Site Loader

Содержание

Что такое транзисторы | Основы РЕМОНТА

Что такое транзистор…

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Так что же такое транзистор? — Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами).
Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения.
Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.
Быполярные транзисторы
Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.
Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.
Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.
Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.
Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам.
Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.
Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.
Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Транзисторы

Рис. 1

На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К.

Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.

Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.

Статический коэффициент передачи тока базы h21Э показывает, во сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10…15, и с большим — до 50…800 (такие называют транзисторами со сверхусилением).

Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h21э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h

2lЭ, равный всего 12…20. Примером этого может служить большинство конструкций, описанных в этой книге.

Частотными свойствами транзистора

учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора.
Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10…20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2…0,4 МГц.

Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше 1,6 МГц) пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16…30 МГц.

Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение.

Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают его. Германиевый кристалл может нормально работать при температуре не более 80, а кремниевый — не более 120°С. Тепло, которое выделяется в кристалле, отводится в окружающую, среду через корпус транзистора, а также и через дополнительный теплоотвод (радиатор), которым дополнительно снабжают транзисторы большой мощности.

В зависимости от назначения выпускают транзисторы малой, средней и большой мощности. Маломощные используют главным образом для усиления и преобразования слабых сигналов низкой и высокой частот, мощные — в оконечных ступенях усиления и генерации электрических колебаний низкой и высокой частот.

Усилительные возможности ступени на биполярном транзисторе зависят не только от того, какой он мощности, а сколько от того, какой конкретно выбран транзистор, в каком режиме работы по переменному и постоянному току он работает (в частности, каковы ток коллектора и напряжение между коллектором и эмиттером), каково соотношение рабочей частоты сигнала и предельной частоты транзистора.

 

Что такое полевой транзистор

Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде.

Электроды, между Которыми протекает управляемый ток, иоСят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда.

Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.

В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными. Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных.

Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.

 

Основные параметры полевых транзисторов

Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп.

Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.

Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока.

Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты. Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора.

Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.

Для нормальной работы полевого транзистора на его электродах должно действовать постоянное напряжение начального смещения. Полярность напряжения смещения определяется типом канала (n или р), а значение этого напряжения — конкретным типом транзистора.

Здесь следует указать, что среди полевых транзисторов значительно больше разнообразие конструкций кристалла, чем среди биполярных. Наибольшее распространение в любительских конструкциях и в изделиях промышленного производства получили полевые транзисторы с так называемым встроенным каналом и р-n переходом.

Они неприхотливы в эксплуатации, работают в широких частотных пределах, обладают высоким входным сопротивлением, достигающим на низкой частоте нескольких мегаом, а на средней и высокой частотах — нескольких десятков или сотен килоом в зависимости от серии.

Для сравнения укажем, что биполярные транзисторы имеют значительно меньшее входное сопротивление, обычно близкое к 1…2 кОм, и лишь ступени на составном транзисторе могут иметь большее входное сопротивление. В этом со-состоит большое преимущество полевых транзисторов перед биполярными.

полевые транзисторы

На рис. 2 показаны условные обозначения полевых транзисторов со встроенным каналом и р-n переходом, а также указаны и типовые значения напряжения смещения. Выводы обозначены в соответствии с первыми буквами названий электродов.

Характерно, что для транзисторов с р-каналом напряжение на стоке относительно истока должно быть отрицательным, а на затворе относительно истока — положительным, а для транзистора с n-каналом — наоборот.

В промышленной аппаратуре и реже в радиолюбительской находят также применение полевые транзисторы с изолированным затвором. Такие транзисторы имеют еще более высокое входное сопротивление, могут работать на очень высоких частотах. Но у них есть существенный недостаток — низкая электрическая прочность изолированного затвора.

Для его пробоя и выхода транзистора из строя вполне достаточно даже слабого заряда статического электричества, который всегда есть на теле человека, на одежде, на инструменте.

По этой причине выводы полевых транзисторов с изолированным затвором при хранении следует связывать вместе мягкой голой проволокой, при монтаже транзисторов руки и инструменты нужно «заземлять», используют и другие защитные мероприятия.

Литература: Васильев В.А. Приемники начинающего радиолюбителя (МРБ 1072).

ТРАНЗИСТОР — это… Что такое ТРАНЗИСТОР?

  • ТРАНЗИСТОР — (от англ. transfer перенос и resistor сопротивление) трёхэлектродный полупроводниковый прибор, способный усиливать электрич. сигналы. Изобретён Дж. Бардином (J. Bardeen), У. Браттейном (W. Brattain) и У. Шокли (W. Shockley) в 1948 (Нобелевская… …   Физическая энциклопедия

  • ТРАНЗИСТОР — (от англ. transfеr переносить и резистор) полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно Si или Ge), содержащего не менее… …   Большой Энциклопедический словарь

  • ТРАНЗИСТОР — ТРАНЗИСТОР, ПОЛУПРОВОДНИКОВОЕ электронное устройство, способное усиливать электрические сигналы. В основное вещество КРЕМНИЙ или ГЕРМАНИЙ добавляется очень малое количество присадки МЫШЬЯКА или СУРЬМЫ, чтобы образовался материал типа п, в котором …   Научно-технический энциклопедический словарь

  • транзистор — филдистор, радиоприемник Словарь русских синонимов. транзистор сущ., кол во синонимов: 8 • микротранзистор (1) • …   Словарь синонимов

  • ТРАНЗИСТОР — ТРАНЗИСТОР, а, муж. 1. Полупроводниковый прибор, усиливающий, генерирующий и преобразующий электрические колебания. 2. Портативный радиоприёмник с такими приборами. | прил. транзисторный, ая, ое (к 1 знач.). Т. приёмник. Толковый словарь Ожегова …   Толковый словарь Ожегова

  • транзистор — транзистор, мн. транзисторы, род. транзисторов (неправильно транзистора, транзисторов) …   Словарь трудностей произношения и ударения в современном русском языке

  • транзистор — Электронный прибор на основе полупроводникового кристалла, имеющий три или более вывода, предназначенный для генерирования и преобразования электрических колебаний. [РД 01.120.00 КТН 228 06] Тематики магистральный нефтепроводный транспорт EN… …   Справочник технического переводчика

  • ТРАНЗИСТОР — (1) полупроводниковый (см.), предназначенный для усиления, генерирования, коммутации и преобразования электрических колебаний различных частот. Представляет собой монокристалл германия, кремния, арсенида галлия, фосфида галлия или др.… …   Большая политехническая энциклопедия

  • ТРАНЗИСТОР — полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не… …   Энциклопедия Кольера

  • Транзистор — Дискретные транзисторы в различном конструктивном оформлении …   Википедия

  • Транзистор — (от англ. transfer переносить и resistor сопротивление)         электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрических колебаний. Изобретён в… …   Большая советская энциклопедия

  • объясните на русском простом языке зачем нужны транзисторы

    на примере выключателя люстры, коллектор «собирает» напряжение, и если оно у него есть — готов отдать, но нужно дождаться когда соизволит пошевелиться база, это твой палец, которым ты жмешь на кнопку, эмиттер — ждет их обоих, но всё одно, если есть кому, тут же отдаст. в данном случае лампочке. один из режимов работы транзистора.

    он не усиливает сигнал он его пропускает из одного проводочка в другой если есть напряжение на третьем.. если напряжения нет то он не пропускает — своеобразный выключатель получается. это если простым языком.

    Для этого есть книга, Транзистор это просто, стр на 160!)))

    Ты сфотал прошлй век, такие уже не используют….

    Транзи́стор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора — изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде. В полевых и биполярных транзисторах управление током в выходной цепи осуществляется за счёт изменения входного напряжения или тока. Небольшое изменение входных величин может приводить к существенно большему изменению выходного напряжения и тока. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т. п.). В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). Другой важнейшей отраслью электроники является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т. п.), где, напротив, биполярные транзисторы почти полностью вытеснены полевыми.

    транзистор это = кран, включатель\выключатель а это вещи весьма нужные ведь руками не все можно что то сдвинуть\остановить так, водопроводный кран удобен тем, что не надо трубу затыкать пальцем или пробкой включатель\выключатель, в нашем случае — ТРАНЗИСТОР — удобен тем, что не надо электрические провода держать руками, ведь это смертельно мало того, ТРАНЗИСТОР работает и как водопроводный кран, регулирующий напор воды мало кран открыл — вода капает, сильно кран открыл — струя именно возможность умножить свои силы и отличает человека от обезьяны в самом деле, зачем пыхтеть надрываться в попытках сдвинуть огромный камень руками, если есть РЫЧАГ? зачем прыгать за бананом, если рядом валяется палка? итд итп

    По простому? Хорошо. Представь что ребенок машет рукой. А рядом стоит двух метровый жлоб и повторяет точно за ним. То есть он получил информацию и УСИЛИЛ. На транзисторе три ножки. Одна общая — вход а две другие выходы. Через вход и один из выходов проходит постоянно меняющийся сигнал (ток, напряжение называй как хочешь) слабенький например музыка. А через этот же вход но другой выход проходит БОЛЬШОЙ ток (или напряжение называй как хочешь) и вот этот большой ток будет в точности повторять изменения маленького только в большем масштабе. Во как! Надеюсь профи в электронике не сьедят меня живьем за такое обьяснение. А что поделать если они по простому не могут? Сразу начнут мозг парить пн переходами о общими коллеторами и базами. А еще стоками истоками и то что ток передается ДЫРКАМИ. Ты их не слушай а то с ума сойдешь.

    транзисторы служат для нескольких целей. Для усиления аналоговых \звуковых\ сигналов и для дискретных, т. е. включил- выключил тоже с усилением. но всяко для усиления.

    Баллистический транзистор — Википедия

    Материал из Википедии — свободной энциклопедии

    Баллистические транзисторы — собирательное название электронных устройств, где носители тока движутся без диссипации энергии и длина свободного пробега носителей намного больше размера канала транзистора. В теории эти транзисторы позволят создать высокочастотные (ТГц диапазон) интегральные схемы, поскольку быстродействие определяется временем пролёта между эмиттером и коллектором или, другими словами, расстоянием между контактами, делённым на скорость электронов. В баллистическом транзисторе скорость электронов определяется фермиевской скоростью, а не дрейфовой скоростью, связанной с подвижностью носителей тока. Для реализации такого типа транзистора необходимо исключить рассеяние на дефектах кристалла в токовом канале (включая рассеяние на фононах), что можно достичь только в очень чистых материалах, таких как гетероструктура GaAs/AlGaAs. Двумерный электронный газ, сформированный в GaAs квантовой яме, обладает высокой подвижностью при низкой температуре и соответственно большей, чем в других материалах, длиной свободного пробега, что позволяет создавать при помощи электронной литографии устройства, где траекторией электронов можно управлять с помощью затворов или зеркально рассеивающих дефектов, хотя обычный полевой транзистор тоже будет работать как баллистический (при достаточно малых размерах). Баллистические транзисторы также созданы на основе углеродных нанотрубокПерейти к разделу «#Углеродные нанотрубки», где благодаря отсутствию обратного рассеяния (длина свободного пробега увеличивается до линейного размера трубки) рабочие температуры даже выше, чем в случае с GaAs.

    Транспорт в одностенных металлических нанотрубках баллистический, но до 2003 года использовать нанотрубки при создании баллистических транзисторов не получалось, поскольку не было известно хорошего материала для омического контакта. Между никелем (титаном) и одностенной металлической углеродной нанотрубкой формируется барьер Шоттки. Эту проблему удалось решить благодаря использованию палладия (для p-типа проводимости), который обладает большой работой выхода и лучшей смачиваемостью (однородное распределение палладия по нанотрубке, в отличие от платины)[1]. Такие транзисторы работают при комнатной температуре, хотя при работе в одномодовом режиме сопротивление транзистора в открытом состоянии не меньше, чем 6 кОм.

    Вместо требующего большу́ю мощность управления, полного запирания затвором потока множества медленных электронов, как это делается в обычных полевых транзисторах, в баллистических транзисторах применяется изменение направления ускоряющихся быстрых одиночных электронов электромагнитными силами, требующее значительно меньшую мощность управления. Под действием электрического поля медленные электроны из материала токоподводящего электрода переходят в тонкий сверхпроводящий слой полупроводника транзистора. Медленные электроны, вошедшие в полупроводник, ускоряются электрическим полем схемы на всём пути в полупроводнике. Летящие в тонкой плёнке полупроводника с большой скоростью быстрые электроны не сталкиваются с атомами полупроводника и образуют двумерный электронный газ (не молекулярный). Затем ускоряющиеся электроны отклоняются электрическим или магнитным полем управляющих электродов и направляются по одному из путей. При двух путях, один из путей соответствует логическому «0», а другой — логической «1». Затем быстрые электроны сталкиваются или со стенкой одного из путей или с клиновидным отражателем (дефлектором) отражающими электроны границей полупроводника и донаправляются ими в нужное русло. Название «баллистический» было выбрано для отражения свойства отдельных электронов проходить тонкоплёночный сверхпроводящий слой полупроводника баллистического транзистора без столкновений с атомами полупроводника, действуя в полупроводнике, как двухмерный электронный газ.[2].

    Первыми баллистическими устройствами были баллистические двухполупериодные выпрямители[3], сделанные из InGaAs–InP гетероструктуры и детектировавшие (выпрямлявшие) переменный ток частотой до 50 ГГц.

    В сверхпроводящей тонкой плёнке полупроводника с названием 2-Dimention Electron Gas (2-DEG, 2DEG) на подложке электронным лучом удаляются ненужные части полупроводника, оставшаяся часть полупроводника является баллистическим двухполупериодным выпрямителем, а при добавлении управляющих электродов — баллистическим дифференциальным усилителем.

    Перейти к разделу «#Углеродные нанотрубки» Схемы дифференциального усилителя на двух полевых транзисторах (слева) и дифференциального усилителя на интегральной баллистической паре (справа) (резисторы R, R1 и R2 — внешние и подключаются к выводам Vout+ и Vout-)

    Преимуществами являются меньшие размеры, отсутствие дробового шума при низкой температуре[4], меньшая потребляемая мощность и более высокая (терагерцы) частота переключений. Эта технология была впервые разработана в Рочестерском Университете (Штат Нью-Йорк, США), в котором был создан исследовательский прототип, остающийся понятийным до сего времени. Прототип был сделан в Cornell Nanofabrication Facility[5], входящей в партнёрство NNIN НИО США, работающих в области нанотехнологий, с поддержкой Office of Naval Research[2].

    Этот прототип подобен интегральным дифференциальным парам транзисторов, что определяет возможные области его применения (дифференциальные входные каскады операционных усилителей, компараторов, логические схемы, подобные ЭСЛ, эмиттерно-связанные триггеры Шмитта и др.).

    Составной транзистор — это… Что такое Составной транзистор?

    Условное обозначение составного транзистора

    Составной транзистор (транзистор Дарлингтона) — объединение двух или более биполярных транзисторов[1] с целью увеличения коэффициента усиления по току[2]. Такой транзистор используется в схемах работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс.

    Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора, (иногда ошибочно называемого «супербета»[3], у мощных транзисторов (например — КТ825) ≈1000 и у маломощных транзисторов (типа КТ3102 и т. п.) ≈50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

    Схема Дарлингтона

    Принципиальная схема составного транзистора

    Изобретение одного из видов такого транзистора является делом рук инженера-электрика Сидни Дарлингтона (Sidney Darlington).

    Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

    Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dIб=dIб1, получаем:

    dIэ1=(1+β1)dIб=dIб2;

    dIк=dIк1+dIк21dIб2[(1+β1)dIб].

    Деля dIr на dIб, находим результирующий дифференциальный коэффициент передачи:

    βΣ121β2

    Поскольку всегда , можно считать:

    βΣ≈β1β2.

    Следует подчеркнуть, что коэффициенты и могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1+β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2=Iэ1)[4].

    Схема Шиклаи

    Каскад Шиклаи, эквивалентный n-p-n транзистору

    Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи также иногда называемое комплементарным транзистором Дарлингтона[5]. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности(p-n-p и n-p-n). Пара Шиклаи ведет себя как n-p-n-транзистор c большим коэффициентом усиления. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

    Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера.

    Достоинства и недостатки составных транзисторов

    Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

    Достоинства составного транзистора:

    • Высокий коэффициент усиления по току.
    • Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

    Недостатки составного транзистора:

    • Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.
    • Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).
    • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

    Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

    Примечания

    1. В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, IGBT), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами.
    2. Достигнуть повышения значения коэффициента усиления можно также уменьшив толщину базы, но это представляет определенные технологические трудности.
    3. Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт малой толщины базы, а не за счёт составного включения. Примером таких транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).
    4. Степаненко И.П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
    5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2

    Составной транзистор — это… Что такое Составной транзистор?

    Условное обозначение составного транзистора

    Составной транзистор (транзистор Дарлингтона) — объединение двух или более биполярных транзисторов[1] с целью увеличения коэффициента усиления по току[2]. Такой транзистор используется в схемах работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс.

    Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора, (иногда ошибочно называемого «супербета»[3], у мощных транзисторов (например — КТ825) ≈1000 и у маломощных транзисторов (типа КТ3102 и т. п.) ≈50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

    Схема Дарлингтона

    Принципиальная схема составного транзистора

    Изобретение одного из видов такого транзистора является делом рук инженера-электрика Сидни Дарлингтона (Sidney Darlington).

    Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

    Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dIб=dIб1, получаем:

    dIэ1=(1+β1)dIб=dIб2;

    dIк=dIк1+dIк21dIб2[(1+β1)dIб].

    Деля dIr на dIб, находим результирующий дифференциальный коэффициент передачи:

    βΣ121β2

    Поскольку всегда , можно считать:

    βΣ≈β1β2.

    Следует подчеркнуть, что коэффициенты и могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1+β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2=Iэ1)[4].

    Схема Шиклаи

    Каскад Шиклаи, эквивалентный n-p-n транзистору

    Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи также иногда называемое комплементарным транзистором Дарлингтона[5]. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности(p-n-p и n-p-n). Пара Шиклаи ведет себя как n-p-n-транзистор c большим коэффициентом усиления. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

    Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера.

    Достоинства и недостатки составных транзисторов

    Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

    Достоинства составного транзистора:

    • Высокий коэффициент усиления по току.
    • Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

    Недостатки составного транзистора:

    • Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.
    • Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).
    • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

    Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

    Примечания

    1. В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, IGBT), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами.
    2. Достигнуть повышения значения коэффициента усиления можно также уменьшив толщину базы, но это представляет определенные технологические трудности.
    3. Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт малой толщины базы, а не за счёт составного включения. Примером таких транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).
    4. Степаненко И.П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
    5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2

    Составной транзистор — это… Что такое Составной транзистор?

    Условное обозначение составного транзистора

    Составной транзистор (транзистор Дарлингтона) — объединение двух или более биполярных транзисторов[1] с целью увеличения коэффициента усиления по току[2]. Такой транзистор используется в схемах работающих с большими токами (например, в схемах стабилизаторов напряжения, выходных каскадов усилителей мощности) и во входных каскадах усилителей, если необходимо обеспечить большой входной импеданс.

    Составной транзистор имеет три вывода (база, эмиттер и коллектор), которые эквивалентны выводам обычного одиночного транзистора. Коэффициент усиления по току типичного составного транзистора, (иногда ошибочно называемого «супербета»[3], у мощных транзисторов (например — КТ825) ≈1000 и у маломощных транзисторов (типа КТ3102 и т. п.) ≈50000. Это означает, что небольшого тока базы достаточно для того, чтобы составной транзистор открылся.

    Схема Дарлингтона

    Принципиальная схема составного транзистора

    Изобретение одного из видов такого транзистора является делом рук инженера-электрика Сидни Дарлингтона (Sidney Darlington).

    Составной транзистор является каскадным соединением нескольких транзисторов, включенных таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка первого транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого при работе транзисторов в активном режиме приблизительно равен произведению коэффициентов усиления первого и второго транзисторов:

    Покажем, что составной транзистор действительно имеет коэффициент β, значительно больший, чем у его обоих компонентов. Задавая приращение dIб=dIб1, получаем:

    dIэ1=(1+β1)dIб=dIб2;

    dIк=dIк1+dIк21dIб2[(1+β1)dIб].

    Деля dIr на dIб, находим результирующий дифференциальный коэффициент передачи:

    βΣ121β2

    Поскольку всегда , можно считать:

    βΣ≈β1β2.

    Следует подчеркнуть, что коэффициенты и могут различаться даже в случае однотипных транзисторов, поскольку ток эмиттера Iэ2 в 1+β2 раз больше тока эмиттера Iэ1 (это вытекает из очевидного равенства Iб2=Iэ1)[4].

    Схема Шиклаи

    Каскад Шиклаи, эквивалентный n-p-n транзистору

    Паре Дарлингтона подобно соединение транзисторов по схеме Шиклаи (Sziklai pair), названное так в честь его изобретателя Джорджа К. Шиклаи также иногда называемое комплементарным транзистором Дарлингтона[5]. В отличие от схемы Дарлингтона, состоящей из двух транзисторов одного типа проводимости, схема Шиклаи содержит транзисторы разной полярности(p-n-p и n-p-n). Пара Шиклаи ведет себя как n-p-n-транзистор c большим коэффициентом усиления. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Q2 рекомендуется включать резистор с небольшим сопротивлением. Такая схема применяется в мощных двухтактных выходных каскадах при использовании выходных транзисторов одной полярности.

    Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства и большую неискаженную мощность в нагрузке, а также позволяет значительно уменьшить эффект Миллера.

    Достоинства и недостатки составных транзисторов

    Высокие значения коэффициента усиления в составных транзисторах реализуются только в статическом режиме, поэтому составные транзисторы нашли широкое применение во входных каскадах операционных усилителей. В схемах на высоких частотах составные транзисторы уже не имеют таких преимуществ — граничная частота усиления по току и быстродействие составных транзисторов меньше, чем эти же параметры для каждого из транзисторов VT1 и VT2.

    Достоинства составного транзистора:

    • Высокий коэффициент усиления по току.
    • Cхема Дарлингтона изготавливается в виде интегральных схем и при одинаковом токе рабочая поверхность кремния меньше, чем у биполярных транзисторов. Данные схемы представляют большой интерес при высоких напряжениях.

    Недостатки составного транзистора:

    • Низкое быстродействие, особенно перехода из открытого состояния в закрытое. По этой причине составные транзисторы используются преимущественно в низкочастотных ключевых и усилительных схемах, на высоких частотах их параметры хуже, чем у одиночного транзистора.
    • Прямое падение напряжения на переходе база-эмиттер в схеме Дарлингтона почти в два раза больше чем в обычном транзисторе, и составляет для кремниевых транзисторов около 1,2 — 1,4 В (не может быть меньше, чем удвоенное падение напряжения на p-n переходе).
    • Большое напряжение насыщения коллектор-эмиттер, для кремниевого транзистора около 0,9 В (по сравнению с 0,2 В у обычных транзисторов) для маломощных транзисторов и около 2 В для транзисторов большой мощности (не может быть меньше чем падение напряжения на p-n переходе плюс падение напряжения на насыщенном входном транзисторе).

    Применение нагрузочного резистора R1 позволяет улучшить некоторые характеристики составного транзистора. Величина резистора выбирается с таким расчётом, чтобы ток коллектор-эмиттер транзистора VT1 в закрытом состоянии создавал на резисторе падение напряжения, недостаточное для открытия транзистора VT2. Таким образом, ток утечки транзистора VT1 не усиливается транзистором VT2, тем самым уменьшается общий ток коллектор-эмиттер составного транзистора в закрытом состоянии. Кроме того, применение резистора R1 способствует увеличению быстродействия составного транзистора за счёт форсирования закрытия транзистора VT2. Обычно сопротивление R1 составляет сотни Ом в мощном транзисторе Дарлингтона и несколько кОм в малосигнальном транзисторе Дарлингтона. Примером схемы с эмиттерным резистором служит мощный n-p-n — транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

    Примечания

    1. В отличие от биполярных, полевые транзисторы не используются в составном включении. Объединять полевые транзисторы нет необходимости, так как они и без того обладают чрезвычайно малым входным током. Однако существуют схемы (например, IGBT), где совместно применяются полевые и биполярные транзисторы. В некотором смысле, такие схемы также можно считать составными транзисторами.
    2. Достигнуть повышения значения коэффициента усиления можно также уменьшив толщину базы, но это представляет определенные технологические трудности.
    3. Супербе́та (супер-β) транзисторами называют транзисторы со сверхбольшим значением коэффициента усиления по току, полученным за счёт малой толщины базы, а не за счёт составного включения. Примером таких транзисторов может служить серия КТ3102, КТ3107. Однако их также можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316).
    4. Степаненко И.П. Основы теории транзисторов и транзисторных схем. — 4-е изд., перераб. и доп. — М.: Энергия, 1977. — С. 233, 234. — 672 с.
    5. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Пер. с. англ. — 4-е изд., перераб. и доп. — М.: Мир, 1993. — Т. 1. — С. 104, 105. — 413 с. — 50 000 экз. — ISBN 5-03-002337-2

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *