Site Loader
Транзистор

в качестве переключателя | Как проверить транзистор с помощью цифрового мультиметра

Хотите создать сайт? Найдите бесплатные темы и плагины WordPress.

Механические переключатели использовались для переключения нагрузок и цепей переменного и постоянного тока с тех пор, как переключатели впервые использовались для управления электрическими цепями и нагрузками.

Преимущество механических переключателей состоит в том, что они могут переключать переменный или постоянный ток, имеют только два режима работы (открыто или закрыто) и просты в понимании и устранении неполадок.

Недостатки механических переключателей заключаются в том, что они имеют гораздо более короткий срок службы, чем полупроводниковые выключатели, и вызывают искрение на контактах, что может быть опасным в некоторых случаях.

Твердотельные переключатели, такие как кремниевые выпрямители (SCR) и симисторы , могут заменить механические переключатели. Твердотельные переключатели имеют гораздо более длительный срок службы, могут контролировать величину напряжения/тока между полным открытием и закрытием и не вызывают дугового разряда, поскольку контакты отсутствуют.

Твердотельные переключатели имеют недостатков , заключающихся в том, что они могут переключать только переменный или постоянный ток, их труднее понять, и они требуют больше знаний о схеме и компонентах, когда технический специалист устраняет их неисправности.

Важно понимать полупроводниковые переключатели, поскольку они чаще используются для замены механических переключателей в цепях и коммутационных устройствах.

Твердотельные переключатели

Твердотельные переключатели — это электронные устройства, не имеющие подвижных частей (контактов). Твердотельные переключатели могут использоваться в большинстве приложений управления двигателем.

 Преимущества твердотельных переключателей включают быстрое переключение, отсутствие движущихся частей, длительный срок службы и возможность взаимодействия с электронными схемами (ПЛК и ПК). Однако твердотельные переключатели должны быть правильно выбраны и применены, чтобы предотвратить потенциальные проблемы.

Твердотельные переключатели включают транзисторы, кремниевые выпрямители (SCR), симисторы, диаки и однопереходные транзисторы (UJT). См. рис. 1.

Симисторы, диаки и однопереходные транзисторы (UJT) вместе с тринисторами часто встречаются в одной и той же схеме. Триаки и тиристоры являются устройствами управления.

 Диаки и UJT образуют цепи запуска для симисторов и тринисторов. Триаки, диаки, UJT и SCR работают только как переключатели и могут использоваться в различных коммутационных приложениях.

Tech Fact

Срок службы твердотельных переключателей составляет миллиарды циклов, в то время как срок службы механических переключателей составляет около 200 000 циклов, что делает полупроводниковые переключатели стандартом для большинства коммутационных приложений с большими объемами.

Транзисторы в качестве переключателя

Транзистор представляет собой устройство с тремя выводами, которое регулирует ток через устройство в зависимости от величины напряжения, подаваемого на базу. Транзисторы могут быть транзисторами NPN или PNP. Транзисторы можно быстро включать и выключать.

Транзисторы имеют очень высокое сопротивление в открытом состоянии и очень низкое сопротивление в закрытом состоянии. Транзисторы используются только для коммутации постоянного тока низкого уровня. Когда транзисторы используются в качестве переключателей, диод может быть установлен на транзисторе, чтобы предотвратить повреждение от скачков высокого напряжения (переходных процессов).

Рис. 1. Твердотельные переключатели включают транзисторы, кремниевые выпрямители (SCR), симисторы, диаки и однопереходные транзисторы (UJT).

Транзисторы в качестве переключателей постоянного тока

Транзисторы в основном были разработаны для замены механических переключателей. Транзисторы не имеют движущихся частей и могут быстро включаться и выключаться.

Механические переключатели имеют два состояния : открыто и закрыто или ВКЛ и ВЫКЛ. Механические переключатели имеют очень высокое сопротивление в открытом состоянии и очень низкое сопротивление в закрытом состоянии.

Транзистор можно заставить работать как переключатель. Например, транзистор можно использовать для включения или выключения контрольной лампы. См. рис. 2.

Рис. 2. Транзистор можно заставить работать как переключатель.

В этой схеме сопротивление между коллектором (C) и эмиттером (E) определяется током, протекающим между базой (B) и эмиттером (E). Когда между B и E ток не течет, сопротивление между коллектором и эмиттером высокое, как у открытый переключатель . Контрольная лампа не светится, потому что ток отсутствует.

 Если между B и E протекает небольшой ток, сопротивление между коллектором и эмиттером уменьшается до очень низкого значения, как у замкнутого переключателя. Пилотный свет включен.

Включенный транзистор нормально работает в области насыщения. Область насыщения представляет собой максимальный ток, который может протекать в цепи транзистора.

При насыщении сопротивление коллектора считается равным нулю, а ток ограничивается только сопротивлением нагрузки.

Когда цепь достигает насыщения, сопротивление контрольной лампы является единственным токоограничивающим устройством в цепи.

Когда транзистор выключен, он работает в области отсечки. Зона отсечки — это точка, в которой транзистор закрыт и ток не течет.

При отсечке все напряжение находится на открытом ключе (транзисторе), а напряжение коллектор-эмиттер равно напряжению питания VCC.

Применение транзисторов

Транзисторы используются для коммутации из-за их надежности и быстродействия. В определенных ситуациях транзисторы также интегрируются с другими твердотельными компонентами для формирования более сложных устройств.

Однако в каждом случае основной принцип работы транзистора остается неизменным.

Семисегментный дисплей

Путем включения или выключения различных комбинаций транзисторов на семисегментном дисплее могут быть созданы разные числа. См. рис. 3 .

Например, если все транзисторы (от A до G) включены, на дисплее должна появиться цифра «8». Если все транзисторы, кроме E и D, включены, должна появиться цифра «9». Обычно в дополнение к семисегментным транзисторным устройствам имеется схема, помогающая декодировать правильные сигналы для дисплея.

При наличии всех схем это называется семисегментным декодером/драйверным дисплеем или считывающим устройством.

Рисунок 3. При включении и выключении различных комбинаций транзисторов на семисегментном индикаторе появляются разные числа.

Проверка транзисторов с помощью цифрового мультиметра

Транзистор выходит из строя из-за чрезмерного тока или температуры. Транзистор обычно выходит из строя из-за открытого или короткого замыкания. Два перехода транзистора можно проверить с помощью цифрового мультиметра (DMM), настроенного на измерение сопротивления. См. рис. 4 .

Для проверки транзистора NPN на обрыв или короткое замыкание применяется следующая процедура:

  1. Подключите цифровой мультиметр к эмиттеру и базе транзистора. Измерьте сопротивление.
  2. Поменяйте местами выводы цифрового мультиметра и измерьте сопротивление. Переход эмиттер/база исправен, когда сопротивление высокое в одном направлении и низкое в противоположном.

Примечание : Отношение высокого сопротивления к низкому должно быть больше 100:1. Типичные значения сопротивления составляют 1 кОм с положительным выводом цифрового мультиметра на базе и 100 кОм с положительным выводом цифрового мультиметра на эмиттере. Соединение закорочено, когда оба показания низкие. Соединение открыто, когда оба показания высокие.

  1. Подсоедините цифровой мультиметр к коллектору и базе транзистора. Измерьте сопротивление.
  2. Поменяйте местами выводы цифрового мультиметра и измерьте сопротивление. Переход коллектор/база исправен, когда сопротивление высокое в одном направлении и низкое в противоположном.

Примечание: Отношение высокого сопротивления к низкому должно быть больше 100:1. Типичные значения сопротивления составляют 1 кОм с положительным выводом цифрового мультиметра на базе и 100 кОм с положительным выводом цифрового мультиметра на коллекторе.

  1. Подключите цифровой мультиметр к коллектору и эмиттеру транзистора. Измерьте сопротивление.
  2. Поменяйте местами выводы цифрового мультиметра и измерьте сопротивление. Переход коллектор/эмиттер исправен, когда показания сопротивления высоки в обоих направлениях.

Тот же тест, что и для NPN-транзистора, можно использовать для тестирования PNP-транзистора. Разница заключается в том, что для получения тех же результатов измерительные провода цифрового мультиметра необходимо поменять местами.

Рис. 4. Обычно транзистор выходит из строя из-за открытого или короткого замыкания.

Вы нашли apk для Android? Вы можете найти новые бесплатные игры и приложения для Android.

Как проверить диоды и транзисторы мультиметром

     
   
         
         
  Магазин мультиметров  
         
         
   

Шаг 1.

Подготовьте диод или транзистор .

Лучше всего проверять диоды и транзисторы вне цепи, однако, если это невозможно, убедитесь, что питание отключено, а конденсаторы разряжены.

 
         
   

Шаг 2 – Установите мультиметр

Поверните циферблат до символа диода. Если это не единственный символ на данный момент, нажимайте кнопку shift/mode, пока не окажетесь в режиме «тестирование диодов и транзисторов».

 
         
   

Шаг 3. Размещение зондов

Для диодов…

Подсоедините положительный (красный) щуп к положительному выводу диода, а отрицательный (черный) щуп к отрицательному выводу.

 
         
   
Для транзисторов…

Транзисторы проверяются, чтобы убедиться, что ток течет в одном направлении, а не в другом.

Размещение щупов немного сложнее, потому что терминалов три и сначала нужно определить, какой из них какой. Поскольку размещение зависит от различных марок и типов, поиск в Интернете номера вашего транзистора должен сказать вам, какой из выводов какой: будет база, коллектор и эмиттер (B, C, E).

 
         
   

Для транзисторов NPN электричество должно течь от базы к коллектору и от базы к эмиттеру. Таким образом, красный щуп должен быть на базе в обоих случаях, а черный — на коллекторе или эмиттере для получения показаний. Повторение процесса, но с черным щупом на основании, не должно дать никаких результатов (OL (разомкнутый контур) отображается на большинстве цифровых мультиметров).

 

Для транзисторов PNP электричество должно течь от коллектора к базе и от эмиттера к базе. Следовательно, черный щуп должен оставаться на базе, а красный — либо на коллекторе, либо на эмиттере.

Повторение процесса, но с красным щупом на основании не должно дать никаких результатов (OL (разомкнутый контур) отображается на большинстве DDM).

 
         
         
         
   

Шаг 4 – Результаты

Настройка диода на мультиметре измеряет падение напряжения на диоде или транзисторе, и в идеале оно должно составлять от 0,5 В до 0,8 В. Значение будет отображаться на дисплее, и, в случае успешного считывания, может прозвучать короткий звуковой сигнал, указывающий на исправный диод.

 

Если падение напряжения слишком низкое, может раздаться непрерывный звуковой сигнал, указывающий на короткое замыкание. Представление аудио или отображаемых результатов зависит от используемого мультиметра.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *