Site Loader

Содержание

Как выглядят транзисторы фото — Инженер ПТО

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (

GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N.

Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода

Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой

E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом

VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305.

Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор.

Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…

Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Виды транзисторов

О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Полевые и биполярные транзисторы

По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Виды транзисторов, p –n–p и n–p–n проводимость

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3

Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности

Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором

Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET

Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)

Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Рекомендации по эксплуатации транзисторов

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Видео, виды транзисторов

Как выглядит транзистор фото

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – «сборщик» (глагол Collect – «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base – «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – «сборщик» (глагол Collect – «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base – «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

Обсудить статью ТРАНЗИСТОРЫ

Простое акустическое реле на пьезоэлементе.

СХЕМА ЖУЧКА ДЛЯ ПРОСЛУШКИ

Простейшая схема радиожучка на одном транзисторе, для работы в паре с ФМ приёмником.

Как выглядит транзистор на плате

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и мультиметр.

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n.

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Любой, кто разбирал компьютер, видел как много различных элементов на материнской плате, в этой статье я постараюсь кратко описать и показать основные компоненты, устанавливаемые на материнские платы современных компьютеров.

Транзисторы

Или мосфет. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора – изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.

Резисторы

Резистор – это пассивный элемент радиоэлектронной аппаратуры, предназначенный для создания в электрической цепи требуемой величины электрического сопротивления, обеспечивающий перераспределение и регулирование электрической энергии между элементами схемы.

Электролитические конденсаторы

Электролитические конденсаторы схожи с аккумуляторами, но в отличии от которых выводят весь свой заряд в крошечные доли секунды. Используются, чтобы выровнять напряжение или блокировать постоянный ток в цепи.

Другие конденсаторы

Керамические SMD, танталовые, ниобиевые и др. Лучше для электроники, которая не требует высокой интенсивности работы.

Диоды

Диоды позволяют электричеству течь в одном направлении и обычно используются в качестве защиты и выпрямителей тока.

Светодиоды

Светодиод (LED). В основном LED – крошечные лампочки.

Индуктор

Индуктор (дроссель) – обмотка провода, катушка, используется для смягчения скачка тока при запуске. Зачастую стоят перед процессором.

Генератор тактовых частот

Генератор тактовых частот (клокер) — устройство, формирующее тактовые частоты, используемые на материнской плате и в процессоре.

Кварц

Кварц перемещает энергию назад и вперед между двумя формами в равные доли времени. Задаёт частоту работы всей электрической схемы.

SuperIO (SIO, MultiIO, MIO, «мультик»)

Третья по значимости и размеру микросхема на материнской плате – после мостов. Отвечает за порты ввода-вывода (COM, LPT, GamePort, инфракрасный порт, PS/2 для клавиатуры и мыши и др.). Является микроконтроллером (выполняет часть прошивки биос), выродился из контроллера клавиатуры, но в современных платах выполняет множество важных функций. Он например мониторит сигналы с Шим и когда убедится что всё ОК с питанием – даёт южному мосту команду «нажали на вкл, запускайся», ещё он управляет режимами S0-S5. На текущий момент это его основной функционал, а функции ввода – вывода – отмирающий придаток. Зачастую обладает дополнительным функционалом:

встроенный Hardware Monitoring

контроллер управления скоростью вентиляторов

интерфейс для подключения CompactFlash-карт.

ШИМ-контроллер

ШИМ-контроллер (от Широтно-Импульсная Модуляция) – главная микросхема, управляющая напряжением на материнской плате.

Мосты

«Мосты» главные электронные компоненты материнских плат. Подробнее здесь.

Микропроцессор (ЦП)

Микропроцессор (ЦП)- является полным механизмом вычисления.

BIOS

BIOS (Basic Input-Output System) микросхемы основной системы ввода/вывода.

Dual Bios

Технология Dual Bios на материнских платах производства Gigabyte. В случае сбоя основного bios его можно восстановить из резервной микросхемы.

Батарейка CMOS.

Батарейка CMOS. Служит для хранения настроек BIOS и для поддержания системного времени в актуальном состоянии.

Аудиокодек

Аудиокодек (англ. Audio codec; аудио кодер/декодер) — компьютерная программа или аппаратное средство, предназначенное для кодирования или декодирования аудиоданных.

Сетевой контроллер (Onboard LAN)

Сетевой контроллер (Onboard LAN) представляет собой отдельную микросхему. Как и в случае с аудио кодеком при выходе из строя может сильно греться. Ремонтируется так же заменой или демонтажем.

Сегодня мы с Вами рассмотрим, как заменить транзистор на материнской плате компьютера? Причем, естественно, не просто заменить, а так, чтобы эта плата после этого работала! Думаю, по самим транзисторам мы (кто-то из участников проекта SebeAdmin.ru) напишем отдельную статью, здесь же рассмотрим саму технику по замене неисправного элемента и продиагностируем неисправность.

Итак, оказалась у нас на ремонте вот такая старенькая материнская плата Asus A7NBX

«Диагноз» – не включается. В данном случае это значит следующее: плата крутит вентилятором на процессоре, но запуска компьютера не происходит. Звуковых сигналов нет, замена комплектующих (память, видеокарта, блок питания) ничего не дает.

Будем пробовать ремонтировать! Что для этого нужно сделать в первую очередь? Произвести как можно более тщательный визуальный осмотр неисправного устройства. Запомните этот момент! Отдельно даже выделю эту мысль в нашей статье.

Важно! Любая диагностика неисправности начинается с внимательного осмотра! Это – первый этап этой самой диагностики!

Иногда бывает так, что на этом она и заканчивается 🙂 В том смысле, что неисправность удается уверенно идентифицировать чисто визуально. Матерые ремонтники для этого дела используют, как минимум, хорошее увеличительное стекло или цифровые микроскопы. К слову простой USB микроскоп с 200 кратным увеличением можно приобрести за долларов 20-30.

Но лично я так «глубоко не копаю», да и не об этом мы сейчас говорим. Проведя осмотр платы с пристрастием, под AGP разъемом (без всяких микроскопов) была и обнаружена явная неисправность, которая мешала материнской плате стартовать.

Видите полевой транзистор между конденсатором и дросселем? Вот это и есть наша будущая «жертва» 🙂 Согласен, видно не очень, поэтому сфотографируем этот же участок под увеличительным стеклом.

Видите большой овал, частично перекрывающий маркировку транзистора? Знаете что это такое? Так выглядит банальная «дыра» в пластмассовом или металлокерамическом корпусе элемента! Если поскоблить иголкой зону повреждения, можно увидеть, как из нее посыпется мелкая крошка, похожая на графитовую.

Итак, «виновника торжества» мы обнаружили! Можно зайти на любой сайт с документацией к радиоэлектронным компонентам (я пользуюсь datasheet-pdf.com) и убедиться, что – это N-канальный силовой мосфет-транзистор (15N03H, согласно маркировке на нем).

Весьма очевидно, что транзистор нужно заменить (на такой же или аналогичный по характеристикам и исполнению корпуса). Чтобы окончательно убедиться в его неисправности, давайте «прозвоним» транзистор с помощью мультиметра. О том, как пользоваться мультиметром, у нас рассказано вот здесь.

Как видите на фото выше, мы «звонили» транзистор по всем направлениям и во всех случаях раздавался характерный писк тестера, сигнализирующий о его «пробое» (фактически – коротком замыкании внутри элемента).

Будем выпаивать и менять транзистор на аналогичный. Где можно взять аналогичный (или похожий) элемент для замены неисправного? Здесь несколько вариантов:

  1. выпаять с «донора» (платы, не подлежащей ремонту)
  2. купить на радиорынке или специализированном магазине
  3. заказать через Интернет

В нашем случае я воспользовался вторым вариантом. Приобрел за доллар на рынке вот такой транзистор, немного отличающийся по характеристикам, но, в целом, подходящий для замены «пробитого».

Работать мы будем, используя термовоздушную паяльную станцию, но сначала нам нужно будет подготовить место пайки. Что я имею в виду? Дело в том, что транзистор, который мы должны заменить, расположен между электролитическим конденсатором и дросселем. Очень близко к ним. И при обработке потоком горячего воздуха эти элементы могут пострадать. В подобных случаях самым простым решением является выпаивание близко расположенных элементов и установка их обратно после окончания работ.

Так мы и поступим! О том, как заменить конденсаторы на плате и о самой технологии работы с паяльником мы уже подробно говорили в отдельной статье, так что не будем повторяться. После применения паяльника будущий «фронт работ» у нас выглядит вот так:

Чтобы уберечь от оплавления пластмассовый AGP разъем, мы прикроем его куском металла, который будет забирать на себя тепло от фена. Также еще одной заслонкой можно прикрыть близко расположенные PCI слоты.

Итак, наносим на место будущей пайки флюс (я пользуюсь флюс-гелем «Amtech RMA-223»), устанавливаем на паяльной станции температуру 360-380 градусов Цельсия (вполне достаточно для такой операции, как замена транзистора) и приступаем к работе.

При подборе правильного термопрофиля (соответствия температуры поставленной задаче) и соблюдения технологии работы, транзистор должен оказаться у нас «в руках» секунд через 20-30:

Отлично! Теперь нам нужно подготовить посадочно место для нового элемента. Каким образом? Нужно залудить его (нанести на контактные площадки некоторое количество припоя, чтобы новому транзистору было чем припаиваться). Справедливости ради стоит отметить, что при аккуратном съеме детали часто ничего наносить и не нужно (на площадках остается достаточное количество припоя), но я хочу показать Вам еще один метод, поэтому специально полностью зачистим все «пятачки» от остатков припоя.

Для начала, нанесем на поверхность достаточное количество флюса.

Это нужно для того, чтобы медная оплетка, которую мы будем использовать для удаления припоя, скользила по поверхности и сама не припаялась 🙂 Оплетка бывает разной ширины (обращайте на это внимание при покупке). Я пользуюсь 2-х миллиметровой.

Площадки зачищены (на них нет олова, только металл самой подложки). Если мы сейчас попробуем просто сверху припаять транзистор, то у нас попросту не получится. Металл к металлу без припоя (материала, который их сцепляет) не паяется.

Теперь мы подходим к интересному моменту: для нанесения припоя на контактные площадки мы воспользуемся такой вещью, как паяльная паста для BGA. Вот, например, такой от фирмы «BAKU» (цена 3-5 долларов):

Посмотрел на фото и сам удивился. Кажется, что – это такая большая емкость, но на самом деле все это выглядит немного иначе:

В такой баночке всего 50 грамм «продукта». Как видим, в составе его шестьдесят три процента олова (63Sn) и тридцать семь процентов свинца (37Pb). Также в эту смесь добавлено некоторое количество флюса, который «связывает» оба компонента.

Что же такое BGA паста и для чего она используется? Основное ее предназначение – формирование BGA шариков с тыльной стороны чипа. Если сейчас не все понятно, то дальше по тексту, надеюсь, все прояснится 🙂

Что такое есть аббревиатура BGA? Расшифровывается как Ball Grid Array (массив из шариков). В отличие от SMDSurface Mounted Device (технологии поверхностного монтажа), здесь элементы крепятся к подложке (плате) с помощью массива из маленьких шариков припоя, расположенных на тыльной стороне микросхемы.

Технология bga монтажа сейчас приобретает все большую популярность среди производителей. Таким образом на плату напаиваются мосты, на видеокарту – графические процессоры, на оперативную память – чипы DDR. Вот, например, как выглядит северный мост, только что снятый с платы ноутбука:

Видите сетку из этих самых шариков? Посмотрим на это дело поближе:

Вот именно таким образом и осуществляется электрический контакт микросхемы с печатной платой. Если хотите, можете ознакомиться с разновидностями корпусов микросхем и принципами их монтажа, скачав с нашего сайта вот этот файл.

Паяльная паста для BGA используется именно для формирования подобных шариков на «подошвах» микросхем. В процессе нанесения используются специальные трафареты. Можно купить BGA шарики и отдельно, но здесь есть нюанс: они бывают разного диаметра (в зависимости от типа микросхемы), а паяльная паста может (при помощи тех же трафаретов) сформировать массив шаров любого диаметра. Наверняка, Вы слышали такое слово, как «реболлинг» (reball или реболл)? Именно оно и обозначает процесс восстановления (нанесения) шариковых выводов припоя на чип.

Примечание: имейте в виду, что все описанное выше, относится именно к паяльной пасте для BGA. Часто в магазинах можно встретить баночки с надписями: «паяльная паста«. Это своеобразное «желе» (по типу геля), которое используется, как флюс для облегчения работы с паяльником. Бывает разного цвета и консистенции.

Здесь не содержится ни олова, ни свинца. По сути, как мы уже и говорили, – это флюс. Настоящая BGA паста, которую мы будем использовать для замены транзистора на плате, выглядит следующим образом:

Совет: хранить подобную пасту рекомендуют при небольшой минусовой температуре (идеально – на дверце холодильника). Если температура будет комнатная, паста начнет расслаиваться: флюс, как менее плотный ее компонент, постепенно выдавится вверх и будет «плавать» на поверхности. В холодильнике же субстанция сохраняет однородность и дольше – свои свойства.

Перед применением ее весьма желательно хорошенько перемешать (особенно после холодильника). Или дать постоять при комнатной температуре не менее четырех часов. Рекомендую потом все равно перемешать! Субстанция станет действительно больше похожей на пасту, а не на подзастывший обойный клей 🙂

Перемешиваю я это дело при помощи тонкого шила. С его же помощью и буду наносить паяльную пасту на контактные площадки на плате. Идея какая: наносим паяльную пасту, «сажаем» на нее транзистор и прогреваем все это дело термофеном. Олово и свинец в ней расплавляются и припаивают компонент к плате. Поскольку в субстанции содержится флюс, то отдельно не нужно наносить даже его!

По идее, микросхему (вроде мультиконтроллера) можно макнуть «ножками» прямо в паяльную пасту, установить на плату и запаять (излишки олова можно потом убрать с помощью медной оплетки).

Вопрос: знаете, как спаять два провода при помощи зажигалки? Если нет – смотрите видео в конце данной статьи 🙂

Сам опробирую подобную технологию впервые, поэтому делюсь тем, что получилось в итоге. Наносим пасту:

Как оказалось – перестарался (можно было «намазывать» гораздо меньшее количество) 🙂

Устанавливаем на все это безобразие сверху наш новый транзистор, который мы собираемся менять. Плюс еще в чем: субстанция вязкая, поэтому элемент прилипает и позиционировать его становится намного проще, да и струей воздуха от фена не сдуете.

Включаем термофен и начинаем припаивать транзистор к плате:

В процессе мы увидим, как паяльная масса, похожая на кашицу с вкраплениями мелких частиц, собирается в комок, потом из нее испаряется флюс и, в итоге, под действием высокой температуры и сил поверхностного натяжения, паяльная паста превращается в привычный нам оловянный припой, который надежно и фиксирует транзистор на плате.

Примечание: Молекулы жидкости, как и любого другого вещества, испытывают взаимное притяжение. На молекулы внутри жидкости силы притяжения соседних молекул действуют со всех сторон, что взаимно уравновешивает всю «конструкцию». Молекулы же на поверхности (на ее внешнем обводе) не имеют соседей снаружи, и общая (суммарная) сила притяжения всех ее молекул направлена внутрь самой жидкости.

В итоге, вся поверхность воды стремится, как бы, ужаться к своему центру под воздействием этих сил. Этот эффект и называют силой поверхностного (молекулярного) натяжения, которая действует вдоль всей поверхности жидкости и приводит к образованию на ней чего-то вроде упругой незримой пленки. Именно поэтому рюмку можно налить «с горкой» и, поднеся к губам, не расплескать ни капли. Расплескивать нельзя ни в коем случае! 🙂

К слову, охотничью дробь изготавливают, используя именно эту силу (силу поверхностного натяжения): расплавленным каплям металла просто дают свободно падать с достаточной высоты, что приводит к их естественному остыванию и превращению в шарики дроби. Ведь любая жидкость, если оставить ее в спокойном состоянии, стремится принять форму с наименьшей площадью. А это и будет – сфера!

Возвращаемся от теории к практике! После запайки транзистора можем взять наш мультиметр и еще раз проверить (прозвонить) элемент на короткое замыкание.

На этот раз – все нормально: КЗ нет. Как говорят паяльщики: «коротыш ушел!».

Что нам нужно сделать теперь? Правильно! Очистить место замены транзистора от следов пайки. Как и чем это делать, мы рассматривали вот здесь. Ничего нового не скажу и сейчас: зубная щетка нам в помощь 🙂

И последний «штрих» – нам нужно вернуть на место конденсатор и дроссель, которые мы спаяли с платы в самом начале. Помните? Запаиваем их обратно.

Что теперь? Собираем наш тестовый стенд, подключаем монитор и запускаем всю конструкцию!

Как видим, все работает! В завершении статьи хочу показать Вам еще один пример из моей практики. Некая материнская плата не хотела нормально работать: включалась только если на нее нажать в определенном месте и так удерживать. Примерно вот здесь:

Так сразу и не скажешь, в чем неисправность, верно? Давайте посмотрим на один из элементов под увеличительным стеклом, а именно – одну из транзисторных сборок PHKD6N2 в SOIC корпусе (Small-Outline Integrated Circuit – небольшая микросхема с выводами по длинным сторонам).

Обратите внимание на два нижних правых вывода элемента. Видите, как они почернели и, по факту, потеряли контакт («отгорели ноги», как говорят ремонтники). Это, к слову, вполне объясняет то, что при нажатии на эту область электрический контакт восстанавливался и плата начинала нормально работать.

Будем ли мы полностью заменять транзистор на материнской плате? В данном случае в этом нет необходимости: просто хорошенько пропаяем отгоревшие выводы (зальем их припоем по всей длинне) и восстановим, таким образом, соединение элемента с платой. Пайку я буду осуществлять при помощи вот такого гаджета, который называется «третья рука».

Согласитесь, гораздо удобнее работать при помощи увеличительного стекла не держа его при этом в руке 🙂 Также можно воспользоваться наголовной бинокулярной лупой с диодной подсветкой – очень удобно!

После окончания работ место пайки у нас стало выглядеть вот так:

На всякий случай, были пропаяны все четыре вывода. После этого плата успешно «завелась» и до сих пор работает, установленная в одном из многочисленных корпусов компьютеров у нас на работе.

Вот, собственно, и все что я хотел рассказать Вам сегодня о том, как заменить транзистор на плате. Стоил ли данный ремонт материнской платы одного доллара и потраченного времени? Не мне судить. Если же у Вас, уважаемые читатели, будут какие-то вопросы, пожелания или замечания – оставляйте комментарии под видео, в котором паяльная паста напомнила мне кадры из фильма про «жидкого» терминатора 🙂

Как проверить транзистор | Электрик



Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.

Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.

Проверка биполярных транзисторов


Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.

Биполярные транзисторы существуют двух типов проводимости: p-n-p и  n-p-n что необходимо помнить и учитывать при проверке.

А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор «пробит» но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть «нулевого» сопротивления — поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.

И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка «разряжен». На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.

И так поочередно проверяем все переходы транзистора:

  • База — Эмиттер — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • База — Коллектор — исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • Эмиттер — Коллектор — в исправном состояние сопротивление перехода должно быть «бесконечное», то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.

В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление «прозвонки» переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.

Как определяется «пробитый» переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет «нулевое» сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.

Как определить обрыв p-n перехода?
Если один из переходов в обрыве — он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.

Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица «1» что говорит о «бесконечном» сопротивление.

Проверка транзистора стрелочным тестером


Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие «омметры» не имеют режима прозвонки диодов и «бесконечное» сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о «нулевом» сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме «1Ом» (можно пробовать и до *1000Ом пределе).

Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не «нулевое» а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать «кз» и пищать (тоже конечно зависит от точности прибора).

Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?


У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно — поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.

Нам нужно найти два перехода которые покажут бесконечность «1». Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным — база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.

Быстрая точная проверка транзистора


Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов — замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.

Простой пробник


В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.

Если транзистор рабочий — при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора — просто менять полярность источника питания.

Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или «даташит» со всем описанием транзистора.


Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо «запустить» то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер — для n-p-n (для p-n-p наоборот) — стрелка тестера не двинется сместа оставаясь в начале шкалы «бесконечность» (для цифрового мультиметра «1»)
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.

Проверка полевых транзисторов

Здесь есть один отличительный момент при проверке таких транзисторов — они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.

Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд — применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.

Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).

Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.

Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.

Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать «бесконечным» («1») — если это не так то транзистор скорее всего неисправен.

Особенностью современных мощных полевых транзисторов (MOSFET’ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую «прозвонку» канала за неисправность просто следует помнить о диоде.

В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние — после закорачивания выводов) Если переход прозваниваеться в обе стороны с «нулевым» сопротивлением то такой транзистор «пробит» и неисправен

Наглядный способ (экспресс проверка)

  • Необходимо замкнуть выводы транзистора

  • Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 — 0.7 вольта)

  • Теперь меняем щупы местами (исправный покажет «1» или по другому говоря бесконечное сопротивление)
  • Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)

  • Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 — 800 милливольт

  • Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.

  • Плюсовой щуп ставим к истоку, а минусовой на затвор — транзистор закроется

  • Можем снова проверить переход сток-исток, он должен показывать снова «бесконечное» сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)

Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.


Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.

Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.

Простая схема пробника для проверки полевых транзисторов


Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.

Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора — просто поменять полярность источника питания.

Как проверить транзистор мультиметром?

Назначение транзистора

Транзистор — деталь распространенная, найти её можно в любом электроприборе. Он нужен для работы с электрическим сигналом, то есть он способен генерировать, усиливать и преобразовывать электросигналы. Транзисторы бывают двух видов: биполярные и униполярные, или, как их чаще называют, полевые. Такое деление основано по принципу действия и на строении детали. Каждый тип в этой статье описан не зря — это основа знаний, как проверить транзистор мультиметром.

Итак: биполярные транзисторы работают благодаря полупроводникам с двумя типами проводимости: прямым (рositive) и обратным (negative). В зависимости от комбинации его обозначают NPN и PNP. А вот полевые работают только с одним типом. Это или N-Channel, или P-Channel.

Биполярные устройства управляются силой тока, а униполярные — напряжением.

Биполярные транзисторы можно увидеть в большинстве аналоговой техники, тогда как цифровые приборы чаще оснащены полевыми. Имея ввиду эти отличия, рассмотрим как проверить транзистор тестером.

Конструкция мультиметра

Мультиметр (тестер) — универсальный прибор для измерений. Он вычисляет силу тока, напряжение, сопротивление, определяет также целостность провода. Мультиметры бывают аналоговыми или цифровыми. Разница заключается в точности измерений и в том, каким образом вы получите результат: считывая по движению стрелки по принципу механических часов (аналог), или на экранчик (цифра). Цифровой, по ряду причин, проще в использовании, поэтому подходит пользователям с минимальным уровнем познаний в радиоэлектронике. Независимо от типа тестера, проверка транзистора мультиметром — процесс простой.

Особое внимание перед началом диагностики транзистора стоит уделить правильной комплектации тестера. Это займет от силы пару минут, но убережет от ошибок в результатах. Итак, мультиметр оснащён двумя щупами. Черный — минусовой, красный — плюсовой. Обязательно убедитесь, чтобы каждый из них был вставлен в корректное гнездо, ведь зависимо от модели и типа тестера их может быть разное количество. Транзисторы проверяем исключительно в таком положении: чёрный щуп в гнездо маркированное английскими буквами СОМ, красный щуп помещаем в разъемы, обозначенные буквами греческого алфавита.

Как проверить биполярный транзистор мультиметром

БП транзистор — это прибор-полупроводник, который используют для увеличения мощности входного электросигнала. Такими транзисторами управляет ток. Состоит он из трёх элементов. Первый — это эмиттер. Он генерирует носители заряда. Рабочий ток стекает в коллектор, т. е. своеобразный приемник и второй ключевой элемент транзистора. Третий — база. Именно она и подаёт напряжение.

Представим прибор как пару диодов. Они включены встречно и сходятся в базе. Для проверки исправности этого типа достаточно произвести два измерения сопротивления. Определяем, какой транзистор: p-n-p или n-p-n. Рассмотрим детально, как проверить npn транзистор мультиметром. Используем следующий алгоритм действий:

  • Подаем минусовое U-ние к выводу базы. На тестере режим измерения R-ния. Ставим порог 2000. Или же используем режим «прозвонок», это для тех, кто хочет узнать, как прозвонить транзистор мультиметром. Независимо от предпочитаемого режима, результат будет корректен.
  • Берём черный щуп и подводим его к выводу на базе, фиксируем. Красный щуп — к коллекторному переходу. Затем перемещаем к эмиттеру (вывод). Если получили значение прямого сопротивления от 500 Ом до 1200 Ом — переходы целы.
  • Далее измеряем обратное R-ние. Для этого красный щуп подносим к выводу базы и фиксируем. Черный передвигаем поочерёдно сначала к выводу коллектора, затем эмиттера. Тестер должен показать большое значение. Если у вас цифровой мультиметр выставлен на «2000», показывает «1», то величина R-ния выше 2000 Ом. Большое значение — показатель исправности транзистора.

Этот метод подойдёт и искателям способа, как проверить транзистор мультиметром не выпаивая. Представим: вам нужно проверить прибор на плате прямо в схеме. Тогда проблемы могут возникнуть исключительно в случае плотного шунтирования низкоомными резисторами p-n переходов. Проверить просто: при измерении показатели обоих видов сопротивления будут крайне малы. В таком случае выпаивание вывода базы — необходимая мера для дальнейшей корректной диагностики. Транзистор n-p-n диагностируем таким же методом. Единственное отличие: на выходе базы фиксируем красный, а не чёрный щуп тестера.

Как проверить нетипичные модели транзисторов

Есть транзисторы, которые могут не поддаться обычной проверке мультиметром, независимо от того, стоит режим прозвонки или омметра. Такие триоды используют, к примеру, в электронных балластах светильников. Среди моделей — MJE13003, 13005, 13007.

Детальнее рассмотрим, как проверить транзистор 13003 мультиметром, на одном примере. Всё дело в нетипичной цоколёвке транзистора 13003 — вывод базы находится справа. В даташитах сказано, что выводы могут чередоваться слева направо в такой последовательности: база, коллектор, эмиттер. Поэтому нужно точно определить порядок и положение составных и действовать методом описанным выше.

Погрешности при замерах могут провоцировать и диоды внутри деталей некоторых транзисторов.

Поэтому прежде чем приступать к замерам, нужно четко понимать строение проверяемого транзистора.

Как проверить полевой транзистор мультиметром

Этот прибор управляется электрическим полем, которое создаёт напряжение. Это одно из главных отличий от биполярного полупроводникового ключа. Униполярные транзисторы делят на два типа. Первый имеет изолированный затвор. Второй p-n переходы. Независимо от типа бывают n-, или p-канальные. Большинство полевых транзисторов имеют три вывода: исток, сток и затвор. Если сравнивать с биполярным, то это аналоги эмиттера, коллектора и базы.

Берём за основу проверку  устройства типа p-n. Независимо от типа канала (n, p), последовательность действий меняться не будет. Разница лишь в противоположном подключении щупов. Итак, для диагностики n-канального прибора нам понадобится:

  • Установить на режим мультиметра «измерения R». Уровень 2000. Плюсовой щуп устанавливаем к истоку. Чёрный закрепляем на стоке. Измеряем сопротивление. Потом нужно щупы переставить. Замеряем вновь. Результаты при работающем транзисторе будут приблизительно равнозначными.
  • Далее тестируем переход исток-затвор. Для этого ставим режим на мультиметре «проверка диодов». Плюс подключаем к затвору, а минус к истоку. Прибор в норме фиксирует падение U-ния около 650 мВ. Отсоединяем щупы и перемещаем: теперь чёрный находится у затвора, а красный у истока. Тестер должен показать единицу, то есть бесконечность. Это свидетельствует об исправности транзистора.
  • Для проверки перехода сток-затвор оставляем мультиметр в режиме проверки диодов. Действуем аналогично пункту проверки p-n перехода исток-затвор.

Когда все три замера совпадают с вышеописанными полевой транзистор готов к эксплуатации.

Предлагаем пример проверки полевого транзистора в видеоролике:

Видео с проверкой транзистора мультиметром

Смотрите в формате видео, как проверить транзистор мультиметром.

8. Транзисторы — Условные графические обозначения на электрических схемах — Компоненты — Инструкции


Транзистор (от английских слов tran(sfer) — переносить и (re)sistor — сопротивление) — полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы. Электропроводность эмиттера и коллектора всегда одинаковая (р или n), базы — противоположная (n или р). Иными словами, биполярный транзистор содержит два р-n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

 

 Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. 8.1 [5]. Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (см. рис. 8.1, VT1), то это означает, что эмиттер имеет электропроводность типа р, а база— типа n; если же стрелка направлена в противоположную сторону (VT2), электропроводность эмиттера и базы обратная.

 
 Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа n, обозначают формулой р-п-р, а транзистор с базой, имеющей электропроводность типа р, обозначают формулой n-р-n. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.    

 
 Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора. На схемах это показывается точкой в месте пересечения соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (VT3 на рис. 8.1). В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.

 

 Линии электрической связи, идущие от эмиттера и коллектора проводят в одном из двух направлений: перпендикулярно или параллельно выводу базы (VT3—VT5). Излом вывода базы допускается лишь на некотором расстоянии от символа корпуса (VT4).

 
 Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а окружность обозначения корпуса заменяют овалом (рис. 8.1, VT6).

 
 Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы.

 

 Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на поле схемы помещают такую, например, запись: VT1-VT4 К159НТ1), либо используют код аналоговых микросхем (DA) и указывают принадлежность транзисторов в сборке в позиционном обозначении (рис. 8.2, DA1.1, DA1.2). У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена матрица.

 
 Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 8.2 показаны транзисторы структуры п-р-п с тремя и четырьмя эмиттерами).

 

 Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (см. рис. 8.3, VT1, VT2). При повороте УГО положение этого знака должно оставаться неизменным.

 
 Иначе построено УГО однопереходного транзистора: у него один р-п-переход, но два вывода базы. Символ эмиттера в УГО этого транзистора проводят к середине символа базы (рис. 8.3, VT3, VT4). Об электропроводности последней судят по символу эмиттера (направлению стрелки).

 
 На символ однопереходного транзистора похоже УГО большой группы транзисторов с p-n-переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью п или р-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса (рис. 8.4, VT1), символы истока и стока присоединяют к нему с одной стороны, затвора — с другой стороны на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора (на рис. 8.4 условное графическое обозначение VT1 символизирует транзистор с каналом п-типа, VT1 — с каналом p-типа).

 

 В условном графическом обозначении полевых транзисторов с изолированным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в противоположную сторону (см. рис. 8.4, VT3) —  с каналом p-типа. Аналогично поступают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три коротких штриха (см. рис. 8.4, VT5, VT6). Если подложка соединена с одним из электродов (обычно с истоком), это показывают внутри УГО без точки (VT1, VT8).

 
 В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (VT9).

 
 Линии-выводы полевого транзистора допускается изг[цензура] лишь на некотором расстоянии от символа корпуса (см. рис. 8.4, VT2). В некоторых типах полевых транзисторов корпус может быть соединен с одним из электродов или иметь самостоятельный вывод (например, транзисторы типа КПЗ03).

 
 Из транзисторов, управляемых внешними факторами, широкое применение находят фототранзисторы. В качестве примера на рис. 8.5 показаны условные графические обозначения фототранзисторов с выводом базы (FT1, VT2) и без него (К73). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. УГО фототранзистора в этом случае вместе с УГО излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.

 

 

 

 Для примера на рис. 8.5 изображена одна из оптопар сдвоенного оптрона (об этом говорит позиционное обозначение U1.1), Аналогично строится У ГО оптрона с составным транзистором (U2).

 

Транзистор что это? Основные параметры и характеристики, маркировка транзисторов

Транзисторы. Определение и история

 

Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Принцип работы транзистора

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники — сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла — затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Комбинированные

Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:

  • Биполярными с внедрёнными в их схему резисторами;
  • Двумя триодами одной или нескольких структур строения в единой детали;
  • Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
  • Элементы, в которых полевые составляющие управляют биполярными.

Комбинированный транзистор

Цветовая и цифровая маркировка

Транзисторы, как и другие радиокомпоненты, маркируют с помощью цветового кода. Цветовой код состоит из изображения геометрических фигур (треугольников, квадратов, прямоугольников и др.), цветных точек и латинских букв.

Код наносится на плоских частях, крышке и других местах транзистора. По нему можно узнать тип транзистора, месяц и год изготовления. Места маркировки и расшифровка цветовых кодов некоторых типов транзисторов приведены на рис. 2…3 и в табл. 1…4. Практикуется также маркировка некоторых типов транзисторов цифровым кодом (табл. 4).

Таблица 1. Цветовая и кодовая маркировки маломощных среднечастотных и высокочастотных транзисторов.

Тип транзистораГруппы транзисторовМесяц выпускаГод выпуска
ОбозначениеМаркировкаОбозначениеМаркировкаОбозначениеМаркировкаОбозначениеМаркировка
ян в.бежевая
Арозоваяфев.синяя1977бежевая
Бжелтаямартзеленая1978еалатовая
Всиняяапр.красная1979оранжевая
Гбежеваямайеалатовая1980электрик
Доранжеваяиюньсерая1981бирюзовая
КТ3107голубаяЕэлектрикиюлькоричневая1982белая
Жеалатоваяавг.оранжевая1983красная
Изеленаясент.электрик1984коричневая
Ккраснаяокт.белая1985зеленая
Лсераяноябр.желтая1986голубая
декаб.голубая

Таблица 2.  Цветовая маркировка транзистора КТ3107 .

Рис. 2. Места цветовой и кодовой маркировки маломощных среднечастотных и высокочастотных транзисторов в корпусе КТ-26 (ТО-92).

Рис. 3. Места цветовой маркировки транзистора КТ3107 в корпусе КТ-26 (ТО-92).

Рис. 4. Места кодовой маркировки транзисторов в корпусе КТ-27 (ТО-126).

Таблица 3.  Цветовая и кодовая маркировки транзисторов.

КодТип
4КТ814
5КТ815
6КТ816
7КТ817
8КТ683
9КТ9115
12К.У112
40КТ940
Год выпускаКодМесяц выпускаКод
1986иЯнварь1
1987VФевраль2
1988WМарт3
1989XАпрель4
1990АМай5
1991ВИюнь6
1992СИюль7
1993DАвгуст8
1994ЕСентябрь9
1995FОктябрь0
1996ННоябрьN
19971ДекабрьD
1998К
1999L
2000М

Таблица 4. Кодовая маркировка мощных транзисторов.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Схема подключения транзистора для чайников

Наиболее популярны следующие схемы подсоединения транзисторов в цепь: с общей базовой установкой, общими выводами инжекторного эмиттера и с общим коллекторным преобразователем для подачи напряженности.

Для усилителей с базой общего типа характерно следующее:

  • Низкие параметры входного сопротивления, которое не достигает даже 100 Ом;
  • Неплохая температура и частота триода;
  • Допустимое напряжение весьма большое;
  • Требуют два различных источника питания.

Схемы второго типа обладают:

  • Высокими показателями усиления электротока и напряжения;
  • Низкими показателями усиления мощностных характеристик;
  • Инверсионной разницей между входным и выходным напряжением.

Важно! Схема транзистора с электродами общего коллекторного типа требует одного источника питания.

Подключение по типу общего коллектора может обеспечить:

  • Низкие показатели электронапряжения по усилению;
  • Большая и меньшая сопротивляемость входа и выхода соответственно.

Подключение транзистора для светодиода

Таким образом, транзистор — один из самых распространенных радиоэлементов в электронике. Он позволяет изменять параметры электрического тока и регулировать его для корректной работы электроприборов. Существует несколько видов транзисторов, как и способов их соединения. Различаются они строением и целями использования.

Читаем электрические схемы с транзистором

Управление мощностью с помощью транзистора

Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:

На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора, а следовательно,  мощность свечения самой лампы.

Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.

Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания. А как вы помните, если резисторы либо  различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока. Правило делителя напряжения. То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы Iб . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания.  В ней будет протекать ток коллектора Iк.

Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток Iб , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора Iк , который  также течет и через лампочку накаливания.

Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток. А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора. Это и есть принцип работы биполярного транзистора.

Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома: I=U/R. Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉

И еще один небольшой нюанс.

Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит. Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли P-N переход базы-эмиттера. Поэтому, чтобы такого не было, мы должны  подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.

Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники –  мы должны подобрать такой резистор, который бы вогнал  транзистор в границу насыщения, но не более того.

Такой резистор я подбирал с помощью магазина сопротивления. Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным.

Регулятор свечения лампочки на транзисторе

Ну а теперь дело за практикой. Собираем схему в реале:

Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:

Кручу еще чуток и лампочка светит в пол накала:

Выкручиваю переменный резистор до упора и лампочка тухнет:

Вместо лампочки можно взять любую другую нагрузку, например, вентилятор от компьютера. В этом случае, меняя значение переменного резистора, я могу управлять частотой вращения вентилятора, тем самым убавляя или прибавляя силу потока воздуха.

Здесь вентилятор не крутится, так как я на переменном резисторе выставил большое сопротивление:

Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:

Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком ;-). Стало холодно – убавил обороты, стало слишком жарко – прибавил 😉

Прошаренные чайники-электронщики могут сказать: “А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?

Да, можно.

Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная. В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток. Вспоминаем формулу выделяемой мощности на нагрузке: P=I2R. Переменный резистор сгорит (проверено не раз на собственном опыте).

В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а  то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.

Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.


Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы.

Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Резюме

Главное предназначение транзистора – управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.

Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.

Резистор в базе служит для ограничения протекающего  тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.

При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим – это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

Источники

  • https://habr.com/ru/post/133136/
  • https://principraboty.ru/princip-raboty-tranzistora/
  • https://odinelectric.ru/knowledgebase/kak-rabotaet-tranzistor-i-gde-ispolzuetsya
  • https://rusenergetics.ru/oborudovanie/skhema-tranzistora
  • https://RadioStorage.net/1670-tranzistory-osnovnye-parametry-i-harakteristiki-markirovka-tranzistorov.html
  • https://tokar.guru/hochu-vse-znat/tranzistor-vidy-primenenie-i-principy-raboty.html
  • https://www.RusElectronic.com/chitaem-elektricheskie-skhemy-s-tranzistorami/

[свернуть]

Как это работает »Электроника

Описание того, что такое транзистор, как работает биполярный транзистор, а также сведения о транзисторах NPN и PNP.


Transistor Tutorial:
Основы транзисторов Усиление: HFE, HFE и бета Характеристики транзистора Коды нумерации транзисторов и диодов Выбор транзисторов на замену


Транзисторы лежат в основе современной электронной техники. Развитие биполярного транзистора или биполярного переходного транзистора, BJT, привело ко многим изменениям в мире.

Введение биполярного транзистора позволило использовать многие технологии, которые мы сегодня воспринимаем как должное: от портативных транзисторных радиоприемников до мобильных телефонов и компьютеров, удаленного управления, функциональности, которую мы воспринимаем как должное в современных автомобилях, и т. Д. . . . Все эти и многие другие предметы повседневного обихода стали возможны благодаря изобретению транзистора.

Сегодня биполярные транзисторы доступны во многих формах. Существует базовый транзистор с выводами или транзистор для поверхностного монтажа.Но транзисторы также широко используются в интегральных схемах. Большинство цифровых ИС используют технологию полевого эффекта, но многие аналоговые ИС используют биполярную технологию для обеспечения требуемой производительности.

Вместе с их полевыми транзисторами, полевыми транзисторами, родственниками, использующими совершенно другой принцип, биполярный транзистор составляет основу большинства современного электронного оборудования, будь то дискретные устройства или интегральные схемы.

Выбор транзисторов с пластиковыми выводами

Разработка транзисторов

Полупроводниковая технология хорошо известна, но используется уже более ста лет.Первые полупроводниковые эффекты были замечены еще в начале 1900-х годов, когда использовались первые беспроводные или радиоприемники. В качестве детекторов исследовались различные идеи.

Термоэмиссионный клапан или технология вакуумных трубок была представлена ​​в 1904 году, но эти устройства были дорогими, а также требовали питания от батареи. Вскоре после этого был обнаружен детектор Cat’s Whisker. Он состоял из тонкой проволоки, помещенной на один из нескольких типов материала. Эти материалы известны сегодня как полупроводники и составляют основу современной электронной техники.

Примечание к истории транзисторов:

Биполярный транзистор был изобретен тремя исследователями, работающими в Bell Labroratories: Джоном Бардином, Уолтером Браттейном и Уильямом Шокли. Они работали над идеей, в которой для управления током в полупроводнике использовался эффект поля, но они не смогли реализовать эту идею. Они обратили свое внимание на другую возможность и создали устройство с тремя выводами, используя два близко расположенных точечных контакта на пластине из германия.Эта идея сработала, и они смогли продемонстрировать, что она принесла прибыль в конце 1949 года.

Подробнее о История биполярных транзисторов

Старый биполярный транзистор OC71

После того, как была разработана основная идея, потребовалось некоторое время, прежде чем полупроводниковая технология была принята, но как только это произошло, она стала популярной, как мы знаем сегодня.

Что такое биполярный транзистор

стоит в двух словах определить, что такое биполярный транзистор:

Определение биполярного транзистора:

Биполярный транзистор — это полупроводниковое устройство, состоящее из трех областей P-типа или N-типа — область одного типа зажата между областями другого.Транзистор в основном усиливает ток, но его можно включать в схемы, предназначенные для усиления напряжения или мощности.

Биполярный транзистор необходимо отличать от полевого транзистора. Биполярный транзистор, BJT, получил свое название от того факта, что в своей работе он использует как дырки, так и электроны. Полевые транзисторы — это униполярные устройства, использующие один или любой из типов носителей заряда.

Биполярный транзистор, или, точнее, биполярный транзистор с соединением, BJT, имеет два PN-диодных перехода, которые соединены друг с другом.Биполярный транзистор имеет три вывода, которые называются эмиттер, база и коллектор.

Транзистор усиливает ток — биполярные транзисторы являются устройствами тока, в отличие от вакуумных ламп с термоэлектронными лампами и полевых транзисторов, которые являются устройствами напряжения. Ток, протекающий в цепи базы, влияет на ток, протекающий между коллектором и эмиттером.

Примечание по конструкции схемы транзистора:

Транзистор представляет собой трехполюсное устройство, обеспечивающее усиление по току.Существует три конфигурации, которые можно использовать для транзистора: общий эмиттер, общий коллектор и общая база. Каждый из них имеет разные характеристики, и, спроектировав схему на основе одной из этих конфигураций, можно достичь требуемых характеристик.

Подробнее о Схема биполярного транзистора

Структура транзистора базовая

Транзистор представляет собой устройство с тремя выводами и состоит из трех отдельных слоев.Два из них легированы, чтобы дать один тип полупроводника, а есть противоположный тип, то есть два могут быть n-типа и один p-тип, или два могут быть p-типа, а один может быть n-типом. расположены так, что два одинаковых слоя транзистора смещают слой противоположного типа. В результате эти полупроводниковые устройства обозначаются как транзисторы PNP или транзисторы NPN в зависимости от способа их изготовления.

Базовая структура и символы схем для транзисторов NPN и PNP

Названия трех электродов широко используются, но их значения не всегда понятны:

  • База: База транзистора получила свое название от того факта, что в ранних транзисторах этот электрод служил базой для всего устройства.Самые ранние транзисторы с точечным контактом имели два точечных контакта, размещенных на основном материале. Этот базовый материал сформировал базовое соединение. . . и название прижилось.
  • Эмиттер: Эмиттер получил свое название от того факта, что он испускает носители заряда.
  • Коллектор: Коллектор получил свое название от того факта, что он собирает носители заряда.

Для работы транзистора важно, чтобы область базы была очень тонкой.В современных транзисторах ширина базы обычно может составлять всего около 1 мкм. Тот факт, что базовая часть транзистора тонкая, является ключом к работе устройства

.

Как работает транзистор: основы

Транзистор

A можно рассматривать как два P-N перехода, соединенных спина к спине. Один из них, а именно переход базового эмиттера, смещен в прямом направлении, а другой — переход базового коллектора — в обратном направлении. Обнаружено, что когда ток течет в переходе база-эмиттер, больший ток течет в цепи коллектора, даже несмотря на то, что переход база-коллектор имеет обратное смещение.

Для наглядности взят пример NPN-транзистора. Те же рассуждения можно использовать для устройства PNP, за исключением того, что дырки являются основными носителями вместо электронов.

Когда ток течет через переход база-эмиттер, электроны покидают эмиттер и перетекают в базу. Однако легирование в этой области остается низким, и имеется сравнительно небольшое количество дырок, доступных для рекомбинации. В результате большая часть электронов может протекать прямо через базовую область и далее в область коллектора, привлеченные положительным потенциалом.

Базовый режим работы транзистора
Показан режим работы транзистора NPN

Лишь небольшая часть электронов эмиттера объединяется с дырками в области базы, что приводит к возникновению тока в цепи база-эмиттер. Это означает, что ток коллектора намного выше.

Отношение между током коллектора и током базы обозначается греческим символом Β. Для большинства транзисторов с малым сигналом это значение может составлять от 50 до 500. В некоторых случаях оно может быть даже выше.Это означает, что ток коллектора обычно в 50-500 раз превышает ток в базе. Для транзистора большой мощности значение несколько меньше: 20 — довольно типичное значение.

Почему транзисторы NPN используются чаще, чем транзисторы PNP

Изучив схемы, а также таблицы данных и т. Д., Можно заметить, что транзисторы NPN гораздо более популярны, чем транзисторы PNP.

На это есть несколько причин:

  • Мобильность носителей: Транзисторы NPN используют электроны в качестве основных носителей, а не дырки, которые являются основными носителями в транзисторах PNP.Поскольку дырки перемещаются внутри кристаллической решетки гораздо легче, чем электроны, т.е.они обладают большей подвижностью, они могут работать быстрее и обеспечивать гораздо лучший уровень производительности.
  • Отрицательное заземление: С годами отрицательное заземление стало стандартом, например в автомобилях и т. д., а полярность транзисторов NPN означает, что базовые конфигурации транзисторов работают с отрицательным заземлением.
  • Производственные затраты: Производство полупроводниковых компонентов на основе кремния наиболее экономично с использованием больших кремниевых пластин N-типа.Хотя изготовление транзисторов PNP возможно, требуется в 3 раза больше площади поверхности пластины, а это значительно увеличивает затраты. Поскольку стоимость полупроводниковых пластин составляет основную часть общей стоимости компонентов, это значительно увеличило производственные затраты на транзисторы PNP.

Биполярные транзисторы, BJT, были первой формой изобретенного транзистора, и они до сих пор очень широко используются во многих областях. Они просты в использовании, дешевы и имеют спецификации, отвечающие большинству требований.Они идеально подходят для многих схем, хотя, естественно, спецификация биполярного транзистора должна соответствовать спецификации схемы.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты».. .

Как работают транзисторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.

Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечных переключателей, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «клеток мозга». Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли.Но что это такое и как они работают?

Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри. (Технически, если вас интересуют более интересные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)

Что на самом деле делает транзистор?

Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки. Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький динамик, который находится у вас в ухе.

Транзистор действительно прост — и действительно сложен. Давайте начнем с простая часть. Транзистор — это миниатюрный электронный компонент, который может выполнять две разные работы. Может работать как усилитель или как переключатель:

  • Когда работает как усилитель, берет в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другом. Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для.В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.«
  • Транзисторы
  • также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.

Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон — это минута частица внутри атома. Он такой маленький, весит чуть меньше 0.000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.

Как делается транзистор?

Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний — полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающий электричество), ни изолятор (что-то вроде пластика, не пропускающего электричество).Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны — те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.В кремнии, обработанном таким образом, меньше таких «свободные» электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типа (положительный тип).

Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, что изначально было нейтральным — и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают дополнительные свободные электрона — те, которые могут свободно перемещаться и помогать переносить электрический ток.

Сэндвичи кремниевые

Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.

Предположим, мы соединяем кусок кремния n-типа с частью p-типа кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся по току, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанный здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.

Как работает переходной транзистор

Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).

Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче. из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен — другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.

Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы будем называть базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электроны (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).

Другой способ взглянуть на это — сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.

Транзистор работает, когда электроны и дырки начинают двигаться через два перехода между кремнием n-типа и p-типа.

Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:

Малый ток, который мы включаем на базе, создает большой ток. поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или «полярностей») электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.

Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).

Как работает полевой транзистор (FET)

Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналог коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).

Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:

Для полноты картины отметим, что полевой МОП-транзистор является однополярным. транзистор потому что только один («полярность») электрического заряда участвует в его работе.

Как работают транзисторы в калькуляторах и компьютерах?

На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?

Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать. называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя «входные данные» (то, что вы знаете) о погоде и о том, что у вас в коридоре, вы можете принять такое решение: «Если идет дождь И я есть зонтик, я пойду в магазины «. Это пример булевой алгебры, в которой используется так называемое И «оператор» (слово «оператор» — это просто математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег, тогда я надену пальто «- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу «. Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.

Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «щелкает» или выключается. Остается в одном из эти стабильные состояния (включены или выключены) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы — это основная технология, лежащая в основе компьютерных микросхем памяти.

Кто изобрел транзистор?

Изображение: Оригинальный дизайн точечного транзистора, как изложено в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).

Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США — но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 года. Хотя Шокли сыграл большую роль в этом проекте, он был в ярости и волнении из-за того, что его оставили в стороне Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора — устройство гораздо лучше, чем точечный транзистор.

В то время как Бардин покинул Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.

Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими мировыми науками награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.

Как работают транзисторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.

Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечных переключателей, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «клеток мозга».Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли. Но что это такое и как они работают?

Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри.(Технически, если вас интересуют более интересные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)

Что на самом деле делает транзистор?

Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки.Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький динамик, который находится у вас в ухе.

Транзистор действительно прост — и действительно сложен. Давайте начнем с простая часть. Транзистор — это миниатюрный электронный компонент, который может выполнять две разные работы. Может работать как усилитель или как переключатель:

  • Когда работает как усилитель, берет в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другом.Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.«
  • Транзисторы
  • также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.

Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон — это минута частица внутри атома. Он такой маленький, весит чуть меньше 0.000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.

Как делается транзистор?

Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний — полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающий электричество), ни изолятор (что-то вроде пластика, не пропускающего электричество).Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны — те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.В кремнии, обработанном таким образом, меньше таких «свободные» электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типа (положительный тип).

Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, что изначально было нейтральным — и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают дополнительные свободные электрона — те, которые могут свободно перемещаться и помогать переносить электрический ток.

Сэндвичи кремниевые

Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.

Предположим, мы соединяем кусок кремния n-типа с частью p-типа кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся по току, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанный здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.

Как работает переходной транзистор

Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).

Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче. из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен — другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.

Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы будем называть базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электроны (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).

Другой способ взглянуть на это — сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.

Транзистор работает, когда электроны и дырки начинают двигаться через два перехода между кремнием n-типа и p-типа.

Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:

Малый ток, который мы включаем на базе, создает большой ток. поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или «полярностей») электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.

Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).

Как работает полевой транзистор (FET)

Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналог коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).

Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:

Для полноты картины отметим, что полевой МОП-транзистор является однополярным. транзистор потому что только один («полярность») электрического заряда участвует в его работе.

Как работают транзисторы в калькуляторах и компьютерах?

На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?

Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать. называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя «входные данные» (то, что вы знаете) о погоде и о том, что у вас в коридоре, вы можете принять такое решение: «Если идет дождь И я есть зонтик, я пойду в магазины «. Это пример булевой алгебры, в которой используется так называемое И «оператор» (слово «оператор» — это просто математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег, тогда я надену пальто «- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу «. Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.

Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «щелкает» или выключается. Остается в одном из эти стабильные состояния (включены или выключены) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы — это основная технология, лежащая в основе компьютерных микросхем памяти.

Кто изобрел транзистор?

Изображение: Оригинальный дизайн точечного транзистора, как изложено в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).

Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США — но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 года. Хотя Шокли сыграл большую роль в этом проекте, он был в ярости и волнении из-за того, что его оставили в стороне Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора — устройство гораздо лучше, чем точечный транзистор.

В то время как Бардин покинул Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.

Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими мировыми науками награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.

Как работают транзисторы? — Объясни, что материал

Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.

Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечных переключателей, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «клеток мозга».Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли. Но что это такое и как они работают?

Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри.(Технически, если вас интересуют более интересные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)

Что на самом деле делает транзистор?

Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки.Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький динамик, который находится у вас в ухе.

Транзистор действительно прост — и действительно сложен. Давайте начнем с простая часть. Транзистор — это миниатюрный электронный компонент, который может выполнять две разные работы. Может работать как усилитель или как переключатель:

  • Когда работает как усилитель, берет в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другом.Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи. Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.«
  • Транзисторы
  • также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.

Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон — это минута частица внутри атома. Он такой маленький, весит чуть меньше 0.000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.

Как делается транзистор?

Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний — полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающий электричество), ни изолятор (что-то вроде пластика, не пропускающего электричество).Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны — те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.В кремнии, обработанном таким образом, меньше таких «свободные» электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типа (положительный тип).

Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, что изначально было нейтральным — и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают дополнительные свободные электрона — те, которые могут свободно перемещаться и помогать переносить электрический ток.

Сэндвичи кремниевые

Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.

Предположим, мы соединяем кусок кремния n-типа с частью p-типа кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся по току, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанный здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.

Как работает переходной транзистор

Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).

Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче. из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен — другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.

Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы будем называть базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электроны (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).

Другой способ взглянуть на это — сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.

Транзистор работает, когда электроны и дырки начинают двигаться через два перехода между кремнием n-типа и p-типа.

Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:

Малый ток, который мы включаем на базе, создает большой ток. поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или «полярностей») электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.

Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).

Как работает полевой транзистор (FET)

Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналог коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).

Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:

Для полноты картины отметим, что полевой МОП-транзистор является однополярным. транзистор потому что только один («полярность») электрического заряда участвует в его работе.

Как работают транзисторы в калькуляторах и компьютерах?

На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?

Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать. называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя «входные данные» (то, что вы знаете) о погоде и о том, что у вас в коридоре, вы можете принять такое решение: «Если идет дождь И я есть зонтик, я пойду в магазины «. Это пример булевой алгебры, в которой используется так называемое И «оператор» (слово «оператор» — это просто математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег, тогда я надену пальто «- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу «. Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.

Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «щелкает» или выключается. Остается в одном из эти стабильные состояния (включены или выключены) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы — это основная технология, лежащая в основе компьютерных микросхем памяти.

Кто изобрел транзистор?

Изображение: Оригинальный дизайн точечного транзистора, как изложено в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).

Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США — но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 года. Хотя Шокли сыграл большую роль в этом проекте, он был в ярости и волнении из-за того, что его оставили в стороне Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора — устройство гораздо лучше, чем точечный транзистор.

В то время как Бардин покинул Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.

Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими мировыми науками награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.

Как работают транзисторы (NPN и MOSFET)

Транзистор — это простой компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своей следующей схеме.

На самом деле это довольно просто, если вы изучите основы.Мы сосредоточимся на двух наиболее распространенных транзисторах; NPN и MOSFET .

Транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

Но транзистор также можно частично включить, что полезно для создания усилителей.

Как работают транзисторы (тип NPN)

Начнем с классического транзистора NPN.Имеет три ножки:

  • База (б)
  • Коллектор (в)
  • Излучатель (д)

Если вы включите его, через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не может течь.

В приведенном ниже примере схемы транзистор выключен. Это означает, что через него не может протекать ток, поэтому светоизлучающий диод (LED) также выключен.

Чтобы включить транзистор, необходимо напряжение около 0,7 В между базой и эмиттером.

Если бы у вас была батарея 0,7 В, вы могли бы подключить ее между базой и эмиттером, и транзистор включился бы.

Поскольку у большинства из нас нет батареи 0,7 В, как нам включить транзистор?

Легко! Часть транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение , которое он «берет» из имеющегося напряжения. Если вы добавите резистор последовательно, остальная часть напряжения упадет на резисторе.

Таким образом, вы автоматически получите около 0.7В, добавив резистор.

Это тот же принцип, который вы используете для ограничения тока через светодиод, чтобы он не взорвался.

Если вы также добавите кнопку, вы можете управлять транзистором и, следовательно, светодиодом, включаться и выключаться с помощью кнопки:

Выбор значений компонентов

Чтобы выбрать значения компонентов, вам нужно знать еще одну вещь о том, как работают транзисторы:

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Существует связь между величинами двух токов. Это называется коэффициентом усиления транзистора.

Для транзистора общего назначения, такого как BC547 или 2N3904, это может быть около 100.

Это означает, что если у вас есть ток 0,1 мА от базы к эмиттеру, вы можете получить 10 мА (в 100 раз больше), протекающее от коллектора к эмиттеру.

Резистор какого сопротивления нужен для R1, чтобы получить ток 0,1 мА?

Если батарея 9В, а база-эмиттер транзистора захватывает 0.7 В, на резисторе осталось 8,3 В.

Вы можете использовать закон Ома, чтобы найти номинал резистора:

Треугольник закона Ома

Значит нужен резистор на 83 кОм. Это не стандартное значение, но 82 кОм, и это достаточно близко.

R2 предназначен для ограничения тока светодиода. Вы можете выбрать значение, которое вы выбрали бы, если бы вы подключили светодиод и резистор непосредственно к батарее 9 В, без транзистора. Например, 1 кОм должен работать нормально.

Посмотрите видеообъяснение транзистора, которое я сделал несколько лет назад (простите за олдскульное качество):

Как выбрать транзистор

NPN-транзистор является наиболее распространенным из биполярных транзисторов (BJT) .Но есть еще один, называемый PNP-транзистором, который работает точно так же, только все токи имеют противоположное направление.

При выборе транзистора важно помнить, какой ток транзистор может выдерживать. Это называется током коллектора (I C ).

БЕСПЛАТНЫЙ бонус: Загрузите основные электронные компоненты [PDF] — мини-книгу с примерами, которые научат вас, как работают основные компоненты электроники.

Как работает полевой МОП-транзистор

MOSFET-транзистор — еще один очень распространенный тип транзисторов. Он также имеет три контакта:

  • Затвор (g)
  • Источник (и)
  • Сток (d)
Символ MOSFET (N-канал)

MOSFET работает аналогично NPN-транзистору, но с одним важным отличием:

В NPN-транзисторе , ток от базы к эмиттеру определяет, сколько тока может протекать от коллектора к эмиттеру.

В полевом МОП-транзисторе напряжение между затвором и истоком определяет, какой ток может протекать от стока к истоку.

Пример: как включить полевой МОП-транзистор

Ниже приведен пример схемы включения полевого МОП-транзистора.

Значение R1 не имеет решающего значения, но около 10 кОм должно работать нормально. R2 устанавливает яркость светодиода. 1 кОм подойдет для большинства светодиодов. Q1 может быть практически любым n-канальным MOSFET, например BS170.

Чтобы включить MOSFET-транзистор, вам необходимо напряжение между затвором и истоком, которое выше порогового напряжения вашего транзистора.Например, BS170 имеет пороговое напряжение затвор-исток , равное 2,1 В. (Вы найдете эту информацию в таблице).

Пороговое напряжение полевого МОП-транзистора — это фактически напряжение, при котором он отключается. Итак, чтобы правильно включить транзистор, вам нужно напряжение немного выше этого.

Насколько выше, зависит от того, какой ток вы хотите иметь (и вы найдете эту информацию в таблице). Если вы поднимете на пару вольт выше порогового значения, этого обычно более чем достаточно для слаботочных вещей, таких как включение светодиода.

Обратите внимание, что даже если вы используете достаточно высокое напряжение для протекания тока 1 А, это не означает, что вы получите 1 А. Это просто означает, что у может быть ток с током 1А, если вы захотите. Но то, что вы к нему подключаете, определяет фактический ток.

Таким образом, вы можете подниматься настолько высоко, насколько хотите, при условии, что вы не превышаете максимально допустимое напряжение затвор-исток (которое составляет 20 В для BS170).

В приведенном выше примере ворота подключаются к напряжению 9 В, когда вы нажимаете кнопку.Это включает транзистор.

Как выключить полевой МОП-транзистор?

Одна важная вещь, которую нужно знать о MOSFET, заключается в том, что он также действует как конденсатор. То есть часть затвор-исток. Когда вы прикладываете напряжение между затвором и истоком, это напряжение остается там, пока не разрядится.

Без резистора (R1) в приведенном выше примере транзистор не выключился бы. С резистором есть путь для разряда конденсатора затвор-исток, чтобы транзистор снова отключился.

Как выбрать МОП-транзистор

В приведенном выше примере используется полевой МОП-транзистор с N-каналом . P-channel MOSFET работают так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным, чтобы включить его.

Существуют тысячи различных полевых МОП-транзисторов на выбор. Но если вы хотите построить схему, приведенную выше, и получить конкретную рекомендацию, BS170 и IRF510 — два обычных.

При выборе полевого МОП-транзистора следует учитывать две вещи:

  • Пороговое напряжение затвор-исток .Для включения транзистора требуется более высокое напряжение.
  • Непрерывный ток утечки . Это максимальное количество тока, которое может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от того, что вы делаете. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем нужен транзистор?

Мне часто задают вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к аккумулятору?

Преимущество транзистора заключается в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большими током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое с Raspberry Pi / Arduino / микроконтроллера. Выходные контакты этих плат обычно могут обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять уличным освещением 110 В для патио, вы не можете сделать это напрямую с помощью булавки.

Вместо этого вы можете сделать это через реле. Но даже реле обычно требует большего тока, чем может обеспечить вывод. Итак, вам понадобится транзистор для управления реле:

Подключите левую сторону резистора к выходному контакту (например, от Arduino) для управления реле.

Но транзисторы также полезны для более простых схем датчиков, таких как эта схема светового датчика, схема сенсорного датчика или схема H-моста.

Транзисторы используются практически во всех схемах. Это действительно самый важный компонент в электронике.

Транзистор как усилитель

Транзистор — это еще и то, что заставляет работать усилители. Вместо того, чтобы иметь только два состояния (ВКЛ / ВЫКЛ), он также может быть где угодно между «полностью включен» и «полностью выключен».

Это означает, что слабый сигнал почти без энергии может управлять транзистором, чтобы создать гораздо более сильную копию этого сигнала в части коллектор-эмиттер (или сток-исток) транзистора.Таким образом, транзистор может усиливать слабые сигналы.

Ниже представлен простой усилитель для управления динамиком. Чем выше входное напряжение, тем выше ток от базы к эмиттеру и тем выше ток через динамик.

Изменяющееся входное напряжение приводит к изменению тока в динамике, что создает звук.

Усилитель с общим эмиттером

Обычно вы добавляете еще пару резисторов к смещению транзистора. В противном случае вы получите много искажений.Но это уже для другой статьи.

Если вы хотите узнать больше об использовании транзистора в качестве усилителя, на сайте electronics-lab.com есть несколько хороших руководств по трем основным настройкам усилителя BJT.

Вопросы?

Вы понимаете, как сейчас работают транзисторы? Или вы все еще в замешательстве? Позвольте мне знать в комментариях ниже.

транзисторов — learn.sparkfun.com

Добавлено в избранное Любимый 77

Введение

Транзисторы вращают мир электроники.Они критически важны как источник управления практически в каждой современной цепи. Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).

В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.

рассматривается в этом учебном пособии

После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы. Мы не будем слишком глубоко углубляться в физику полупроводников или эквивалентные модели, но мы достаточно углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .

Это руководство разделено на несколько разделов, охватывающих:

Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET).В этом уроке мы сфокусируемся на BJT , потому что его немного легче понять. Если копать еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить фокус — получить твердое представление о NPN — будет легче понять PNP (или даже MOSFET), сравнив, чем он отличается от NPN.

и nbsp

и nbsp

Рекомендуемая литература

Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть эти уроки:

  • Напряжение, ток, сопротивление и закон Ома — Введение в основы электроники.
  • Основы электричества — Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
  • Electric Power — Одно из основных применений транзисторов — усиление — увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличить либо ток, либо напряжение, узнайте почему в этом руководстве.
  • Диоды — Транзистор — это полупроводниковый прибор, как и диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, во многом поможет раскрыть принцип работы транзистора.

Хотите изучить транзисторы?

Мы вас прикрыли!

Комплект запчастей для начинающих SparkFun

В наличии КОМПЛЕКТ-13973

Комплект деталей для начинающих SparkFun — это небольшой контейнер с часто используемыми деталями, который дает вам все основные компоненты, которые вы…

12

Символы, булавки и конструкция

Транзисторы — это в основном трехконтактные устройства.На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:

Единственная разница между NPN и PNP — это направление стрелки на эмиттере. Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:

NPN:

N от P от N

Обратная логика, но работает!

Конструкция транзистора

Транзисторы полагаются на полупроводники, чтобы творить чудеса.Полупроводник — это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника — насколько легко он позволяет электронам течь — зависит от таких переменных, как температура или наличие большего или меньшего количества электронов. Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.

Транзистор как два диода
Транзисторы

— это своего рода продолжение другого полупроводникового компонента: диодов.В некотором смысле транзисторы — это всего лишь два диода со связанными вместе катодами (или анодами):

Диод, соединяющий базу с эмиттером, здесь важен; он совпадает с направлением стрелки на схематическом символе и показывает , в каком направлении должен проходить ток через транзистор.

Изображение диодов — хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает).Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.

(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете провести измерения на клеммах BE и BC, чтобы проверить наличие этих «диодов».)

Структура и работа транзистора
Транзисторы

состоят из трех разных слоев полупроводникового материала.В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легированием»), а в других электроны удалены (допирование «дырками» — отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного заряда, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного). Транзисторы создаются путем наложения n поверх p ​​ поверх n или p ​​ поверх n над p ​​.

Упрощенная схема структуры NPN. Заметили происхождение аббревиатур?

Если немного помахать рукой, мы можем сказать, что электронов могут легко перетекать из n областей в p ​​ областей , если у них есть небольшая сила (напряжение), толкающая их. Но переход от области p ​​ к области n действительно затруднен (требуется лот напряжения). Но особенность транзистора — та часть, которая делает нашу модель с двумя диодами устаревшей — это тот факт, что электронов могут легко течь от базы p-типа к коллектору n-типа, пока база- эмиттерный переход смещен в прямом направлении (это означает, что база находится под более высоким напряжением, чем эмиттер).

NPN-транзистор предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру). Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большая часть испускаемых электронов «собирается» коллектором, который отправляет их в следующую часть цепи.

PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении — от эмиттера к коллектору.Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.

Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете отрегулировать, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше …


Расширение аналогии с водой

Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, привыкли к аналогиям с водой.Мы говорим, что ток аналогичен скорости потока воды, напряжение — это давление, проталкивающее воду по трубе, а сопротивление — это ширина трубы.

Неудивительно, что аналогия с водой может быть распространена и на транзисторы: транзистор похож на водяной клапан — механизм, который мы можем использовать для управления скоростью потока .

Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.

1) Вкл — короткое замыкание

Клапан может быть полностью открыт, что позволяет воде течь свободно. — проходить, как если бы клапана даже не было.

Аналогичным образом, при определенных обстоятельствах транзистор может выглядеть как , короткое замыкание между контактами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.

2) Выкл. — обрыв цепи

Когда он закрыт, клапан может полностью перекрыть поток воды.

Таким же образом можно использовать транзистор для создания разомкнутой цепи между выводами коллектора и эмиттера.

3) Линейное управление потоком

С некоторой точной настройкой клапан может быть отрегулирован для точного управления расходом до некоторой точки между полностью открытым и закрытым.

Транзистор может делать то же самое — линейно регулирует ток через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).

Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен переменному регулируемому резистору .

Усилительная мощность

Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное количество силы, которое вы можете приложить для поворота этой ручки, может создать силу в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усиливать электрических сигналов, превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.


Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.


Режимы работы

В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)

Четыре режима работы транзистора:

  • Насыщение — Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
  • Отсечка — Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
  • Активный — Ток от коллектора к эмиттеру на пропорционален току, протекающему в базу.
  • Reverse-Active — Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).

Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть на напряжения на каждом из трех выводов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) устанавливают режим транзистора:

Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.

Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.

Примечание: Большая часть этой страницы посвящена транзисторам NPN . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.

Режим насыщенности

Насыщенность — это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.

В режиме насыщения оба «диода» в транзисторе смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , так же как и V BC . Другими словами, V B должен быть выше, чем V E и V C .

Поскольку переход от базы к эмиттеру выглядит как диод, на самом деле V BE должно быть больше, чем пороговое напряжение , чтобы войти в режим насыщения.Существует множество сокращений для этого падения напряжения — V th , V γ и V d несколько — и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.

Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определяется как напряжение насыщения CE, В CE (насыщение) — напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор находился в режиме насыщения.

Режим отсечки

Режим отсечки противоположен насыщению. Транзистор в режиме отсечки — выключен — нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.

Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжения эмиттера и коллектора.Оба V BC и V BE должны быть отрицательными.

На самом деле, V BE может быть где угодно между 0 В и V th (~ 0,6 В) для достижения режима отсечки.

Активный режим

Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.

На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.

Усиление в активном режиме

Активный режим — это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.

Наше сокращенное обозначение для коэффициента усиления (коэффициент усиления) транзистора — β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):

Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 … даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Если, например, у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.

Модель с активным режимом. V BE = V th и I C = βI B .

А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут в устройство , а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α — коэффициент усиления по току общей базы, он связывает эти токи как таковые:

α обычно очень близко, но меньше 1. Это означает, что I C очень близко, но меньше, чем I E в активном режиме.

Вы можете использовать β для вычисления α или наоборот:

Если, например, β равно 100, это означает, что α равно 0,99. Итак, если я C , например, 100 мА, то я E это 101 мА.

Реверс Активный

Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в обратном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .

Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).

Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.

Относительно PNP

После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN — у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится транзистор PNP, поменяйте местами все знаки <и>.

Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, напряжение V E должно быть выше, чем напряжение V B , которое должно быть выше, чем V C .

Итого:

Соотношение напряжений Режим NPN Режим PNP
В E B C Активный Обратный
V E B > V C Насыщенность Отсечка
V E > V B C Отсечка Насыщенность
V E > V B > V C Задний ход Активный

Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.


Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, — это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!


Приложения I: Коммутаторы

Одно из самых фундаментальных применений транзистора — это его использование для управления потоком энергии к другой части схемы — использование его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6V транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем нижнего уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Как и в схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и переключатель на основе NPN, но есть одно огромное отличие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать проблемы, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключателем , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничить ток, но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ затвор:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это фундаментальная конфигурация транзистора под названием с общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с 2 входами :

2-входной логический элемент И на транзисторах.

Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, вот логический элемент ИЛИ с 2 входами :

2-входной логический элемент ИЛИ на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-мост

H-мост — это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.

По сути, H-мост представляет собой комбинацию из четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется H-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

31 торможение

Генераторы

Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы — отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором начали.

Может быть трудно с головой окунуться. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонны схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!


Applications II: Усилители

Некоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности.Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины. Существуют даже усилители, которые принимают ток и производят более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).

Транзисторы

являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем.Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете понять более сложные усилители.

Общие конфигурации

Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.

Общий эмиттер

Общий эмиттер — одна из наиболее популярных схем транзисторов.В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления). База становится входом сигнала, а коллектор — выходом.

Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:

Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).

Общий коллектор (эмиттерный повторитель)

Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .

Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .

Эта схема имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею.

Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.

По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «нагружать» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.

Общая база

Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор — выходом. База общая для обоих.

Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе).

Схема с общей базой лучше всего работает как токовый буфер . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.

Вкратце

Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.

Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановка (торможение) 91 1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0
Входное сопротивление
Общий эмиттер Общий коллектор Общая база
Коэффициент усиления по напряжению Средний Низкий Высокий
Коэффициент усиления по току Низкий Среднее Среднее Высокое Низкое
Выходное сопротивление Среднее Низкое Высокое

Многокаскадные усилители

Мы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:

Дарлингтон

Усилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току .

Выходное напряжение составляет , что примерно соответствует входному напряжению (минус 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзисторов . Это β 2 — более 10 000!

Пара Дарлингтона — отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.

Дифференциальный усилитель

Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.

Вот основа дифференциального усилителя:

Эта схема также называется длиннохвостой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.

Двухтактный усилитель

Двухтактный усилитель является полезным «заключительным каскадом» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.

В двухтактном усилителе основной частоты используются транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:

Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных цепях (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания.

Если у вас биполярный источник питания (или даже если у вас его нет), двухтактный — отличный конечный каскад для усилителя, действующий как буфер для нагрузки.

Собираем их вместе (операционный усилитель)

Давайте посмотрим на классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:

Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?

Здесь определенно больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:

  • Q1, Q2, Q3 и Q4 образуют входной каскад. Очень похоже на общий коллектор (Q1 и Q4) на дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
  • Q11 и Q12 являются частью второго этапа. Q11 — это общий коллектор, а Q12 — это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на финальный каскад.
  • Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) — это двухтактный ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
  • Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.

После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие транзисторные схемы, вы на правильном пути!


Покупка транзисторов

Теперь, когда вы контролируете источник управления, мы рекомендуем SparkFun Inventor’s Kit, чтобы воплотить в жизнь полученные вами знания.Мы также предоставили ссылки на комплект полупроводников и одиночные транзисторы для использования в ваших собственных проектах.

Наши рекомендации:

N-канальный полевой МОП-транзистор 60 В, 30 А

В наличии COM-10213

Если вы когда-нибудь задумывались, как управлять фарами автомобиля с помощью микроконтроллера, MOSFET — это то, что вам нужно.Это ве…

4

Пакет дополнений SparkFun Inventor’s Kit — v4.0

На пенсии КОМПЛЕКТ-14310

С помощью Add-On Pack вы сможете включить некоторые из старых частей, которые раньше были включены в SIK, которые были обновлены…

На пенсии

Ресурсы и дальнейшее развитие

Если вы хотите глубже изучить транзисторы, мы рекомендуем несколько ресурсов:

  • Начало работы в электронике Форрест Мимс — Мимс — мастер объяснения электроники в простой для понимания и применимости манере.Обязательно ознакомьтесь с этой книгой, если вы хотите более подробно познакомиться с транзисторами.
  • LTSpice и Falstad Circuit — это бесплатные программные инструменты, которые вы можете использовать для моделирования цепей. Цифровые эксперименты со схемами — отличный способ научиться. Вы получаете все эксперименты, без боли макетирования или страха взорвать все. Попробуйте собрать воедино то, о чем мы говорили!
  • 2N3904 Техническое описание — Еще один способ узнать о транзисторах — это изучить их техническое описание.2N3904 — действительно распространенный транзистор, который мы используем постоянно (а 2N3906 — его брат по PNP). Ознакомьтесь с таблицей данных, чтобы узнать, узнаете ли вы какие-нибудь знакомые характеристики.

Кроме того, наш собственный технический директор Пит выпустил серию видеороликов «По словам Пита», в которых основное внимание уделяется транзисторам и транзисторным усилителям. Обязательно посмотрите его видео о диодах и транзисторах:

.

Затем вы можете перейти к: Конфигурации смещения транзисторов, часть 1 и часть 2, и, наконец, текущие зеркала.Качественный товар!

Идем дальше

Или, если вам не терпится узнать больше об электронике в целом, ознакомьтесь с некоторыми из этих руководств по SparkFun:

  • Интегральные схемы — Что вы получите, если объедините тысячи транзисторов и поместите их в черный ящик? IC!
  • Регистры сдвига
  • — регистры сдвига — одна из наиболее распространенных интегральных схем. Узнайте, как с помощью транзистора мигать десятки светодиодов всего за несколько входов.
  • Руководство по подключению мини-полевого транзистора
  • — это действительно простой щиток Arduino, который использует 8 полевых МОП-транзисторов для управления 8 сильноточными выходами.Это хороший пример использования транзистора в качестве переключателя из реальной жизни.
  • Проектирование печатных плат с EAGLE — Выведите свои новые навыки работы с транзисторами на новый уровень. Сделайте из них печатную плату! В этом руководстве объясняется, как использовать бесплатное программное обеспечение (Eagle) для проектирования печатных плат.
  • Как паять. Если вы разрабатываете печатную плату, вам также нужно знать, как паять. Узнайте, как паять через отверстия в этом руководстве.

Или посмотрите некоторые из этих сообщений в блоге, чтобы найти идеи:

Описание транзисторов

— как работают транзисторы

Узнайте о транзисторах — одном из самых важных устройств, когда-либо изобретенных.В этой статье мы подробно узнаем, как они работают.

Прокрутите вниз, чтобы просмотреть руководство по YouTube.

Что такое транзистор

Транзисторы

Транзисторы бывают разных форм и размеров. Есть два типа сети: биполярная и с полевым эффектом. В этой статье мы в основном сосредоточимся на биполярной версии. Транзисторы — это небольшие электронные компоненты, выполняющие две основные функции. Он может действовать как переключатель цепей управления, а также они могут усиливать сигналы.

Маленькие транзисторы малой мощности заключены в пластмассовый корпус для защиты внутренних частей. Но транзисторы более высокой мощности будут иметь частично металлический корпус, который используется для отвода выделяемого тепла, так как со временем это приведет к повреждению компонентов. Обычно мы находим эти транзисторы в металлическом корпусе прикрепленными к радиатору, который помогает отводить нежелательное тепло.

Mosfet

Например, внутри этого настольного источника питания постоянного тока у нас есть несколько МОП-транзисторов, которые прикреплены к большим радиаторам.Без радиатора компоненты быстро нагреваются до 45 градусов Цельсия (или 113 ° F) при токе всего 1,2 А. По мере увеличения силы тока они станут намного горячее. Но для электронных схем с небольшими токами мы можем просто использовать транзисторы с полимерным корпусом, которые не требуют радиатора.

Номер детали

На корпусе транзистора мы находим текст, который сообщает нам номер детали, который мы можем использовать, чтобы найти техническое описание производителя. Каждый транзистор рассчитан на работу с определенным напряжением и током, поэтому важно проверять эти таблицы.

3 контакта

Теперь с транзистором у нас есть 3 контакта, обозначенные E, B и C. Это обозначает эмиттер, базу и коллектор. Обычно у этих транзисторов с полимерным корпусом с плоской кромкой левый вывод является эмиттером, средний — базой, а правая сторона — коллектором. Однако не все транзисторы используют эту конфигурацию, поэтому обязательно проверьте данные производителя.

Почему мы используем транзисторы?

Мы знаем, что если мы подключим лампочку к батарее, она загорится.Мы можем установить выключатель в схему и управлять светом, отключив подачу питания. Но для этого требуется, чтобы человек вручную управлял переключателем. Итак, как мы можем это автоматизировать? Для этого мы используем транзистор. Этот транзистор блокирует прохождение тока, поэтому свет не горит. Но если мы подадим небольшое напряжение на базовый вывод посередине, это заставит транзистор запускаться, позволяя току течь в главной цепи, поэтому загорается свет. Затем мы можем поместить переключатель на управляющий штифт, чтобы управлять им удаленно, или мы можем разместить на нем датчик, чтобы автоматизировать управление.

Как правило, нам нужно подать минимум 0,6–0,7 вольт на вывод базы, чтобы транзистор включился. Например, эта простая транзисторная схема имеет красный светодиод с напряжением питания 9 В на главной цепи. Базовый вывод подключается к источнику питания постоянного тока. Принципиальная схема выглядит так.

Когда напряжение питания на выводе базы составляет 0,5 В, транзистор выключен, поэтому светодиод также не горит. При 0,6 В транзистор включен, но не полностью, светодиод тусклый, потому что транзистор еще не пропускает полный ток через главную цепь.Тогда при 0,7 В светодиод ярче, потому что транзистор пропускает почти полный ток, а при 0,8 В светодиод имеет полную яркость, транзистор полностью открыт.

Итак, что происходит, мы используем небольшое напряжение и ток для управления большим напряжением и током.

Мы видели, что небольшое изменение напряжения на выводе базы вызывает большое изменение в главной цепи. Следовательно, если мы подаем сигнал на вывод базы, транзистор действует как усилитель.Мы могли бы подключить микрофон, который изменяет сигнал напряжения на базовом выводе, и это усилит громкоговоритель в основной цепи, чтобы сформировать очень простой усилитель.

Обычно в базовом выводе очень небольшой ток, возможно, всего 1 миллиампер или даже меньше. Коллектор имеет гораздо более высокий ток, например 100 миллиампер. Отношение между этими двумя величинами известно как текущий коэффициент усиления и использует символ бета (β). Мы можем найти соотношение в паспорте производителя.

В этом примере ток коллектора составляет 100 миллиампер, а базовый ток — 1 миллиампер, поэтому отношение 100, деленное на 1, дает нам 100.Мы можем изменить эту формулу, чтобы найти токи.

Транзисторы NPN и PNP

У нас есть два основных типа биполярных транзисторов: NPN и PNP. Два транзистора выглядят почти одинаково, поэтому нам нужно проверить номер детали, чтобы определить, какой из них.

С транзистором NPN у нас есть главная цепь и цепь управления. Оба подключены к плюсу батареи. Основная цепь выключена, пока мы не нажмем выключатель на цепи управления. Мы видим, что ток течет по обоим проводам к транзистору.Мы можем удалить основную цепь, и светодиод схемы управления будет по-прежнему включаться при нажатии переключателя, поскольку ток возвращается к батарее через транзистор.

Пример

В этом упрощенном примере, когда переключатель нажат, на основной штифт течет 5 миллиампер. На коллекторный стержень втекает 20 миллиампер, а на эмиттер — 25 миллиампер. Таким образом, ток объединяется в транзисторе.

С транзистором PNP у нас снова есть главная цепь и цепь управления.Но теперь эмиттер подключен к плюсу батареи. Основная цепь выключена, пока мы не нажмем выключатель на цепи управления. С помощью этого типа мы можем видеть, что часть тока вытекает из вывода базы и возвращается к батарее, остальная часть тока течет через транзистор, через главный светодиод и обратно к батарее. Если мы удалим главную цепь, светодиод цепи управления все равно будет гореть.

В этом примере, когда переключатель нажат, в эмиттер поступает 25 миллиампер, из коллектора — 20 миллиампер, а из базы — 5 миллиампер.Таким образом, ток в транзисторе делится.

Транзисторы показаны на электрических чертежах подобными символами. Стрелка находится на выводе эмиттера. Стрелка указывает в направлении обычного тока, поэтому мы знаем, как подключить их к нашим цепям.

Как работает транзистор

Чтобы понять, как работает транзистор, сначала представьте себе воду, текущую по трубе. Он свободно течет по трубе, пока мы не заблокируем ее диском.Теперь, если мы подключим меньшую трубу к основной и поместим в эту маленькую трубу поворотный затвор, мы сможем перемещать диск с помощью шкива. Чем дальше открывается калитка; тем больше воды может течь в основной трубе. Распашная калитка немного тяжелая, поэтому небольшого количества воды будет недостаточно, чтобы ее открыть. Чтобы ворота открылись, требуется определенное количество воды. Чем больше воды течет в этой маленькой трубе, тем дальше открывается клапан и пропускает все больше и больше воды в основную трубу.По сути, так работает транзистор NPN.

Возможно, вы уже знаете, что при разработке электронных схем мы используем обычный ток. Итак, в этой схеме NPN-транзистора мы предполагаем, что ток течет от положительного полюса батареи к контактам коллектора и базы, а затем выходит из контакта эмиттера. Мы всегда используем это направление для проектирования наших схем.

Однако на самом деле происходит не это. На самом деле электроны текут от отрицательного полюса батареи к положительному.Это было доказано Джозефом Томпсоном, который провел несколько экспериментов по обнаружению электрона, а также доказал, что он движется в противоположном направлении. Таким образом, в действительности электроны перетекают с отрицательного полюса в эмиттер, а затем выходят из коллекторов и выводов базы. Мы называем это электронным потоком.

Помните, мы всегда проектируем схемы, используя традиционный метод измерения тока. Но ученые и инженеры знают, что именно поток электронов работает.

Кстати, мы также подробно рассмотрели, как работает аккумулятор в нашей предыдущей статье, проверьте ЗДЕСЬ.

Итак, мы знаем, что электричество — это поток электронов по проводу. Медный провод — это проводник, а резина — изолятор. Электроны могут легко проходить через медь, но не через резиновый изолятор.

Если мы посмотрим на базовую модель атома для металлического проводника, у нас есть ядро ​​в центре, и оно окружено множеством орбитальных оболочек, удерживающих электроны. Каждая оболочка содержит максимальное количество электронов, и электрон должен иметь определенное количество энергии, чтобы попасть в каждую оболочку.Электроны, расположенные дальше всего от ядра, обладают наибольшей энергией. Самая внешняя оболочка известна как балансовая оболочка, проводник имеет от 1 до 3 электронов в своей балансовой оболочке. Электроны удерживаются на месте ядром, но есть еще одна оболочка, известная как зона проводимости. Если электрон может достичь этого, он может вырваться из атома и перейти к другим атомам. У атома металла, такого как медь, оболочка и зона проводимости перекрываются, поэтому электронам очень легко перемещаться.

Самая внешняя оболочка упакована изолятором. Для электронов очень мало места, почти нет места. Ядро плотно захватывает электроны, а зона проводимости находится далеко, поэтому электроны не могут добраться до нее, чтобы убежать. Следовательно, электричество не может проходить через этот материал.

Однако есть еще один материал, известный как полупроводник. Кремний — это пример полупроводника. В этом материале в оболочке слишком много электронов, чтобы он мог быть проводником, поэтому он действует как изолятор.Но поскольку зона проводимости находится довольно близко, если мы предоставим некоторую внешнюю энергию, некоторые электроны получат достаточно энергии, чтобы совершить прыжок в зону проводимости и стать свободными. Следовательно, этот материал может действовать как изолятор, так и как проводник.

Чистый кремний почти не имеет свободных электронов, поэтому инженеры добавляют в кремний небольшое количество другого материала, который изменяет его электрические свойства. Мы называем это легированием P-типа и N-типа. Мы объединяем эти материалы, чтобы сформировать соединение P-N.Мы можем соединить их вместе, чтобы сформировать транзистор NPN или PNP.

Внутри транзистора находятся коллекторный штырь и эмиттерный штырь. Между ними в транзисторе NPN есть два слоя материала N-типа и один слой P-типа. Базовый провод подключается к слою типа P. В транзисторе PNP это просто настроено противоположным образом. Все это покрыто смолой для защиты внутренних материалов.

Давайте представим, что кремний еще не легирован, так что внутри чистый кремний.Каждый атом кремния окружен 4 другими атомами кремния. Каждый атом хочет 8 электронов в своей валентной оболочке. Но атомы кремния имеют только 4 электрона в своей валентной оболочке. Таким образом, они украдкой делятся электроном со своим соседним атомом, чтобы получить желаемую восьмерку. Это известно как ковалентное связывание. Когда мы добавляем материал N-типа, такой как фосфор, он займет положение некоторых атомов кремния. Атомы фосфора имеют в своей валентной оболочке 5 электронов. Итак, поскольку атомы кремния делятся электронами, чтобы получить желаемые 8, им не нужен этот дополнительный, а это означает, что теперь в материале есть дополнительные электроны, и они могут свободно перемещаться.

При легировании P-типа мы добавляем такой материал, как алюминий или алюминий-мин-мкм, у этого атома всего 3 электрона в его валентной оболочке. Следовательно, он не может предоставить своим четырем соседям электрон для совместного использования, поэтому одному из них придется обойтись без него. Это означает, что была создана дыра, в которой электрон может сидеть и занимать ее.

Теперь у нас есть два легированных куска кремния, в одном слишком много электронов, а в другом их недостаточно. Два материала соединяются, образуя PN-соединение, на этом стыке мы получаем так называемую область истощения.В этой области часть избыточных электронов со стороны n-типа переместится, чтобы занять дырку со стороны p-типа. Эта миграция образует барьер со скоплением электронов и дырок на противоположных сторонах.

Электроны заряжены отрицательно, поэтому дырки считаются заряженными положительно. Таким образом, это накопление приводит к образованию слегка отрицательно заряженной области и слегка положительно заряженной области. Это создает электрическое поле и предотвращает перемещение большего количества электронов.Разность потенциалов в этой области обычно составляет около 0,7 В.

Когда мы подключаем источник напряжения к обоим концам, положив положительный полюс на материал P-типа, это создаст прямое смещение, и электроны начнут течь. Источник напряжения должен быть выше барьера 0,7 В, иначе электроны не смогут совершить прыжок.

Когда мы меняем местами источник питания так, чтобы положительный полюс был подключен к материалу N-типа, электроны, удерживаемые в барьере, будут оттянуты обратно к положительному выводу, а отверстия будут оттянуты обратно к отрицательному выводу.Это вызвало обратный уклон.

В NPN-транзисторе у нас есть два слоя материала N-типа, поэтому у нас есть два перехода и, следовательно, два барьера. Таким образом, обычно через него не может протекать ток.

Материал эмиттера N-типа сильно легирован, поэтому здесь много лишних электронов. База P-типа слегка легирована, поэтому здесь есть несколько отверстий. Коллектор N-типа умеренно легирован, поэтому здесь есть несколько лишних электронов.

Если мы подключили батарею между базой и эмиттером, положив положительный полюс на слой P-типа, это создаст прямое смещение.Прямое смещение вызывает коллапс барьера до тех пор, пока напряжение составляет не менее 0,7 вольт. Таким образом, барьер уменьшается, и электроны устремляются, заполняя пространство внутри материала P-типа. Некоторые из этих электронов займут отверстие и будут притягиваться к положительному выводу батареи. Слой P-типа тонкий и специально слегка легирован, поэтому вероятность попадания электронов в дырку мала. Остальные останутся свободно перемещаться по материалу. Следовательно, только небольшой ток будет вытекать из основного штифта, оставляя избыток электронов в материале P-типа.

Если мы затем подключим другую батарею между эмиттером и коллектором, положив плюс на коллектор. Отрицательно заряженные электроны внутри коллектора будут притягиваться к положительному выводу, что вызывает обратное смещение. Если вы помните, при обратном смещении электроны и дырки барьера вытягиваются обратно.

Итак, электроны на стороне P-типа барьера притягиваются к стороне N-типа, а отверстия на стороне N-типа притягиваются обратно к стороне P-типа.В материале типа P уже есть избыточное количество электронов, поэтому они будут двигаться, чтобы занять эти отверстия, и некоторые из них будут перетянуты, потому что напряжение этой батареи больше, поэтому притяжение намного выше. Когда эти электроны протягиваются, они перетекают в батарею, поэтому через переход обратного смещения возникает ток.

Более высокое напряжение на выводе базы полностью открывает транзистор, что означает больший ток и большее количество электронов, перемещающихся в слой P-типа, и, следовательно, большее количество электронов тянется через обратное смещение.Мы также видим, что на стороне эмиттера транзистора течет больше электронов, чем на стороне коллектора.



.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *