Site Loader

Как работают транзисторы — простое объяснение

Транзистор — полезный и практичный компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своих будущих схемах.

HILDA — электрическая дрель

Многофункциональный электрический инструмент способн…

Подробнее

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах: биполярных и MOSFET.

Транзистор может работать в 2 режимах:

  1. ключевой режим
  2. режиме усиления

В ключевом режиме транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

В режиме усиления транзистор может быть включен частично и это режим работы полезен при усилении слабого сигнала.

Как выбрать MOSFET-транзистор

В приведенном выше примере используется N-канальный полевой транзистор. Полевые транзисторы с P-каналом работают так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным.

На выбор доступны тысячи различных полевых транзисторов. Но если вы хотите построить схему, приведенную выше, то вы можете применить BS170 или IRF510.

При выборе полевого транзистора следует учитывать две вещи:

  1. Пороговое напряжение затвор-исток. Для включения транзистора требуется более высокое напряжение.
  2. Непрерывный ток стока. Это максимальный ток, который может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от области применения. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Выбор номиналов компонентов схемы

Чтобы выбрать необходимые номиналы компонентов, вам нужно знать еще один важный параметр транзистора — коэффициент усиления.

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Между величинами этих двух токов существует связь. Это называется усилением транзистора. Для транзистора общего назначения, такого как BC547 или 2N3904 коэффициент усиления составляет в среднем около 100. Это означает, что если вы подадите ток 0,1 мА на переход база-эмиттер, то по направлению коллектор-эмиттер вы получите ток 10 мА (в 100 раз больше).

Какое должно быть сопротивление резистора R1, чтобы получить ток 0,1 мА?

Если у нас в качестве источника питания батарея 9 В и мы знаем что падение напряжения на переходе база-эмиттер составляет 0,7 В, то на резисторе останется 8,3 В. Чтобы найти сопротивление резистора вы можете использовать закон Ома:

То есть вам необходимо использовать резистор сопротивлением 83 кОм. Это не стандартное значение, поэтому из стандартного номинального ряда возьмем самое близкое значение равное 82 кОм.

Резистор R2 предназначен для ограничения тока, проходящего через светодиод. Сопротивление 1 кОм будет достаточным.

Зачем нужен транзистор?

У меня часто возникает вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к батарее?

Преимущество транзистора заключается в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большим током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое при помощи микроконтроллера / Raspberry Pi / Arduino. Выход микроконтроллера может обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять, например уличным освещением 230 В, вы не можете сделать это напрямую микроконтроллером

Вместо этого вы можете использовать реле. Но даже реле обычно требует большего тока, чем может обеспечить выход микроконтроллера. Поэтому вам понадобится транзистор для управления реле:

Как работает MOSFET транзистор

MOSFET транзистор (полевой транзистор) — еще один очень распространенный тип транзистора. Он также имеет три вывода:

  • Затвор (G — gate )
  • Исток (S — source )
  • Сток (D — drain )

N-канальный MOSFET работает также как и биполярный NPN-транзистор, но с одним важным отличием:

  • В биполярном NPN транзисторе ток, протекающий через переход база-эмиттер определяет силу тока, текущего через переход коллектор-эмиттер.
  • В MOSFET транзисторе напряжение между затвором и истоком определяет, какой ток будет течь от стока к истоку.

Вот почему для MOSFET транзистора вам не нужен резистор, включенный последовательно с затвором, как в случае с NPN-транзистором. Вместо этого вам понадобится резистор, подключенный между затвором и минусом питания, чтобы надежно отключить транзистор, когда кнопка не нажата:

Поскольку напряжение на затворе определяет, сколько тока может протекать от стока к истоку, вы можете подумать о добавлении резистора последовательно с кнопкой. Таким образом, у вас получиться делитель напряжения, с помощью которого вы можете выставить точное напряжение на затворе.

Быполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.

Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.

Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.

Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам.

Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.

Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Рис. 1. Напряжения смещения базы для кремниевых и германиевых транзисторов.

На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К.

Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.

Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.

Статический коэффициент передачи тока базы h31Э показывает, во сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10…15, и с большим — до 50…800 (такие называют транзисторами со сверхусилением).

Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h31э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h3lЭ, равный всего 12…20. Примером этого может служить большинство конструкций, описанных в этой книге.

Частотными свойствами транзистора учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора.

Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10…20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2…0,4 МГц.

Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше 1,6 МГц) пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16…30 МГц.

Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение.

Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают его. Германиевый кристалл может нормально работать при температуре не более 80, а кремниевый — не более 120°С. Тепло, которое выделяется в кристалле, отводится в окружающую, среду через корпус транзистора, а также и через дополнительный теплоотвод (радиатор), которым дополнительно снабжают транзисторы большой мощности.

В зависимости от назначения выпускают транзисторы малой, средней и большой мощности. Маломощные используют главным образом для усиления и преобразования слабых сигналов низкой и высокой частот, мощные — в оконечных ступенях усиления и генерации электрических колебаний низкой и высокой частот.

Усилительные возможности ступени на биполярном транзисторе зависят не только от того, какой он мощности, а сколько от того, какой конкретно выбран транзистор, в каком режиме работы по переменному и постоянному току он работает (в частности, каковы ток коллектора и напряжение между коллектором и эмиттером), каково соотношение рабочей частоты сигнала и предельной частоты транзистора.

Как работает транзистор, самое понятное объяснение. Принцип работы биполярного и выращивание.

Каждый день мы пользуемся электронными гаджетами, знаем что мозгом их является процессор и на данный момент его скорости и мощности обусловлена производством транзисторов, но что такое транзистор и как он работает,
Представьте, что если вы встретитесь с инопланетянином и он попросит рассказать о принципе работы наших технологий, а первое что придет на ум у большинства все что большинства, это какого цвета ногти у Дани Милохина и как повесить маску в инстаграм. Что-ж посвятим этот выпуск тому что составляет основу всех электронных приборов нашей планеты и поймем как это использовать в практике, чтобы не упасть лицом в грязь перед инопланетянами, пусть хоть это маловероятно, но то что не исключает теория вероятности, дает волю неслучайным случайностям. А чтобы объяснить работу транзистора на пальцах мы воспользуемся примитивным аналогом, до транзистора в старину были радио лампы, до сих пор их используют в музыкальных усилителях звука т.

к. звучание приобретает так называемый ламповый оттенок, но пожалуй опустимся еще древнее, разберем принцип работы транзистора на примере такого прибора как -реле,
его работу вы можете услышать в автомобиле когда включаете повороты, когда в квартире короткое замыкание, реле отключает сеть чтобы не возник пожар. Итак поехали.

Самоделки на реле

Сейчас вы узнаете какие изобретения можно сделать из реле и чем оно напоминает работой транзистор.
Из урока физики вы помните, если к катушке из проволоки подать ток, то она будет притягивать железо, а если это железо будет контактом, то обычной батарейкой можно включать мощные приборы, например свет. Если добавить третий контакт, то при включении катушки будет происходить разрыв нового контакта, так устроены пробки в вашей квартире, при коротком замыкании произойдет отключение сети. А что если подключить катушку через этот разрывной контакт? Как только катушка включается, как происходит ее же отключение и быстро возвращается и обратно благодаря пружинке, причем это все происходит быстро, и это повторяется по кругу, благодаря такому парадоксу создается простейшую схему генератора высокой частоты или по простому жужжалка, по такому принципу изготавливали раньше звонки в школах.

А теперь можно понизить частоту нашего генератора до скорости моргания поворотников в автомобиле, добавив параллельно катушке накопитель энергии, под названием конденсатор , т.е. при разрыве цепи, контакт удерживается у катушки некоторое время, и это благодаря накоплению тока в конденсаторе.

Зная эти базовые схемы можно строить сложные интересные приборы без основ и теорий радиотехники. Например когда лампочка горит — это состояние условно называют — единей, когда тухнет — нулем, так мы подходим к пониманию работы транзистора.

Секрет транзистора
Вы можете сказать зачем мне смотреть этот ролик, может вы вообще гуманитарий и знать как работает транзистор совсем никчему, но по этому поводу отлично сказал один успешный человек…

Так вот, Уже зная принцип работы реле, разберемся как работает транзистор. Это деталь состоящая из трех контактов (называются эмиттер, база и коллектор) схематично кружочек с выводами, на эмиттер подается питание, на базу слабый сигнал который нужно усилить, а коллектор это выход. На примере реле схематично можно выразить таким образом, катушка условно находится между базой и минусом питания, а лампочка подключается между коллектором и также минусом питания,. в отличии от реле можно включать мощную лампочку подавая очень маленькое напряжение на вход т.е. базу и второе отличие, условная катушка очень чувствительна не только к входящему напряжению но и к сопротивлению, так можно сделать простую сенсорную кнопку, дотрагиваясь влажными руками до контактов лампочка будет загораться. Главное отличие от реле, транзистор может давать не только условную единицу либо ноль на выходе но и любое пропорциональное значение, по простому плавно усиливать входящий сигнал, т.е. Быть усилителем звука, вот например если на вход включить музыку из телефона, только для защиты через конденсатор а на выход к коллектору включить колонку и вот ваш собственный усилитель мощности готов. На место входа можно подключать фотоэлементы для датчиков света, также на одном транзисторе можно собрать радиоприемник, радиомикрофон и множество других изобретений.

Важно только знать тип транзистора где расположены база коллектор и эмиттер а также его полярность, но об этом позже. Сейчас вы смотрите это видео через процессор вашего эл. устройства, где миллионы микроскопических транзисторов выполняют логические задачи, думаю теперь вам будет что ответить о принципе работы наших технологий любому инопланетянину или гуманитарию) дальше чуть подробнее.

Категория
Усилители

Как работают транзисторы — Гокул Дж. Кришнан

У вас отключен JavaScript


Для оптимальной работы включите JavaScript. Вот как

Перейти к основному содержанию Поиск

Зарегистрируйтесь или войдите

Хотите ежедневно получать по электронной почте планы уроков, охватывающие все предметы и возрастные группы?

Узнать больше

Давайте начнем…

Современные компьютеры революционизируют нашу жизнь, выполняя задачи невообразимое всего несколько десятков лет назад. Это стало возможным благодаря длинной серии инноваций, но есть одно фундаментальное изобретение, которое почти все остальное зависит от: транзистора. Гокул Дж. Кришнан описывает что такое транзистор и как это маленькое устройство делает возможным все удивительные вещи, которые могут делать компьютеры.

Дополнительные ресурсы для изучения

Делиться:

Настройте этот урок

Создайте и поделитесь новым уроком на основе этого.

Об анимации TED-Ed

Анимации TED-Ed содержат слова и идеи педагогов, воплощенные в жизнь профессиональными аниматорами. Вы педагог или аниматор, заинтересованный в создании анимации TED-Ed? Назовите себя здесь »

Познакомьтесь с создателями

  • Педагог Гокул Дж. Кришнан
  • Редактор сценария Алекс Гендлер
  • Аниматор Джереми Джусей
  • Рассказчик Эддисон Андерсон

Больше из Как все устроено

04:39

Дизайн, проектирование и технологии

продолжительность урока 04:39

261 715 просмотров

05:43

Бизнес и экономика

продолжительность урока 05:43

216 640 просмотров

05:06

Дизайн, проектирование и технологии

продолжительность урока 05:06

966 579 просмотров

05:09

Наука и технологии

продолжительность урока 05:09

2 162 621 просмотр

Модальный вход

Нажмите «Зарегистрироваться», если вам нужно создать бесплатную учетную запись TED-Ed.

Если вы уже вошли на сайт ted.com, нажмите «Войти», чтобы подтвердить свою аутентификацию.

РегистрацияВход

Только учащиеся в возрасте 13 лет и старше могут создать учетную запись TED-Ed.

Введите ваше имя

Ваше имя и ответы будут переданы TED Ed.

Чтобы отслеживать свою работу на TED-Ed с течением времени, зарегистрируйтесь или войдите в систему.

Только учащиеся в возрасте 13 лет и старше могут сохранять работу на уроках TED-Ed.

Как транзисторы сформировали наш современный мир и как они работают — Omnia MFG

Ниже приводится краткое изложение тем, затронутых в видео Real Engineering. Для полного эффекта и получения информации, включая иллюстрации и примеры, я рекомендую просмотреть его полностью.

Транзисторы — одно из самых важных изобретений, которое изменило мир быстрее, чем когда-либо прежде. Более 59% населения в настоящее время подключено к Интернету, и это число растет с более низкой стоимостью и более высокой доступностью.

Без транзисторов у нас не было бы Интернета, широких возможностей подключения и всего того, что дает эта технология в ее нынешнем виде

История

До транзисторов мы использовали электронные лампы для достижения той же цели.

Вакуумная лампа состоит из анода, сетки и катода.

Вакуумная лампа работает, пропуская ток через катод, нагревая его и вызывая высвобождение электронов. Электроны притягиваются к положительно заряженному аноду на другой стороне сетки. Положительное напряжение считается 1, а отрицательное напряжение считается 0 в операции. Таково происхождение бинарных вычислений.

У первых ламповых компьютеров лампы регулярно перегорали.

Кремний

Современные транзисторы в вашем процессоре имеют микроскопические размеры и изготавливаются на тонких кремниевых пластинах.

Кремний считается полупроводником, что позволяет нам управлять его способностью проводить электричество. Идеальный кристалл кремния состоит из атомов кремния, каждый из которых имеет 4 электрона, образующих ковалентную связь с 4 другими окружающими атомами кремния.

Транзистор N-P-N

  • Полупроводник N-типа — добавляет атом фосфора с 5 электронами, делая кристалл кремния отрицательно заряженным.

  • Полупроводник P-типа — добавляет атом бора с 3 электронами, делая кристалл кремния положительно заряженным.

Транзистор N-P-N состоит из двух полупроводников N-типа, заключенных между полупроводником P-типа. Отрицательные заряды полупроводников N-типа создают «отрицательный обедненный слой», который препятствует прохождению дополнительных электронов. Когда применяется положительный заряд, отрицательный обедненный слой удаляется, и электроны могут снова свободно проходить через него.

Логические элементы

  • Элемент И — электрическая цепь, которая выдает состояние высокого напряжения, если все входы имеют высокий уровень Элемент НЕ — электрическая цепь, выдающая инвертированное состояние напряжения

  • Элемент И-НЕ — электрическая цепь, состоящая из элемента И, за которым следует элемент НЕ

  • Элемент ИЛИ — электрическая цепь, состоящая из элемента ИЛИ, за которым следует элемент НЕ

  • Вентиль EOR — Электрическая цепь, которая выдает состояние высокого напряжения, когда какой-либо, но не все входы имеют высокий уровень

  • Вентиль ENOR — Электрическая цепь, которая выводит состояние низкого напряжения, когда какой-либо, но не все входы имеют высокий уровень

 Дополнительную информацию о логических элементах см.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *