Site Loader

Содержание

Как проверить транзистор мультиметром на плате

Схематическое обозначение PNP-транзистора в схеме выглядит так:. Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N. Вот его схематическое изображение на схемах. Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода!


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как проверить транзистор недорогим мультиметром
  • Как проверить транзистор мультиметром.
  • Особенности проверки транзистора мультиметром без выпаивания
  • Как проверить транзистор мультиметром не выпаивая
  • Как проверить микросхему на работоспособность мультиметром не выпаивая
  • Проверка транзистора мультиметром, как прозвонить и проверить
  • Как проверить транзистор
  • Как проверить транзистор мультиметром

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как проверить конденсатор недорогими мультиметрами DT830 и M1015B

Как проверить транзистор недорогим мультиметром


Как проверить транзистор? Или как прозвонить транзистор Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор. Проверка транзистора мультиметром тестером прозвонка транзистора производится следующим образом.

Для лучшего понимания процесса на рисунке изображён «диодный аналог» npn-транзистора. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов. При прозвонке pnp-транзистора «диодный аналог» будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае «Эмиттер — Коллектор» — ни в каком направлении.

Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как «ключ». Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор , который включается в базу транзистора.

Это очень важно, иначе транзистор «сгорит» во время проверки. Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании — гаснуть. Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.

Таким образом, можно сказать, что проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора. Как проверить транзистор Как проверить транзистор? Как проверить транзистор мультиметром тестером Проверка транзистора мультиметром тестером прозвонка транзистора производится следующим образом. База — Эмиттер BE : соединение должно вести себя как диод и проводить ток только в одном направлении.

База — Коллектор BC : соединение должно вести себя как диод и проводить ток только в одном направлении. Эмиттер — Коллектор EC : соединение не должно проводить ток ни в каком направлении. Проверка простой схемой включения транзистора Соберите схему с транзистором, как показано на рисунке. И помните, никто не умирает так быстро и так бесшумно, как транзистор.


Как проверить транзистор мультиметром.

Прежде чем говорить о проверке конденсаторов, давайте коснемся теории вопроса: что это за компонент, какие бывают и для чего используются? Итак, конденсатор — это пассивный электронный компонент, работающий по принципу батарейки, которая способна очень быстро заряжаться и разряжаться, аккумулируя в себе, таким образом, некоторое количество энергии. Боле научно можно сформулировать следующим образом: конденсатор — это два проводника обкладки , разделенные изолятором, служащий для накопления заряда и энергии электрического поля. Примечание : обкладки проводники внутри корпуса могут быть выполнены из различных материалов, иметь разную форму и толщину. То же самое касается и изолятора между ними. Сути дела это не меняет. Кратко рассмотрим принцип работы конденсатора.

Как проверить биполярный транзистор с помощью цифрового мультиметра. Пошаговая методика проверки.

Особенности проверки транзистора мультиметром без выпаивания

Не все знают, как проверить микросхему на работоспособность мультиметром. Даже при наличии прибора не всегда удается это сделать. Бывает, выявить причину неисправности легко, но иногда на это уходит много времени, и в итоге нет никаких результатов. Приходится заменять микросхему. Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов. Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:. Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.

Как проверить транзистор мультиметром не выпаивая

В прошлых статьях были рассмотрены вопросы: принципов работы , характеристик и схем соединения конденсаторов. Сейчас Я подробно расскажу как его проверить при помощи недорого и распространенного измерительного прибора- мультиметра, а так же как, его используя при наличии соответствующий функции, узнать величину емкости. Перед проверкой конденсатор необходимо выпаять из схемы, потому что не выпаивая это сделать практически невозможно из-за влияния на измерения других компонентов схемы. В большинстве случаев, не выпаивая из схемы можно лишь проверить мультиметром только на пробой, при котором на выводах конденсатора будет короткое замыкание.

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы.

Как проверить микросхему на работоспособность мультиметром не выпаивая

Как проверить транзистор мультиметром. Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзистора мультиметром, как прозвонить и проверить

Etot Dom Биржа ремонтных заказов. Стыдно признаваться, но как проверить транзистор TRZ , мы вчера еще не знали. Расспросив матерых строителей, редакторы ЭтотДом составили нехитрую пошаговую инструкцию проверки. И, оказывается, есть 2 способа определения годности прибора. Просмотреть результаты. Перед монтажом нового транзистора на плате лучше сначала проверить его на исправность.

Можно ли проверить транзистор на плате мультиметром, не выпаивая. Инструкция, чтобы измерить сопротивление переходов, и определить pnp- тип.

Как проверить транзистор

Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра. Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.

Как проверить транзистор мультиметром

ВИДЕО ПО ТЕМЕ: Как найти битый полевой транзистор.

Здравствуйте уважаемые читатели сайта sesaga. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления h41э пробники вещь даже очень нужная.

А для определения исправности достаточно будет и обыкновенного мультика. Мы знаем, что транзистор имеет два p-n перехода, причем каждый переход можно представить в виде диода полупроводника.

Здравствуйте уважаемые читатели сайта sesaga.

Здравствуйте уважаемые читатели сайта sesaga. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления h31э пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.

Здравствуйте уважаемые читатели сайта sesaga. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны.


Как проверить транзистор самому: способы и правила

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Как проверить транзистор без мультиметра

Проверка транзистора без использования мультиметра возможна не всегда. Применение при измерениях лампочек и источников питания может с высокой вероятностью вывести из строя проверяемый элемент.

Проверка транзистора биполярного типа может быть сделана простейшей контролькой из батарейки 4,5 В, «минус» которой соединен с лампочкой от карманного фонаря. Попарно подключаете «плюс» и второй контакт лампы к выводам. Если при подключении в любой полярности к паре «К-Э» лампа не загорается — переход исправен. Подключить через ограничительный резистор «плюс» на «Б». Лампу поочередно соединяем с выводами «Э» или «К» и проверяем эти переходы. Чтобы протестировать транзистор другой структуры, изменяем полярность подключения.

Эффективно использовать для проверки транзисторов приборы, сделанные своими руками и схемы которых достаточно доступны.

Что такое полевой транзистор MOS, MOSFET, МОП транзистор?

Как часто вы слышали название полевой транзистор МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Это все слова синонимы и относятся к одному и тому же радиоэлементу: полевому МОП-транзистору.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор. Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором.

Основные типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта – исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии – позволяют применять IGBT в цепях с высокими напряжениями и большими токами.

Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ) целесообразно использовать в сильноточных, высоковольтных ключевых схемах. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения – вот сфера применения таких элементов.

Читать также: Настройка пульверизатора для покраски

Названия выводов IGBT: затвор, эмиттер, коллектор.

Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт. Но частота работы этих транзисторов значительно ниже, чем частота полевых транзисторов.

Как проверить IGBT транзистор мультиметром

Проверяется IGBT FGh50N60SFD. IGBT часто пробиваются накоротко, такие неисправные транзисторы легко выявить с помощью мультиметра. Перед проверкой IGBT транзистора мультиметром, необходимо обратиться к справочным данным и выяснить назначение его выводов.

Затем произвести следующие действия:

1. Переключить мультиметр в режим «прозвонка». Произвести измерение между затвором и эмиттером для выявления возможного замыкания.

2. Произвести измерение между затвором и коллектором для выявления возможного замыкания.

3. На секунду замкнуть пинцетом или перемычкой эмиттер и затвор. После этого транзистор будет гарантированно закрыт.

4. Соединить щуп мультиметра «V/Ω» с эмиттером, щуп «СОМ» с коллектором. Мультиметр должен показать падение напряжения на внутреннем диоде.

5. Соединить щуп мультиметра «V/Ω» с коллектором, щуп «СОМ» с эмиттером. Мультиметр должен показать отсутствие замыкания и утечки.

Для более надежной проверки IGBT транзистора можно собрать следующую схему:

При замыкании контактов кнопки лампочка должна загораться, при размыкании – тухнуть.

В этом видео показано как проверить IGBT мультиметром:

Это сравнительно новый тип транзисторов, управление которых осуществляется не электрическим током, как в биполярных транзисторах, а электрическим напряжением (полем), о чём и говорит английская аббревиатура MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor или в переводе металл-окисел-полупроводник полевой транзистор), в русской транскрипции этот тип обозначается как МОП (металл-окисел-полупроводник) или МДП (металл-диэлектрик-полупроводник).

Отличительной конструктивной особенностью полевых транзисторов является изолированный затвор (вывод, аналогичный базе у биполярных транзисторов), также у MOSFET имеются выводы сток и исток, аналоги коллектора и эмиттера у биполярных.

Существует и ещё более современный тип IGBT, в русской транскрипции БТИЗ (биполярный транзистор с изолированным затвором), гибридный тип, где МОП (МДП) транзистор с переходом n-типа управляет базой биполярного, и это позволяет использовать преимущества обоих типов: быстродействие, почти как у полевых, и большой электрический ток через биполярный при очень малом падении напряжения на нём при открытом затворе, при очень большом напряжении пробоя и большом входном сопротивлении.

Полевики находят широкое применение в современной жизни, а если говорить о чисто бытовом уровне, то это всевозможные блоки питания и регуляторы напряжения от компьютерного железа и всевозможных электронных гаджетов до других, более простых, бытовых приборов — стиральных, посудомоечных машин, миксеров, кофемолок, пылесосов, различных осветителей и другого вспомогательного оборудования. Само собой, что-то из всего этого разнообразия иногда выходит из строя и появляется необходимость выявления конкретной неисправности. Сама распространённость этого вида деталей ставит вопрос:

Методика проверки транзистора

Чтобы проверить P-N-P транзистор мультиметром, минусовым щупом (черного цвета) касаемся вывода базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера. Если транзистор цел, то падение напряжения в режиме проверки (прозвонки) в милливольтах, будет находиться в пределах 500 – 1200 Ом и при этом разница этих значений должна быть невелика. После этого меняем местами щупы, мультиметр не должен показывать никакого падения. Далее проверяем коллектор — эмиттер в обе стороны (меняем местами щупы), здесь также не должно быть никаких значений.

Проверка N-P-N транзисторов мультиметром идентична, с той лишь разницей, что мультиметр должен показать падение напряжения на переходах  при касании плюсовым щупом базы транзистора, а черным поочерёдно коллектора и эмиттера.

Посмотрите небольшое видео проверки транзистора мультиметром.

В начале я упоминал, что в некоторых случаях, такая проверка может дать ложный вывод. Бывает в ходе ремонта телевизора, при проверке выпаянного транзистора мультиметром, все переходы показывают нормальные значения, но в схеме он не работает. Выявить это можно только заменой.

Составной транзистор проверяется вставляя в отверстия на панели мультиметра или другого прибора. Для этого нужно знать какой проводимости он является и после этого уже вставлять, не забыв переключить в соответствующее положение тестер.

Проверить силовой транзистор, а так же строчный можно по этой же методике исследуя переходы Б-К, Б-Э, К-Э, но так как в этих транзисторах в большинстве случаев имеются встроенные диоды (К-Е) и сопротивления (Б-Э) все это нужно учитывать. При незнакомом элементе лучше посмотреть его даташит.

Сборка зонда ручной работы

Самодельный прибор (щуп) сразу определит исправность транзистора любого типа. Приведем простейшую действенную схему.

Что потребуется (всего 3 рабочих компонента):

  • вдобавок 2 элемента. Светодиод подключен к вторичной обмотке через резистор. 100 Ом, его мощность не важна, как и полярность первого элемента, так как на выходе появляется переменное значение.
  • база – любой мелкий даун-транс. (от импульсного источника питания, от бытовой лампочки, мелкой бытовой техники). В нашем праймериз 24 раунда со средним отводом; вторичка – 15;

Также есть прорезь для вставки деталей, подлежащих управлению в соответствии с распиновкой. Для биполярных типов с прямым проводом (KT 814… 818 и т.д.) база проходит через резистор к одному из промежуточных контактов, которые (ответвитель) подключаются к источнику питания «+». Выпуск подключаем к блоку питания «-», сбор. – свободному выходу первичных органов. Если проводимость детали обратная, просто измените «+» и «-». Так же и с полевиками главное соблюдать распиновку. Если индикатор загорается после включения питания, продукт работает.

Зонд питается от 3,7–6 В; Подойдет свинцово-кислотная или литий-ионная аккумуляторная батарея.

Способы проверки TRZ

Способ №1: при прямом включении

Простой алгоритм проверки любых видов TRZ и диодов:

1.Подсоединить щуп красного цвета (плюс) к базе проверяемого транзистора, черный (минус) — к выводу коллектора.

Фото 4 — Подключение щупов

2. Красный щуп оставляют на месте, а черный подключают к выводу эмиттера.

Фото 5 — Переход проводит ток. Этот способ позволяет выполнять проверку перехода при прямом включении

Способ №2: при обратном включении

Чтобы убедиться в работоспособности, лучше перепроверить его при обратном подключении: p-n переход не сможет проводить ток, а на экране мультиметра должна отображаться цифра 1 — это будет значить, что сопротивление перехода очень большое и нет возможности пропускать ток.

Для проверки перехода в обратном включении нужно:

1. Поменять полярность щупов к выводу транзистора, то есть минусовой подсоединяем к базе, а плюсовой — к коллектору.

Фото 6 — Значение 1 на мультиметре: P-N переход во время обратного подключения не пропускает ток

Мы проверили TRZ двумя способами и убедились в его работоспособности.

Транзисторы бывают двух типов:

  1. NPN;
  2. PNP.

В таблице приведены примеры видов транзисторов, которые различаются по функциональности.

МодельОписание

Полевой (униполярный)
Управление сопротивлением токопроводящего канала с помощью поперечного электрического поля.

Силовой
В сварочных аппаратах и в приборах, где есть большие нагрузки.

Строчный
В телевизорах для формирования тока в системе строчной развертки, образования высокого напряжения на усилителе, кинескопе, питания цепей.

N-канальный
Всегда открыт во время поступления напряжения на затвор.

Однопереходной
Оснащен тремя электродами и одним переходом. Используется в импульсных и измерительных приборах. Есть участок с отрицательным дифференциальным сопротивлением.
Разновидность TRZ
МодельОписание

IGBT
Отличается изолированным затвором. Применяют в промышленности и электроприборах.

Mosfet (мосфет)
Используют для двигателей, реле, регуляторов.

SMD (СМД)
За счет корпуса технологии SMD (СМД) используют для поверхностного монтажа.

IRF
Высокая мощность, изолированный затвор.

МОП
Принцип работы заключается в изменении электрического поля в полупроводнике.
Сравнительная таблица популярных моделей транзисторов
МодельОписание

13003
Кремниевый. Низкочастотный и высоковольтный, применяется в разных блоках питания (импульсных), для мобильных гаджетов и зарядок.

Кт315
Кремниево-биполярный. Используются в разных электронных приборах. Отличаются дешевизной, но относятся к классу маломощных.

Кт117
Кремниево-биполярный. Используются в разных электронных приборах. Дешевые.

Bu808dfi
Биполярный. Используется в телевизорах и магнитолах.

Irf 404
Биполярный. Высокая мощность и изолированный затвор. Используется в сварочных аппаратах и двигателях.

13001
Кремниевый. Низкочастотный и высоковольтный, применяется в разных блоках питания (импульсных), для мобильных гаджетов и зарядок.

D2499
Кремниевый и высоковольтный. Применяется в разных электронных приборах.

Кт825
Кремниево-биполярный. Используется в разных электронных приборах. Отличается дешевизной и относится к классу мощных.

D1555
Кремниевый и высоковольтный. Применяется в разных электронных приборах.

Кт825г
Кремниево-биполярный транзистор. Используется в электронных приборах. Дешевый и мощный.

Кт827а
Кремниево-биполярный. Дешевый и мощный.

Кт3878
Кремниево-биполярный. Относятся к классу мощных.

Tip 122
Используется в схемах с усилителями и переключателями.

13007
Кремниевый. Низкочастотный и высоковольтный, применяется в разных блоках питания (импульсных), для мобильных гаджетов и зарядок.

13005
Кремниевый. Низкочастотный и высоковольтный, применяется в блоках питания (импульсных), для мобильных гаджетов и зарядок.

Irfp064n
Биполярный. Высокая мощность, изолированный затвор. Используется в сварочных аппаратах и двигателях.

C5388
Большой коэффициент усиления тока. Используется в телевизорах и магнитолах.

Кп 303
Нужен для управления сопротивления токопроводящего канала с помощью поперечного электрического поля.

Кп 307
Для управления сопротивления токопроводящего канала с помощью поперечного электрического поля.

S2000n
Для формирования тока в системах строчной развертки и образования высокого напряжения.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Общие правила в том, как проверить транзистор мультиметром, гласят начать процедуру с определения работоспособности самого измерительного прибора. Убедившись, что тот работает безошибочно, переходят к дальнейшим измерениям. Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.

Порядок проверки исправности n-канального транзистора мультиметром следующий:

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.

Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
При смене полярности щупов мультиметра величина показаний не должна измениться.
Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго.Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п. п. 7,8).

Оценка исправности р-канального устройства

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Чтобы выбрать необходимый вариант, как подключить однофазный электродвигатель через конденсатор, требуется исходить из нужных характеристик функционирования агрегата — пусковой, рабочий или смешанный.

Эффективное использование электродвигателей основано на правильном понимании принципа его работы. Асинхронные моторы можно использовать в домашних условиях как генератор.

Выводы:

  1. Полевые транзисторы типа MOSFET широко используются в технике и радиолюбительской практике.
  2. Проверку работоспособности таких транзисторов можно осуществить с помощью мультиметра, следуя определенной методике.
  3. Проверка p-канального полевого транзистора мультиметром осуществляется таким же образом, что и n-канального транзистора, за исключением того, что следует изменить полярность подключения проводов мультиметра на обратную.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.


Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.


Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т. д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Транзистор, как его проверить

Транзистор — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.

Проверку транзисторов приходится делать достаточно часто. Даже если у Вас в руках заведомо новый, не паяный ни разу транзистор, то перед установкой в схему лучше все-таки его проверить. Нередки случаи, когда купленные на радиорынке транзисторы, оказывались негодными, и даже не один единственный экземпляр, а целая партия штук на 50 — 100. Чаще всего это происходит с мощными транзисторами отечественного производства, реже с импортными.

Иногда в описаниях конструкции приводятся некоторые требования к транзисторам, например, рекомендуемый коэффициент передачи. Для этих целей существуют различные испытатели транзисторов, достаточно сложной конструкции и измеряющие почти все параметры, которые приводятся в справочниках. Но чаще приходится проверять транзисторы по принципу «годен, не годен». Именно о таких методах проверки и пойдет речь в данной статье.

Часто в домашней лаборатории под рукой оказываются транзисторы, бывшие в употреблении, добытые когда-то из каких-то старых плат. В этом случае необходим стопроцентный «входной контроль»: намного проще сразу определить негодный транзистор, чем потом искать его в неработающей конструкции.

Хотя многие авторы современных книг и статей настоятельно не рекомендуют использовать детали неизвестного происхождения, достаточно часто эту рекомендацию приходится нарушать. Ведь не всегда же есть возможность пойти в магазин и купить нужную деталь. В связи с подобными обстоятельствами и приходится проверять каждый транзистор, резистор, конденсатор или диод. Далее речь пойдет в основном о проверке транзисторов.

Проверку транзисторов в любительских условиях обычно проводят цифровым мультиметром или старым аналоговым авометром.

Проверка транзисторов мультиметром

Большинству современных радиолюбителей знаком универсальный прибор под названием мультиметр. С его помощью возможно измерение постоянных и переменных напряжений и токов, а также сопротивления проводников постоянному току. Один из пределов измерения сопротивлений предназначен для «прозвонки» полупроводников. Как правило, около переключателя в этом положении нарисован символ диода и звучащего динамика.

Перед тем, как производить проверку транзисторов или диодов, следует убедиться в исправности самого прибора. Прежде всего, посмотреть на индикатор заряда батареи, если требуется, то батарею сразу заменить. При включении мультиметра в режим «прозвонки» полупроводников на экране индикатора должна появиться единица в старшем разряде.

Затем проверить исправность щупов прибора, для чего соединить их вместе: на индикаторе высветятся нули, и раздастся звуковой сигнал. Это не напрасное предупреждение, поскольку обрыв проводов в китайских щупах явление довольно распространенное, и об этом забывать не следует.

У радиолюбителей и профессиональных инженеров – электронщиков старшего поколения такой жест (проверка щупов) выполняется машинально, ведь при пользовании стрелочным тестером при каждом переключении в режим измерения сопротивлений приходилось устанавливать стрелку на нулевое деление шкалы.

После того, как указанные проверки произведены, можно приступить к проверке полупроводников, — диодов и транзисторов. Следует обратить внимание на полярность напряжения на щупах. Отрицательный полюс находится на гнезде с надписью «COM» (общий), на гнезде с надписью VΩmA положительный. Чтобы в процессе измерения об этом не забывать, в это гнездо следует вставить щуп красного цвета.

Рисунок 1. Мультиметр

Это замечание не настолько праздное, как может показаться на первый взгляд. Дело в том, что у стрелочных авометров (АмперВольтОмметр) в режиме измерения сопротивлений положительный полюс измерительного напряжения находится на гнезде с маркировкой «минус» или «общий», ну с точностью до наоборот, по сравнению с цифровым мультиметром. Хотя в настоящее время больше используются цифровые мультиметры, стрелочные тестеры применяются до сих пор и в ряде случаев позволяют получить более достоверные результаты. Об этом будет рассказано чуть ниже.

Рисунок 2. Стрелочный авометр

Что показывает мультиметр в режиме «прозвонки»

Проверка диодов

Наиболее простым полупроводниковым элементом является диод, который содержит всего один P-N переход. Основным свойством диода является односторонняя проводимость. Поэтому если положительный полюс мультиметра (красный щуп) подключить к аноду диода, то на индикаторе появятся цифры, показывающие прямое напряжение на P-N переходе в милливольтах.

Рисунок 3.

Для кремниевых диодов это будет порядка 650 — 800 мВ, а для германиевых порядка 180 — 300, как показано на рисунках 4 и 5. Таким образом, по показаниям прибора можно определить полупроводниковый материал, из которого сделан диод. Следует заметить, что эти цифры зависят не только от конкретного диода или транзистора, но еще от температуры, при увеличении которой на 1 градус прямое напряжение падает приблизительно на 2 милливольта. Этот параметр называется температурным коэффициентом напряжения.

Рисунок 4.

Рисунок 5.

Если после этой проверки щупы мультиметра подключить в обратной полярности, то на индикаторе прибора покажется единица в старшем разряде. Такие результаты будут в том случае, если диод оказался исправный. Вот собственно и вся методика проверки полупроводников: в прямом направлении сопротивление незначительно, а в обратном практически бесконечно.

Если же диод «пробит» (анод и катод замкнуты накоротко), то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае, если диод «в обрыве», как ни меняй полярность подключения щупов, на индикаторе, так и будет светиться единица.

Проверка транзисторов

В отличие от диодов транзисторы имеют два P-N перехода, и имеют структуры P-N-P и N-P-N, причем последние встречаются гораздо чаще. В плане проверки с помощью мультиметра транзистор можно рассматривать, как два диода включенных встречно — последовательно, как показано на рисунке 6. Поэтому проверка транзисторов сводится к «прозвонке» переходов база – коллектор и база – эмиттер в прямом и обратном направлении.

Следовательно, все что было сказано чуть выше о проверке диода, полностью справедливо и для исследования переходов транзистора. Даже показания мультиметра будут такие же, как и для диода.

Рисунок 6.

На рисунке 7 показана полярность включения прибора в прямом направлении для «прозвонки» перехода база — эмиттер транзисторов структуры N-P-N: плюсовой щуп мультиметра подключен к выводу базы. Для измерения перехода база – коллектор минусовой вывод прибора следует подключить к выводу коллектора. В данном случае цифра на табло получена при прозвонке перехода база – эмиттер транзистора КТ3102А.

Рисунок 7.

Если транзистор окажется структуры P-N-P, то к базе транзистора следует подключить минусовой (черный) щуп прибора.

Попутно с этим следует «прозвонить» участок коллектор – эмиттер. У исправного транзистора его сопротивление практически бесконечно, что символизирует единица в старшем разряде индикатора.

Иногда бывает, что переход коллектор – эмиттер пробит, о чем свидетельствует звуковой сигнал мультиметра, хотя переходы база – эмиттер и база — коллектор «звонятся» как будто нормально!

Проверка транзисторов авометром

Производится также, как и цифровым мультиметром, при этом не следует забывать, что полярность в режиме омметра обратная по сравнению с режимом измерения постоянного напряжения. Чтобы это не забывать в процессе измерений следует красный щуп прибора включать в гнездо со знаком «-», как было показано на рисунке 2.

Авометры, в отличие от цифровых мультиметров, не имеют режима «прозвонки» полупроводников, поэтому в этом плане их показания заметно различаются в зависимости от конкретной модели. Тут уже приходится ориентироваться на собственный опыт, накопленный в процессе работы с прибором. На рисунке 8 показаны результаты измерений с помощью тестера ТЛ4-М.

Рисунок 8.

На рисунке показано, что измерения проводятся на пределе *1Ω. В этом случае лучше ориентироваться на показания не по шкале для измерения сопротивлений, а по верхней равномерной шкале. Видно, что стрелка находится в районе цифры 4. Если измерения производить на пределе *1000Ω, то стрелка окажется между цифрами 8 и 9.

По сравнению с цифровым мультиметром авометр позволяет более точно определить сопротивление участка база – эмиттер, если этот участок зашунтирован низкоомным резистором (R2_32), как показано на рисунке 9. Это фрагмент схемы выходного каскада усилителя фирмы ALTO.

Рисунок 9.

Все попытки измерить сопротивление участка база – эмиттер с помощью мультиметра приводят к звучанию динамика (короткое замыкание), поскольку сопротивление 22Ω воспринимается мультиметром как КЗ. Аналоговый же тестер на пределе измерений *1Ω показывает некоторую разницу при измерении перехода база – эмиттер в обратном направлении.

Еще один приятный нюанс при пользовании стрелочным тестером можно обнаружить, если проводить измерения на пределе *1000Ω. При подключении щупов, естественно с соблюдением полярности (для транзистора структуры N-P-N плюсовой вывод прибора на коллекторе, минус на эмиттере), стрелка прибора с места не двинется, оставаясь на отметке шкалы бесконечность.

Если теперь послюнить указательный палец, как будто для проверки нагрева утюга, и замкнуть этим пальцем выводы базы и коллектора, то стрелка прибора сдвинется с места, указывая на уменьшение сопротивления участка эмиттер — коллектор (транзистор чуть приоткроется). В ряде случаев этот прием позволяет проверить транзистор без выпаивания его из схемы.

Наиболее эффективен указанный метод при проверке составных транзисторов, например КТ 972, КТ973 и т.п. Не следует только забывать, что составные транзисторы часто имеют защитные диоды, включенные параллельно переходу коллектор – эмиттер, причем в обратной полярности. Если транзистор структуры N-P-N, то к его коллектору подключен катод защитного диода. К таким транзисторам можно подключать индуктивную нагрузку, например, обмотки реле. Внутреннее устройство составного транзистора показано на рисунке 10.

Рисунок 10.

Ранее ЭлектроВести писали, что дожди могут стать новым источником возобновляемой и предельно дешевой энергии: ученые из Гонконга придумали новый тип электрогенератора с высоким КПД и удельной мощностью в тысячу раз большей, чем у существовавших до сих пор других подобных устройств. Их изобретение позволяет получать из падения одной капли воды с высоты 15 см напряжение свыше 140 вольт, а энергии этого падения хватит для питания 100 небольших светодиодных ламп.

По материалам: electrik.info.

Как проверить транзистор? (с картинками)

`;

Т. Л. Чайлдри

Проверить работоспособность транзистора можно, выполнив несколько простых процедур с помощью цифрового мультиметра. Большинство мультиметров цифрового типа оснащены функцией проверки диодов, которую можно использовать для проверки транзистора. Если транзистор уже подключен к печатной плате, перед тестированием его необходимо удалить с платы. Электронный транзистор может использоваться в цепи как усилитель или как переключатель.

Независимо от области применения, процедура, используемая для проверки транзистора, одинакова, потому что все транзисторы в основном работают как два параллельных диода, которые имеют общий элемент.

Для проверки транзистора можно использовать мультиметр.

Прежде чем приступить к самой процедуре тестирования, вам необходимо определить тип тестируемого транзистора. Транзисторы, известные как положительно-отрицательно-положительные (PNP), имеют две входные клеммы и одну выходную клемму. Транзистор, который является отрицательно-положительно-отрицательным (NPN), будет иметь одну входную клемму и две выходные клеммы. Оба типа транзисторов имеют в общей сложности три вывода, которые известны как вывод базы, вывод коллектора и вывод эмиттера.

Транзисторы должны быть удалены из печатной платы перед тестированием.

Тип транзистора, а также расположение и идентификация его выводов обычно маркируются на внешней упаковке транзистора. Если тип транзистора не указан на упаковке, для его определения можно выполнить простой тест с помощью мультиметра. Определите ориентацию трех клемм транзистора и подключите положительный вывод мультиметра к базовой клемме транзистора. Затем подключите отрицательный вывод измерителя к клемме коллектора или эмиттера транзистора. Если мультиметр показывает показания выше нуля, то транзистор относится к типу NPN.

Транзисторы часто припаиваются к печатной плате, что затрудняет определение того, связана ли проблема с печатной платой с транзистором или с чем-то другим.

После того, как вы определили тип транзистора и ориентацию его выводов, вы готовы приступить к фактической процедуре тестирования. Чтобы проверить работоспособность транзистора, вам нужно будет повернуть шкалу мультиметра на настройку диода. Затем подключите положительный провод мультиметра к базовой клемме транзистора. Затем вы должны прикоснуться отрицательным выводом мультиметра к клемме коллектора транзистора и проверить сопротивление. Затем прикоснитесь отрицательным проводом к клемме эмиттера и проверьте сопротивление. После того, как вы завершили эту процедуру, вам нужно будет снова выполнить полный тест с отрицательным выводом, подключенным к базовой клемме транзистора.

Если транзистор исправен, показания сопротивления в первой части теста будут очень низкими, а во второй части будут очень высокими. Если транзистор относится к типу PNP, вам нужно будет выполнить первую часть теста с отрицательным выводом, подключенным к базовой клемме, а положительный вывод будет подключен во время второй части. Если транзистор исправен, первое показание будет высоким, а второе — низким. Транзисторы обычно перестают работать внезапно, а не постепенно. Обычно замена неисправного транзистора обходится дешевле, чем замена самой печатной платы.

Транзисторы обычно идентифицируются печатным кодом, который часто включает одну или две буквы, за которыми следует ряд цифр.

Вам также может понравиться

Рекомендуется

Как проверить транзистор без мультиметра (решение 2022)

Привет! Ищете ответ, чтобы узнать, как проверить транзистор без мультиметра? Тогда вы попали в нужную статью.

В этой короткой статье мы вместе рассмотрим решение, с помощью которого вы можете попробовать проверить транзисторы без использования какого-либо мультиметра.

Под тестированием я также подразумеваю, хороший это транзистор или плохой. Если это хороший транзистор, то какова его правильная конфигурация контактов. Кроме того, мы также узнаем тип транзистора BJT, то есть, если это NPN или PNP.

Надеюсь, вам понравится эта статья и вы найдете ответы на свой вопрос.

Содержание

  • Зачем нам тестировать транзисторы?
  • Как проверить транзистор без мультиметра?
    • Осциллограф с опцией проверки компонентов
    • Специальный тестер транзисторов
  • Как использовать тестер транзисторов для проверки транзистора?
  • Заключение

Зачем нужно тестировать транзисторы?

Первый вопрос: зачем вообще нужно тестировать или проверять транзистор? Ответ прост, проверить, хороший это транзистор или плохой.

Потому что нет смысла использовать неисправный транзистор в схеме, так как это приведет к неточным результатам. Иногда это также может привести к повреждению других подключенных компонентов из-за перенапряжения или перегрузки по току.

А почему без мультиметра?

Ответ: просто потому, что мы можем, и мы очень учимся. Я не могу придумать такой другой технической причины — например, если я электронщик, почему бы мне не иметь мультиметр.

Если у меня нет мультиметра, то я должен подумать, настоящий ли я электронщик или просто балуюсь.

Другим возможным ответом может быть то, что мы хотим знать, есть ли у нас другие варианты. Но опять же, как я уже сказал, мы увлеченные ученики.

Как проверить транзистор без мультиметра?

Знаете, если честно, я действительно не думаю, что можно эффективно проверить транзистор без времени мультиметра. Если вы не хотите использовать мультиметр, вам придется использовать другие альтернативные устройства.

Но у вас должен быть измерительный прибор, чтобы правильно проверить и протестировать любой тип транзистора.

Да, вы можете сконструировать какую-нибудь схему проверки транзистора, но я оставлю это для другой статьи в блоге.

Итак, для проверки транзистора без мультиметра есть два способа:

  • 1- Использование осциллографа профессионального уровня с опцией проверки компонентов
  • 2- Использование специального тестера транзисторов

Осциллограф с опцией проверки компонентов

Первый метод является дорогостоящим и лучше всего подходит для людей, которые являются профессионалами и работают с платами электроники с кучей транзисторов.

Этот метод действительно рекомендуется, когда вы хотите проверить транзисторы в схеме, не выпаивая их из платы.

Специализированный тестер транзисторов

Теперь этот метод действительно экономит время и надежен. Это сэкономит вам много времени, если вы работаете с транзисторами.

Чтобы этот метод был применим, вам нужен приличный тестер транзисторов. Вы можете купить где угодно, так как они не дорогие, и все тестеры транзисторов практически одинаковы.

Ниже приведен тестер транзисторов, который мне лично нравится. Это очень простой, но он делает свою работу очень хорошо.

Преимущество этого тестера в том, что его можно использовать и для других компонентов. Это как все в одном компонентном тестере.

Давайте посмотрим, как вы можете использовать этот инструмент для проверки любых транзисторов.

Как использовать тестер транзисторов для проверки транзистора?

Сначала возьмите транзистор, который хотите проверить. Допустим, вы хотите протестировать транзистор BJT и, допустим, вы не знаете, является ли он NPN или PNP. Вы не знаете его бета-значение постоянного тока. Вы также не знаете его правильную конфигурацию выводов, т. е. какой вывод выводов коллектор, эмиттер или база.

Чтобы знать все вышеперечисленные параметры транзистора, нам нужен специальный тестер транзисторов, о котором мы говорили выше.

Тестер транзисторов, который мы будем использовать, это тестер транзисторов M328 (ссылка на продукт) . Выполните следующие шаги:

  • Сначала включите тестер транзисторов, вы должны увидеть, что экран загорится.
  • Поместите гнездо компонента в нужное место в тестере транзисторов
  • Теперь возьмите транзистор, который хотите проверить
  • Поместите его в гнездо компонента в любой конфигурации
  • Нажмите кнопку проверки
  • И вы должны увидеть результаты на экране.
  • В результатах будет указано, является ли это NPN или PNP, будет указано его бета-значение постоянного тока, а также будет показана правильная конфигурация контактов.

Видите ли, это маленькое устройство дает нам всю важную информацию о транзисторе в кратчайшие сроки, тем самым экономя наше драгоценное время.

Теперь, если транзистор неисправен, экран не покажет результатов или сообщит, что компонент не найден. Это признак того, что вы работаете с неисправным транзистором. Вам нужно избавиться от него немедленно.

Заключение

Инженерам и студентам необходимо знать, как проверить транзистор без мультиметра. Нам нужно знать, сколько других способов мы можем использовать для проверки транзисторов любого типа.

Потому что для меня не имеет никакого смысла проверять транзистор без использования мультиметра. За исключением того, что мы увлечены учениками и хотим исследовать вещи.

Итак, сделать это можно тремя способами:

  • Разработать схему проверки
  • Использование осциллографа с функцией тестирования компонентов
  • Используйте специальный тестер транзисторов

Первый технический и требует знания предметной области. Поэтому я решил создать об этом отдельную статью как-нибудь в другой раз.

Второй метод является дорогостоящим и ориентирован на работу более профессионального уровня. Кроме того, этот метод полезен, если вы хотите проверить транзисторы, пока они еще припаяны к схемам, т. е. внутрисхемное тестирование транзисторов.

Последний способ подходит большинству из нас. Так как это дешево и очень надежно в долгосрочной перспективе.

В этом методе мы используем специальный тестер транзисторов, который сообщает нам тип транзистора и различные полезные связанные параметры, но, что более важно, он сообщает нам, является ли транзистор плохим или хорошим.

В конце концов, я бы сказал. Я не идеален, как и эта статья. Но я намерен поделиться чем-то, что может быть полезно для некоторых из вас. Я изо всех сил старался, используя свои ограниченные знания, создать что-то. Я надеюсь, что это поможет вам как-то, может быть, немного. Но мне этого было бы достаточно.

Надеюсь, вам понравилось.

Спасибо и удачной жизни.

Другие полезные сообщения:

  • Как проверить диод без мультиметра (Простые решения)
  • Как проверить конденсатор без выпайки [при проверке схемы]
  • Основы работы с мультиметром для начинающих — узнайте, как пользоваться мультиметром
  • Безумно лучший тестер транзисторов (тестер компонентов)

Как определить транзистор SMD? И как это проверить? Решенный

Транзисторы используются во многих электронных и электрических устройствах; они имеют много применений, например, для переключения и усиления. Транзисторы для поверхностного монтажа являются одним из типов транзисторов. Транзисторы SMD используются в основном в компьютерных платах, так как идентифицировать SMD транзисторы?

Как определить транзистор SMD?

Чтобы идентифицировать SMD-транзистор, вы должны знать форму транзистора; это прямоугольная коробка черного цвета с контактами по бокам . Штыри используются для пайки транзистора в компьютерных платах. Кроме того, вы можете найти код, указанный на его корпусе, а затем использовать кодовую книгу SMD, чтобы подтвердить, что это транзистор.

К сожалению, некоторые устройства могут иметь один и тот же код в кодовой книге SMD, даже если их разработал один и тот же производитель . Поэтому, если вы обнаружите, что код на корпусе транзистора также используется для другого компонента, вы можете использовать стиль формы транзистора, чтобы различать их.

Из чего сделан SMD-транзистор?

Транзисторы для поверхностного монтажа изготавливаются из полупроводниковых материалов и являются основным компонентом транзистора . Полупроводниковые материалы проводят только часть проходящего через них тока; это делает транзистор используемым в качестве усилителя или переключателя. Усилители обычно представляют собой транзисторы, используемые для усиления сигналов.

Электрические сигналы поступают из определенной точки транзистора; они перетекают в среднюю секцию после прохождения барьера ; в средней части находится заряд, подаваемый на вход. После усиления сигналы выходят из транзистора через третью секцию; усиление может быть в сто раз больше входного.

Связанные материалы:

Как найти коллектор, эмиттер и базу…

Как определить конденсатор SMD? (С и без…

Как определить плавкий предохранитель поверхностного монтажа (SMD)? Полное руководство

Положения и условия

Провода какого цвета можно сочетать? Полное руководство

Почему у потенциометра 2, 3 и 6 контактов?…

Можно ли фиксировать другие транзисторы, как SMD?

Да, другие резисторы могут быть закреплены на компьютерных платах, например, для поверхностного монтажа; однако транзисторы SMD предпочтительнее с компьютерными платами . Транзисторы с биполярным переходом — самый популярный тип транзисторов; у них есть два положительно-отрицательных ворот, через которые должны пройти сигналы.

Какие существуют типы транзисторов с биполярным соединением?

  • Транзисторы PNP
  • Транзисторы NPN

PNP положительный-отрицательный-положительный; между тем, NPN состоит из отрицательного положительного отрицательного. Ток усиливается после пересечения вторых ворот; он входит в систему через среднюю часть. Другим типом транзистора для поверхностного монтажа является полевой транзистор на основе оксида металла и полупроводника .

Тип MOSFET представляет собой особый тип SMD транзистора , поскольку он может быть как положительным, так и отрицательным . Центральный зонд получает ток из центральной области; центральная область имеет тот же заряд, что и подключенный к ней порт вывода/ввода. Остальная часть корпуса транзистора имеет противоположный заряд.

Как защитить транзистор SMD?

Чтобы защитить SMD-транзистор, вы должны быть очень осторожны при его закреплении на плате компьютера, поскольку транзисторы очень хрупкие , чего нельзя сказать о других компонентах. Поэтому пользоваться паяльником нужно очень осторожно, чтобы не повредить транзистор. Начните припаивать металлические штыри отдельно.

Независимо от того, было ли их два или три, каждый металлический штырь должен припаиваться по одному и оставлять деталь в покое после припайки каждого штыря . Температура транзистора должна снизиться, чтобы защитить его от теплового повреждения.

Источник

Как проверить транзистор SMD?

Для проверки SMD-транзистора вам понадобится мультиметр; к транзистору подключается мультиметр, чтобы посмотреть, дает ли он показание или нет; однако проверить транзистор не так просто; вам необходимо выполнить несколько определенных шагов:

Шаг первый

Подключите положительный щуп мультиметра к базе транзистора, а затем подключите отрицательный щуп мультиметра к эмиттеру транзистора . Если у вас хороший транзистор NPN , показания мультиметра должны быть в пределах от 0,45 В до 0,9 В; в то время как для транзисторов PNP это OL .

Шаг второй

Подключите отрицательный щуп мультиметра к коллектору транзистора, а затем подключите положительный щуп мультиметра к базе транзистора . Если у вас хороший транзистор NPN , показания мультиметра должны быть в пределах от 0,45 В до 0,9 В.вольт; в то время как для транзисторов PNP это OL .

Шаг третий

Подключите положительный щуп мультиметра к эмиттеру транзистора, а затем подключите отрицательный щуп мультиметра к базе транзистора . Если у вас хороший транзистор PNP , показания мультиметра должны быть в пределах от 0,45 до 0,9 вольт; между тем, для транзисторов NPN это OL.

Шаг четвертый

Подключите отрицательный щуп мультиметра к базе транзистора, а затем подключите положительный щуп мультиметра к коллектору транзистора. Если у вас хороший транзистор PNP , показания мультиметра должны быть в пределах от 0,45 В до 0,9 В; между тем, для транзисторов NPN это OL .

Шаг пятый

Подключите положительный щуп мультиметра к коллектору транзистора, а затем подключите отрицательный щуп мультиметра к эмиттеру транзистора. Если у вас хороший транзистор, будь то NPN или PNP, показание должно быть OL.

Если вы поменяли местами два щупа, подключите положительный щуп мультиметра к эмиттеру транзистора, а затем подключите отрицательный щуп мультиметра к коллектору транзистора . Показание также должно быть 90 109 OL.

Что такое SMD-транзистор?

Транзистор SMD представляет собой устройство для поверхностного монтажа и отличается от других транзисторов; он припаян непосредственно к компьютерным платам с помощью штифтов сбоку , свинец и паяльник. Хотя установить транзистор для поверхностного монтажа несложно, он может легко сломаться.

Платы, используемые для SMD-транзисторов, дешевле обычных плат; сквозные транзисторы являются альтернативой транзисторам для поверхностного монтажа ; они крепятся к компьютерным платам с помощью металлических штырей. Платы имеют отверстия, в которые можно вставить и просверлить металлические штыри, но их производство может быть дорогостоящим.

Вывод

Подводя итог, можно сказать, что транзисторы для поверхностного монтажа являются одним из типов транзисторов; SMD-транзисторы используются в основном в компьютерных платах, используются в качестве усилителя или переключателя и используются для усиления электрических сигналов; они могут быть усилены в сто раз по сравнению с их вводом. Вы можете идентифицировать резистор SMD, используя кодовую книгу SMD.

Чтобы идентифицировать SMD-транзистор, вы должны знать форму транзистора; это прямоугольная коробка черного цвета с контактами по бокам .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *