Как проверить полевой моп (mosfet) — транзистор цифровым мультиметром — интернет-журнал «электрон» выпуск №5
Модуль измерения электролитических конденсаторов (+ C и ESR)
Для проверки электролитических конденсаторов был собран узел по схеме (рис.3):
Как и в предыдущей схеме, на вход (резистор R1) подается сигнал с движка переключателя частот генератора-делителя (схема рис.1), при этом схему можно включать параллельно с предыдущим модулем. Резистор R1 подбирается в зависимости от типа транзистора Т1 и чувствительности используемой измерительной головки. В отличие от других модулей, здесь требуется пониженное стабильное питание 1,2 — 1,8 В (схема такого стабилизатора будет приведена ниже, на рис.6). При измерениях полярность подключения конденсаторов к клеммам «+Сх» и «Общ» не имеет значения, а измерения можно проводить без выпайки конденсаторов из схемы. Перед началом измерений прибор калибруется, то есть стрелка устанавливается на нулевую отметку шкалы резистором R4.
Узел измерения ESR содержит отдельный генератор на 100 кГц, собранный на МС типа 561ЛА7 (ЛЕ5), по такой же схеме, как и задающий генератор на рис.1. Можно, конечно же, использовать и уже имеющуюся частоту 100 кГц, которая присутствует на нашем основном генераторе с делителями частоты. Но при пользовании прибором оказалось гораздо удобнее иметь независимый генератор для этого модуля, так как это упрощает коммутацию.
Здесь частота может быть в пределах 80-120 кГц, поэтому применение кварца не требуется. От величины ESR подключенного к клеммам конденсатора зависит ток, протекающий через обмотку I трансформатора ( он намотан на ферритовом кольце диаметром 15 — 20 мм. Марка феррита роли не играет, но, возможно, число витков первичной обмотки нужно будет подкорректировать. Поэтому лучше будет сначала намотать обмотку II, а первичную — сверху неё).
Переменное напряжение 100 кГц, наведённое во вторичной обмотке, выпрямляется диодом VD5 и подаётся на измерительную головку (см. модуль индикации на рис.4). Диоды VD3, VD4 нужны для защиты стрелочной головки от перегрузки и могут быть любые, а VD1, VD2 также желательно применить германиевые.
В этой схеме при измерениях также не важна полярность подключения конденсаторов и измерять параметры конденсаторов можно прямо в схеме, без выпайки. Пределы измерения задаются при настройке и их можно менять в широких пределах подстроечником R5, от десятых долей Ома, до нескольких Ом.
Примечание: при измерении ESR конденсаторов ЛЮБЫМ прибором важно учитывать влияние сопротивления измерительных щупов и проводов от клемм «ESR» и »Общ». Они должны быть как можно короче и большого сечения
Если этот модуль будет расположен вблизи с другим источником импульсных сигналов (например рядом с генератором рис.1), возможен срыв генерации узла на МС. Поэтому этот узел (измерения «ESR»), лучше собрать на отдельной небольшой плате и поместить в экран (из жести, например), соединённый с общим проводом. Питание микросхемы измерителя ESR может быть как и у предыдущих схем.
Величины типовых (максимально допустимых) значений ESR различных конденсаторов даны ниже в таблице (позаимствованно из открытых источников).
Как проверить полевой транзистор?
В норме сопротивление между любыми выводами ПТ бесконечно велико.
И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.
Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).
Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.
Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.
Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.
Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.
Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.
В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.
В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.
При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.
Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.
Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.
В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.
В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).
Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.
Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.
Кстати, купить полевые транзисторы можно .
Неисправности, вызванные окислением контактов из-за вытекшей жидкости из термопрокладок
Вытекшая из термопрокладок жидкость — это не только безвредное загрязнение видеокарт, но и потенциальная возможность получить замыкание из-за налипшей токопроводящей грязи, а также ухудшение проводимости на участках, окисленных вытекшей субстанцией. Так как при обычной установке карт в риге жидкость вытекает в основном на контакты видеокарты, вставляющиеся в райзер, то начинаются проблемы, связанные с тем, что материнская плата не может определить видеокарту и подвисает на этапе определения устройств PCI-E в BIOS. Иногда из-за плохих контактов появляются ошибки с кодом 43, операционная система после загрузки часто подвисает, даже при отсутствии разгона появляются ошибки с определением температуры и т.д.
Обычно такая неисправность вызывается использованием некачественных термопроводящих прокладок (серые) и слишком высокой температурой при эксплуатации видеокарт (более 70 градусов).
Проверка на наличие коротких замыканий в контрольных точках на плате видеокарты в этом случае показывает нормальное сопротивление, BIOS у видеокарт также в норме. Контакты разъемов при этом покрыты окислами, имеют следы коррозии.
Устранение неисправности в этом случае заключается в очистке/восстановлении контактов. Очистку контактов можно делать спиртом (медицинским или изопропиловым), бензином «Калоша».
Для профилактики таких неисправностей не стоит превышать рабочую температуру видеокарты выше 65 градусов, при проведении профилактической чистки менять засохшие серые термопрокладки на более качественные.
Как проверить полевой транзистор?
MOSFET: N-канальный полевой транзистор.
S — исток, D — сток, G — затвор
На мультиметре выставляем режим проверки диодов.
Транзистор закрыт: сопротивление — 502 ома
MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor. Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), тестер показывает 502 Ома — полевой транзистор закрыт (Рис.4). Далее, не снимая черного щупа, касаемся (Рис.5) красным щупом ближнего вывода (G — затвор) и опять возвращаем его на дальний (S — исток), тестер показывает 0 Ом: полевой транзистор открылся прикосновением (Рис.6).
Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.
В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
Тестером можно подтвердить наличие этого диода.
0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».
А теперь можно проверить и затвор.
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.
Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив
Тестер покажет почти нулевое сопротивление.
Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!
Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.
Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.
P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.
В современной радиоэлектронной аппаратуре все чаще находят применение полевые транзисторы. Как доказала практика, конструктивная надежность данных компонентов обуславливает высокую практичность работоспособности всевозможной бытовой техники. В процессе ремонтных работ, которые все же случаются, возникает необходимость тестирования того или иного компонента на предмет его исправности. Например, как проверить полевой транзистор, который выпаяли из неисправного блока, вышедшего из строя аппарата. Самый простой метод проверки с применением стрелочного тестера. У исправного транзистора между всеми его выводами прибор показывает бесконечное сопротивление, кроме современных, имеющих диод между стоком и истоком, который и ведет себя, как обычный диод. Второй способ проверки с применение современного цифрового мультиметра. Черный щуп, являющийся отрицательным, прикладываем к выводу стока транзистора. Красный щуп, являющийся положительным, прикладываем к выводу истока. Мультиметр показывает прямое падение напряжения на внутреннем диоде около 450мВ, в обратном – бесконечное сопротивление. В данный момент транзистор закрыт. Что мы делаем далее. Не снимая черного щупа, прикладываем красный к затвору, и вновь возвращаем на вывод истока. Мультиметр показывает 280мВ, т.е. он открылся прикосновением. Теперь, если прикоснуться затвора черным щупом, не отпуская красного щупа и вернуть его на вывод стока, то полевой транзистор закроется, и прибор снова покажет падение напряжения на диоде. Диагностика произведена, в результате чего мы убедились в исправности тестируемого транзистора. Для образца мы применили N-канальный полевой транзистор. Чтобы проверить исправность P-канального транзистора, необходимо, всего лишь, поменять местами щупы мультиметра.
ЗЫ: Взял где взял, обобщил и добавил немного. (не отвлекайтесь и откликайтесь кому это не по зубам) — Копипаста? Да! . обобщённая и дополненная.
Простите за качество некоторых картинок (чем богаты).
Схема проверки полевого транзистора n-канального типа мультиметром
Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.
Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.
Порядок проверки исправности n-канального транзистора мультиметром следующий:
- Снять статическое электричество с транзистора.
- Перевести мультиметр в режим проверки диодов.
- Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
- Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
При смене полярности щупов мультиметра величина показаний не должна измениться.
Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.
По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.
Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго. Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п.п. 7,8).
Конструкция и принцип работы
Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.
Фото — мпринципиальные схемы включения
Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.
Фото — конструкция
Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).
Фото — виды биполярных триодов
По виду подключения и уровню пропускаемого питания, они делятся на:
- Высокочастотные;
- Низкочастотные.
По мощности на:
- Маломощные;
- Средней мощности;
- Силовые (для управления необходим транзисторный драйвер).
Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.
Фото — пример
Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.
Существуют следующие ключевые виды работы:
- Активный режим;
- Отсечка;
- Двойной или насыщения;
- Инверсионный.
Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.
Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.
Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.
Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.
Видео: как работает биполярные транзисторы
Дополнения
Составной транзистор Т1 (КТ829, схема рис.3) можно заменить двумя транзисторами меньшей мощности по типовой схеме, а для питания 1,4 В можно собрать простой стабилизатор на одном транзисторе. Эти схемы показаны на рис. 5 и 6 соответственно.
Кремниевые диоды VD1-VD3 здесь применены в качестве стабилитрона, примерно на 1,5 В. В отличие от стабилитрона, включать диоды следует в прямом направлении.
При желании можно дополнить прибор модулем для быстрой проверки работоспособности и цоколёвки транзисторов. С его помощью можно проверять любые биполярные транзисторы, а также полевые транзисторы малой и средней мощности. Причём биполярные транзисторы можно проверять без выпайки их из схемы. Схема представлена на рис.7.
В зависимости от применённых светодиодов нужно подобрать сопротивление R5 по оптимальной яркости их свечения (или же поставить дополнительный гасящий резистор в цепь питания 9 В, а вообще эта схема работает с питающим напряжением, начиная от 2 В). Когда к клеммам «Э», «Б», «К» ничего не подключено, оба светодиода мигают (частота миганий может быть изменена номиналами конденсаторов С1 и С2). При подключении к клеммам исправного транзистора, один из светодиодов погаснет (в зависимости от типа его проводимости p-n-p / n-p-n). Если транзистор неисправен, то оба светодиода будут мигать (внутренний обрыв) или оба погаснут (замыкание).
Прибор с применением всех перечисленных модулей был собран в корпусе размерами 140х110х40 мм и позволяет проверить практически все основные типы радиодеталей чаще всего используемых на практике, с достаточной для радиолюбителей точностью. Используется несколько лет и нареканий не вызывает.
Какие случаются неисправности
Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.
Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь
При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.
Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.
Назначение выводов
Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):
- Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
- К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
- Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
- В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.
Проверка диода в прямом направлении
На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.
Проверка диода в обратном направлении
- Дальше осуществляется проверка работоспособности транзистора.
Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.
Открытие канала
Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.
Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.
Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.
Работа полевого МДП транзистора
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:
- Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.
- Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов
Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Генератор образцовых частот
Использована широко распространенная схема генератора на цифровых элементах, которая при всей своей простоте обеспечивает набор необходимых рабочих частот с хорошей точностью и стабильностью, не требуя при этом никаких настроек.
Рисунок 1. | Генератор 1 МГц с делителями частоты. |
Генератор на микросхеме К561ЛА7 (или ЛЕ5) синхронизирован кварцевым резонатором в цепи обратной связи, определяющим частоту сигнала на его выходе (выводы 10, 11), равную в данном случае 1 МГц (Рисунок 1). Сигнал генератора последовательно проходит через несколько каскадов делителей частоты на 10, собранных на микросхемах К176ИЕ4, СD4026 или любых других. С выхода каждого каскада снимается сигнал с частотой в десять раз меньшей входной частоты. C помощью любого переключателя на шесть положений сигнал с генератора или с любого делителя можно вывести на выход. Правильно собранная из исправных деталей схема работает сразу и не нуждается в настройке.. Конденсатором С1 при желании можно в небольших пределах подстраивать частоту. Схема питается напряжением 9 В.
Оцените статью:Проверка IGBT и MOSFET транзисторов — Меандр — занимательная электроника
Порядок проверки IGBT и MOSFET такой.
Шаг 1. Необходимо убедится в отсутствии коротких замыканий между затвором и эмиттером IGBT (затвором и истоком MOSFET), прозвонив сопротивления между соответствующими выводами в обоих направлениях.
Шаг 2. Необходимо убедится в отсутствии коротких замыканий между коллектором и эмиттером IGBT (истоком и стоком MOSFET), прозвонив сопротивления между соответствующими выводами в обоих направлениях. Перед этим необходимо перемычкой закоротить выводы затвора и эмиттера транзистора. Но лучше будет не закорачивать затвор и эмиттер транзистора, а просто зарядить входную емкость затвор-эмиттер отрицательным напряжением. Для этого кратковременно и одновременно прикасаемся щупом «СОМ» мультиметра к затвору, а щупом «V/Ω/f» к эмиттеру.
Некоторые IGBT транзисторы, как и MOSFET, имеют встроенный встречно-параллельный диод, подключенный катодом к коллектору транзистора, а анодом к эмиттеру (
Шаг 3. Теперь убедимся в функциональности транзистора. Для этого необходимо зарядить входную емкость затвор-эмиттер положительным напряжением. Для этого кратковременно и одновременно прикасаемся щупом «V/Ω/f» мультиметра к затвору, а щупом «СОМ» к эмиттеру. После этого проверяем состояние перехода коллектор-эмиттер транзистора, подключив щуп «V/Ω/f» мультиметра к коллектору, а щуп «СОМ» к эмиттеру. На переходе коллектор-эмиттер должно падать небольшое напряжение величиной 0,5—1,5 В.
Меньшее значение напряжения соответствует низковольтным транзисторам, а большее высоковольтным.
Величина падения напряжения должна быть стабильной, по крайней мере, в течение нескольких секунд, что говорит об отсутствии утечки входной емкости транзистора.
Иногда напряжения мультиметра может не хватить для того чтобы полностью открыть IGBT транзистор (характерно для высоковольтных IGBT). В этом случае входную емкость транзистора можно зарядить от источника постоянного напряжения величиной 9—15 В. Зарядку лучше производить через резистор величиной 1—2 кОм.
Узнаем как проверить транзистор
В мире современной техники никак не обойтись без транзисторов. Они входят в различные электронные устройства, их можно встретить в телефонах и радиоприёмниках, в компьютерах и автомобилях. Иногда возникает необходимость в проверке их работоспособности, и тогда полезно знать, как проверить транзистор и что для этого необходимо. Материал, представленный в статье, освещает данный вопрос.
Транзисторы и их виды
Данное устройство является электронным прибором, который применяют в электросхемах с целью усиления исходного сигнала. Его изготавливают из полупроводниковых материалов. Существует 2 вида транзисторов: полевые и биполярные, которые управляются не напряжением, а током. Кроме этого они могут быть маломощными и мощными, низкочастотными и высокочастотными. Они отличаются по размерам и оформлению корпусов.
Часто при упоминании транзисторов подразумевают биполярные их разновидности, изготавливающиеся из германия или кремния. Биполярными их называют потому, что они работают с электронами (носителями зарядов) и дырками. Одну из областей транзистора, расположенную с краю, именуют эмиттером, промежуточную – базой, а другую, также находящуюся с краю – коллектором. Так 3 электрода создают 2 p-n перехода: коллекторный, расположенный между коллектором и базой, и эмиттерный, который находится между эмиттером и базой. Транзистор может быть во «включенном» состоянии и «выключенном», и переход между ними осуществляется при помощи электрических сигналов.
Основное предназначение транзисторов – генерирование, усиление и преобразование электрических колебаний. Но, как и всякое техническое устройство, транзистор может выходить из строя. Необходимо знать, как проверить транзистор, чтобы результат был достоверным. Для этой цели используют мультиметры.
Проверка транзистора тестером
Мультиметр (он же тестер) – это специальный комбинированный прибор, с помощью которого проводят электроизмерительные работы. Он объединяет несколько функций: как минимум соединяет в себе амперметр, вольтметр, Омметр. Есть аналоговые и цифровые приборы, лёгкие, переносные и стационарные, которые сочетают в себе много возможностей.
Мультиметр – устройство, которое подскажет, как проверить транзистор и сделать это наглядно. Тестер позволяет проводить прозвонку при измерении низкого сопротивления в цепи, при этом раздается сигнализация, звуковая или световая.
Перед рассмотрением процесса, как проверить транзистор тестером, важно знать, что эти приборы делятся на 2 типа в соответствии с расположением слоев с различной проводимостью. Так существуют полупроводники с электронной проводимостью (p-n-p), и полупроводники с дырочной проводимостью (p-).
Для проверки прямого сопротивления перехода, к базе подключить «минус» мультиметра, а к эмиттеру и коллектору по очереди подключать «плюс». При замере обратного сопротивления поменять положение «минуса» и «плюса». Для измерения сопротивления перехода p-n-p повторить те же действия, только предварительно поменяв полярность. Во время проверки переходов с базы на эмиттер и коллектор они должны прозваниваться только в 1 сторону.
Так как проверить транзистор мультиметром можно, но это не дает стопроцентной гарантии в исправности прибора, для большей уверенности следует провести его проверку в активном режиме. В таком случае результат будет более достоверным.
И всё-таки: как проверить транзистор и быть уверенным в результатах? У биполярного устройства для удобства можно посчитать за аналоги диода каждый из его переходов, предварительно проверив их исправность. Есть мощные транзисторы, которые включают между эмиттером и коллектором демпферный встроенный диод, и между базой и эмиттером – защитный резистор. При любой полярности мультиметра на таком транзисторе будет сопротивление от тридцати до пятидесяти Ом и прозваниваться между эмиттером и коллектором он будет как диод. Это свидетельствует об исправности детали.
Проверка MOSFET транзистора / Блог им. woodman / Radistor.ru
MOSFET транзисторы в последнее время все больше и больше набирают популярность. Они могут послужить хорошей заменой реле и биполярным транзисторам.Но как проверить работоспособность этих радиокомпонетов?
Для этого нам потребуется всего один прибор — тестер.
У каждого радиолюбителя (даже начинающего) он обязательно должен быть!
В подавляющем большинстве тестеров есть режим «прозвонки», совмещенный с проверкой падения напряжения диодов.
Вот в этот режим мы и переводим тестер.
Теперь посмотрим на схему N-канального MOSFET транзистора.
В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».
А теперь можно проверить и затвор.
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.
Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив сток-исток.
Тестер покажет почти нулевое сопротивление.
Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!
Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.
Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.
P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.
Как правильно прозвонить транзистор — flagman-ug.ru
Как проверить различные типы транзисторов мультиметром?
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499
Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Проверка биполярного транзистора мультиметром
Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.
С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
Рисунок 3. «Диодные аналоги» переходов pnp и npn
Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
- Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
- Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
- Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
- Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
- Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Рис 4. Полевые транзисторы (N- и P-канальный)
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850
Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Рис 6. Эквивалентная схема транзистора КТ827А
Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистора
Обозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить однопереходной транзистор
В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.
Рис 8. КТ117, графическое изображение и эквивалентная схема
Проверка элемента осуществляется следующим образом:
Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.
Как проверить транзистор мультиметром, не выпаивая их схемы?
Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.
Как проверить транзистор?
Проверка транзистора цифровым мультиметром
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.
Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.
Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс ( + ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс ( + ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп ( красный ) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).
Сначала подключаем красный ( + ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.
Как проверить биполярный транзистор
NPN и PNP транзисторы
Биполярный транзистор состоит из двух PN-переходов. Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.
На рисунке ниже структурная схема PNP-транзистора:
Схематическое обозначение PNP-транзистора в схеме выглядит так:
где Э – это эмиттер, Б – база, К – коллектор.
Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N.
Вот его схематическое изображение на схемах
Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать в этой статье.
Проверяем исправный транзистор
Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется “datasheet”. Прямо так и забиваем в поисковике “C4106 datasheet”. Имейте ввиду, что импортные транзисторы пишутся английскими буквами.
Нас больше всего интересует распиновка выводов транзистора, а также его вид: NPN или PNP. То есть нам надо узнать, какой вывод что из себя представляет. Для данного транзистора нам надо узнать, где у него база, где эмиттер, а где коллектор.
А вот и схемка распиновки из даташита:
Теперь нам понятно, что первый вывод – это база, второй вывод – это коллектор, ну а третий – эмиттер
Возвращаемся к нашему рисунку
Мы узнали из даташита, что наш транзистор NPN проводимости.
Ставим мультиметр на прозвонку и начинаем проверять “диоды” транзистора. Для начала ставим “плюс” к базе, а “минус” к коллектору
Все ОК, прямой PN-переход должен обладать небольшим падением напряжения. Для кремниевых транзисторов это значение 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.
Проверяем переход база-эмиттер, поставив на базу “плюс” , а на эмиттер – “минус”.
Видим снова падение напряжения прямого PN перехода. Все ОК.
Меняем щупы местами. Ставим “минус” на базу, а “плюс” на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эмиттер.
Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору – здоров.
Проверяем неисправный транзистор
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с вами рассмотрели выше. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.
Проверка транзистора с помощью транзисторметра
Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр
Заключение
В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два и более транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь иностранная микросхема.
Проверка исправности биполярного транзистора мультиметром
Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.
Необходимый минимум сведений
Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.
Виды транзисторов и принцип работы
Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.
Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.
У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.
Внешний вид биполярного транзистора средней мощности и его цоколевка
То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.
Как проверить транзистор мультиметром со встроенной функцией
Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.
Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.
Мультиметр с функцией проверки транзисторов
Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.
Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:
- Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
- Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.
Проверка биполярного PNP транзистора мультиметром
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Как проверить транзистор мультиметром без выпайки
Любая электронная схема состоит из полупроводниковых элементов. Наиболее распространённые из них транзисторы. Хотя в последнее время выпускаемые элементы отличаются надёжностью, но всё же нарушения в работе электронных устройств могут привести к повреждению полупроводника.
Перед тем как проверить транзистор мультиметром, необязательно выпаивать его из схемы, но для получения точных результатов лучше это сделать.
Принцип работы и виды транзисторов
Транзисторы — это полупроводниковые приборы, служащий для преобразования электрических величин. Основное их применение заключается в усилении сигнала и способность работать в режиме ключа. Они выпускаются с тремя и более выводами. Существует три вида приборов:
- биполярные;
- полевые;
- биполярные транзисторы с изолированным затвором.
Бывает ещё составной транзистор. Он подразумевает электрическое объединение в одном корпусе нескольких приборов одного типа. Такие сборки называются парой Дарлингтона и Шиклаи, также имеют три вывода.
Биполярное устройство
Разделяются по своему типу. Выпускаются как электронного, так и дырочного типа проводимости. В своей конструкции используют n-p или p-n переход. Дырочного типа транзисторы состоят из двух крайних областей p проводимости, и средней n проводимости. Электронного типа наоборот. Средняя зона называется базой, а примыкающие к ней области коллектором и эмиттером. Каждая зона имеет свой вывод.
Промежуток между граничащими переходами очень мал, не превышает микрометры. При этом содержание примесей в базе меньше, чем их количество в других зонах прибора. Графически биполярный прибор обозначается для PNP стрелкой внутрь, а NPN стрелкой наружу, что показывает направление тока.
Перед тем как проверить биполярный транзистор мультиметром, нужно понимать, какие физические процессы происходят в приборе. Основа работы устройства лежит в способности p-n перехода пропускать ток в одном направлении. При подаче питания на одном переходе возникает прямое напряжение, а на другом обратное. Область перехода с прямым напряжением имеет малое сопротивление, а с обратным — большое.
Принцип работы заключается в том, что прямой сигнал влияет на токи эмиттера и коллектора. При увеличении величины прямого сигнала возрастает ток в области прямого подключения. Носители заряда перемещаются в зону базы, что приводит к увеличению тока и в обратной области подключения. Возникает объёмный заряд и электрическое поле, способствующее втягиванию в зону обратного подключения заряда другого знака. В базе происходит частичное уничтожение зарядов противоположного знака, процесс рекомбинации. Благодаря чему и возникает ток базы.
Эмиттером называется область прибора, служащая для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика. На схеме элемент обозначается латинскими буквами VT или Q.
Полевой прибор
Полевые транзисторы были изобретены в 1952 году. Основное их достоинство в высоком входном сопротивлении по сравнению с биполярными приборами. Такие элементы часто называются униполярными или мосфетами. Разделяют их по способу управления, на транзисторы с управляющим p-n переходом и с изолированным затвором.
Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом.
Работа прибора с управляющим каналом, например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение. Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией.
Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком. Общепринятое название прибора — MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается. Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда.
Транзистор с индуцированным каналом, открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора. При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора.
Биполярный тип с изолированным затвором
Устройства такого типа называются IGBT (Insulated Gate Bipolar Transistor). Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.
К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. В результате транзистор IGBT отпирается, падение напряжения на PN переходе уменьшается. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым.
Как пользоваться цифровым мультиметром
Для того чтобы провести измерения, тестер подключается набором проводов к измеряемому элементу. На одном конце каждого из проводов находится штекер, предназначенный для установки в гнездо измерителя, а на другом — контактный щуп. Порядок измерения электронным мультиметром в общем виде можно представить в виде следующих действий:
- Включить устройство, нажав на кнопку ON/OFF.
- Вставить штекера проводов в соответствующие гнёзда на панели. COM — общее гнездо для подключения щупа. V/Ω — положительное гнездо для подключения щупа.
- Поворотный выключатель установить в положение диодной прозвонки «o)))».
- Прижать измерительные щупы к выводам прибора.
- Снять показания с экрана.
Кроме метода прозвонки, если позволяет тестер, можно провести измерения полупроводникового элемента установив переключатель в положение hFE. В таком случае провода и щупы не понадобятся. Но этот метод подходит только для биполярных приборов.
Проверка биполярного прибора тестером
Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.
На начальном этапе выясняется тип проводимости элемента. Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.
Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор.
Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление, будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное. Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор.
Например, исследуя биполярный низкочастотный транзистор NPN типа MJE13003, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:
- Переключить мультиметр в режим прозвонки.
- Стать положительным щупом на базу прибора.
- Вторым концом прикоснуться к коллектору прибора, сопротивление должно быть около 800 Ом.
- Второй конец переставить на эмиттер прибора, сопротивление должно составить 820 Ом.
- Поменять полярность. На базу стать отрицательным щупом, а к коллектору и эмиттеру прикоснуться поочерёдно вторым концом. Сопротивление должно быть бесконечным.
Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора. Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы.
Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h31. В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE. При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.
Определение целостности полевого радиоэлемента
Такой тип электронного прибора не получится проверить без выпайки из схемы. Способ проверки как для n-канального, так и для p-канального, а также IGBT вида, одинакова. Разница лишь в полярности, прикладываемой к выводам. Например, исправность F3NK80Z n-канального прибора выясняется по следующему алгоритму:
- Мультиметр переключается в режим прозвонки.
- Щуп общего провода прикасается к стоку прибора, а положительный — к истоку.
- Щуп переставляется с истока на затвор. Переход в транзисторе откроется.
- Возвращаем щуп на исток. Значение сопротивления должно быть маленьким, прибор, если у него есть звуковая прозвонка, запищит.
- Для закрытия прибора щуп общего провода соединяется с затвором, при этом положительный щуп с истока не снимается.
- Устанавливается положения щупов согласно первому пункту.
Для проверки p-типа проводимости последовательность операций остаётся такой же, за исключением полярности щупов, которая меняется на обратную.
Для мощных полевых приборов может случиться так, что напряжения тестера не хватит для его открытия. Так как прозвонить такой полевой транзистор мультиметром не удастся, понадобиться применить дополнительное питание. В таком случае в разрыв через сопротивление 1–2 кОм подаётся постоянное напряжение равное 12 вольт.
Существуют такие радиоэлементы, например, КТ117а, имеющие две базы. Их относят к однопереходным приборам. В современных устройствах они не получил широкого применения, но порой встречаются. У них нет коллектора.
Такие транзисторы тестером проверяются только на отсутствие короткого замыкания между выводами. Убедиться в его работе можно воспользовавшись схемой генератора.
Тестирование составного полупроводника
Такой элемент по своей конструкции напоминает микросхему. Так как проверить микросхему на работоспособность мультиметром практически невозможно, так нельзя и проверить составной прибор, используя только тестер. Для тестирования понадобится собрать несложную схему.
В ней применяется источник постоянного напряжения 10−14 вольт. Нагрузкой цепи служит лампочка. В качестве резистора используется элемент мощностью 0,25 Вт. Его сопротивление рассчитывается по формуле h31*U/I, где:
- h31— коэффициент усиления;
- U — напряжение источника питания;
- I — ток нагрузки.
Для проверки на базу подаётся положительный сигнал от источника питания. Лампочка светится. При смене полярности лампочка гаснет. Такое поведение говорит о работоспособности прибора.
Таким образом, узнав, как прозвонить транзистор мультиметром, можно легко вычислить неисправный элемент в схеме, даже его не выпаивая.
Как проверить IGBT транзистор мультиметром? | ASUTPP
В современных электротехнических устройствах различного назначения в качестве ключевого элемента широко применяются IGBT-транзисторы. В процессе восстановления работоспособности вышедшей из строя техники возникает задача проверки исправности этого компонента. Данную процедуру можно выполнить непосредственно в домашних условиях с помощью обычного мультиметра. Предполагается, что проверяемый транзистор перед этим выпаян из платы.
Рисунок 1. Эквивалентная схема IGBT (слева) и биполярного (справа) транзисторовРисунок 1. Эквивалентная схема IGBT (слева) и биполярного (справа) транзисторов
Процедуры определения исправности биполярного и IGBT транзисторов основаны на сходстве эквивалентных схем этих элементов, рисунок 1. Для их реализации контролируется величина сопротивления между электродами. При работе с IGBT-элементом принимаются во внимание определенные особенности, которые связаны со структурой его кристалла.
Подготовительные операции и проверка исправности затворных цепей
Далее рассматривается наиболее сложный случай, который представлен на рисунке 2, – наличие у транзистора дополнительного шунтирующего диода. Необходимость его введения определяется соображения увеличения стойкости полупроводниковой структуры к броскам напряжения обратной полярности.
Начало проверки исправности транзистора начинается с определения его цоколевки и внутренней структуры. Для этого следует обратиться к техническим данным, которые можно найти на сайтах производителей и поставщиков элементной базы.
Первая группа измерений направлена на проверку исправности переходов эмиттер – затвор и коллектор — затвор. Для этого мультиметр переключают в режим измерений сопротивления. Вне зависимости от полярности прикладываемого испытательного напряжения прибор должен показывать разрыв цепи (прямое следствие изолированного исполнения затвора).
Рисунок 2. Величины межэлектродных сопротивлений транзистора IGBTРисунок 2. Величины межэлектродных сопротивлений транзистора IGBT
Проверка исправности канала коллектор-эмиттер
Перед проверкой основного канала прохождения рабочего тока необходимо полностью закрыть транзистор. Для этого достаточно на короткое время (1 с) накоротко замкнуть затвор с эмиттером так, как это показано на схеме рисунка 3. Данная процедура выполняется как перемычкой, так и обычным пинцетом.
Рисунок 3. Принудительный перевод IGBT-транзистора в закрытое состояние замыканием затвора и эмиттераРисунок 3. Принудительный перевод IGBT-транзистора в закрытое состояние замыканием затвора и эмиттера
Далее мультиметром замеряется сопротивление между эмиттером и коллектором. С учетом наличия внутреннего шунтирующего диода при одном их вариантов подключения щупов прибор должен показывать конечное значение, тогда как при изменении полярности на противоположное показания мультиметра должны свидетельствовать о разрыве цепи прохождения тока.
Финишная проверка
Прозвонку мультиметром целесообразно дополнить сборкой простейшей однокаскадной схемой, изображенная на рисунке 4. Она представляет собой транзисторный ключ, питаемый от любого подходящего для этого источника. При открытом выключателе затвор через резистор с сопротивлением от 1 до 10 кОм привязан к минусу источника и транзистор полностью закрыт. После замыкания ключа Кл на затвор поступает потенциал от источника +12 В, который переводит транзистор в открытое состояние и лампочка Л загорается.
Функции ключа может выполнять как выключатель, так и обычная перемычка.
Рисунок 4. Схема для комплексной проверки исправности IGBT-транзистораРисунок 4. Схема для комплексной проверки исправности IGBT-транзистора
Транзистор полевой — проверка исправности — Транзисторы полевые — РАДИОДЕТАЛИ — Каталог статей
Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, малому сопротивлению в открытом состоянии, находят широкое применение в блоках питания компьютеров, мониторов, телевизоров, видеомагнитофонов и другой радиоэлектронной аппаратуры, постепенно, но неуклонно вытесняя транзисторы биполярные.
1 Меры предосторожности при работе с полевыми транзисторами
Чтобы предотвратить выход из строя транзистора во время проверки, очень важно соблюдать правила безопасности. Полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет.
При отсутствии браслета достаточно коснуться рукой батареи отопления или любых заземленных предметов, так как электростатические заряды между телами при их разделении распределяются пропорционально массе тел. Поэтому для их «обезвреживания» бывает достаточно прикоснуться даже к любой большой незаземленной металлической поверхности.
При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.
2 Определение цоколёвки полевых транзисторов
Полевые транзисторы, выполненные по технологии МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник) в англоязычной литературе носят наименование MOSFET(Metal-Oxide-SemiconductorField-EffectTransistor). Расположение выводов (цоколёвка) полевых транзисторов Затвор (Gate) – Сток (Drain) – Исток (Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными (datasheet). Их можно найти в инете, например на сайте alldatasheet.com.
Основные типы корпусов полевых транзисторов импортного производства
Корпус типа D²PAK, так же известен как TO-263-3. Встречается в основном на пожилых платах, на современных используется редко.
Корпус типа DPAK, так же известен как TO-252-3. Наиболее часто используется, представляет собой уменьшенный D²PAK.
Корпус типа SO-8.Встречается на материнских платах и видеокартах, чаще на последних. Внутри может скрываться один или два полевых транзистора.
Корпус типа SuperSO-8, он же — TDSON-8. тличается от SO-8 тем, что 4 вывода соединены с подложкой транзистора, что облегчает температурный режим. Характерен для продуктов фирмы Infineon. Легко заменяется на аналог в корпусе SO-8
Корпус типа IPAK так же известен как TO-251-3. По сути — полный аналог DPAK, но с полноценной второй ногой. Такой тип транзисторов очень любит использовать фирма Интел на ряде своих плат
Для электронных компонентов иностранного производства справочные данные беруться из Даташит (Datasheet — в дословном переводе «бумажка с информацией) — официального документа от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д. Datasheet обычно представляет собой файл в формате PDF.
3 Основные характеристики N-канального полевого транзистора
Различных параметров важных, и не очень, у полевых транзисторов много. Мы подойдем к вопросу с прикладной точки зрения и ограничимся рассмотрением необходимых нам практически параметров.
· Vds — Drain to Source Voltage — максимальное напряжение сток-исток.
· Vgs — Gate to Source Voltage — максимальное напряжение затвор-исток.
· Id — Drain Current — максимальный ток стока.
· Vgs(th) — Gate to Source Threshold Voltage — пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток.
· Rds(on) — Drain to Source On Resistance — сопротивление перехода сток-исток в открытом состоянии.
· Q(tot) — Total Gate Charge — полныйзарядзатвора.
Параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать.
4 Система маркировки полевых транзисторов
Рассмотрим на примере транзистора 20N03. Это означает, что он рассчитан на напряжение (Vds) ~30V и ток (Id) ~20A. Буква N означает, что это N-канальный транзистор. Но из любого правила есть исключения, так, например, фирма Infineon указывает в маркировке Rds, а не максимальный ток.
· IPP15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO220
· IPB15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO263(D²PAK)
· SPI80N03S2L-05 — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=5.2mΩ Id=80A TO262
· NTD40N03R — On Semi Power MOSFET 45 Amps, 25 Volts Rds=12.6mΩ
· STD10PF06 — ST STripFET™ II Power P-channel, MOSFET 60V 0.18Ω 10A IPAK/DPAK
Итак, в случае маркировки XXYZZ мы можем утверждать, что XX — или Rds, или Id Y — тип канала ZZ – Vds.
Проверку можно проводить стрелочным омметром (предел х100), но более удобно это делать цифровым мультиметром в режиме тестирования P-N переходов (предел, отмеченный значком ). Показываемое мультиметром значение сопротивления на этом пределе численно равно напряжению на P-N переходе в милливольтах.
Рассмотрим проверку на примере транзистора 20N03:
У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от полярности прикладываемого напряжения (щупов).
В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод.
Черным (отрицательным) щупом прикасаемся к подложке — СТОКУ (D), красным (положительным) — к выводу ИСТОКА (S). Мультиметр показывает прямое падение напряжения на внутреннем диоде (500 — 800 мВ). В обратном смещении мультиметр должен показывать бесконечно большое сопротивление, транзистор закрыт.
Далее, не снимая черного щупа, касаемся красным щупом вывода ЗАТВОРА (G) и опять возвращаем его на вывод ИСТОКА (S). Мультиметр показывает близкое к нулю значение, причём при любой полярности приложенного напряжения — полевой транзистор открылся прикосновением. На некоторых цифровых мультиметрах возможно значение будет не 0, а 150…170 мВ
Если теперь черным щупом коснуться вывода ЗАТВОРА (G), не отпуская красного щупа, и вернуть его на вывод подложки — СТОКА (D), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения на диоде. Это верно для большинства N-канальных полевых транзисторов в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.
Транзистор выполнил всё, что от него требовалось. Диагноз — исправен.
Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.
Методика проверки исправности полевых транзисторов с достаточной стапенью правильности показана в видеоролике от магазина Чип и Дип
Тестирование полевого МОП-транзистора — Как провести эффективный тест
Тест MOSFET — это тип транзистора, который использует напряжение для регулирования степени проводимости. Относится к полевым транзисторам.
Уровень приложенного напряжения определяет изменение проводимости полевого МОП-транзистора. Это свойство делает устройство пригодным для регулирования и усиления сигналов так же, как переключатель.
Тем не менее, полевой МОП-транзистор — сложное устройство, которое также сложно настроить.Таким образом, проверка его эффективности является сложной задачей. Если вы хотите узнать, как проверить полевой МОП-транзистор, мы подробно расскажем вам.
1. Когда нам нужно тестировать полевой МОП-транзистор?Рисунок 1: Детали полевого МОП-транзистора
Тестирование полевого МОП-транзистора перед его подключением к цепи — важная вещь для защиты других компонентов. МОП-транзистор состоит из трех основных частей. Они включают сток, исток и затвор. При использовании неисправного полевого МОП-транзистора происходит замыкание стока на затвор.Это вредно для схемы.
Результирующим эффектом этого короткого замыкания может быть обратная связь по напряжению стока, которая также влияет на вывод затвора. Достигнув этого вывода, напряжение далее проходит в схему драйвера через резистор затвора. Эта трансмиссия может привести к дальнейшему повреждению схемы привода. Предотвращение таких повреждений является причиной того, что тестирование полевого МОП-транзистора является обязательным перед его использованием, чтобы избежать повреждения всей схемы.
2. Компоненты, необходимые для тестирования полевого МОП-транзистораРисунок 2: Цифровой мультиметр
При тестировании полевого МОП-транзистора сначала необходимо собрать необходимые компоненты.Наиболее часто используемый MOSFET — это N-канальный MOSFET, также известный как NMOS. Для тестирования N-канального MOSFET требуются следующие элементы:
- Источник питания 5 В постоянного тока
- Один измерительный прибор — это может быть омметр или мультиметр с диапазоном сопротивления.
- Один мультиметр с диодным режимом
- A Q1 MOSFET
- Один резистор 100E
- Один резистор 10 кОм
- Один резистор 220E
- Один светодиод общего назначения
- Один кнопочный переключатель
Вы можете использовать два основных метода для проверки эффективности полевого МОП-транзистора. К ним относятся: использование измерительного прибора и электронных компонентов.
Метод 1: Использование измерительного прибора
Рисунок 3: Цифровой мультиметр
Этот метод включает проверку работоспособности полевого МОП-транзистора с помощью омметра или мультиметра. Для этого варианта вы можете использовать любой из следующих трех основных способов.
- Провести проверку диодов.Для этой операции потребуется мультиметр с диодным режимом.
- Испытание на сопротивление.
- Вы также можете использовать мультиметр и омметр в диодном режиме.
Метод 2: Тестирование полевого МОП-транзистора с использованием электронных компонентов
Этот метод требует сборки тестовой схемы для проверки правильности работы полевого МОП-транзистора.
Рисунок 4: Электрическая плата
Метод 3: Тестирование полевого МОП-транзистора с помощью измерительного прибора
Рисунок 5: Измерительный прибор
Тестирование полевого МОП-транзистора с диодом
Провести этот тест несложно, так как нужен только мультиметр с диодным режимом.МОП-транзистор имеет внутренний диод. Поэтому в NMOS основной диод обычно проходит от истока к стоку. В этом случае анод находится у истока, а катод — у стока.
Полученное значение зависит от типа диода. Когда полевой МОП-транзистор находится в режиме прямого смещения, падение напряжения на диоде в разной степени меньше. Для большинства полевых МОП-транзисторов прямое падение составляет примерно от 0,4 до 0,9 В.
Когда NMOS имеет обратное смещение, диод работает как цепь.Вероятно, неисправен диод, показания которого выходят за пределы этого диапазона. Диод, который тоже показывает ноль на мультиметре, тоже неисправен.
Рисунок 6: Мультиметр показывает нулевое показание
Ниже приведены некоторые из важнейших этапов проверки проводимости полевого МОП-транзистора с помощью проверки диодов:
- Сначала убедитесь, что мультиметр находится в режиме диода.
- Для тестирования NMOS подключите красный датчик мультиметра к истоку MOSFET, а черный датчик — к стоку.При этом основной диод находится в режиме прямого смещения. В этом режиме мультиметр должен показывать показания от 0,4 В до 0,9 В. Если мультиметр показывает нулевое значение или отсутствие показаний, этот полевой МОП-транзистор неисправен.
- Поменяйте местами подключения датчиков, чтобы создать разрыв цепи. Мультиметр не должен давать никаких показаний в этом режиме, так как диод теперь имеет обратное смещение. Если мультиметр показывает любое показание, отличное от нуля, прибор неисправен.
Проверка сопротивления MOSFET
Рисунок 7: Омметр
Когда нет запускающего импульса на выводе затвора полевого МОП-транзистора, его сопротивление от стока к истоку высокое.Тест сопротивления использует это свойство для проверки неисправности полевого МОП-транзистора. Этот тест также прост, и для его выполнения требуется только омметр. Ниже приведены некоторые из основных этапов проведения теста на сопротивление:
- Правильно работающий полевой МОП-транзистор должен указывать на высокое сопротивление от стока к истоку независимо от подключения щупов омметра. Следовательно, полярность подключения не имеет значения для результата теста.
- Вы также можете использовать омметр вместо мультиметра для проверки сопротивления стока к истоку.Переведите мультиметр в режим сопротивления, чтобы начать тест. Вы должны получить показания, указывающие на чрезвычайно высокое сопротивление. Сопротивление полевого МОП-транзистора настолько велико, что это значение должно быть в мегаомах.
- Сравните полученное значение с таблицей данных MOSFET. Если вы обнаружите, что значение сопротивления меньше, чем указано в таблице данных или равно нулю, это неисправно. Измеритель или омметр должны показывать сопротивление, указанное в таблице данных.
Тестирование полевого МОП-транзистора — с помощью омметра и мультиметра в диодном режиме
Рисунок 8: MOSFET на материнской плате
При проверке эффективности полевого МОП-транзистора с помощью этого метода запускается терминал затвора устройства.В свою очередь, это приводит к тому, что сопротивление стока к истоку становится очень низким. Фактическое значение, до которого падает это сопротивление, зависит от типа полевого МОП-транзистора.
Вы можете запустить полевой МОП-транзистор с помощью мультиметра, поскольку у него есть источник питания, обычно батарея. Поэтому, когда вы устанавливаете измеритель в диодный режим, он будет действовать как источник питания полевого МОП-транзистора. Тем не менее, вам необходимо принять некоторые меры предосторожности.
Убедитесь, что пороговое напряжение полевого МОП-транзистора не слишком велико.Пороговое напряжение должно быть в пределах диапазона мультиметра для оптимальной работы.
Рисунок 9: Различные модели полевых МОП-транзисторов
Ниже приведены некоторые ключевые этапы выполнения этого теста:
- Используйте тест сопротивления, чтобы определить сопротивление между стоком и истоком. Было бы полезно, если бы вы записали значение сопротивления стока до истока полевого МОП-транзистора в выключенном состоянии. Вы будете использовать это значение для справки на следующем шаге.
- Запуск полевого МОП-транзистора. Для этого сначала убедитесь, что мультиметр находится в диодном режиме. Затем подключите черный зонд к стоку полевого МОП-транзистора, а затем поместите красный зонд на затвор на несколько секунд. Этот процесс запустит вентиль, и MOSFET должен включиться через этот запуск.
- С помощью омметра проверьте сопротивление между стоком и истоком полевого МОП-транзистора. Следует ожидать очень низкого показания омметра, которое на этом этапе стремится к нулю. Если вы получите такое показание, значит, полевой МОП-транзистор находится в хорошем состоянии.
- Затем вам нужно проверить таблицу данных MOSFET, чтобы подтвердить сопротивление стока до истока, когда устройство включено. Сравните значение в таблице данных устройства с вашими показаниями. Если ваши показания значительно отличаются от значений, указанных в таблице данных устройства, полевой МОП-транзистор неисправен. Кроме того, если ваши показания совпадают с показаниями полевого МОП-транзистора в закрытом режиме, у него есть неисправности.
- Если вы обнаружите, что показание, когда полевой МОП-транзистор находится во включенном режиме, соответствует значению в таблице данных, вам необходимо провести дополнительные тесты.Сначала разрядите полевой МОП-транзистор, закоротив сток или затвор. Можно использовать палец или перемычку.
- Наконец, вам необходимо проверить сопротивление от стока к истоку, используя метод сопротивления. Это показание должно быть аналогично предыдущему показанию устройства в выключенном состоянии. Если это не так, MOSFET неисправен.
Метод 2: Тестирование полевого МОП-транзистора с использованием электронных компонентов.
Этот метод требует сборки тестовой схемы для проверки правильности работы полевого МОП-транзистора.
Рисунок 10: Электронная плата
Этот метод гарантирует получение наиболее точных результатов при проверке эффективности полевого МОП-транзистора. Тем не менее, сначала вам нужно будет собрать схему, выполнив следующие действия:
- Создайте импульс запуска строба. Светодиод, подключенный к нагрузке, покажет вам, включен или выключен MOSFET.
- Когда схема находится в рабочем состоянии, сопротивление затвор-исток полевого МОП-транзистора будет действовать как сопротивление понижения.Он также защитит полевой МОП-транзистор от повреждений из-за разряда паразитной емкости полевого МОП-транзистора.
- Сначала, когда кнопка находится в нормальном состоянии, сопротивление стока к истоку слишком велико. Таким образом, в этом состоянии светодиод должен оставаться выключенным, показывая, что полевой МОП-транзистор выключен. Если светодиод горит, этот МОП-транзистор неисправен.
- Когда вы нажмете кнопку, сопротивление стока до истока упадет до очень низкого уровня. Светодиод должен загореться, указывая на то, что полевой МОП-транзистор включен, если светодиод не горит, пока полевой МОП-транзистор неисправен в этом режиме.
- Когда вы отпустите кнопку, вы разорвете цепь, и светодиод должен погаснуть. Если после отпускания контроллера светодиод продолжает гореть, этот полевой МОП-транзистор также неисправен.
Рисунок 11: Компоненты тестирования полевого МОП-транзистора
Существует несколько мер предосторожности, которые необходимо предпринять при тестировании полевого МОП-транзистора. В их числе:
- Убедитесь, что входной источник питания больше или эквивалентен пороговому напряжению полевого МОП-транзистора.
- Вы также не должны превышать напряжение стока и напряжение затвора полевого МОП-транзистора выше напряжения пробоя.
- Для используемого светодиода требуется примерно 20 мА. Поэтому вам следует выбрать подходящий резистор ограничителя тока для питания светодиода.
- Вы всегда должны использовать затвор для источника сопротивления в ваших соединениях. Это поможет избежать шума на затворе, а также облегчит разряд паразитной емкости устройства.
- Вы также должны всегда использовать малый диапазон резисторов на затворе MOSFET.Оно должно быть примерно от 10 до 500 градусов.
- Наконец, при тестировании с помощью метода тестовой схемы убедитесь, что вы используете схему переключения низкого уровня. В противном случае MOSFET не будет работать.
Как подчеркивается в этой статье, вам необходимо проверить, неисправен ли полевой МОП-транзистор, прежде чем использовать его. Неисправный может потенциально вызвать множество проблем в цепи.
Мы изложили все важные идеи по тестированию полевого МОП-транзистора.Таким образом, вы можете использовать любой из вышеперечисленных методов. Любой из этих методов должен работать для вас эффективно и без сбоев. Мы также готовы предоставить экспертные консультации по МОП-транзисторам и другим электронным устройствам. Свяжитесь с нами, и наша команда специалистов ответит на ваши вопросы в кратчайшие сроки. Мы здесь чтобы помочь вам.
Видео: тестирование полевого МОП-транзистора
MOSFET тестирование
Содержание страницы
Простой тест
Для правильного тестирования полевого МОП-транзистора требуется много дорогостоящего тестового оборудования, но если у вас есть подходящий цифровой мультиметр, вы можете провести довольно точный тест «годен / не годен», который не даст результатов практически для всех неисправных полевых МОП-транзисторов.
В настоящее время большинство мультиметров имеют диапазон проверки диодов. На большинстве мультиметров (но далеко не на всех!) Это дает около 3-4 В на тестируемом устройстве. Этого достаточно, чтобы включить большинство полевых МОП-транзисторов — хотя бы частично, и достаточно для тестирования. Счетчики, которые используют более низкое испытательное напряжение холостого хода (иногда 1,5 В), не будут выполнять этот тест!
Итак: подключите минус измерителя к источнику полевого МОП-транзистора. Это указано стрелкой на рисунке выше, на котором показаны самые популярные полевые МОП-транзисторы TO220.
Держите полевой МОП-транзистор за корпус или язычок, если хотите, не имеет значения, касаетесь ли вы металлического корпуса, но будьте осторожны, не касайтесь выводов, пока вам это не понадобится.
Сначала прикоснитесь плюсом счетчика к воротам.
Теперь переместите положительный датчик измерителя в сток. У вас должно быть низкое чтение. Емкость затвора полевого МОП-транзистора была заряжена измерителем, и устройство было включено.
Когда плюс измерителя все еще подключен к сливу, коснитесь пальцем между истоком и затвором (и стоком, если хотите, это не имеет значения). Затвор будет выпущен через ваш палец, и показания счетчика должны стать высокими, указывая на непроводящее устройство.
Такой простой тест не может быть на 100%, но он полезен и обычно бывает адекватным.
Тест лучше
То, что на самом деле измеряет приведенный выше тест, — это напряжение отсечки: самое высокое напряжение, которое может быть приложено к затвору полевого МОП-транзистора без того, чтобы он начал проводить. Схема ниже показывает лучший способ.
Есть два нажимных переключателя, один — переключающий, второй — нажимной (нормально разомкнутый). Пользуюсь парочкой микровыключателей. Он использует тест диодов мультиметра, или вы можете использовать любой источник питания или батарею на 9 В с резистором, включенным последовательно с MOSFET, для ограничения тока.
Когда оба переключателя находятся в нормальном положении, конденсатор C1 заряжается до напряжения холостого хода диодного тестера. Емкость конденсатора не критична, 10н-100н в порядке. При нажатии Sw1 заряженный конденсатор отключается от выводов счетчика и снова подключается к затвору полевого МОП-транзистора. МОП-транзистор должен полностью включиться, поэтому тестер диодов укажет на короткое замыкание.
Выпуск Sw1. Затвор полевого МОП-транзистора все еще заряжен. Только утечка может разрядить его, поэтому полевой МОП-транзистор должен еще некоторое время оставаться проводящим.
Нажмите SW2, чтобы замкнуть затвор полевого МОП-транзистора на исток, чтобы разрядить его. Измеритель должен показать обрыв цепи.
В качестве альтернативы подключите конденсатор к измерителю + ve через диод, чтобы позволить конденсатору заряжаться. Теперь, когда конденсатор подключен к затвору, полевой МОП-транзистор будет проводить, но диод не позволит проводящему МОП-транзистору разрядить конденсатор.
Мертвые полевые МОП-транзисторы
Умирающие полевые МОП-транзисторы часто выделяют пламя, особенно в бытовой электронике.Один участник группы пользователей сказал, что полевой транзистор в MOSFET расшифровывается как Fire Emitting Transistor. В коммерческом оборудовании, где полевые МОП-транзисторы защищены от грубых злоупотреблений, может произойти «мягкий» отказ, и полевой МОП-транзистор может выглядеть нормально, но быть бесполезным: однако обычно, если они выглядят нормально, так оно и есть!
Когда полевые МОП-транзисторы выходят из строя, они часто коротко замыкают сток на затвор. Это может вернуть напряжение стока на затвор, где, конечно, если оно подается (через резисторы затвора) в схему управления, может быть, взорвав его. Он также попадет в любые другие параллельные ворота MOSFET, взорвав их.Итак — если полевые МОП-транзисторы умерли, проверьте также и драйверы! Вероятно, это лучшая причина для добавления стабилитрона затвор-исток: стабилитрон выходит из строя при коротком замыкании, а правильно подключенный стабилитрон может ограничить повреждение в случае отказа! 4QD также использует субминиатюрные резисторы затвора, которые имеют тенденцию выходить из строя при этой перегрузке, отключая затвор неисправного МОП-транзистора.
Если вы хотите узнать больше о полевых МОП-транзисторах в управлении двигателем, посетите наш раздел схем.
Подходящие счетчики
Подходят далеко не все марки / модели счетчиков, поэтому я перечислю здесь известные мне.Если вы можете добавить в этот список, свяжитесь со мной.Марка | Модель | Test V | Комментарии |
---|---|---|---|
Avo — Megger | M5091 | 4.0 v | Диапазон звукового сигнала. |
Fluke | 77iii | ||
LEM — Heme | LH 630 | 3.0 v | Измеритель тока на эффекте Холла |
Информация о странице
© 1998-2012 4QD
Автор Пейджа: Ричард Торренс
URI документа: www.4qdtec.com /mostest.html
Последнее изменение: вторник, 26 октября 2021 г., 16:54:54 UTC
Тестирование полевого транзистора — тест на утечку и отказ
Советы по тестированию полевого транзистора — тестовый полевой элемент с аналоговым мультиметром
Правильный способ проверки МОП-транзистора — использовать аналоговый мультиметр. Стенд Mosfet для области металлооксидных полупроводников транзистор с эффектом или мы просто назвали его фет. Импульсный источник питания и многие другие схемы используют в качестве части схемы транзисторы.Отказ МОП-транзистора и утечка в цепи довольно велики, и вам нужно знать, как точно проверить Это.
Измерительные компоненты с двумя выводами, например, резисторы, конденсаторы и диоды намного проще, чем измерить транзистор и фет, у которых есть три ножки. Многие мастера по ремонту электроники испытывают трудности особенно проверяя компоненты трех отведений. Сначала найдите распиновку затвора, стока и истока из книги по замене полупроводников или поиск по его таблице данных из поисковой системы.
Если у вас есть перекрестная ссылка или диаграмма для каждого контакта mosfet, затем используйте аналоговый мультиметр, настроенный на диапазон 10 кОм, чтобы проверить его. Предполагая, что вы тестируете N-канальный MOSFET, установите черный щуп к сливному штифту.
Коснитесь штифта затвора красным щупом, чтобы разрядить внутреннюю емкость в MOSFET. Теперь переместите красный зонд к контакту истока, пока черный зонд все еще касается дренажного штифта.Используйте свой правый палец и коснитесь затвора и сливного штифта вместе, и вы заметите, что стрелка аналогового мультиметра переместится вперед к центральному диапазону измерителя. шкала.
Коснитесь пальцем заслонки и сливного штифта.
Поднимая красный щуп с вывода источника и снова вставляя штифт источника, указатель по-прежнему останется в середине шкалы измерителя.Чтобы разрядить его, нужно поднять красный зонд и прикоснуться к нему. всего один раз на штифте ворот. Это в конечном итоге снова разрядит внутреннюю емкость.
В это время используйте красный щуп, чтобы снова коснуться вывода источника, указатель вообще не пинает, потому что вы уже разрядили его, коснувшись штифта затвора. Это хорошая характеристика МОП-транзистора. нужно потренироваться больше, взяв немного еды со скамьи или из отделения для компонентов.Как только вы узнаете секреты, протестируйте другой MOSFET так же просто, как проверить диод.
Если вы заметили, что весь результат, который вы измерили, упал в сторону нуля и не разрядится,
тогда фет считается закороченным и нуждается в замене. Тестирование полевого транзистора Fet с каналом P происходит так же, как и при проверке
N канал фет. Что вы делаете, так это переключите полярность датчика при проверке P-канала. Некоторые аналоговые мультиметры имеют диапазон 100 кОм,
Этот тип измерителя не может действительно тестировать фет из-за отсутствия батареи на 9 вольт внутри мультиметра.У этого типа измерителя не будет достаточно мощности для срабатывания МОП-транзистора. Убедитесь, что вы используете глюкометр с
переключатель диапазона раз 10 кОм.
Типичные номера деталей MOSFET с N каналом: 2SK791, K1118, IRF634, IRF. Номер детали 740 и P-канального фет-транзистора: J307, J516, IRF 9620 и т. Д. Вы также можете получить тестер mosfet на рынке и один из Известным брендом является портативный супер-крикетный транзистор sencore tf46 и тестер фет.Вы можете сделать ставку на Ebay.
Sencore TF46 Тестер транзисторов и полевых транзисторов
Какие два теста транзистора можно выполнить с помощью омметра? — MVOrganizing
Какие два теста транзистора можно выполнить с помощью омметра?
Тестирование транзисторов с помощью омметра С помощью омметра можно выполнить два теста: усиление и сопротивление перехода.
Какие два метода проверки транзистора?
Инструкции по сборке Свернуть
- Первый способ. Первый метод, который я использую чаще всего, — это светодиодный метод.
- Второй способ. Второй метод — использование диодной функции мультиметра.
- Третий способ. Третий метод проверки транзисторов — использование мультиметра с функцией проверки транзисторов.
Как проверить тип транзистора?
Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора.Подсоедините отрицательный вывод измерителя к BASE (B) транзистора. Для исправного NPN-транзистора вы должны увидеть «OL» (Превышение предела). Если вы проверяете транзистор PNP, прибор должен показать падение напряжения от 0,45 до 0,9 В.
Может ли тест транзистора быть хорошим, но плохим?
Маловероятно, что ваши транзисторы вышли из строя и все еще измеряют нормально при тестировании диодов B-E. Это может произойти в приложениях с высоким напряжением по прошествии достаточного времени, но очень необычно для кратковременных сбоев в приложениях с низким напряжением.
Как отличить транзисторы PNP от NPN?
В NPN-транзисторе положительное напряжение подается на вывод коллектора для создания тока, протекающего от коллектора к эмиттеру.В транзисторе PNP на вывод эмиттера подается положительное напряжение для создания тока, протекающего от эмиттера к коллектору.
Можете ли вы проверить МОП-транзистор в цепи?
Тестирование MosFet. Подключите «Источник» MosFet к отрицательному (-) проводу измерителя. 1) Удерживайте MosFet за корпус или язычок, но не касайтесь металлических частей тестовых щупов какими-либо другими выводами MosFet до тех пор, пока это не понадобится. 2) Сначала прикоснитесь плюсовым проводом измерителя к «воротам» MosFet.
Для чего нужен байпасный диод?
Функция обходных диодов заключается в устранении явлений горячей точки, которые могут повредить фотоэлементы и даже вызвать пожар, если свет, падающий на поверхность фотоэлементов в модуле, неоднороден.Байпасные диоды обычно размещаются на подстрочниках фотоэлектрического модуля, по одному диоду на до 20 фотоэлементов.
Сколько ватт может выдержать контроллер заряда на 20 ампер?
480 Вт
Проверить n-канальный режим улучшения MOSFET — gr33nonline
Преамбула
Как проверить n-канальный MOSET, чтобы узнать, не работает он или нет, с помощью цифрового мультиметра…
Ссылка
Процедура
- Установите цифровой мультиметр в режим проверки диодов
- Разрядите все три контакта, используя отрицательный датчик цифрового мультиметра одновременно на всех трех контактах.
- В SD должно быть диодное падение
- В DS должен быть разомкнут
- Charge Gate на мгновение — от положительного провода цифрового мультиметра, отрицательного к S — это переключит полевой МОП-транзистор на — V GS должен быть разомкнут в цепи
- В DS должен быть замкнутой цепью с низким сопротивлением (падение 400 мВ?)
- Разрядите все три контакта — это выключит MOSFET
- В DS снова должен быть разомкнут
- Наконец, также проверьте V GD , должен быть обрыв цепи
Из тестирования полевого МОП-транзистора
Эта процедура тестирования предназначена для использования с цифровым мультиметром в диапазоне проверки диодов с минимум 3.3 вольта выше д.е.т. (проверяемый диод)
Подключите «Источник» MosFet к отрицательному (-) проводу измерителя.
1) Удерживайте MosFet за корпус или язычок, но не касайтесь металлических частей тестовых щупов какими-либо другими выводами MosFet до тех пор, пока это не понадобится.
2) Сначала прикоснитесь плюсовым проводом измерителя к «воротам» MosFet.
3) Теперь переместите положительный датчик в «Слив». Вы должны получить «низкое» значение. Внутренняя емкость MosFet на затворе теперь заряжена счетчиком, и устройство «включено».
4) Пока положительный полюс измерителя все еще подключен к стоку, коснитесь пальцем между истоком и затвором (и стоком, если хотите, на данном этапе это не имеет значения). Затвор будет выпущен через ваш палец, и показания счетчика должны стать высокими, указывая на непроводящее устройство.
Такой простой тест не на 100%, но полезен и обычно адекватен.
Когда МОП-транзисторы выходят из строя, они часто замыкают сток-затвор. Это может вернуть напряжение стока на затвор, где оно, конечно, подается (через резисторы затвора) в схему управления, возможно, взорвав эту секцию.Он также попадет к любым другим параллельно включенным воротам MosFet, взорвав и их.
Итак, если MosFet умерли, проверьте и драйверы! Этот факт, вероятно, является лучшей причиной для добавления стабилитрона исток-затвор; Стабилитрон выходит из строя при коротком замыкании, а правильно подключенный стабилитрон может ограничить повреждение в случае отказа! Вы также можете добавить сверхминиатюрные резисторы затвора, которые имеют тенденцию выходить из строя при разрыве цепи (например, предохранитель) при этой перегрузке, отключая затвор неисправного MosFet.
Нравится:
Нравится Загрузка…
СвязанныеTesting MOSFET — (Часть 16/17)
MOSFET — это более часто используемые транзисторы. Они известны своей высокой скоростью переключения и высоким входным сопротивлением. Вот почему их предпочитают использовать при изготовлении интегральных схем и высокочастотных прикладных микросхем. Индивидуальные полевые МОП-транзисторы также широко используются во многих приложениях. Перед использованием полевого МОП-транзистора в схеме важно проверить, не неисправен ли он.В неисправном МОП-транзисторе сток может закоротиться на затвор. Это может вызвать обратную связь по напряжению стока на выводе затвора, и это напряжение затем будет поступать в схему драйвера через резистор затвора, который может еще больше взорвать схему драйвера. Поэтому лучше протестировать полевой МОП-транзистор, прежде чем использовать его в схеме. Поскольку N-канальные MOSFET более распространены, тестирование N-канальных MOSFET обсуждается только в этом руководстве.
Необходимые компоненты —
Фиг.1: Список компонентов, необходимых для тестера MOSFET
Методы испытаний полевого МОП-транзистора
Существует два распространенных метода тестирования полевого МОП-транзистора —
.1) С помощью измерительного прибора — в этом методе полевой МОП-транзистор проверяется с помощью мультиметра или омметра. В этом методе снова есть три способа проверить неисправный полевой МОП-транзистор —
.I) Тест диода — требуется мультиметр с режимом диода
II) Тест сопротивления — требуется омметр
III) С помощью омметра и мультиметра в диодном режиме
2) Используя основные электронные компоненты — В этом методе тестовая схема предназначена для проверки рабочего состояния полевого МОП-транзистора.
Тест диодов
В этом методе для проверки полевого МОП-транзистора требуется мультиметр с диодным режимом. Поскольку полевой МОП-транзистор имеет внутренний основной диод, в N-канальном МОП-транзисторе этот основной диод проходит от истока к стоку с анодом на истоке и катодом на стоке диода. При прямом смещении падение на диоде очень мало в зависимости от типа диода. В большинстве полевых МОП-транзисторов прямое падение на диоде составляет от 0,4 В до 0,9 В. При обратном смещении этот диод действует как разомкнутая цепь или цепь с высоким сопротивлением.Таким образом, МОП-транзистор можно проверить, исследуя проводимость через этот корпусный диод исток-сток. Выполните следующие шаги, чтобы провести тест диода —
1. Для этого теста установите мультиметр в диодный режим.
2. Для N-канального MOSFET подключите красный зонд (положительный) к истоку, а черный — к стоку (общий). Таким образом, основной диод находится в состоянии прямого смещения. Теперь на мультиметре должно быть получено показание от 0,4 В до 0,9 В (как показано на рисунке ниже).Если показание равно нулю или нет показаний, то МОП-транзистор неисправен.
Рис.2: Принципиальная схема, показывающая падение напряжения на полевом МОП-транзисторе при прямом смещении
3. Перевернув щупы измерителя, должно возникнуть состояние обрыва цепи, и на мультиметре не должно появиться никаких показаний из-за обратного смещения диода (см. Рисунок ниже). Если показание не равно нулю, МОП-транзистор неисправен.
Фиг.3: Принципиальная схема, показывающая падение нулевого напряжения на полевом МОП-транзисторе при обратном смещении
Испытание на сопротивление
В этом методе требуется омметр. Сопротивление сток-исток (Rds) полевого МОП-транзистора очень велико (в мегаомах), когда на его вывод затвора не подается пусковой импульс. Таким образом, эту функцию MOSFET можно использовать для тестирования неисправного MOSFET. Выполните следующие шаги, чтобы провести тест сопротивления —
1. Хороший полевой МОП-транзистор должен иметь высокое сопротивление (Rds) от стока до истока независимо от полярности измерительных щупов.
2. Установите измеритель в режим измерения сопротивления или с помощью омметра проверьте сопротивление стока к истоку. Показания должны иметь сопротивление в мегаомах (как показано на рисунке ниже). Сверьтесь с таблицей данных MOSFET, чтобы убедиться, что сопротивление между стоком и истоком (Rds) находится в выключенном состоянии, и сравните его с наблюдаемым значением Rds (выкл.).
Рис. 4: Принципиальная схема, показывающая высокое сопротивление сток-исток на полевом МОП-транзисторе
3.Если значение сопротивления между стоком и истоком (Rds (off)) оказывается равным нулю или меньше указанного в его техническом описании, полевой МОП-транзистор неисправен
Проверка MOSFET омметром и мультиметром в диодном режиме
В этом методе полевой МОП-транзистор проверяется срабатыванием терминала затвора. Когда срабатывает затвор полевого МОП-транзистора, сопротивление стока к истоку (Rds) полевого МОП-транзистора становится очень низким (от мегаом до ома) в зависимости от типа полевого МОП-транзистора.МОП-транзистор может быть активирован мультиметром, так как в нем есть батарея. Таким образом, он действует как источник питания, когда он установлен в диодном режиме. Но перед запуском MOSFET убедитесь, что пороговое напряжение (Vth или Vgs) MOSFET не слишком велико, что мультиметр не может обеспечить. Выполните следующие шаги, чтобы провести этот тест —
1. Проверьте сопротивление между стоком и истоком с помощью теста сопротивления, упомянутого выше. Обратите внимание на сопротивление стока к истоку, Rds (выкл.) Для справки.
2. Включите полевой МОП-транзистор, установив мультиметр в режим диода, затем прикрепите черный (отрицательный) щуп измерителя к стоку и на мгновение прикоснитесь к красному щупу к затвору. Это должно вызвать срабатывание ворот (как показано на рисунке ниже). При этом MOSFET должен включиться.
Рис. 5: Принципиальная схема, показывающая срабатывание затвора полевого МОП-транзистора
3. Возьмите омметр и проверьте сопротивление стока до истока, Rds (вкл.). На этот раз показание должно быть очень низким (ноль или приблизительно ноль), чем предыдущее показание Rds (выкл.) (Как показано на рисунке ниже).Это подтвердит, что полевой МОП-транзистор находится в хорошем состоянии. Обратитесь к таблице данных полевого МОП-транзистора, чтобы проверить значение сопротивления между стоком и истоком в состоянии Rds (вкл.) И сравнить его с наблюдаемым значением. Если наблюдаемое значение сильно отличается от указанного в таблице данных, MOSFET неисправен.
Рис. 6: Принципиальная схема, показывающая низкое сопротивление сток-исток (Rds) полевого МОП-транзистора во включенном состоянии
4.Если показание такое же, как у Rds (выкл.), То также неисправен полевой МОП-транзистор.
5. Если значение сопротивления между стоком и истоком в состоянии, Rds (вкл.) Соответствует значению, указанному в таблице данных, то для дальнейшего тестирования разрядите полевой МОП-транзистор, закоротив затвор и сток пальцем или любым другим способом. перемычка.
6. Еще раз проверьте сопротивление стока к истоку (Rds) методом сопротивления. Показание должно быть равно предыдущему показанию сопротивления стока к истоку в выключенном состоянии, Rds (off).Если показание меньше предыдущего значения Rds (выкл.), То также неисправен полевой МОП-транзистор.
Тестирование полевого МОП-транзистора с использованием основных электронных компонентов
Этот метод тестирования — один из лучших и точных способов проверки полевого МОП-транзистора. Для проведения этого теста, прежде всего, соберите схему, как показано ниже —
Рис.7: Принципиальная схема для тестирования MOSFET
Для проведения этого теста выполните следующие шаги —
1.Подайте импульс запуска строба через сопротивление R1 с помощью кнопки.
2. К нагрузке подключен светодиод (обозначенный как сопротивление R3) для визуальной индикации включения и выключения полевого МОП-транзистора.
3. В схеме сопротивление затвор-исток полевого МОП-транзистора (Rgs) действует как понижающее сопротивление, а также разряжает паразитную емкость полевого МОП-транзистора, которая защищает полевой МОП-транзистор от любых повреждений.
4. Изначально кнопка находится в нормальном состоянии, следовательно, ворота не подключены к источнику питания.В этом состоянии сопротивление стока к истоку очень велико, что подтверждается испытанием сопротивления. Таким образом, светодиод при нагрузке не должен включаться (как показано на рисунке ниже). Это указывает на то, что полевой МОП-транзистор находится в выключенном состоянии. Если светодиод горит, МОП-транзистор неисправен.
Рис. 8: Принципиальная схема, показывающая, что светодиод выключен перед срабатыванием ворот
5. Когда кнопка нажата, срабатывает затвор, и это делает сопротивление стока к истоку очень низким, приближаясь к нулю Ом.Таким образом, нагрузка должна получить все падение напряжения на ней, и это должен включить светодиод. Это будет означать, что полевой МОП-транзистор находится во включенном состоянии и работает правильно (как показано на рисунке ниже). Если светодиод остается в выключенном состоянии, это означает, что полевой МОП-транзистор неисправен.
Рис. 9: Принципиальная схема, показывающая, что светодиод включен после срабатывания затвора
6. Когда кнопка отпускается, затвор разряжается через затвор до сопротивления источника (Rgs), и светодиод снова должен погаснуть.Если он не выключается, значит, MOSFET неисправен.
7. В этой тестовой схеме светодиод потребляет ток около 20 мА, которого достаточно для приличной яркости светодиода. Для ограничения тока к нему должно быть последовательно подключено сопротивление ограничителя тока. Сопротивление нагрузки работает как сопротивление ограничителя тока в цепи.
Значение этого сопротивления можно рассчитать следующим образом —
.(входное напряжение светодиода), Vin = 5V
По закону Ома Vin = IL * RL
желаемый ток для светодиода, IL = 20 мА
Положив все значения,
5 = 0.02 * RL
RL = 250E
В зависимости от наличия, для токоограничивающего резистора принято сопротивление 220E. Итак,
RL = 220E
При тестировании полевого МОП-транзистора с использованием тестовой схемы необходимо соблюдать следующие меры предосторожности —
1. Входное питание затвора должно быть больше или равно пороговому напряжению (Vgs (the)) полевого МОП-транзистора, в противном случае он не включит полевой МОП-транзистор. Для этого обратитесь к таблице данных MOSFET в случае.
2. Не превышайте входное напряжение (напряжение стока и напряжение затвора) полевого МОП-транзистора, превышающее его напряжение пробоя, так как это может повредить полевой МОП-транзистор.
3. Обычно потребляемый ток светодиода составляет 20 мА (прибл.). Итак, выберите соответствующий резистор ограничителя тока (RL), чтобы он мог обеспечивать достаточный ток для включения светодиода.
4. Всегда используйте сопротивление затвора к истоку, чтобы избежать любого внешнего шума на затворе и разрядить паразитную емкость полевого МОП-транзистора.В противном случае полевой МОП-транзистор может быть поврежден, поскольку этот паразитный конденсатор будет продолжать заряжаться и превысит предел напряжения пробоя затвор-исток.
5. Всегда используйте низкое сопротивление резистора (от 10E до 500E) на затворе полевого МОП-транзистора. Это решит проблему звона (паразитных колебаний) и скачков напряжения в полевом МОП-транзисторе.
6. При тестировании полевого МОП-транзистора методом тестовой схемы используйте схему переключения низкого уровня (как на схеме выше).Не используйте схему переключения на стороне высокого напряжения для MOSFET, поскольку она никогда не включит MOSFET, и тогда можно будет проверить неисправный MOSFET.
Рис.10: Прототип испытательной схемы MOSFET
В следующем руководстве будет обсуждаться схема начальной загрузки для управления полевым МОП-транзистором верхнего плеча.
Видео проекта
Из архива: Electronic Projects
Тестирование N-канального MOSFET с помощью аналогового мультиметра
Правильный способ тестирования N-канального MOSFET-транзистора: использовать аналоговый мультиметр.Во-первых, найдите Врата, Водосток и Источник из книгу по замене полупроводников или выполните поиск в ее таблице данных в поисковой системе.
Если у вас есть перекрестная ссылка или диаграмма для каждого контакта полевого МОП-транзистора и аналогового мультиметра выполните следующие инструкции: —
- Для проверки установите диапазон 10 кОм.
- Положи черный Зонд к сливному штифту.
- Коснитесь булавки ворот красным зондом, чтобы разрядите внутреннюю емкость полевого МОП-транзистора.
- Теперь переместите красный зонд к выводу источника, в то время как черный Зонд все еще касается сливного штифта.
- Коснитесь пальцем штифта затвора и слива. вместе. Вы заметите, что указатель аналогового мультиметра переместится вперед шкала счетчика.
Как перепроверить?
Поднимите красный зонд с штифта источника и вставьте его снова к выводу Source, и указатель все еще останется в середине шкала счетчика. Чтобы разрядить его, вам нужно поднять красный зонд и прикоснуться к нему. всего один раз на булавке Врат.Это в конечном итоге разрядит внутреннюю снова емкость.
В это время используйте красный зонд, чтобы коснуться вывода источника. опять же, указатель вообще не пинает, потому что вы его уже разрядили прикоснувшись к штифту ворот.
Это хорошая характеристика MOSFET.
Если вы заметили, что весь результат, который вы измерили, ударил к нулю и не разряжается, тогда полевой транзистор считается закороченным и нужна замена. Тестирование полевого МОП-транзистора с каналом P происходит так же, как и при Вы проверяете N-канальный MOSFET.Что вы делаете, так это переключите полярность зонда, когда проверка канала P. Некоторые аналоговые мультиметры имеют диапазон 100 кОм, этот тип измерителя не может действительно тестировать полевой транзистор из-за отсутствия 9-вольтовой батареи внутри мультиметра. У этого типа измерителя не будет достаточно мощности для срабатывания МОП-транзистор. Убедитесь, что вы используете измеритель с диапазоном измерения 10 кОм. селектор.
.