JFET (переходной полевой транзистор). То есть то, что зависит от того, как сконструированы ворота, что, в свою очередь, приводит к различным электрическим свойствам и различным применениям для каждого типа.
Полевые транзисторы(особенно МОП-транзисторы) стали намного более популярными, чем биполярные транзисторы, для использования в интегральных схемах (ИС ), где тысячи транзисторов работают вместе для выполнения задачи. Это потому, что это маломощные устройства, структура которых позволяет разместить тысячи N- и P-канальных МОП-транзисторов, как сардин, на одном куске кремния (то есть полупроводникового материала).
Электростатический разряд (ЭСР) может повредить полевые транзисторы. Если вы покупаете полевые транзисторы, обязательно храните их в антистатическом пакете или тубе — и оставьте их там до тех пор, пока вы не будете готовы их использовать.
Эта статья взята из книги:
- Электроника для чайников,
Об авторе книги:
Кэтлин Шами — инженер-электрик и писатель с обширным опытом проектирования и консультирования в области медицинской электроники. обработка речи и телекоммуникации.
Эту статью можно найти в категории:
- General Electronics,
Mosfet
Что такое транзистор Mosfet?
M и т. д. О ксиде S полупроводник F или E эффект T РанзисторМОП-транзистор по сути представляет собой FET (Field Effect Transistor) транзистор с изолированным затвором. Это означает, что у него есть клеммы истока, затвора и стока, как у полевого транзистора, но затвор MOSFET-транзистора изолирован от канала тонким слоем оксида металла . (МОП-транзистор иногда может иметь четвертый вывод, называемый корпусом, но чаще всего он подключается к выводу источника). Основная функция MOSFET-транзистора — переключение или усиление сигналов. Проводимость этого устройства полностью контролируется входным напряжением, поэтому изменение напряжения используется для срабатывания транзистора для переключения сигналов или усиления сигнала. МОП-транзистор является наиболее часто используемым транзистором как в цифровых, так и в аналоговых схемах.
МОП-транзистор может работать двумя из следующих способов:
Режим истощения — Если на вентиль не подается напряжение, то канал имеет максимальную проводимость. Если вы приложите напряжение к затвору, то проводимость канала будет уменьшаться с величиной приложенного напряжения. Режим истощения в MOSFET-транзисторе эквивалентен «нормально закрытому» переключателю.
Режим улучшения — Этот режим является полной противоположностью режиму истощения. Если на затвор не подается напряжение, то канал не является проводящим. Чем больше напряжение поступает на затвор, тем выше проводимость канала. Режим улучшения в MOSFET-транзисторе эквивалентен «нормально разомкнутому» переключателю.
N-канал против P-канала
У N-канального МОП-транзистора исток подключен к земле, а сток — к нагрузке. Когда вы подаете положительное напряжение на затвор, полевой транзистор включится. В целом N-канальные МОП-транзисторы дешевле по сравнению с P-канальными эквивалентами, потому что их проще производить. P-Channel MOSFET имеет положительное напряжение, подключенное к источнику, и FET включается только тогда, когда напряжение падает на желаемую величину.
Примечание: Чтобы использовать МОП-транзистор с каналом P для коммутации напряжений выше 5 вольт, вам нужно будет добавить транзистор в схему, чтобы включать и выключать MOSFET.
Технические характеристики
Номер детали | Напряжение сток-исток (Вдсс) | Непрерывный ток стока (Id) | Тип кузова | Соответствие RoHS | Канал |
---|---|---|---|---|---|
IRF1010ES | 60В | 84А | Д2ПАК(ТО-220) | № | N-канал |
ИРФ1010ЭЛ | 60В | 84А | И2ПАК(ТО-262) | № | N-канал |
ИРФ610С | 200 В | 3,3 А | Д2ПАК(ТО-263) | № | N-канал |
ИРФ610СПбФ | 200 В | 3,3 А | Д2ПАК(ТО-263) | Да | N-канал |
ИРФ610Л | 200 В | 3. 3А | И2ПАК(ТО-262) | № | N-канал |
ИРФ610ЛПбФ | 200 В | 3,3 А | И2ПАК(ТО-262) | Да | N-канал |
IRFI510G | 100 В | 4,5 А | ФУЛЛПАК(ТО-220) | № | N-канал |
Типы корпуса Mosfet
Д2ПАК(ТО-263)
Тип корпуса ТО-263 был разработан для поверхностного монтажа на печатных платах.