Проверка биполярного транзистора — Основы электроники
Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить биполярный транзистор с помощью мультиметра.
Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.
Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.
Итак, схематически биполярный транзистор можно представить следующим образом.
Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.
Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).
Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.
Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.
Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).
Это я вам показывал в видео для статьи «Как пользоваться мультиметром» при проверке полупроводникового диода.
Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.
Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.
В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.
Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим
Далее проверяем переход база-коллектор. Для этого красный щуп оставляем на базе, а черный подключаем к коллектору, при этом прибор покажет падение напряжения на переходе.
Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э. Это можно объяснить меньшим сопротивлением перехода Б-К
По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.
Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.
Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.
Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».
Теперь включаем в обратном направлении переход
Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».
Меняем полярность (красный-коллектор, черный— эмиттер) результат – «1».
Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен.
Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.
При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.
А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:
Как проверить силовые транзисторы. Как проверить биполярный транзистор мультиметром
Биполярный транзистор состоит из двух P-N переходов. Его выводы называются, как эммитер, база и коллектор. Слой, который посередине, называется базой. Эммитер и коллектор находятся по краям. В P-N-P транзисторе в классической схеме включения ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе. Не будем на этом подробно останавливаться, если у вас и возникло желание разобраться с работой, то вы можете посмотреть соответствующую .
Как проверить транзистор, самым сложным здесь является поиск справочной документации на конкретный транзистор. Могу предложить вам в помощь огромный справочник радиоэлементов из которых мы узнаем о нем все.
Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор считается исправным, если исправны оба перехода.
Для проверки транзистора один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно дотрагиваются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение.
Теперь чуть подробнее: Возьмем транзистор структуры N-P-N и проверим эмитерный переход для этого плюсовой щуп тестера подключаем к базе, а минусовой к эммитеру.
Как видим эмитерный переход в прямом подключение имеет небольшое сопротивление, затем мы должны увидеть аналогичные результаты на коллекторном переходе.
А вот затем мы меняем щупы местами и подключаем к области P — минусовой щуп мультиметра, а к области N соотвественно плюсовой щуп. На экране мы должны увидеть бесконечно большое сопротивление.
По результатам четырех измерений мы делаем вывод, что данный транзистор исправен и успешно может быть применен нами в наших радиолюбительских опытах
Как проверить транзистор простой пробник схема |
Схема выполнена на основе симметричного мультивибратора, но отрицательными обратными связями через конденсаторы С1 и С2. В момент времени, когда второй транзистор закрыт, положительный потенциал через открытый первый транзистор создаст слабое сопротивление на входе и, таким образом, увеличит нагрузочное качество пробника. С эмиттера VT1 положительный импульс поступает через конденсатор С1 на выход мультивибратора. Через открытый VT2 и диод VD1, конденсатор С1 начинает разряжаться.
Полярность выходных импульсов с выходов мультивибратора меняется с частотой 1 кГц и амплитудой около 4 вольт. Импульсы с одного из выходов мультивибратора поступают на разъем X3 и на эмиттер проверяемого на работоспособность транзистора, с другого выхода на разъем X2 база через резистор R5, а также и на разъем X1 пробника подключенного к коллектору исследуемого на работоспособность транзистора через резистор R6, светодиоды HL1, HL2 и динамик.
Если проверяемый прибор исправен засветится один из светодиодов (в случае n-p-n структуры испытуемого – HL1, при p-n-p – HL2) Если же загорятся оба светодиода – транзистор пробит, если не загорятся совсем, значит у проверяемого транзистора внутренний обрыв.
Для проверки диодов, исследуемый полупроводник подключают к разъемам X1 и X3. При исправном диоде будет светится один из светодиодов, в зависимости от полярности. Кроме световой индикации пробник оснащен звуковой сигнализацией, что очень полезно при ремонте электронной техники.
Схема похожа на предыдущую, но в ней используется микросхема К555ЛА3, а точнее ее логические элементы.
DD1.4 используется в роли выходного инвертирующего каскада. От резистора R1 и конденсатора C1 меняется частота следования выходных импульсов. Пробник, кроме проверки транзисторов и диодов можно, использовать и для проверки электролитических конденсаторов. Его контакты подсоединены к выводам Х1 и Х3. Поочередное свечение светодиодов косвенно свидетельствует об исправном электролитическом конденсаторе. Время свечения светодиодов определяется величиной емкости конденсатора.
Приветствую всех любителей электроники, и сегодня в продолжение темы применение цифрового мультиметра мне хотелось бы рассказать, как проверить
Биполярный транзистор представляет собой полупроводниковый прибор, который предназначен для усиления сигналов. Так же транзистор может работать в ключевом режиме.
Транзистор состоит из двух p-n переходов, причем одна из областей проводимости является общей. Средняя общая область проводимости называется базой, крайние эмиттером и коллектором. Вследствие этого разделяют n-p-n и p-n-p транзисторы.
Итак, схематически биполярный транзистор можно представить следующим образом.
Рисунок 1. Схематическое представление транзистора а) n-p-n структуры; б) p-n-p структуры.
Для упрощения понимания вопроса p-n переходы можно представить в виде двух диодов, подключенных друг к другу одноименными электродами (в зависимости от типа транзистора).
Рисунок 2. Представление транзистора n-p-n структуры в виде эквивалента из двух диодов, включенных анодами друг к другу.
Рисунок 3. Представление транзистора p-n-p структуры в виде эквивалента из двух диодов, включенных катодами друг к другу.
Конечно же для лучшего понимания желательно изучить как работает p-n переход, а лучше как работает транзистор в целом. Здесь лишь скажу, что чтобы через p-n переход тек ток его необходимо включить в прямом направлении, то есть на n – область (для диода это катод) подать минус, а на p-область (анод).
Это я вам показывал в видео для статьи «Как пользоваться мультиметром » при проверке полупроводникового диода.
Так как мы представили транзистор в виде двух диодов, то, следовательно, для его проверки необходимо просто проверить исправность этих самых «виртуальных» диодов.
Итак, приступим к проверке транзистора структуры n-p-n. Таким образом, база транзистора соответствует p- области, коллектор и эмиттер — n-областям. Для начала переведем мультиметр в режим проверки диодов.
В этом режиме мультиметр будет показывать падение напряжения на p-n переходе в милливольтах. Падение напряжения на p-n переходе для кремниевых элементов должно быть 0,6 вольта, а для германиевых – 0,2-0,3 вольта.
Сначала включим p-n переходы транзистора в прямом направлении, для этого на базу транзистора подключим красный (плюс) щуп мультиметра, а на эмиттер черный (минус) щуп мультиметра. При этом на индикаторе должно высветиться значение падения напряжения на переходе база-эмиттер.
Здесь необходимо отметить, что падение напряжения на переходе Б-К всегда будет меньше падения напряжения на переходе Б-Э . Это можно объяснить меньшим сопротивлением перехода Б-К по сравнению с переходом Б-Э , что является следствием того, что область проводимости коллектора имеет большую площадь по сравнению с эмиттером.
По этому признаку можно самостоятельно определить цоколевку транзистора, при отсутствии справочника.
Так, половина дела сделана, если переходы исправны, то вы увидите значения падения напряжения на них.
Теперь необходимо включить p-n переходы в обратном направлении, при этом мультиметр должен показать «1», что соответствует бесконечности.
Подключаем черный щуп на базу транзистора, красный на эмиттер, при этом мультиметр должен показать «1».
Теперь включаем в обратном направлении переход Б-К , результат должен быть аналогичным.
Осталось последняя проверка – переход эмиттер-коллектор. Подключаем красный щуп мультиметра к эмиттеру, черный к коллектору, если переходы не пробитые, то тестер должен показать «1».
Меняем полярность (красный -коллектор, черный — эмиттер) результат – «1».
Если в результате проверки вы обнаружите не соответствие данной методике, то это значит, что транзистор неисправен .
Эта методика подходит для проверки только биполярных транзисторов. Перед проверкой убедитесь, что транзистор не является полевым или составным. Многие изложенным выше способом пытаются проверить именно составные транзисторы, путая их с биполярными (ведь по маркировки можно не правильно идентифицировать тип транзистора), что не является правильным решением. Правильно узнать тип транзистора можно только по справочнику.
При отсутствии режима проверки диодов в вашем мультиметра, осуществить проверку транзистора можно переключив мультиметр в режим измерения сопротивления на диапазон «2000». При этом методика проверки остается неизменной, за исключением того, что мультиметр будет показывать сопротивление p-n переходов.
А теперь по традиции поясняющий и дополняющий видеоролик по проверке транзистора:
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность. Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями. Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p . Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+ ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+ ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный ) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп (красный ) в гнездо с обозначением буквы омега Ω , буквы V и, возможно, других букв. Всё зависит от функционала прибора.
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503 . Он имеет структуру n-p-n . Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка , поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С ), эмиттер (Э или англ.- Е ), база (Б или англ.- В ).
Сначала подключаем красный (+ ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении . В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1 ». Если на дисплее единица «1 », то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1 », что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении .
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1 ». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1 ». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал .
Блин, какое страшное слово! Думаю, у всех чайников транзистор ассоциируется с чем-то очень трудным и непонятным. Но, уверяю вас, мои дорогие чайники, ничего трудного нету в транзисторе. Давайте же для начала разберемся, что он вообще из себя представляет и как его можно проверить на работоспособность.
Сразу оговорюсь, в нашей статье мы будет проверять биполярные транзисторы. Что это значит? А значит это то, что эти транзисторы состоят из двух P-N переходов. P-N переходы, дырки, электроны бла бла бла… Ну нафиг! Нам это не надо знать, как там ведут себя электроны, а как дырки и тд и тп. Просто знайте, если ток будет течь через P-N переход, то он сможет течь только в одном направлении. Из P-N перехода сделаны все диоды. А как вы знаете, диод пропускает ток тольков в одном направлении, и не пропускает в другом направлении. То есть другими словами, в одном направлении сопротивление диода маленькое, а в другом — очень большое. Это мы с вами видели в статье как проверить диод мультиметром .
Биполярный транзистор, как я уже сказал, состоит из двух P-N переходов. А в зависимости, как расставлены материалы P и N, так и называется транзистор. На рисунке ниже схематическое обозначение P-N-P транзистора:
Его выводы обозначаются, как эммитер, база и коллектор. Материал, который посередине, между двумя другими материалами, называется в транзисторе базой. Эммитер и коллектор находятся по краям и состоят из одного какого либо одинакового материала. В P-N-P транзисторе ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе. Все просто:-). Схематическое обозначение P-N-P транзистора в схеме выглядит так:
где Э — это эмиттер, Б — база, К — коллектор.
Существует также другая разновидность биполярного транзистора — N-P-N. Здесь уже материал P заключен между двумя материалами N.
Принцип его действия схож с P-N-P транзистором, просто здесь ток течет уже в другом направлении.
Вот его схематическое изображение на схемах
Так как диод состоит из одного P-N перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор.
Ну чтоже, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что нам написали на транзисторе: С4106. Теперь залезаем в интернет и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся с английскими буквами. А вот я и даташит на него нарыл:
Нас больше всего интересует распиновка контактов. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор. В этом и вся прелесть даташита.
А вот и схемка распиновки:
Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер.
Возвращаемся к нашему рисуночку
Наш подопечный — это N-P-N транзистор. Получается, если он здоров, то у нас будет маленькое падение напряжения в миллиВольтах, если мы приложим «плюс» к базе, а «минус» к коллектору или эммитеру. А если мы приложим «минус» к базе, а «плюс» к коллектору или эмиттеру, то увидим единичку на мультике. Начинаем проверять диоды транзистора, как мы это делали при проверке диодов в статье Как проверить диод мультиметром .
Ставим на прозвонку и начинаем мусолить наш транзистор. Для начала ставим «плюс» к базе, а «минус» к коллектору
Все ок, прямой P-N переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милиВольта или 0,54 Вольта.
Проверяем переход база-эммитер, поставив на базу «плюс» , а на эммитер «минус».
Видим снова падение напряжения прямого P-N перехода. Все ок.
Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на P-N переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эммитер.
Здесь у нас мультик также показывает единичку. Значит можно дать диагноз транзистору — здоров.
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с Вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультик на прозвонку и цепляемя к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что P-N переход пробит, а раз уж он пробит, то можно смело выкидывать такой транзистор в мусорку.
В заключении статьи, хотелось бы добавить, что лучше всегда отыскивать даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов или даже диоды наряду с транзистором вместе. Имейте также ввиду, что некоторые радиоэлементы выполняют, как транзисторы. Это могут быть тиристоры, стабилизаторы или преобразователи напряжения или даже какая нибудь заморская микросхемка. Вот так-то! Не ленитесь отыскивать даташиты на проверяемые транзисторы.
Как проверить работоспособность разных видов биполярных транзисторов мультиметром? Как проверить биполярный транзистор
Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.
С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э .
Необходимость наличия пробника
Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и .
Устройство транзистора
Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.
Он имеет три вывода, которые формируют между собой диоды (полупроводники).
Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.
Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.
Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.
Ищем базу, эмиттер и коллектор на транзисторе
Как сразу найти коллектор.
Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.
Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.
Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.
Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.
Если коллектор определен, то определить другие выводы уже будет не сложно.
Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.
Производим нужные замеры прямого и обратного сопротивления.
Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.
Как же тут найти базу, эмиттер и коллектор?
Без мультиметра или просто омметра тут не обойтись.
Итак, приступаем к поиску. Сначала нам нужно найти базу.
Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.
Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.
Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.
Эти показания пока ничего нам не дают. Делаем замеры дальше.
Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.
Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.
Это тоже нам ничего не говорить. Замеряем дальше.
Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.
Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.
А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.
Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.
Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.
В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.
Значит правый вывод — это эмиттер, а средний вывод – это коллектор.
Итак, поиск базы, эмиттера и коллектора завершен.
Как проверить транзистор на исправность
Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.
В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n .
P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.
Стрелка, которая идет от базы указывает на то, что это n-p-n переход.
P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.
Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200 ».
Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.
Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.
Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.
Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.
Настройки мультиметра менять не нужно.
Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.
Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.
Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.
Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.
В данном случае выводы нужно будет выпаять и проводить замеры снова.
Признаки неисправности транзистора
Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.
Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.
Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.
Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.
Типы транзисторов
Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.
Биполярные приборы
Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.
Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.
Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области . Внутренняя область — база.
Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.
Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.
На схемах вывод эмиттера обозначается стрелкой , которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.
Полевые транзисторы
Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).
Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными .
Проверка мультиметром
Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.
Приборы биполярного типа
Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.
Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.
Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.
При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.
Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.
Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.
Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:
- определение типа прибора и схемы его выводов;
- проверка сопротивлений его «p — n» переходов в прямом направлении;
- смена полярности щупов и определение сопротивлений переходов при таком подключении;
- проверка сопротивления «коллектор — эмиттер» в обоих направлениях.
Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.
К признакам неисправности биполярных транзисторов можно отнести следующие:
- «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
- «p — n» переход не «прозванивается» в обе стороны.
В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.
Второй случай показывает внутренний обрыв в структуре прибора.
В обоих случаях данный экземпляр не может быть использован для работы в схеме.
Полевые транзисторы
Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.
Для проверки элемента первого типа необходимо выполнить следующие действия:
Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».
Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).
Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.
Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.
При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.
Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.
При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.
Проверка приборов в схеме
Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.
Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.
Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.
Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.
Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.
Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.
Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.
Подготовка инструментов
У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).
Рисунок 1 – Лицевая панель мультиметра
Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:
- Батарея должна быть заряжена.
- При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
- Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
- Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.
Технологии проверки
Биполярный
Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.
Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.
Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.
Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:
- База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
- База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
- Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.
При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.
На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:
Полевой
Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.
На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.
Рисунок 3 – Структурная схема ПТ
Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.
Рисунок 4 – Антистатический браслет
Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.
«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».
Технология проверки полевого транзистора показана на видео:
Составной
Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.
Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.
Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.
В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.
Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.
Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.
При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.
В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.
Порядок проверки устройства — следуем по инструкции
Процесс измерений состоит из следующих этапов:
- проверка работы измерительного прибора;
- определение типа транзистора;
- измерение прямых сопротивлений эмиттерного и коллекторного переходов;
- измерение обратных сопротивлений эмиттерного и коллекторного переходов;
- оценка исправности транзистора.
Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.
Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.
На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».
Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.
При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.
Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.
Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:
- если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
- если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.
В обоих случаях транзистор является неисправным.
Оценка коэффициента усиления
Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.
Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.
Выводы :
- С помощью мультиметра можно определить исправность биполярных транзисторов.
- Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
- С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.
Видео о том, как проверить транзистор мультиметром
Как проверить биполярный транзистор мультиметром?
Биполярный транзистор состоит из двух . Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.
На рисунке ниже структурная схема PNP-транзистора:
Схематическое обозначение PNP-транзистора в схеме выглядит так:
где Э — это эмиттер, Б — база, К — коллектор.
Существует также другая разновидность биполярного транзистора: NPN-транзистор. Здесь уже материал P заключен между двумя материалами N.
Вот его схематическое изображение на схемах
Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать .
Проверяем транзистор с помощью мультиметра
Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся английскими буквами.
Нас больше всего интересует распиновка контактов и какого он типа: NPN или PNP. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор.
А вот и схемка распиновки:
Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер.
Возвращаемся к нашему рисунку
Наш подопечный — это NPN-транзистор.
Ставим на прозвонку и начинаем проверять «диоды» транзистора. Для начала ставим «плюс» к базе, а «минус» к коллектору
Все ОК, прямой PN-переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.
Проверяем переход база-эмиттер, поставив на базу «плюс» , а на эмиттер «минус».
Видим снова падение напряжения прямого PN перехода. Все ОК.
Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эмиттер.
Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору — здоров.
Давайте проверим еще один транзистор. Он подобен транзистору, который мы вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.
Очень удобно проверять транзисторы, имея
Заключение
В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь заморская микросхема. Поэтому, не ленитесь пользоваться интернетом.
Как проверить транзистор 2n3055 — Инженер ПТО
Проверка транзистора цифровым мультиметром
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.
Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.
Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс ( + ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс ( + ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп ( красный ) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).
Сначала подключаем красный ( + ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.
Для проверки транзисторов имеется множество специализированных испытателей, измерителей и подобных им дорогостоящих приборов. Здесь рассказывается о том, как доступным прибором проверяется работоспособность или определится назначение выводов. Имеющееся у некоторых моделей специальное гнездо для подключения транзистора позволяет снять его характеристики, но для проверки работоспособности достаточно двух щупов со шнурами. Черный провод подключается на вход COM мультиметра, а красный включатся в гнездо измерения сопротивления. Включен режим измерения диодов, либо в режим измерения сопротивления на пределе 2000 Ом.
Важно иметь представление об устройстве и принципе работа проверяемого транзистора и доступ к справочным материалам.
Что такое транзистор? Основные типы
Транзистором назван полупроводниковый радиоэлектронный компонент для преобразования тока в усилительном, когда большой выходной сигнал меняется пропорционально малому входному, или ключевом, когда транзистор полностью открыт или закрыт в зависимости от наличия входного сигнала, режимах. Применительно к технологии изготовления можно разделить на биполярные и полевые радиоэлементы. Биполярные компоненты бывают прямой (p-n-p) либо обратной (n-p-n) проводимости. Приборы полевые могут быть n-типа или p-типа, с изолированным или встроенным каналом.
Проверка исправности конкретного транзистора требует некоторых познаний в электронике. Достаточно просто прозвонить выводы транзистора как электрическую цепь, чтобы убедиться, что транзистор исправен. Щуп с черным проводом подключается на вход COM прибора. К входу измерения сопротивления подключен красный провод.
Как проверить биполярный транзистор мультиметром
Проверка биполярного транзистора мультиметром позволяет выявить неисправный компонент или определить расположение выводов (коллектор К, эмиттер Э и база Б). Чтобы знать, как проверить работоспособность, необходимо представить аналог схемы транзистора в виде двух встречно (p-n-p) или обратно (n-p-n) подключенных диодов со средней точкой, которая эквивалентна выводу базы. А оставшиеся два идентичны выводам эмиттера и коллектора. У транзисторов прямой проводимости на базе соединяются катоды («палочки» по схеме), а с обратной проводимостью аноды («стрелочки»). При подсоединении к аноду диода красного (плюсового провода), а черного к катоду тестер покажет на индикаторе какое-то значение. Если оно очень маленькое, значит, измеряемый диод пробит. А если очень большое, тогда диод в обрыве.
Нормальные значения сопротивления эмиттерного или коллекторного перехода лежат в пределах 0,4 — 1,6 кОм в зависимости от конкретного транзистора. Попарным соединением выводов транзистора с щупами мультиметра определяют пары выводов «Б-Э» и «Б-К». Сопротивление перехода К-Э всегда очень велико. Если пара не находится или сопротивление перехода коллектор-эмиттер небольшое, значит транзистор не исправен. Стоит учитывать, что сопротивление коллектора по отношению к базе всегда меньше сопротивления перехода Б-Э, что поможет определиться с цоколевкой исправной детали.
Вышесказанное справедливо как при проверке транзистора прямой проводимости, так и транзистора структуры n-p-n. В последнем случае измерения проводятся с подсоединением проводов тестера в обратной полярности.
Как проверить полевой транзистор
У полевых транзисторов выводы называются сток (С), исток (И) и затвор (З). Несмотря на то, что физика работы отличается от биполярного, при проверке на исправность также можно использовать диодный эквивалент схемы.
Схема проверки полевого транзистора p-типа аналогична испытанию с p-n-p. Перед проверкой необходимо соединить все выводы для разряда емкостей переходов. Сопротивление при подключении щупов к парам выводов «С, З» и «И, З» должно показываться только в одном из направлений. Подсоединяем черный щуп к выводу «С», а красный к вывод «И». Величину показанного сопротивления (400-700 Ом)нужно запомнить. После этого на секундочку соединяем красный провод с затвором, тем самым открывая переход. После этого замеряем сопротивление перехода. Его уменьшение говорит о том, что транзистор частично открылся. Теперь так же соединяем черный провод с выводом «З» и закрываем переход. Восстановление первоначального значения сопротивления перехода свидетельствует об исправности радиодетали. Отличие проверки полевика n-типа заключается только в перемене полярности подключения щупов прибора.
При тестировании полевых транзисторов с изолированным затвором проверяется отсутствие проводимости между затвором и истоком. Потом объединяем исток с затвором. Двухсторонняя проводимость появится у транзистора обедненного типа. У деталей обогащенного типа проводимость будет односторонняя.
Проверка мультиметром составного транзистора
Как проверить транзистор Дарлингтона? Проверить составной транзистор можно так же как биполярный, цифровым мультиметром с прозвонкой транзисторов в режиме проверки диодов. Отличие лишь в том, что прямое напряжение паре выводов Б-Э должно составлять 1,2-1,4 вольта. Если имеющийся прибор не может этого обеспечить, проверка невозможна. И тогда лучше воспользоваться элементарным пробником с использованием батареи 12 В, резистора номиналом 22 кОм включенного в базу и автомобильной лампочки мощностью 5 Вт. Далее подсоединяем «минус» источника к эмиттеру, а коллектор соединяем с лампой. Второй вывод лампы включаем в «плюс» батареи. Если подсоединить резистор к плюсовой клемме лампочка засветится. Теперь резистор переключаем на «плюс» — лампочка погасла. Это означает, что проверяемый транзистор исправен.
Как проверить транзистор, не выпаивая из монтажа
Проверить транзистор мультиметром можно после проверки схемы для выявления вероятного закорачивания выводов проверяемого элемента низкоомными резисторами. Если таковые обнаружатся, деталь для проверки придется выпаять. Если нет – проверка выполняется вышеописанными методами, но достоверность тестирования будет мала. Иногда достаточно отпайки вывода базы.
Полевые транзисторы лучше проверять отдельно от платы. Они очень чувствительны к статическому электричеству, поэтому необходимо пользоваться антистатическим браслетом.
Как проверить транзистор без мультиметра
Проверка транзистора без использования мультиметра возможна не всегда. Применение при измерениях лампочек и источников питания может с высокой вероятностью вывести из строя проверяемый элемент.
Проверка транзистора биполярного типа может быть сделана простейшей контролькой из батарейки 4,5 В, «минус» которой соединен с лампочкой от карманного фонаря. Попарно подключаете «плюс» и второй контакт лампы к выводам. Если при подключении в любой полярности к паре «К-Э» лампа не загорается — переход исправен. Подключить через ограничительный резистор «плюс» на «Б». Лампу поочередно соединяем с выводами «Э» или «К» и проверяем эти переходы. Чтобы протестировать транзистор другой структуры, изменяем полярность подключения.
Эффективно использовать для проверки транзисторов приборы, сделанные своими руками и схемы которых достаточно доступны.
NPN и PNP транзисторы
Биполярный транзистор состоит из двух PN-переходов. Существуют два вида биполярных транзисторов: PNP-транзистор и NPN-транзистор.
На рисунке ниже структурная схема PNP-транзистора:
Схематическое обозначение PNP-транзистора в схеме выглядит так:
где Э – это эмиттер, Б – база, К – коллектор.
Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N.
Вот его схематическое изображение на схемах
Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод мультиметром, можно прочитать в этой статье.
Проверяем исправный транзистор
Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется “datasheet”. Прямо так и забиваем в поисковике “C4106 datasheet”. Имейте ввиду, что импортные транзисторы пишутся английскими буквами.
Нас больше всего интересует распиновка выводов транзистора, а также его вид: NPN или PNP. То есть нам надо узнать, какой вывод что из себя представляет. Для данного транзистора нам надо узнать, где у него база, где эмиттер, а где коллектор.
А вот и схемка распиновки из даташита:
Теперь нам понятно, что первый вывод – это база, второй вывод – это коллектор, ну а третий – эмиттер
Возвращаемся к нашему рисунку
Мы узнали из даташита, что наш транзистор NPN проводимости.
Ставим мультиметр на прозвонку и начинаем проверять “диоды” транзистора. Для начала ставим “плюс” к базе, а “минус” к коллектору
Все ОК, прямой PN-переход должен обладать небольшим падением напряжения. Для кремниевых транзисторов это значение 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.
Проверяем переход база-эмиттер, поставив на базу “плюс” , а на эмиттер – “минус”.
Видим снова падение напряжения прямого PN перехода. Все ОК.
Меняем щупы местами. Ставим “минус” на базу, а “плюс” на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эмиттер.
Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору – здоров.
Проверяем неисправный транзистор
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с вами рассмотрели выше. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.
Проверка транзистора с помощью транзисторметра
Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр
Заключение
В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два и более транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, стабилизаторы, преобразователи напряжения или даже какая-нибудь иностранная микросхема.
Как проверить транзистор не выпаивая из схемы. Как проверить биполярный транзистор мультиметром
Блин, какое страшное слово! Думаю, у всех чайников транзистор ассоциируется с чем-то очень трудным и непонятным. Но, уверяю вас, мои дорогие чайники, ничего трудного нету в транзисторе. Давайте же для начала разберемся, что он вообще из себя представляет и как его можно проверить на работоспособность.
Сразу оговорюсь, в нашей статье мы будет проверять биполярные транзисторы. Что это значит? А значит это то, что эти транзисторы состоят из двух P-N переходов. P-N переходы, дырки, электроны бла бла бла… Ну нафиг! Нам это не надо знать, как там ведут себя электроны, а как дырки и тд и тп. Просто знайте, если ток будет течь через P-N переход, то он сможет течь только в одном направлении. Из P-N перехода сделаны все диоды. А как вы знаете, диод пропускает ток тольков в одном направлении, и не пропускает в другом направлении. То есть другими словами, в одном направлении сопротивление диода маленькое, а в другом — очень большое. Это мы с вами видели в статье как проверить диод мультиметром .
Биполярный транзистор, как я уже сказал, состоит из двух P-N переходов. А в зависимости, как расставлены материалы P и N, так и называется транзистор. На рисунке ниже схематическое обозначение P-N-P транзистора:
Его выводы обозначаются, как эммитер, база и коллектор. Материал, который посередине, между двумя другими материалами, называется в транзисторе базой. Эммитер и коллектор находятся по краям и состоят из одного какого либо одинакового материала. В P-N-P транзисторе ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе. Все просто:-). Схематическое обозначение P-N-P транзистора в схеме выглядит так:
где Э — это эмиттер, Б — база, К — коллектор.
Существует также другая разновидность биполярного транзистора — N-P-N. Здесь уже материал P заключен между двумя материалами N.
Принцип его действия схож с P-N-P транзистором, просто здесь ток течет уже в другом направлении.
Вот его схематическое изображение на схемах
Так как диод состоит из одного P-N перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор.
Ну чтоже, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что нам написали на транзисторе: С4106. Теперь залезаем в интернет и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся с английскими буквами. А вот я и даташит на него нарыл:
Нас больше всего интересует распиновка контактов. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор. В этом и вся прелесть даташита.
А вот и схемка распиновки:
Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер.
Возвращаемся к нашему рисуночку
Наш подопечный — это N-P-N транзистор. Получается, если он здоров, то у нас будет маленькое падение напряжения в миллиВольтах, если мы приложим «плюс» к базе, а «минус» к коллектору или эммитеру. А если мы приложим «минус» к базе, а «плюс» к коллектору или эмиттеру, то увидим единичку на мультике. Начинаем проверять диоды транзистора, как мы это делали при проверке диодов в статье Как проверить диод мультиметром .
Ставим на прозвонку и начинаем мусолить наш транзистор. Для начала ставим «плюс» к базе, а «минус» к коллектору
Все ок, прямой P-N переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милиВольта или 0,54 Вольта.
Проверяем переход база-эммитер, поставив на базу «плюс» , а на эммитер «минус».
Видим снова падение напряжения прямого P-N перехода. Все ок.
Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на P-N переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эммитер.
Здесь у нас мультик также показывает единичку. Значит можно дать диагноз транзистору — здоров.
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с Вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультик на прозвонку и цепляемя к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что P-N переход пробит, а раз уж он пробит, то можно смело выкидывать такой транзистор в мусорку.
В заключении статьи, хотелось бы добавить, что лучше всегда отыскивать даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов или даже диоды наряду с транзистором вместе. Имейте также ввиду, что некоторые радиоэлементы выполняют, как транзисторы. Это могут быть тиристоры, стабилизаторы или преобразователи напряжения или даже какая нибудь заморская микросхемка. Вот так-то! Не ленитесь отыскивать даташиты на проверяемые транзисторы.
Содержание:В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и .
Основные типы транзисторов
Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.
Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.
Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.
В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.
В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.
Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.
Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.
Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.
Проверка биполярного транзистора мультиметром
Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.
Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.
В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.
Проверка биполярного транзистора мультиметром выполняется в следующем порядке:
- Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
- Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
- Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
- Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
- Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
- После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.
Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.
Проверка работоспособности полевого транзистора
Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.
Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.
Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.
Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.
Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.
В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.
Как проверить составной транзистор мультиметром
Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.
Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.
Проверку транзисторов приходится делать достаточно часто. Даже если у Вас в руках заведомо новый, не паяный ни разу , то перед установкой в схему лучше все-таки его проверить. Нередки случаи, когда купленные на радиорынке транзисторы, оказывались негодными, и даже не один единственный экземпляр, а целая партия штук на 50 — 100. Чаще всего это происходит с мощными транзисторами отечественного производства, реже с импортными.
Иногда в описаниях конструкции приводятся некоторые требования к транзисторам, например, рекомендуемый коэффициент передачи. Для этих целей существуют различные испытатели транзисторов, достаточно сложной конструкции и измеряющие почти все параметры, которые приводятся в справочниках. Но чаще приходится проверять транзисторы по принципу «годен, не годен». Именно о таких методах проверки и пойдет речь в данной статье.
Часто в домашней лаборатории под рукой оказываются транзисторы, бывшие в употреблении, добытые когда-то из каких-то старых плат. В этом случае необходим стопроцентный «входной контроль»: намного проще сразу определить негодный транзистор, чем потом искать его в неработающей конструкции.
Хотя многие авторы современных книг и статей настоятельно не рекомендуют использовать детали неизвестного происхождения, достаточно часто эту рекомендацию приходится нарушать. Ведь не всегда же есть возможность пойти в магазин и купить нужную деталь. В связи с подобными обстоятельствами и приходится проверять каждый транзистор, резистор, конденсатор или диод. Далее речь пойдет в основном о проверке транзисторов.
Проверку транзисторов в любительских условиях обычно проводят или старым аналоговым авометром.
Проверка транзисторов мультиметром
Большинству современных радиолюбителей знаком универсальный прибор под названием мультиметр. С его помощью возможно измерение постоянных и переменных напряжений и токов, а также сопротивления проводников постоянному току. Один из пределов измерения сопротивлений предназначен для «прозвонки» полупроводников. Как правило, около переключателя в этом положении нарисован символ диода и звучащего динамика.
Перед тем, как производить проверку транзисторов или диодов, следует убедиться в исправности самого прибора. Прежде всего, посмотреть на индикатор заряда батареи, если требуется, то батарею сразу заменить. При включении мультиметра в режим «прозвонки» полупроводников на экране индикатора должна появиться единица в старшем разряде.
Затем проверить исправность , для чего соединить их вместе: на индикаторе высветятся нули, и раздастся звуковой сигнал. Это не напрасное предупреждение, поскольку обрыв проводов в китайских щупах явление довольно распространенное, и об этом забывать не следует.
У радиолюбителей и профессиональных инженеров — электронщиков старшего поколения такой жест (проверка щупов) выполняется машинально, ведь при пользовании стрелочным тестером при каждом переключении в режим измерения сопротивлений приходилось устанавливать стрелку на нулевое деление шкалы.
После того, как указанные проверки произведены, можно приступить к проверке полупроводников, — диодов и транзисторов. Следует обратить внимание на полярность напряжения на щупах. Отрицательный полюс находится на гнезде с надписью «COM» (общий), на гнезде с надписью VΩmA положительный. Чтобы в процессе измерения об этом не забывать, в это гнездо следует вставить щуп красного цвета.
Рисунок 1. Мультиметр
Это замечание не настолько праздное, как может показаться на первый взгляд. Дело в том, что у стрелочных авометров (АмперВольтОмметр) в режиме измерения сопротивлений положительный полюс измерительного напряжения находится на гнезде с маркировкой «минус» или «общий», ну с точностью до наоборот, по сравнению с цифровым мультиметром. Хотя в настоящее время больше используются цифровые мультиметры, стрелочные тестеры применяются до сих пор и в ряде случаев позволяют получить более достоверные результаты. Об этом будет рассказано чуть ниже.
Рисунок 2. Стрелочный авометр
Что показывает мультиметр в режиме «прозвонки»
Проверка диодов
Наиболее простым полупроводниковым элементом является , который содержит всего один P-N переход. Основным свойством диода является односторонняя проводимость. Поэтому если положительный полюс мультиметра (красный щуп) подключить к аноду диода, то на индикаторе появятся цифры, показывающие прямое напряжение на P-N переходе в милливольтах.
Рисунок 3.
Для кремниевых диодов это будет порядка 650 — 800 мВ, а для германиевых порядка 180 — 300, как показано на рисунках 4 и 5. Таким образом, по показаниям прибора можно определить полупроводниковый материал, из которого сделан диод. Следует заметить, что эти цифры зависят не только от конкретного диода или транзистора, но еще от температуры, при увеличении которой на 1 градус прямое напряжение падает приблизительно на 2 милливольта. Этот параметр называется температурным коэффициентом напряжения.
Рисунок 4.
Рисунок 5.
Если после этой проверки щупы мультиметра подключить в обратной полярности, то на индикаторе прибора покажется единица в старшем разряде. Такие результаты будут в том случае, если диод оказался исправный. Вот собственно и вся методика проверки полупроводников: в прямом направлении сопротивление незначительно, а в обратном практически бесконечно.
Если же диод «пробит» (анод и катод замкнуты накоротко), то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае, если диод «в обрыве», как ни меняй полярность подключения щупов, на индикаторе, так и будет светиться единица.
Проверка транзисторов
В отличие от диодов транзисторы имеют два P-N перехода, и имеют структуры P-N-P и N-P-N, причем последние встречаются гораздо чаще. В плане проверки с помощью мультиметра транзистор можно рассматривать, как два диода включенных встречно — последовательно, как показано на рисунке 6. Поэтому проверка транзисторов сводится к «прозвонке» переходов база — коллектор и база — эмиттер в прямом и обратном направлении.
Следовательно, все что было сказано чуть выше о проверке диода, полностью справедливо и для исследования переходов транзистора. Даже показания мультиметра будут такие же, как и для диода.
Рисунок 6.
На рисунке 7 показана полярность включения прибора в прямом направлении для «прозвонки» перехода база — эмиттер транзисторов структуры N-P-N: плюсовой щуп мультиметра подключен к выводу базы. Для измерения перехода база — коллектор минусовой вывод прибора следует подключить к выводу коллектора. В данном случае цифра на табло получена при прозвонке перехода база — эмиттер транзистора КТ3102А.
Рисунок 7.
Если транзистор окажется структуры P-N-P, то к базе транзистора следует подключить минусовой (черный) щуп прибора.
Попутно с этим следует «прозвонить» участок коллектор — эмиттер. У исправного транзистора его сопротивление практически бесконечно, что символизирует единица в старшем разряде индикатора.
Иногда бывает, что переход коллектор — эмиттер пробит, о чем свидетельствует звуковой сигнал мультиметра, хотя переходы база — эмиттер и база — коллектор «звонятся» как будто нормально!
Производится также, как и цифровым мультиметром, при этом не следует забывать, что полярность в режиме омметра обратная по сравнению с режимом измерения постоянного напряжения. Чтобы это не забывать в процессе измерений следует красный щуп прибора включать в гнездо со знаком «-», как было показано на рисунке 2.
Авометры, в отличие от цифровых мультиметров, не имеют режима «прозвонки» полупроводников, поэтому в этом плане их показания заметно различаются в зависимости от конкретной модели. Тут уже приходится ориентироваться на собственный опыт, накопленный в процессе работы с прибором. На рисунке 8 показаны результаты измерений с помощью тестера ТЛ4-М.
Рисунок 8.
На рисунке показано, что измерения проводятся на пределе *1Ω. В этом случае лучше ориентироваться на показания не по шкале для измерения сопротивлений, а по верхней равномерной шкале. Видно, что стрелка находится в районе цифры 4. Если измерения производить на пределе *1000Ω, то стрелка окажется между цифрами 8 и 9.
По сравнению с цифровым мультиметром авометр позволяет более точно определить сопротивление участка база — эмиттер, если этот участок зашунтирован низкоомным резистором (R2_32), как показано на рисунке 9. Это фрагмент схемы выходного каскада усилителя фирмы ALTO.
Рисунок 9.
Все попытки измерить сопротивление участка база — эмиттер с помощью мультиметра приводят к звучанию динамика (короткое замыкание), поскольку сопротивление 22Ω воспринимается мультиметром как КЗ. Аналоговый же тестер на пределе измерений *1Ω показывает некоторую разницу при измерении перехода база — эмиттер в обратном направлении.
Еще один приятный нюанс при пользовании стрелочным тестером можно обнаружить, если проводить измерения на пределе *1000Ω. При подключении щупов, естественно с соблюдением полярности (для транзистора структуры N-P-N плюсовой вывод прибора на коллекторе, минус на эмиттере), стрелка прибора с места не двинется, оставаясь на отметке шкалы бесконечность.
Если теперь послюнить указательный палец, как будто для проверки нагрева утюга, и замкнуть этим пальцем выводы базы и коллектора, то стрелка прибора сдвинется с места, указывая на уменьшение сопротивления участка эмиттер — коллектор (транзистор чуть приоткроется). В ряде случаев этот прием позволяет проверить транзистор без выпаивания его из схемы.
Наиболее эффективен указанный метод при проверке составных транзисторов, например КТ 972, КТ973 и т.п. Не следует только забывать, что составные транзисторы часто имеют защитные диоды, включенные параллельно переходу коллектор — эмиттер, причем в обратной полярности. Если транзистор структуры N-P-N, то к его коллектору подключен катод защитного диода. К таким транзисторам можно подключать индуктивную нагрузку, например, обмотки реле. Внутреннее устройство составного транзистора показано на рисунке 10.
Рисунок 10.
Представляют собой трехслойную структуру своего рода сендвич, в зависимости от того как чередуются эти слои мы получаем два типа npn или pnp . Эти зоны можно представить в виде диодов подключенными одинаковыми концами друг к другу, общий конец которых представляет собой базу транзистора, а два других называются коллектором и эмиттером. Получается что для того чтобы проверить транзистор нужно проверить эти два диода.
Проводимость npn и pnp транзисторов
Для проверки транзистора в основном используют тестеры настроенные как Омметры. А весь способ проверки заключается в проверки сопротивления переходов. В некоторых мультиметрах есть функция проверки диодов, в этом случае мильтиметр показывает величину пробивного напряжения. Некоторые имеют специальные разъемы для подключения транзистора, которые показывают коэффициент усиления в случае его исправности.
Допустим, что у нас транзистор с проводимостью npn . Для проверки этого транзистора нам нужно выставить мультиметр, выставить его в режим омметра, далее взять плюсовой провод и подключить его к базе. Минусовой провод сначала подключаем к эмиттеру и смотрим на показания тестера. В данном случае мы подключили переход база-коллектор в прямом направлении. А как известно сопротивление диода в прямом направлении минимально, в результате мы увидим какие либо показания на экране тестера. А если мы этот переход подключим в обратном направлении, к базе минусом а к коллектору плюсом, то тестер покажет бесконечное сопротивление.
Аналогичным образом, не отключая плюсовой провод от базы мы подключаем минусовой провод на коллектору по аналогии описанной выше мы получаем схожий результат. Измеряем сопротивление в перехода база-коллектор в прямом и обратном напрявлении.
Если бы у нас был транзистора вида pnp то для проверки нужно было к базе подключить минусовой провод, а плюсовой последовательно подключать сначала к эмиттеру а затем к коллектору. Проверка транзистора pnp проводимости при помощи тестера представлена на рисунке ниже.
Схема проверки транзистора
Все эти показания мультиметра означают только одно, что наш транзистор исправен и мы можем смело брать его и использовать в своих целях.
Если замерить сопротивление закрытого транзистора между коллектором и эмиттером то тестер покажет бесконечное сопротивление. Сопротивление «закрытого» транзистора равно бесконечности или очень велико, причем не зависимо от того как вы подключаете тестер.
Так же транзистор можно проверить, собрав не большую схемку. В коллекторную цепь включить какую нибудь нагрузку, а в цепь базы подать небольшой ток. В случае исправности транзистора в цепи коллектора появиться небольшой ток. Но собирать схему для того чтобы просто проверить транзистор мне кажется мало кто будет. Проще взять тестер и за пару минут узнать работает он или нет.
Схема включения транзистора для проверки его работоспособности
Некоторые тестеры имеют, как я уже говорил, специальные разъёмы под ножки транзистора, все что нужно это вставить ножки транзистора в эти отверстия и смотреть на показания дисплея. Но прежде чем это делать нужно знать расположение выводов транзистора и тип его проводимости npn или pnp . На рисунке видно два разъема для проверки транзистора разных проводимостей. Перед тем как проверять транзистор переключатель тестера нужно выставить в положение Hfe.
Практически каждый опытный радиолюбитель знает, что исправность почти всех типов транзисторов можно определить простым омметром. Им же можно «вычислить» и проводимость – главное знать, что и как должно «звониться». Сегодня я приведу небольшую памятку, заглядывая в которую, научимся это делать и мы. Прежде всего сразу определимся, что прозванивать транзисторы (как и любые полупроводники) нужно обязательно постоянным током.
Такой режим обеспечивают практически все бытовые стрелочные тестеры, а вот с цифровыми дело обстоит несколько хуже, поскольку многие из них проводят измерение сопротивлений переменным током. Для наших целей подойдут лишь те приборы, которые предназначены для проверки диодов. На таких устройствах для этого обычно используется один из диапазонов измерения сопротивлений, дополнительно обозначенный значком диода:
На приборе слева для прозвонки диода существует специальный диапазон (обозначен значком диода), прибор справа сможет проверить диод на пределе 2000 Ом
Поставьте тестер на этот диапазон и прозвоните заведомо исправный диод. В одну сторону прибор покажет обрыв, в другую – некоторое сопротивление, которое будет зависеть от типа и мощности диода. Если получилось, то наш прибор справится и с транзисторами.
Ну а теперь посмотрим, что представляет собой транзистор с «точки зрения» тестера. Обычный биполярный транзистор будет выглядеть как два диода, соединенные катодами (p-n-p проводимости) или анодами (n-p-n проводимости):
Таким образом, вывод базы будет в обрыве с коллектором и эмиттером при одной полярности, а если ее сменить (поменять местами щупы омметра), то переход база-эмиттер и база-коллектор покажут сопротивление, как обычные диоды.
Точно так же звонится и составной транзистор, но прямое сопротивление база-эмиттер будет несколько выше сопротивления база-коллектор, поскольку его эквивалентная схема выглядит так:
Прозавнивая мощные биполярные транзисторы следует обращать внимание на то, не предусмотрен ли конструкторами защитный диод (обозначен пунктиром), который может стоять между коллектором-эмиттером или базой-эмиттером. Если диод стоит, но вы о нем не знаете, то транзистор можно ошибочно принять за неисправный.
А вот так будет выглядеть однопереходной транзистор, причем сопротивление база1-эмиттер будет ниже, чем сопротивление эмиттер-база2:
Ну и остался полевой транзистор. К сожалению, убедиться в исправности прибора с изолированным затвором (к ним относятся и так называемые MOSFET-транзисторы) при помощи тестера не удастся – слишком высоко сопротивление изолированного затвора, но полевой транзистор на основе p-n перехода можно и прозвонить:
Единственно, перед тем, как измерить сопротивление исток-сток, кратковременно замкните вывод затвора на исток – это снимет с него оставшийся после предыдущих измерений заряд и исключит неверный результат измерения.
Ну и не стоит забывать, что полевые транзисторы (особенно с изолированным затвором) очень чувствительны к статическому электричеству, которое может накапливаться на нашем теле. Поэтому перед тем, как взять в руки такой транзистор, коснитесь любого заземленного предмета (водопроводная труба, батарея отопления, контур заземления и т.п.) – это снимет заряд с тела и, возможно, спасет жизнь транзистору.
В заключение хочу сказать, что прозвонка транзистора тестером не дает полной гарантии, что прибор (в смысле транзистор) исправен, но вероятность того, что он жив, достаточно высока – обычно неисправность заключается либо в пробое, либо в выгорании перехода.
Как прозвонить строчный транзистор. Как проверить работоспособность разных видов биполярных транзисторов мультиметром
Содержание:В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и .
Основные типы транзисторов
Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.
Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.
Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.
В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.
В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.
Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.
Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.
Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.
Проверка биполярного транзистора мультиметром
Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.
Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.
В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.
Проверка биполярного транзистора мультиметром выполняется в следующем порядке:
- Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
- Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
- Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
- Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
- Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
- После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.
Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.
Проверка работоспособности полевого транзистора
Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.
Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.
Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.
Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.
Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.
В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.
Как проверить составной транзистор мультиметром
Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.
Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.
Блин, какое страшное слово! Думаю, у всех чайников транзистор ассоциируется с чем-то очень трудным и непонятным. Но, уверяю вас, мои дорогие чайники, ничего трудного нету в транзисторе. Давайте же для начала разберемся, что он вообще из себя представляет и как его можно проверить на работоспособность.
Сразу оговорюсь, в нашей статье мы будет проверять биполярные транзисторы. Что это значит? А значит это то, что эти транзисторы состоят из двух P-N переходов. P-N переходы, дырки, электроны бла бла бла… Ну нафиг! Нам это не надо знать, как там ведут себя электроны, а как дырки и тд и тп. Просто знайте, если ток будет течь через P-N переход, то он сможет течь только в одном направлении. Из P-N перехода сделаны все диоды. А как вы знаете, диод пропускает ток тольков в одном направлении, и не пропускает в другом направлении. То есть другими словами, в одном направлении сопротивление диода маленькое, а в другом — очень большое. Это мы с вами видели в статье как проверить диод мультиметром .
Биполярный транзистор, как я уже сказал, состоит из двух P-N переходов. А в зависимости, как расставлены материалы P и N, так и называется транзистор. На рисунке ниже схематическое обозначение P-N-P транзистора:
Его выводы обозначаются, как эммитер, база и коллектор. Материал, который посередине, между двумя другими материалами, называется в транзисторе базой. Эммитер и коллектор находятся по краям и состоят из одного какого либо одинакового материала. В P-N-P транзисторе ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе. Все просто:-). Схематическое обозначение P-N-P транзистора в схеме выглядит так:
где Э — это эмиттер, Б — база, К — коллектор.
Существует также другая разновидность биполярного транзистора — N-P-N. Здесь уже материал P заключен между двумя материалами N.
Принцип его действия схож с P-N-P транзистором, просто здесь ток течет уже в другом направлении.
Вот его схематическое изображение на схемах
Так как диод состоит из одного P-N перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор.
Ну чтоже, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что нам написали на транзисторе: С4106. Теперь залезаем в интернет и ищем документ-описание на этот транзистор. По-английски он называется datasheet. Прямо так и вбиваем в поисковике «C4106 datasheet». Имейте ввиду, что импортные транзисторы пишутся с английскими буквами. А вот я и даташит на него нарыл:
Нас больше всего интересует распиновка контактов. То есть нам нужно узнать, какой вывод что из себя представляет. Для этого транзистора нам нужно узнать, где у него база, где эмиттер, а где коллектор. В этом и вся прелесть даташита.
А вот и схемка распиновки:
Теперь нам понятно, что первый вывод — это база, второй вывод — это коллектор, ну а третий — эмиттер.
Возвращаемся к нашему рисуночку
Наш подопечный — это N-P-N транзистор. Получается, если он здоров, то у нас будет маленькое падение напряжения в миллиВольтах, если мы приложим «плюс» к базе, а «минус» к коллектору или эммитеру. А если мы приложим «минус» к базе, а «плюс» к коллектору или эмиттеру, то увидим единичку на мультике. Начинаем проверять диоды транзистора, как мы это делали при проверке диодов в статье Как проверить диод мультиметром .
Ставим на прозвонку и начинаем мусолить наш транзистор. Для начала ставим «плюс» к базе, а «минус» к коллектору
Все ок, прямой P-N переход должен обладать небольшим падением напряжения для кремниевых транзисторов 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милиВольта или 0,54 Вольта.
Проверяем переход база-эммитер, поставив на базу «плюс» , а на эммитер «минус».
Видим снова падение напряжения прямого P-N перехода. Все ок.
Меняем щупы местами. Ставим «минус» на базу, а «плюс» на коллектор. Сейчас мы замеряем обратное падение напряжения на P-N переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эммитер.
Здесь у нас мультик также показывает единичку. Значит можно дать диагноз транзистору — здоров.
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с Вами рассмотрели. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультик на прозвонку и цепляемя к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что P-N переход пробит, а раз уж он пробит, то можно смело выкидывать такой транзистор в мусорку.
В заключении статьи, хотелось бы добавить, что лучше всегда отыскивать даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Что это значит? Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два или даже больше транзисторов или даже диоды наряду с транзистором вместе. Имейте также ввиду, что некоторые радиоэлементы выполняют, как транзисторы. Это могут быть тиристоры, стабилизаторы или преобразователи напряжения или даже какая нибудь заморская микросхемка. Вот так-то! Не ленитесь отыскивать даташиты на проверяемые транзисторы.
Давайте займемся теорией, повремените убегать. Портал ВашТехник наряду с заумными сентенциями, рассчитанными быть понятыми профи, предоставит методику пяти пальцев. Не слышали? Просто, как пять пальцев. Сначала обсудим типы транзисторов, потом расскажем, что можно сделать при помощи мультиметра. Рассмотрим штатные гнезда hFE (объясним, что это такое), методику замещения схемы через соединение нескольких диодов. Расскажем, с чего начать. Поймете, как проверить транзистор мультиметром, или… Давайте, пожалуй, без «или». Приступим, чтобы твердо отличать МОП-транзистор от мопса, растолчем теорию.
Типы, классификация транзисторов
Избегаем исследовать дебри. Знайте простое правило: в биполярных транзисторах носители обоих знаков участвуют в создании выходного тока, в полевых – одного. Определение умников. Теперь работаем пальцами:
- Транзисторы полевого типа выступают началом. Когда Битлз выходили на сцену, на замену вакуумным триодам стали приходить полупроводники. Если говорить кратко, p-n-p транзистор — два богатых положительными носителями слоя кристалла (кремний, германий, примесной проводимости). Проводя уроки физики, учитель часто рассказывал, как V-валентный мышьяк легировал решетку кремния, образуя новый материала. Добавим, что положительные p-области, отгорожены узкой отрицательной (n-negative). Как ком в горле. Узкий перешеек, называемый базой, отказывается пускать электроны (в нашем случае скорее дырки) течь в нужном направлении. Небольшой отрицательный заряд появляется на управляющем электроде, дырки коллектора (верхняя p-область на традиционных электрических схемах) больше не могут сдерживаться, буквально рвутся в сторону приложенного напряжения. Поскольку база тонкая, используя набранную скорость носители пролетают перешеек, уносятся дальше — достигая эмиттера (нижняя p-область), здесь увлекаются разностью потенциалов, создаваемой напряжением питания. Типичное школьное объяснение. Относительно небольшое напряжение управляющего электрода способно регулировать скорость сильного потока дырок (положительных носителей), увлекаемого полем напряжения питания. На этом построена техника. Навстречу дыркам движутся электроны, транзисторы называют биполярными.
- Полевые транзисторы снабжены каналом любого типа проводимости, разделяющим области истока и стока (см. рисунок выше). Управляющий электрод называют затвором. Причем основной материал подложки, затвора противоположен каналу, истоку и стоку. Поэтому положительное напряжение (см. рисунок) запрет ход зарядам через транзистор. Плюс оттянет (в p-область) доступные электроны. Полевые транзисторы в электронике применяются намного чаще. На рисунке затвор электрически соединен с кристаллом, структура называется управляющим p-n переходом. Бывает, область изолирована от кристалла диэлектриком, в качестве которого часто выступает оксид. Чистой воды MOSFET транзистор, по-русски – МОП.
При помощи мультиметра, в штатном режиме проверяются биполярные транзисторы. Если тестер поддерживает такую опцию, часто именуемую hFE, на лицевой панели смонтирован круглый разъем, поделенный вертикальной чертой на две части, где надписаны по 4 гнезда следующим образом:
- B – база (англ. Base).
- С – коллектор (англ. Collector).
- E – эмиттер (англ. Emitter).
Гнезд для эмиттера два, чтобы учесть раскладку выводов корпуса. База может быть с края, посередине. Для удобства сделано. Нет разницы, в какое гнездо вставить ножку эмиттера биполярного транзистора. Пара слов, как пользоваться.
Проверка биполярного транзистора мультиметром в штатном режиме
Чтобы гнездо проверки биполярных транзисторов начало работать (вести измерения), переведем тестер в режим hFE. Откуда взялись буквы? h — касается категории параметров, описывающих четырехполюсник любого типа. Не важно знать, что подразумевает понятие — просто уясним: существует целая группа h-параметров, среди которых имеется один важный занимающимся электроникой. Называется коэффициентом усиления по току с общим эмиттером. Обозначается, h31 (либо строчной греческой буквой бета).
Цифровая мнемоника плохо воспринимается человеческим глазом, поэтому было решено (за рубежом, понятное дело), что F будет обозначать прямое усиление по току (forward current amplification), тогда как E говорит, что измерение велось в схеме с общим эмиттером (которая применяется учебниками физики для иллюстрации принципов работы транзисторов биполярного типа). Схем включения много, каждая обладает достоинствами, параметры можно охарактеризовать через h31 (некоторые другие, упомянутые справочниками). Считается, если коэффициент усиления в норме, радиоэлемент 100% работоспособен. Теперь читатели знают, как проверяется p-n-p транзистор или n-p-n транзистор.
h31 зависит от некоторых параметров, указываемых инструкцией мультиметра. Напряжение питания 2,8 В, ток базы 10 мА. Дальше берутся графики технической документации (data sheet) транзистора, профессионал знает, как найти остальное. При включении режима hFE, подсоединении ножек биполярного транзистора в нужные гнезда на дисплее появляется значение коэффициента усиления прибора по току. Потрудитесь сопоставить справочным данным, сделав поправку на режим измерения (если понадобится). Только звучит сложно, достаточно пару раз сделать самостоятельно, добьетесь результатов.
Проверка транзисторов мультиметром: нештатный режим
Допустим, вызывает сомнение исправность транзистора полевого типа. Известный русский вопрос в электронике присутствует. Начинают думать… м-да.
- Полевой транзистор отпирается или запирается определенным знаком напряжения. Обсуждали выше. Если помните, говорили, при прозвонке на щупах тестера небольшое постоянное напряжение. Будем использовать в наших тестах. Пока транзистор на плате, сложно сделать измерения, стоит изъять из привычного окружения, как можно применить нестандартные методики. Оказывается, если приложить на электрод отпирающее напряжение, за счет некоторой собственной емкости транзистора область зарядится, сохраняя приобретенные свойства. Допускается прозвонить электроды между истоком и стоком. Сопротивление порядка 0,5 кОм покажет: полевой транзистор работоспособен. Стоит закоротить базу с другими отводами, проводимость исчезнет. Полевой транзистор закрылся и годен.
- Биполярные транзисторы, полевые с управляющим p-n переходом проверяют гораздо проще. В первом случае применяется схема замещения элемента двумя диодами, включенными навстречу (или наоборот спинками). Подадим отпирающее напряжение (p – плюс, n – минус), получив на измерителе сопротивления номинал 500 – 700 Ом. Можно также звонить, пользуясь слухом. Недаром на шкале часто нарисован диод. Прозвонка используется для проверки работоспособности. Напряжения хватает открыть p-n-переход.
Подготовка к проверке транзистора
Временами схватишь руками составной транзистор. Внутри корпуса находиться несколько ключей. Используется для экономии места при одновременном увеличении коэффициента усиления (причем в десятки, тысячи раз, если речь шла о каскадной схеме). Устроен так транзистор Дарлингтона. В корпус зашит защитный стабилитрон, предохраняющий переход эмиттер-база от перегрузки по напряжению. Тестирование идет одним путем:
- Нужно найти подробные технические характеристика транзистора (составного элемента). При нынешнем масштабе компьютеризации не составит проблемы. Даже если изделие импортное. Обозначения на схемах понятные, термины не сложные. Параметр hFE расписали.
- Затем ведется изучение, выполняется анализ. Разбиение схемы на более простые составляющие. Если между переходами коллектора и эмиттера включен стабилитрон, логично начать проверку с него. В начальный момент транзистор заперт, ток мультиметра пойдет, минуя защитный каскад. В одном направлении стабилитрон даст сопротивление 500-700 Ом, в другом (если не пробьется) будет обрыв. Аналогично разобьем на части транзистор Дарлингтона, если имеете представление (обсуждали выше).
Режим прозвонки покажет цифры. Говорят, падение напряжения, по некоторым сведениям, номинал сопротивления. Потрудимся привести опыты, решая вопрос. Вызвонить известный по значению сопротивления, заведомо исправный резистор. Если на экране появится номинал в омах, думать нечего. В противном случае можно оценить заодно ток (разделив потенциал дисплея на номинал). Знать тоже нужно, пригодится в процессе тестирования. До начала работ рекомендуется хорошенько изучить мультиметр. Достаньте инструкцию из мусорной корзины, прочитайте.
Народ интересуется вопросом, можно ли проверить транзистор мультиметром, не выпаивая. Очевидно, многое определено схемой. Тестер просто прикладывает напряжения, оценивает возникающие токи. На основе показаний вычисляется коэффициент усиления, служа критерием годности/негодности. Попробуйте проверить полевой транзистор мультиметром из входящих в состав процессора! Отбрось надежду всяк сюда входящий. Не всегда можно прозвонить полевой транзистор мультиметром.
Разбить биполярный транзистор на диоды
Рисунок, представленный среди текста, демонстрирует схему замещения транзистора двумя диодами. Позволит рассматривать усилительный элемент, представив суммой двух независимых более простых. Не обладающих усилением, проявляющих нелинейные свойства (неодинаковость прямого/обратного включения).
Мощные транзисторы силовых цепей бессилен открыть скудными силами мультиметр. Поэтому для тестирования устройств применяются специальные схемы. Нельзя проверить биполярный транзистор мультиметром напрямую.
Проверка условных диодов, замещающих транзистор
Методик несколько. Можно попробовать измерить сопротивление стандартной шкалой Ω. Красный щуп нужно прикладывать к p-области. Тогда дисплей мультиметра покажет цифру, меньшую бесконечности. В противоположном направлении результат будет нулевым. Мультиметр покажет обрыв. Нормальные результаты прозвонки диода.
Если пользоваться специальным режимом, экран показывает размер сопротивления в прямом направлении, обрыв (стандартно единичка в левом углу ЖК-экрана) в другом. Обратите внимание – рисунок содержит поясняющие надписи, куда прислонять щуп, получая открытый p-n переход. В обратном направлении прибор показывает обрыв.
Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.
Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.
В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.
Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.
Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.
При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.
В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.
Порядок проверки устройства — следуем по инструкции
Процесс измерений состоит из следующих этапов:
- проверка работы измерительного прибора;
- определение типа транзистора;
- измерение прямых сопротивлений эмиттерного и коллекторного переходов;
- измерение обратных сопротивлений эмиттерного и коллекторного переходов;
- оценка исправности транзистора.
Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.
Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.
На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».
Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.
При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.
Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.
Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:
- если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
- если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.
В обоих случаях транзистор является неисправным.
Оценка коэффициента усиления
Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.
Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.
Выводы :
- С помощью мультиметра можно определить исправность биполярных транзисторов.
- Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
- С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.
Видео о том, как проверить транзистор мультиметром
как проверить полевой транзистор мультиметром на исправность. Корпус и компоновка
Проверка транзисторов является важным моментом в электронике и радиотехнике. Попытайтесь самостоятельно разобраться, как проверить транзистор мультиметром, не выпаивая. Это достаточно простая процедура, которую можно выполнить различными способами. Наиболее практичный вариант — проверка транзистора мультиметром. Именно об этом способе и пойдет речь в рассматриваемой статье.
Общие сведения
На сегодняшний день существует два типа транзисторов — биполярный и полевой. У первого выходной ток создается с участием обоих зарядов в виде дырок и электронов, а в другом варианте участвует только один из носителей.
Проверка биполярного транзистора
Указанная процедура для биполярных транзисторов начинается с грамотной настройки прибора. Устройство переключают в режим проверки полупроводников, на дисплее должна высвечиваться единица. Выводы подключаются по аналогии с режимом измерения сопротивления. С портом СОМ соединяют провод черного цвета, а на выходе для измерения напряжения, сопротивления и частоты подключают красный провод. Если мультиметр не имеет соответствующего режима, то процесс следует вести в режиме измерения сопротивления при выставлении на максимум.
Еще важно, чтобы батарея мультиметра была полностью заряжена и исправны щупы. При соединении кончиков об исправности свидетельствуют писк прибора и нули на экране. Порядок действий в данном случае идет по таким шагам:
В результате не потребуется выпаивания элемента на предмет его исправности. Если же вы хотите использовать для проверки лампочки и другие элементы , то не рекомендуется этого делать, поскольку есть риск окончательно испортить транзистор биполярного типа.
Испытание полевого устройства
Процедура по таким элементам аналогична биполярным. Однако здесь имеются некоторые особенности:
За счет указанных моментов удается произвести качественную проверку полевых устройств, не задействовав при этом выпаивания. Если же у вас составной прибор, то проверка аналогична методике по биполярным устройствам.
Преимущество метода
Проверка транзистора с применением мультиметра выгодна тем, что нет необходимости выпаивания элемента, и она — достаточно точная. Методика проверки биполярных и полевых устройств схожа, но необходимо учитывать ряд моментов и нюансов, которые способствуют улучшению методики. Грамотная настройка мультиметра и умение работать с различными элементами позволит произвести наиболее точную и качественную проверку исправности приборов любого вида.
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Проверка биполярного транзистора мультиметром
Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.
С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
Рисунок 3. «Диодные аналоги» переходов pnp и npn
Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
- Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
- Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
- Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
- Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
- Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Рис 4. Полевые транзисторы (N- и P-канальный)
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850
Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Рис 6. Эквивалентная схема транзистора КТ827А
Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистора
Обозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить однопереходной транзистор
В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.
Рис 8. КТ117, графическое изображение и эквивалентная схема
Проверка элемента осуществляется следующим образом:
Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.
Как проверить транзистор мультиметром, не выпаивая их схемы?
Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.
Проверка полупроводниковых приборов – это наиважнейших этап диагностики неисправностей электронной аппаратуры. Некоторые дефектные твердотельные электронные компоненты выдают себя обгоревшим корпусом, потемнением и т.п. Если же подобных подсказок неисправностей просто нет, то самое время научиться определять неисправные диоды и транзисторы с помощью тестера. В рамках данной статьи мы рассмотрим, как производить тестирования простейших выпрямительных диодов, диодных сборок, а также биполярных транзисторов с помощью простейшего оборудования. Диоды и биполярные транзисторы можно проверить с помощью китайского мультиметра.
Вне зависимости от того, какой у вас прибор, вы однозначно сможете проверить любой диод и транзистор. Главное – это наличие специального режима, который обозначен в виде пиктограммы диода. Данный режим предназначен для прозвонки, а также для тестирования полупроводниковых приборов. Щупы мультиметра должны быть подключены точно так же, как и в режиме измерения сопротивления: черный щуп – к порту COM, красный – к порту измерения сопротивления, напряжения и частоты. Если у вас устаревший аналоговый прибор со стрелочной индикацией результата измерений, то, вероятно, там такого режима может просто-напросто не оказаться. Для таких приборов можно использовать режим измерения сопротивления, установив ручку переключателя на самый высокий предел измерения.
Как проверить диод и диодные сборки, выполненные на их основе?
У диода, как известно, имеется 2 рабочих электрода – катод и анод. Рабочий диод пропускает ток только в прямом направлении, если подключить красный щуп прибора к аноду, а черный – к катоду. Обратное подключение проводов приводит к тому, что диод запирается, а его сопротивление возрастает практически до бесконечности. Подключая мультиметр в прямом включении, мы будем замечать, что прибор станет индицировать наличие определенного падения напряжения. Как правило, эта величина составляет несколько сотен милливольт. Обратное включение выражается в отсутствии какой-либо индикации прибора. Неисправностей у диода может быть всего две: 1 – обрыв, 2 – короткое замыкание. В первом случае прибор не будет показывать никакого падения напряжения и в прямом, и в обратном включении. Во втором случае – бесконечно малое прямое и обратное сопротивление. Если в приборе есть звуковая индикация, то прибор будет пищать и в прямом, и в обратном включении. Выпрямительные сборки из четырех диодов проверяются путем проверки каждого из четырех диодов выпрямительного моста.
Как проверить полупроводниковый транзистор биполярного типа?
Прежде чем начинать проверку, необходимо точно определить, какой именно вид транзистора вы сейчас проверяете. Помимо транзисторов биполярного типа существует великое множество иных типов транзисторов, проверять которые нужно совершенно другим образом. В рамках данной статьи будет рассмотрена проверка транзисторов биполярного типа. Биполярный транзистор можно представить в виде компоновки из 2 диодов. Эти диоды соединены в полумост с помощью одноименных электродов. На выходе из транзистора выходит 3 электрода, обозначенных условно как база, коллектор и эмиттер. В зависимости от полярности соединения диодов выделяют NPN и PNP транзисторы биполярного типа. Переход «база-эмиттер» — управляющий переход, а переход «коллектор-эмиттер» — управляемый переход. Транзистор устроен так, что малый токовый сигнал, который подается на переход «база-эмиттер», при грамотном соотношении резисторов в цепи коллекторного, базового и эмиттерного перехода, вызывает более высокий токовый сигнал на переходе «коллектор-эмиттер».
Как определить, где база, коллектор, эмиттер?
Прежде всего, отметим, что в любом аналоговом тестере или цифровом приборе отрицательный щуп – черный, а положительный – красный. Правильно устанавливать щупы, а также устанавливать режим прибора – это очень важные моменты. Если все правильно настроить и подсоединить, то определить распиновку биполярного транзистора будет проще простого.
Во-первых, необходимо определить, где находится база. Вне зависимости от того, PNP или NPN структура у подопытного транзистора, можно сделать предположение, что базовый переход – первый электрод. Подключаем черный щуп мультиметра к первому электроду, а красный – поочередно – то ко второму, то к третьему электроду. Продолжайте искать базу, пока не найдете такое расположение, когда прибор начнет показывать наличие определенного падения напряжения, выраженного в милливольтах. Заметив индикацию падения напряжения на какой-то паре электродов, можно с уверенностью сказать, что найдена либо пара «база-эмиттер», либо пара «база-коллектор». Затем необходимо найти расположение и полярность оставшейся второй пары. По сути, вы должны найти пару диодов, общий электрод которых – база. База может иметь отрицательную полярность в случае PNP структуры, а также положительную полярность – с полярностью PNP. Проверить работоспособность транзистора можно уже на этом этапе, ведь у неисправного элемента будет закорочен или оборван один из переходов.
Во-вторых, когда вы уже определитесь с базовым электродом, остается необходимым определить то, где находится эмиттер, а где – коллектор. Либо с помощью режима проверки полупроводниковых приборов на цифровом приборе, либо с помощью режима измерения сопротивления на аналоговом приборе необходимо определить, на каком из переходов наибольшее падение напряжения и сопротивление. Подключаем измерение диодов «база-эмиттер» и база-коллектор» в прямом включении. Записываем значения и сравниваем. Как правило, разница не большая, но фактически у перехода с включенным эмиттерным электродом будет чуть-чуть большее сопротивление и падение напряжения. Напоследок отметим, что правильность определения электродов можно проверить, подсоединив транзистор в панельку измерения параметров биполярных транзисторов. Если прибор покажет параметр h31э близкий тому, что указан в даташите, то нахождение расположения электродов можно считать верным.
Существуют два вида биполярных транзисторов : PNP -транзистор и NPN -транзистор.
На рисунке ниже структурная схема PNP-транзистора:
Схематическое обозначение PNP-транзистора в схеме выглядит так:
где Э – это эмиттер, Б – база, К – коллектор.
Существует также другая разновидность биполярного транзистора: NPN транзистор. Здесь уже материал P заключен между двумя материалами N.
Вот его схематическое изображение на схемах
Так как диод состоит из одного PN-перехода, а транзистор из двух, то значит можно представить транзистор, как два диода! Эврика!
Теперь же мы с вами можем проверить транзистор, проверяя эти два диода, из которых, грубо говоря, состоит транзистор. Как проверить диод , можно прочитать .
Проверяем исправный транзистор
Ну что же, давайте на практике определим работоспособность нашего транзистора. А вот и наш пациент:
Внимательно читаем, что написано на транзисторе: С4106. Теперь открываем поисковик и ищем документ-описание на этот транзистор. По-английски он называется “datasheet”. Прямо так и забиваем в поисковике “C4106 datasheet”. Имейте ввиду, что импортные транзисторы пишутся английскими буквами.
Нас больше всего интересует распиновка выводов транзистора, а также его вид: NPN или PNP. То есть нам надо узнать, какой вывод что из себя представляет. Для данного транзистора нам надо узнать, где у него база, где эмиттер, а где коллектор.
А вот и схемка распиновки из даташита:
Теперь нам понятно, что первый вывод – это база, второй вывод – это коллектор, ну а третий – эмиттер
Возвращаемся к нашему рисунку
Мы узнали из даташита, что наш транзистор NPN проводимости.
Ставим мультиметр на прозвонку и начинаем проверять “диоды” транзистора. Для начала ставим “плюс” к базе, а “минус” к коллектору
Все ОК, прямой PN-переход должен обладать небольшим падением напряжения. Для кремниевых транзисторов это значение 0,5-0,7 Вольт, а для германиевых 0,3-0,4 Вольта. На фото 543 милливольта или 0,54 Вольта.
Проверяем переход база-эмиттер, поставив на базу “плюс” , а на эмиттер – “минус”.
Видим снова падение напряжения прямого PN перехода. Все ОК.
Меняем щупы местами. Ставим “минус” на базу, а “плюс” на коллектор. Сейчас мы замеряем обратное падение напряжения на PN переходе.
Все ОК, так как видим единичку.
Проверяем теперь обратное падение напряжения перехода база-эмиттер.
Здесь у нас мультиметр также показывает единичку. Значит можно дать диагноз транзистору – здоров.
Проверяем неисправный транзистор
Давайте проверим еще один транзистор. Он подобен транзистору, который мы с вами рассмотрели выше. Его распиновка (то есть положение и значение выводов) такая же, как у нашего первого героя. Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусор.
Проверка транзистора с помощью транзисторметра
Очень удобно проверять транзисторы, имея
Заключение
В заключении статьи, хотелось бы добавить, что лучше всегда находить даташит на проверяемый транзистор. Бывают так называемые составные транзисторы. Это значит, что в одном конструктивном корпусе транзистора могут быть вмонтированы два и более транзисторов. Имейте также ввиду, что некоторые радиоэлементы имеют такой же корпус, как и транзисторы. Это могут быть тиристоры, преобразователи напряжения или даже какая-нибудь иностранная микросхема.
Транзистор – полупроводниковый прибор, основное назначение которого – использование в схемах для усиления или генерирования сигналов, а также для электронных ключей.
В отличие от диода, транзистор имеет два p-n-перехода, соединенных последовательно. Между переходами располагаются зоны, имеющие разную проводимость (типа «n» или типа «р»), к которым подключаются выводы для подключения. Вывод от средней зоны называется «базой», а от крайних – «коллектор» и «эмиттер».
Разница между зонами «n» и «p» состоит в том, что у первой есть свободные электроны, а у второй – так называемые «дырки». Физически «дырка» означает нехватку электрона в кристалле. Электроны под действием поля, создаваемого источником напряжения, двигаются от минуса к плюсу, а «дырки» — наоборот. При соединении между собой областей с разной проводимостью электроны и «дырки» диффузируют и на границе соединения образуется область, называемая p-n-переходом. За счет диффузии область «n» оказывается заряженной положительно, а «р» — отрицательно, а между областями с различной проводимостью возникает собственное электрическое поле, сосредоточенное в области p-n-перехода.
При подключении плюсового вывода источника к области «р», а минуса – к «n» его электрическое поле компенсирует собственное поле p-n-перехода, и через него проходит электрический ток. При обратном подключении поле от источника питания складывается с собственным, увеличивая его. Переход запирается, и ток через него не проходит.
В составе транзистора есть два перехода: коллекторный и эмиттерный. Если подключить источник питания только между коллектором и эмиттером, то ток через него не пойдет. Один из переходов оказывается запертым. Чтобы его открыть, на базу подается потенциал. В результате на участке коллектор-эмиттер возникает ток, который в сотни раз больше тока базы. Если при этом ток базы изменяется во времени, то ток эмиттера в точности повторяет его, но с большей амплитудой. Этим и обусловлены усилительные свойства.
В зависимости от комбинации чередования зон проводимости различают транзисторы p-n-p или n-p-n. Транзисторы p-n-p открываются при положительном потенциале на базе, а n-p-n – при отрицательном.
Рассмотрим несколько способов, как проверить транзистор мультиметром.
Проверка транзистора омметром
Поскольку в составе транзистора имеется два p-n-перехода, то их исправность можно проверить по методике, используемой для тестирования полупроводниковых диодов. Для этого его можно представить эквивалентом встречного соединения двух полупроводниковых диодов.
Критериями исправности для них является:
- Низкое (сотни Ом) сопротивление при подключении источника постоянного тока в прямом направлении;
- Бесконечно большое сопротивление при подключении источника постоянного тока в обратном направлении.
Мультиметр или тестер измеряют сопротивление, используя собственный вспомогательный источник питания – батарейку. Напряжение ее невелико, но его достаточно, чтобы открыть p-n-переход. Меняя полярность подключения щупов от мультиметра к исправному полупроводниковому диоду, в одном положении мы получаем сопротивление в сотню Ом, а в другом – бесконечно большое.
Полупроводниковый диод бракуется, если
- в обоих направлениях прибор покажет обрыв или ноль;
- в обратном направлении прибор покажет любую значащую величину сопротивления, но не бесконечность;
- показания прибора будут нестабильными.
При проверке транзистора потребуется шесть измерений сопротивлений мультиметром:
- база-эмиттер прямое;
- база-коллектор прямое;
- база-эмиттер обратное;
- база-коллектор обратное;
- эмиттер-коллектор прямое;
- эмиттер-коллектор обратное.
Критерием исправности при измерении сопротивления участка коллектор-эмиттер является обрыв (бесконечность) в обоих направлениях.
Коэффициент усиления транзистора
Различают три схемы подключения транзистора в усилительные каскады:
- с общим эмиттером;
- с общим коллектором;
- с общей базой.
Все они имеют свои характеристики, а наиболее распространена схема с общим эмиттером. Любой транзистор характеризуется параметром, определяющим его усилительные свойства – коэффициент усиления. Он показывает, во сколько раз ток на выходе схемы будет больше, чем на входе. Для каждой из схем включения имеется свой коэффициент, разный для одного и того же элемента.
В справочниках приводится коэффициент h31э – коэффициент усиления для схемы с общим эмиттером.
Как проверить транзистор, измеряя коэффициент усиления
Одним из методов проверки исправности транзистора является измерение его коэффициента усиления h31э и сравнение его с паспортными данными. В справочниках дается диапазон, в котором может находиться измеренное значение для данного типа полупроводникового прибора. Если измеренное значение укладывается в диапазон, то он исправен.
Измерение коэффициента усиления производится еще и для подбора компонентов с одинаковыми параметрами. Это необходимо для построения некоторых схем усилителей и генераторов.
Для измерения коэффициента h31э мультиметр имеет специальный предел измерения, обозначенный hFE. Буква F обозначает «forward» (прямая полярность), а «Е» — схему с общим эмиттером.
Для подключения транзистора к мультиметру на его передней панели установлен универсальный разъем, контакты которого обозначены буквами «ЕВСЕ». Согласно этой маркировке подключаются выводы транзистора «эмиттер-база-коллектор» или «база-коллектор-эмиттер», в зависимости от их расположения у конкретной детали. Для определения правильного расположения выводов придется воспользоваться справочником, там же заодно можно узнать и коэффициент усиления.
Затем подключаем транзистор к разъему, выбрав предел измерения мультиметра hFE. Если его показания соответствуют справочным – проверяемый электронный компонент исправен. Если нет, или прибор показывает что-то невразумительное – транзистор вышел из строя.
Полевой транзистор
Полевой транзистор отличается от биполярного по принципу действия. Внутрь пластины кристалла одной проводимости («р» или «n») посередине внедряется участок с другой проводимостью, называемый затвором. По краям кристалла подключаются выводы, называемые истоком и стоком. При изменении потенциала на затворе изменяется величина токопроводящего канала между стоком и истоком и ток через него.
Входное сопротивление полевого транзистора очень большое, а вследствие этого он имеет большой коэффициент усиления по напряжению.
Как проверить полевой транзистор
Рассмотрим проверку на примере полевого транзистора с n-каналом. Порядок действий будет таким:
- Переводим мультиметр на режим прозвонки диодов.
- Плюсовой вывод от мультиметра подключаем к истоку, минусовой – к стоку. Прибор покажет 0,5-0,7 В.
- Меняем полярность подключения на противоположную. Прибор покажет обрыв.
- Открываем транзистор, подключив минусовой провод к истоку, а плюсовым коснувшись затвора. За счет существования входной емкости элемент остается открытым некоторое время, это свойство и используется для проверки.
- Плюсовой провод перемещаем на сток. Мультиметр покажет 0-800 мВ.
- Меняем полярность подключения. Показания прибора не должны измениться.
- Закрываем полевой транзистор: плюсовой провод к истоку, минусовой – к затвору.
- Повторяем пункты 2 и 3, ничего не должно измениться.
C4106
Брошюра с техническими данными транзисторов C4106Toshiba power Transistor Semiconductor Data Book 1983. C4977 datasheet pdf 400v 40w 7a fuji, c4977 datasheet, 2sc4977 pdf, c4977 распиновка, данные, схема, микросхема, руководство, замена, детали эквивалент. Дополняет максимальные характеристики 2sa950 ta 25c характеристики символ номинал единица напряжение коллекторной базы vcbo 35 v напряжение коллекторного передатчика vceo 30 v базовое напряжение эмиттера vebo 5 v. C datasheet, c pdf, c data sheet, c manual, c pdf, c, datenblatt, electronics c, alldatasheet, free, datasheet, даташит.Bc557c транзистор pnp 45v 100ma to92 nxp semiconductors datasheet pdf data sheet free from datasheet data sheet поиск интегральных схем ic, полупроводников и других электронных компонентов, таких как резисторы, конденсаторы, транзисторы и диоды. Мощный кремниевый npn-транзистор stmicroelectronics. C4106 c4106 транзистор c3205 транзистор c3205 k3505 mp67b k2255 l0307 c4106 текст таблицы данных.
Руководство по выбору биполярных силовых транзисторов Mouser Electronics. Список патентной защиты полупроводниковой продукции можно найти по адресу.Иногда префикс 2s не отмечен на упаковке, транзистор 2sc4106 может быть помечен как c4106. Текст книги проектов Arduino находится под лицензией Creative Commons a. C4106 datasheet pdf, c4106 datasheet, c4106 pdf, c4106 распиновка, данные c4106, c4106 схема, ic, c4106 руководство, заменитель, детали, схема, ссылка. Toshiba транзистор кремниевый npn эпитаксиальный тип pct процесс 2sc2240 малошумящий звуковой усилитель приложения 2sc2240 — это транзистор для низкочастотных и малошумящих приложений.Техническое описание C4106, c4106 pdf, техническое описание c4106, техническое описание, техническое описание, pdf. Bc817dpn npnpnp транзистор общего назначения nexperia. Bc337 bc338 npn эпитаксиальный кремниевый транзистор Mouser Electronics.
Та же операция применима и к pnp-транзисторам, но с обратной полярностью тока и напряжения. Поскольку цель этой книги — не углубляться в физику транзисторов. C4106 datasheet, c4106 pdf, c4106 data sheet, c4106 manual, c4106 pdf, c4106, datenblatt, electronics c4106, alldatasheet, free, datasheet, datasheets, data sheet.C3150 datasheet, pdf 800v, npn силовой транзистор mospec, даташит 2sc3150, c3150 pdf, распиновка c3150, эквивалент c3150, данные, схема, схема c3150. 30 сентября 2015 г. c4106 datasheet pdf, c4106 datasheet, c4106 pdf, c4106 распиновка, данные c4106, c4106 схема, ic, c4106 руководство, заменитель, детали, схема, справочная информация. Импульсный стабилизатор на кремниевом транзисторе 400v7a с тройным диффузным диффузором npn. Поскольку распределение тепла в кристалле транзистора неравномерно и зависит от напряжения и. Motorola заказывает этот документ Технические характеристики полупроводников с помощью bf240d amfm-транзистора bf240 npn кремниевый коллектор 1 3 база 1 2 3 2 корпус эмиттера 2904, стиль 21 максимальные номинальные значения to92 до 226aa номинальный символ значение единица измерения напряжение передатчика vceo 40 в постоянного тока напряжение базы коллектора vcbo 40 в постоянного тока напряжение эмиттерной базы.
En2471a npn-тройной диффузионный планарный кремниевый транзистор 2sc4106 Импульсный стабилизатор 400v7a применяет размеры корпуса, высокое напряжение пробоя и высокую надежность. Эпитаксиальный процесс pct кремния pnp транзистора Toshiba. Дополнительный кремниевый силовой транзистор Дарлингтона st microelectronics 6. Техническое описание C546, перекрестные ссылки, схемы и указания по применению в формате pdf. По специальному запросу эти транзисторы могут быть изготовлены с различной конфигурацией выводов. Kst
00 3 кривые электрических характеристик sts9015 рис.B типичные характеристики 12 8 6 4 2 0 2 8 12 ток коллектора в сравнении с транзистором C4106, транзистором c3457 b824, полупроводником c4106. Применение кремниевого npn тройного рассеянного планарного транзистора высокого напряжения и высокоскоростного переключающего транзистора. Транзистор с резистором Pnp см. Упрощенную схему, символы и выводы для деталей корпуса. Таблицы данных по всем выпущенным продуктам и семействам продуктов доступны для загрузки в формате pdf. Спецификация продукции Savantic Semiconductor кремниевые npn-транзисторы 2sc3150 описание с корпусом to220c высоким напряжением пробоя.Спецификации, упомянутые в этой публикации, могут быть изменены без предварительного уведомления.
Кремниевые эпитаксиальные планарные транзисторы Npn Эти транзисторы подразделяются на три группы a, b и c в соответствии с их коэффициентом усиления по току. Применение: коммутация и усиление общего назначения, e. Если иное не указано в этом техническом паспорте, этот продукт является стандартным коммерческим продуктом и не предназначен для использования в нем. Содержит распиновку разъемов и информацию о том, как строить кабели и т. Д. Это устройство разработано для снижения коэффициента шума в области низкого сигнала. полное сопротивление источника, а также для снижения импульсного шума.Бесплатные пакеты доступны максимальные рейтинги рейтинг символ значение единицы коллекционер. Это означает, что вы можете копировать, повторно использовать, адаптировать и развивать текст этой книги в некоммерческих целях, пока: См. Подробную информацию о заказе и доставке в разделе «Размеры упаковки» на стр. 4 этих данных. Приложения для импульсных регуляторов Sanyo, все данные, технические данные, поисковый сайт для. Широкая область применения aso, безопасная для применения в импульсных регуляторах 800v3a, закрепление контактов Описание Коллектор 1base 2.Полезный динамический диапазон расширяется до 100 мА в качестве переключателя и до 100 МГц в качестве усилителя. Справочник транзисторов BF240, поиск аналогов. Китай транзистор c, транзистор c из китая поставщика найти различные транзисторы c от транзистора 2sc 2sa, транзистор 2sc, транзистор. Обычно транзисторы работают в режиме запуска, и если вторичные источники питания не установлены, они работают без нагрузки на частоте, отличной от их нормальной частоты.
BC549 является малошумным типом и доступен в группах b и c.Коллектороэмиттер напряжения 46 10 10 0 14 общий эмиттер tc25. Усилитель общего назначения Npn Это устройство выполнено в виде усилителя и переключателя общего назначения. Определение статуса продукта в техническом паспорте, определение статуса продукта, предварительная информация, форматирующая или в дизайне, эта таблица данных содержит проектные спецификации для разработки продукта. C4106 datasheet npn transistor 2sc4106, pdf, распиновка, аналог, замена, схема, руководство, данные, схема, детали, даташит. Тепловые данные rthjcase тепловое сопротивление junctioncase max 1.En2471a npn тройной диффузионный планарный кремниевый транзистор 2sc4106 400v7a, надежность. Эта публикация заменяет всю ранее предоставленную информацию. D4206 datasheet, d4206 pdf, d4206 data sheet, d4206 manual, d4206 pdf, d4206, datenblatt, electronics d4206, alldatasheet, free, datasheet, datasheets, data sheet. Книга данных по силовым транзисторам и полупроводникам компании Toshiba, 1983 г., корпорация toshiba, 1983 г., acrobat 7, pdf 52. Схема Дарлингтона, базовый эмиттерный коллектор.
Toshiba транзистор кремниевый npn эпитаксиальный тип pct процесс 2sc2120 аудио усилитель мощности приложения high hfe.Описание npn-транзистора в пластиковом корпусе то92 сот54. C4106 datasheet pdf, c4106 datasheet, c4106 pdf, c4106 распиновка, данные c4106, c4106 схема, ic, c4106 руководство, заменитель, детали, схема. Основы транзистора: переход эмиттер-база смещен в прямом направлении, обычно переход от коллектора к базе — смещен в обратном направлении. Обычно транзисторы работают с током, поэтому сначала следует применить kcl. Планарный кремниевый транзистор npn с тройным рассеиванием 400в 7а.
Руководство по выбору транзисторов Напряжение VCEOIC collectoremitter V CEO V 800 c3678 c3679 c3680 c5124 c4020 c4300 c4301.C3150 datasheet, pdf 800v, npn силовой транзистор mospec. Хотя программное обеспечение кажется немного уродливым, работающее на dos, но оно отлично работает с базой данных со многими компонентами и является бесплатным, делает интересным инструментом для интереса к электронике, хочет знать, когда появляется информация о конкретном компоненте или найти замену операции довольно прост и разделен по таким категориям, как. Mje172 — параметры, поиск по каталогам. Предварительные данные о первом производстве. Этот лист данных содержит предварительные данные.Инструкции по определению теплового сопротивления rths для ребер охлаждения можно найти на странице 11. Бесплатные книги по транзисторным схемам скачать электронные книги онлайн-учебники. Dtd143ec 500ma50v цифровой транзистор со встроенными резисторами техническое описание loutline значение параметра sot23 vcc 50v ic 500ma r1 4. Тип bc546 доступен в группах a и b, однако типы bc547 и bc548 могут поставляться во всех трех группах. C2335 datasheet vcbo500v, npn транзистор Fairchild, даташит ksc2335, c2335 pdf, распиновка c2335, руководство c2335, схема c2335, эквивалент c2335.
Основы физики полупроводников, диоды, нелинейная модель диода, анализ линии нагрузки, модели диодов с большим сигналом, модель смещенного диода, транзисторы, модель bjt с большим сигналом, анализ линии нагрузки, модель малого сигнала и усиление транзистора. Руководство по выбору биполярных силовых транзисторов январь 2003 г. содержание страница продукта транзисторы общего назначения горизонтальное отклонение выходные транзисторы страница продукта dpak d2pak sot223 ipak to126 транзисторы тодарлингтона dpak ipak to126 to220 to220f to3p to3pf переключающие транзисторы dpak d2pak to9222206 to2203.Абсолютные максимальные рейтинги t a 25c, если не указано иное. Скачать справочник эквивалента базы данных ic 100 тыс. Диоды и транзисторы pdf 28p В этой заметке рассматриваются следующие темы. Эти транзисторы подразделяются на три группы q, r и s в соответствии с их коэффициентом усиления по постоянному току. База to126 mod 1 2 3 Абсолютные максимальные значения ta 25c обозначение элемента номинальные значения единица напряжение от коллектора к базе vcbo 35 В напряжение от коллектора к эмиттеру vceo 35 В от эмиттера к базе. Кремниевый транзистор npn, лист данных 2sc2001, схема 2sc2001, лист данных 2sc2001.C2335 datasheet vcbo500v, npn транзистор Fairchild. Описание пиновки 1 цоколь 2 коллектор 3 эмиттер. Руководство по выбору дискретных полупроводников 2010 диоды, транзисторы, ЭСД и устройства формирования сигналов превосходные по ассортименту и характеристикам. K57 c2335 k4106 nec c1685 транзистор siemens b25353 c2335 r транзистор c2335 k1117 b25353 текст. SST3 имеет встроенные резисторы смещения, которые позволяют конфигурировать схему инвертора без подключения. C4106 транзистор c4106 t5001 ic tl8850ap транзистор c4060 tl8850 c61 em553f9t c4054 транзистор.
Сменный и аналогичный транзистор для 2sc4106, вы можете заменить 2sc4106 на 2sc2898, 2sc3039, 2sc4107, 2sc4108, 2sc4161, 2sc4162, 2sc4163, 2sc4164, 2sc4242, fjp07, kse07, mje7a07. Транзистор C4106 c4106 t5001 ic tl8850ap транзистор c4060 tl8850. Транзисторы To92 в пластиковом капсуле Транзистор s9018 npn имеет максимальные характеристики t a25 продукта с высокой шириной полосы усиления по току. Системы полевых шин Lenze в промышленных приложениях для оптимальной связи между отдельными модулями системы, системы полевых шин все чаще используются для технологических процессов.Nec, alldatasheet, datasheet, сайт поиска данных для электронных компонентов и. Ваш c4106 на самом деле является 2sc4106, который представляет собой переключающий npn-транзистор на 7 ампер в корпусе t0220, с номинальным напряжением около 400 В и рассеиваемой мощностью 50 Вт в эквиваленте. Техническое описание C4106, pdf, техническое описание c4106, c4106, c4106. Технический паспорт, перекрестные ссылки, схемы и указания по применению TP4001 в формате pdf. Транзистор C200, эквивалентный nte123a npn аудиотранзистору. Технические характеристики могут быть изменены без предварительного уведомления.Lenze 8200 векторные параметры параметры инвертора lenze 9300 emf23ib lenze epl 10200 e82zafcc001 e82zafpc001 lenze 9300 код неисправности c4106 транзистор c4106 текст.
81776 417 301 1115 1115 1455 1121 491 167 553 206 159 1142 471435 1065 738 921 349 835 500 229 619 1211 1255 1155 1479 255 576 169 1044 521 775 1131 1333 829 1088 42 992 1322C4106 SANYO Transistors | Весвин Электроникс Лимитед
Электронный компонент C4106 запущен в производство компанией SANYO, входит в состав Transistors.Каждое устройство доступно в небольшом корпусе TO-220 и рассчитано на работу в расширенном температурном диапазоне от -40 ° C до 105 ° C (TA).
- Категории
- Транзисторы
- Производитель
- Панасоник (SANYO)
- Номер детали Veswin
- V1070-C4106
- Статус бессвинца / Статус RoHS
- Бессвинцовый / соответствует требованиям RoHS
- Состояние
- Новое и оригинальное — заводская упаковка
- Состояние на складе
- Наличие на складе
- Минимальный заказ
- 1
- Расчетное время доставки
- 05 августа — 10 августа (выберите ускоренную доставку)
- EDA / CAD модели
- C4106 от SnapEDA
- Условия хранения
- Шкаф для сухого хранения и пакет защиты от влажности
Ищете C4106? Добро пожаловать в Весвин.com, наши специалисты по продажам всегда готовы помочь вам. Вы можете получить доступность компонентов и цены для C4106,
просмотреть подробную информацию, включая производителя C4106 и спецификации. Вы можете купить или узнать о C4106 прямо здесь, прямо сейчас.
Veswin — дистрибьютор электронных компонентов для бытовых, обычных, устаревших / труднодоступных электронных компонентов. Veswin поставляет промышленные,
Коммерческие компоненты и компоненты Mil-Spec для OEM-клиентов, клиентов CEM и ремонтных центров по всему миру.У нас есть большой запас электронных компонентов,
который может включать C4106, готовый к отправке в тот же день или в короткие сроки. Компания Veswin является поставщиком и дистрибьютором C4106 полного цикла услуг для C4106.
У нас есть возможность закупить и поставить C4106 по всему миру, чтобы помочь вам с цепочкой поставок электронных компонентов. сейчас же!
- В: Как заказать C4106?
- A: Нажмите кнопку «Добавить в корзину» и перейдите к оформлению заказа.
- Q: Как платить за C4106?
- A: Мы принимаем T / T (банковский перевод), Paypal, оплату кредитной картой через PayPal.
- Вопрос: Как долго я могу получить C4106?
- A: Мы отправим через FedEx, DHL или UPS, обычно доставка в ваш офис занимает 4 или 5 дней.
Мы также можем отправить заказной авиапочтой, обычно доставка в ваш офис занимает 14-38 дней.
Пожалуйста, выберите предпочтительный способ доставки при оформлении заказа на нашем веб-сайте. - Вопрос: C4106 Гарантия?
- A: Мы предоставляем 90-дневную гарантию на наш продукт.
- Вопрос: C4106 Техническая поддержка?
- A: Да, наш технический инженер поможет вам с информацией о распиновке C4106, примечаниями по применению, заменой, таблица данных в pdf, руководство, схема, эквивалент, перекрестная ссылка.
СЕРТИФИКАЦИЯ ISO
Регистрация ISO дает вам уверенность в том, что системы Veswin Electronics точны, всеобъемлющи и соответствуют строгим требованиям стандарта ISO. Эти требования обеспечивают долгосрочную приверженность компании Veswin Electronics постоянному совершенствованию.
Примечание. Мы делаем все возможное, чтобы на нашем веб-сайте появлялись правильные данные о товарах.Перед заказом обратитесь к техническому описанию продукта / каталогу для получения подтвержденных технических характеристик от производителя. Если вы заметили ошибку, сообщите нам об этом.
Время обработки : Стоимость доставки зависит от зоны и страны.
Товары доставляются почтовыми службами и оплачиваются по себестоимости.
Товары будут отправлены в течение 1-2 рабочих дней с момента оплаты.Доставка может быть объединена при покупке большего количества.
Другие способы перевозки могут быть доступны при оформлении заказа — вы также можете сначала связаться со мной для уточнения деталей.
ПРИМЕЧАНИЕ. Все основные кредитные и дебетовые карты через PayPal. (AMEX принимается через Paypal).
Мы также можем принять банковский перевод. Просто отправьте нам электронное письмо с URL-адресами или артикулом продукта.Укажите свой адрес доставки и предпочтительный способ доставки. Затем мы отправим вам полные инструкции по электронной почте.
Мы никогда не храним данные вашей карты, они остаются в Paypal.
- Мы предоставляем 90 дней гарантии;
- Предотгрузочная инспекция (PSI) будет применяться;
- Если некоторые из полученных вами товаров не идеального качества, мы ответственно организуем вам возврат или замену.Но предметы должны оставаться в исходном состоянии;
- Если вы не получите товар в течение 25 дней, просто сообщите нам, будет выпущена новая посылка или замена.
- Если ваш товар значительно отличается от нашего описания продукта, вы можете: А: вернуть его и получить полный возврат, или Б: получить частичный возврат и оставить товар себе.
- Налоги и НДС не будут включены;
- Для получения более подробной информации просмотрите нашу страницу часто задаваемых вопросов.
1N6628US : сверхбыстрый выпрямитель (менее 100 нс). 1N977B : стабилитрон. Обозначение PD Параметр Рассеиваемая мощность TL 75C, длина вывода = 3/8 дюйма Снижение номинальных значений выше 75 ° C TJ, TSTG Диапазон рабочих температур и температур хранения * Эти номинальные значения являются предельными значениями, при превышении которых эксплуатационная надежность диода может быть нарушена.Примечания: 1. Измерение напряжения стабилитрона (VZ) Номинальное напряжение стабилитрона измеряется, когда переходник устройства находится в тепловом равновесии. CS3351YD14 : Драйвер Дарлингтона для регулятора напряжения генератора. Интегральная схема интегрального стабилизатора переменного тока CS3341 / 3351/386/387 обеспечивает регулировку напряжения для автомобильных трехфазных генераторов переменного тока. Он управляет внешним источником питания Дарлингтона для управления током возбуждения генератора. В случае сбоя заряда предусмотрен выходной контакт лампы для управления внешним транзистором Дарлингтона, способным к переключению. NTE107 : Кремниевый NPN-транзистор. Unf Oscillator For Tuner ..: кремниевый NPN-планарный эпитаксиальный транзистор в корпусе типа TO92, разработанный специально для высокочастотных приложений. Это устройство подходит для использования в качестве генератора в телевизионных тюнерах УВЧ. Абсолютные максимальные номинальные значения: (TA = + 25 ° C, если не указано иное), базовое напряжение коллектора, VCBO. Напряжение коллектор-эмиттер 30В, VCEO. 12 В EmitterBase. ST380CH04C0 : 400V 960A Phase Control SCR в корпусе TO-200AB (E-Puk).Центральный усилительный вентиль Металлический корпус с керамическим изолятором Корпус международного стандарта TO-200AB (E-PUK) Низкопрофильный хоккейный блок для увеличения пропускной способности по току Расширенный температурный диапазон Типичные области применения Элементы управления двигателями постоянного тока Управляемые источники питания постоянного тока Контроллеры переменного тока V DRM / V RRM, Максимум. повторяющееся пиковое напряжение и напряжение в закрытом состоянии V I T (AV) Макс. средний. 0805R-101G : 1 ЭЛЕМЕНТ, 100 мкГн, КЕРАМИЧЕСКИЙ СЕРДЕЧНИК, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Основной материал: керамика; Стиль вывода: ОБРАТНЫЙ; Стандарты и сертификаты: RoHS; Применение: общего назначения, ВЧ дроссель; Диапазон индуктивности: 100 мкГн; Допуск индуктивности: 2 (+/-%); DCR: 0.4600 Ом. CB10Lh571M : РЕЗИСТОР, ТРИММЕР, УГЛЕРОДНАЯ ПЛЕНКА, 1 ОБОРОТ (S), 0,15 Вт, 470 Ом. s: Тип потенциометра: Триммер; Конус сопротивления: линейный; Монтаж / Упаковка: Сквозное отверстие, СООТВЕТСТВИЕ ROHS; Диапазон сопротивления: 470 Ом; Допуск: 20 +/-%; Стандарты и сертификаты: RoHS. CMKT3920 : МАЛЫЙ СИГНАЛЬНЫЙ ТРАНЗИСТОР. CMKT3920 ПОВЕРХНОСТНЫЙ КРЕМНИЙНЫЙ ДВОЙНОЙ ПЕРЕКЛЮЧАТЕЛЬНЫЙ ТРАНЗИСТОР NPN С МАЛЫМ СИГНАЛОМ: Central Semiconductor CMKT3920 (два одиночных NPN-транзистора) представляет собой двойную комбинацию в компактном корпусе SOT-363 ULTRAminiTM, предназначенном для усилителей общего назначения и коммутации малых сигналов.КОД МАРКИРОВКИ: K20 SOT-363 КОРПУС: компактный комплект ULTRAminiTM. CPU : КОНДЕНСАТОР, КЕРАМИЧЕСКИЙ, 1000 В, КРЕПЛЕНИЕ В ПРОХОДНОЕ ОТВЕРСТИЕ. s: Конфигурация / Форм-фактор: Конденсатор с выводами; Приложения: общего назначения; Конденсаторы электростатические: керамический состав; Тип установки: сквозное отверстие; Рабочая температура: от -55 до 125 C (от -67 до 257 F). IMC-121022.0UH +/- 10% : 1 ЭЛЕМЕНТ, 22 мкГн, ПОРОШОК С ЖЕЛЕЗНЫМ ЯДРОМ, ИНДУКТОР ОБЩЕГО НАЗНАЧЕНИЯ, SMD. s: Вариант монтажа: Технология поверхностного монтажа; Устройств в упаковке: 1; Основной материал: порошковое железо; Стиль вывода: ОБРАТНЫЙ; Применение: общего назначения, ВЧ дроссель; Диапазон индуктивности: 22 мкГн; Номинальный постоянный ток: 145 миллиампер; Рабочая температура: от -55 до 125 C (-67. P3602AAL : 20 А, КРЕМНИЙНЫЙ ЗАЩИТНИК. s: Тип тиристора: Тиристорный ограничитель перенапряжения, КРЕМНИЙНЫЙ ПРЕДОХРАНИТЕЛЬ ПЕРЕНАПРЯЖЕНИЯ; Тип корпуса: TO-220, СООТВЕТСТВУЮЩИЙ ROHS, ПЛАСТИК, МОДИФИЦИРОВАННЫЙ TO-220, 3-КОНТАКТНЫЙ; Количество контактов: 3; Стандарты и сертификаты: RoHS. 1614194-2 : РЕЗИСТОР, ТОНКАЯ ПЛЕНКА, 0,25 Вт, 0,1%, 15 частей на миллион, 7150 Ом, КРЕПЛЕНИЕ ДЛЯ ПРОХОДНОГО ОТВЕРСТИЯ. s: Категория / Применение: Общее использование; Технология / конструкция: тонкая пленка (чип); Монтаж / упаковка: сквозное отверстие, осевые выводы, осевые выводы, соответствие требованиям ROHS; Диапазон сопротивления: 7150 Ом; Допуск: 0.1000 +/-%; Температурный коэффициент: 15 ± ppm / ° C; Номинальная мощность: 0,2500. 2SD2425-AB1 : 5 А, 60 В, NPN, Si, СИЛОВОЙ ТРАНЗИСТОР. s: Полярность: NPN. 1 апреля 2010 года NEC Electronics Corporation объединилась с Renesas Technology Corporation, и Renesas Electronics Corporation приняла на себя весь бизнес обеих компаний. Таким образом, хотя в этом документе сохранилось старое название компании, это действительный документ Renesas Electronics. Мы ценим ваше понимание. Выпущено: Renesas Electronics Corporation. 2SS20L : 2 А, 20 В, КРЕМНИЙ, ВЫПРЯМИТЕЛЬНЫЙ ДИОД. s: Конфигурация выпрямителя / Технология: Schottky; Пакет: СООТВЕТСТВИЕ ROHS, ПЛАСТИКОВЫЙ ПАКЕТ-2; Количество диодов: 1; VRRM: 20 вольт; ЕСЛИ: 2000 мА; Соответствует RoHS: RoHS. 3333B223K302E : КРЫШКА, КЕРАМИЧЕСКАЯ, 22NF, 3KVDC, 10% -TOL, 10% + TOL, X7R TC CODE, -15,15% TC, 3333 КОРПУС. s: Приложения: общего назначения; Конденсаторы электростатические: керамический состав. |
Транзистор cắm NPN 2SC4106 C4106 4106 400V 7A TO-220 mới chính hãng 10 — Linh kiện điện tử ST
- Chủng loại — NPN
- VCE: 400 V
- VBC: 500 V
- VBE: 7 V
- IC: 7 A
- Công suất tiêu t71
- Khuếch đại dòng DC (h fe ) — 15 до 50
- Tn số óng cắt — 20 MHz
- nhiệt độ hoạt ng -55 to +150 ° C TO-220
CAC Transisstor, который используется для передачи данных 2SC4106: 2SC2898, 2SC3039, 2SC4107, 2SC4108, 2SC4161, 2SC4162, 2SC4163, 2SC4164, 2SC413700, MPG713700, KA1300700, KAE1300700
— Sản phẩm chính hãng: Là những sản phẩm được ính kèm nhóm từ «chính hãng… «, ây là những sản phẩm chính hãng được sản xuất từ các hãng lớn và uy tín như TI, ST, NXP, ATMEL, ON, SANYO, .. Sản phẩm sản xuủtt nghiêm ngặt về chất lượng đầu ra. Chúng tôi khuyn khích khách hàng sử dụng các sản phẩm này.
— Sản phẩm tháo máy: Là những sản phẩm đã qua sử dụng, trong 1 số trường hợp sẽ được tân trang lại để m bảo thẩm m đến tay khách hàng. Đặc biệt, những sản phẩm đã được chúng tôi trực tiếp kiểm định chất lượng đảm bảo cho khách hàng sẽ đính kèm vào tên sản phm ã c chúng tôi trực tiếp kiểm nh chất lượng m bo cho khách hàng sẽ đính kèm vào tên sản phm ã — Các sản phẩm khác: Không đính kèm nhóm từ «chính hãng»: ây có thể là những sản phẩm được trung quốc sản xuất không theo tânt hongc gtChất lượng loại hàng này có tính n định không cao và độ bền thấp hơn so với hàng chính hãng. ********** LIÊN HỆ NGAY 0393899775-0328806089 NHẬN GIÁ MUA SỈ LINH KIỆN CỰC TỐT ******** IC NGUỒN MUA SỈ TỪ 50 CON GIÁ TỐT Тщательно выберите номер детали, производителя и упаковку из приведенной ниже таблицы, а затем добавьте в корзину, чтобы перейти к оформлению заказа. Купите сейчас и получите удовольствие Мы никогда не храним данные вашей карты, они остаются в Paypal Благодарим за покупку нашей продукции на нашем веб-сайте. Искать
может быть отправлен в тот же день.Paypal принят, закажите онлайн сегодня!
✓Отправьте заказ в тот же день!
✓ Доставка по всему миру!
✓ Распродажа с ограниченным сроком
✓ Легкий возврат.
Все основные кредитные и дебетовые карты через PayPal. Обзор продукта Название продукта Поиск Доступное количество Возможна немедленная отправка Модель NO. Код ТН ВЭД 8529908100 Минимальное количество От одного куска Атрибуты продукта Категории идентификатор товара артикул gtin14 mpn Состояние детали Активный
Paypal (AMEX принимается через Paypal)
Мы также принимаем банковский перевод. Просто отправьте нам электронное письмо с URL-адресами или кодами продукта. Включите свой адрес доставки и предпочтительный способ доставки. Затем мы отправим вам полные инструкции по электронной почте.
Товары будут отправлены в течение 1-2 рабочих дней с момента оплаты. Доставка может быть объединена при покупке большего количества.
Другие способы перевозки могут быть доступны при оформлении заказа — вы также можете сначала связаться со мной для уточнения деталей. Судоходная компания Расчетное время доставки Информация для отслеживания Плоская транспортировочная 30-60 дней Не доступен Заказная Авиапочта 15-25 дней В наличии DHL / EMS / FEDEX / TNT 5-10 дней В наличии Окончательный срок поставки Может быть задержан вашей местной таможней из-за таможенного оформления.
Чтобы иметь право на возмещение, вы должны вернуть товар в течение 30 календарных дней с момента покупки. Товар должен быть в том же состоянии, в котором вы его получили, и не иметь каких-либо повреждений.
После того, как мы получим ваш товар, наша команда профессионалов проверит его и обработает ваш возврат. Деньги будут возвращены на исходный способ оплаты, который вы использовали при покупке. При оплате кредитной картой возврат средств может появиться в выписке по кредитной карте в течение 5–10 рабочих дней.
Если товар поврежден каким-либо образом или вы инициировали возврат по прошествии 30 календарных дней, вы не имеете права на возврат.
Если что-то неясно или у вас есть вопросы, свяжитесь с нашей службой поддержки клиентов.
Получите заказанный товар или верните свои деньги.
Покрывает вашу покупную цену и первоначальную доставку.
Если вы не получите товар в течение 25 дней, просто сообщите нам, будет выпущена новая посылка или замена.
PayPal Защита покупателей
Защита вашей покупки от клика до доставки
Вариант 1) Полный возврат средств, если вы не получили свой заказ
Вариант 2) Полный или частичный возврат, если товар не соответствует описанию
Если ваш товар значительно отличается от нашего описания продукта, вы можете: A: вернуть его и получить полный возврат, или B: получить частичный возврат и оставить товар. Паспорт или техническая спецификация в формате PDF доступны по запросу для загрузки.
Почему выбирают нас?
Каковы ваши основные продукты?
Наша основная продукция | ||
Интегральные схемы (ИС) | Дискретный полупроводник | Потенциометры, переменные R |
Аудио специального назначения | Принадлежности | Реле |
Часы / синхронизация | Мостовые выпрямители | Датчики, преобразователи |
Сбор данных | Diacs, Sidacs | Резисторы |
Встроенный | Диоды | Индукторы, катушки, дроссели |
Интерфейс | МОП-транзисторы | Фильтры |
Изоляторы — драйверы затворов | БТИЗ | Кристаллы и генераторы |
линейный | JFET (эффект поля перехода) | Разъемы, межкомпонентные соединения |
Логика | Полевые транзисторы РФ | Конденсаторы |
Память | РЧ Транзисторы (БЮТ) | Изоляторы |
PMIC | SCR | светодиод |
Транзисторы (БЮТ) | ||
Транзисторы | ||
Симисторы |
Какая цена?
Какой способ оплаты?
Что такое возврат и замена?
Какое минимальное количество для заказа вашей продукции?
Когда вы пришлете мне детали?
Как разместить заказ?
Предлагаете ли вы техническую поддержку?
Предлагаете ли вы гарантию?
Как сделать наш бизнес долгосрочным и хорошим?
Если у Вас возникнут другие вопросы, свяжитесь с нами.Мы всегда к вашим услугам!
Деловые и промышленные транзисторы 2SC4106 Новая замена Triple Diffused Transistor C4106 studio-in-fine.fr
На факт осведомленность ?
Enfin nous y voila! le Studio In Fine est une agence web Nantaise не уникальна, а есть de vous offrir (enfin) le meilleur du web à un tarif raisonnable.
Les usines a gaz, très peu pour nous! Создавайте сайты, основанные на веб-дизайне, минимализме и эффективности, а также об особенностях, которые не занимают места в таблице стилей. Laissez-vous emporter par une Approche moderne et rafraichissante, структурный и творческий.
Sur Nantes mais pas que, le studio In Fine vous follow dans vos projets depuis les prémices de la rà © flexion jusqu’au dà © ploiement en production. На у ва?
UI / UX — Внутренний интерфейс — DÃ © ploiement / HÃ © bergement — Фриланс
Contactez-nousIl à © tait UNE fois
Веб-сайты с историей.
Интернет-Интернет и цифровое преобразование, разведка в 3-х историях qui font du web une résite et inventez avec nous votre web de demain.
«J’ai un budget Assez restreint mais j’ai включает qu’Internet © tait le futur de mon entreprise.Qui faire confiance dans un business ou je n’y connait rien? »
«Notre site web dà © veloppà © en interne avait besoin d’un coup de peinture! C’est vraiment pas © vident de Trouver un prestataire pour reprendre l’existant.»»
«Très vite, j’ai eu besoin d’un prestataire web de confiance en urgence pour notre actività © qui dà © colle! Mais comment concilier qualità © et rapidità ©?»
2SC4106 Транзистор К4106 новой замены трехкратно рассеянный
транзистор К4106
новой замены 2СК4106 диффузный тройной2SC4106 Новая замена тройного диффузионного транзистора C4106.Детали, помеченные как «тянущие» или «тянущие», были ранее установлены и изготовлены первоначальным производителем. В Dalbani нам нравится проводить различие между новыми, ранее установленными деталями (бывшими в употреблении) и деталями, изготовленными сторонними производителями. Состояние :: Новое: Совершенно новый, неиспользованный, неоткрытый, неповрежденный товар в оригинальной упаковке (если упаковка применима. ). Упаковка должна быть такой же, как в розничном магазине, за исключением случаев, когда товар изготовлен вручную или был упакован производителем в нерызничную упаковку, такую как коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. Просмотреть все определения условий: Категория Dalbani:: Транзисторы, MPN:: 2SC4106: Базовая категория Dalbani:: Полупроводники, Описание:: Транзистор: Бренд:: Небрендированные / универсальные, Dalbani Номер позиции:: 2SC4106 *: Видимая модель:: C4106, Качество :: Generic Новое: UPC:: Не применяется.
Kualitas c4106 транзистор Untuk Proyek Elektronik
Alibaba.com menawarkan banyak pilihan. c4106 транзистор для дипилий для меменух кебутухан спесифик Anda.. c4106 транзистор adalah bagian penting dari hampir semua jenis komponen elektronik. Mereka dapat digunakan Untukmbuat motherboard, kalkulator, radio, TV, dan banyak lagi. Денган мемили ян тепат. c4106 транзистор , Anda dapat memastikan bahwa produk yang Anda buat akan bermutu tinggi dan berkinerja sangat baik. Faktor pilihan utama untuk produk mencakup aplikasi янь diinginkan, bahan, дан jenis, di antara faktor-faktor lainnya.c4106 транзистор terdiri dari bahan semikonduktor dan biasanya memiliki setidaknya tiga terminal yang dapat Anda gunakan untuk menghubungkannya ke sirkuit eksternal.Perangkat ini bekerja sebagai penguat atau sakelar di sebagian besar sirkuit listrik .. c4106 транзистор mencakup dua jenis wilayah yang terjadi dari memasukkan kotoran melalui proses doping. Себагайский пингвин, itu. c4106 транзистор menyembunyikan arus masukan rendah menjadi energi keluaran besar, дан мерека menyalurkan arus kecil untuk menggerakkan aplikasi besar yang bekerja sebagai sakelar.
Pelajari lembar data yang menyertai Anda. c4106 транзистор untuk menentukan kaki dasar, emitor, dan kolektor untuk koneksi yang aman dan terjamin.Иту. c4106 транзистор di Alibaba.com menggunakan silikon sebagai substrat semikonduktor utama, berkat sifatnya yang sangat baik dan tegangan sambungan 0,6V yang diinginkan. Параметр penting untuk. c4106 транзистор untuk proyek apa pun termasuk arus yang berfungsi, disipasi daya, dan tegangan sumber.
Temukan dengan harga yang sangat terjangkau. c4106 транзистор на Alibaba.com для всех желающих и предпочтительных. Berbagai bahan дан гайя tersedia Untuk pemasangan дан pengoperasian ян аман дан ньяман.Penjual terakreditasi tertentu juga menawarkan layanan purna jual dan dukungan teknis.